Filters a source vector through an IIR filter.
Case 1: Not-in-place operation on integer samples
IppStatus ippsIIR32s_16s_Sfs(const Ipp16s* pSrc, Ipp16s* pDst, int len, IppsIIRState32s_16s* pState, int scaleFactor);
IppStatus ippsIIR32f_16s_Sfs(const Ipp16s* pSrc, Ipp16s* pDst, int len, IppsIIRState32f_16s* pState, int scaleFactor);
IppStatus ippsIIR64f_16s_Sfs(const Ipp16s* pSrc, Ipp16s* pDst, int len, IppsIIRState64f_16s* pState, int scaleFactor);
IppStatus ippsIIR64f_32s_Sfs(const Ipp32s* pSrc, Ipp32s* pDst, int len, IppsIIRState64f_32s* pState, int scaleFactor);
IppStatus ippsIIR32sc_16sc_Sfs(const Ipp16sc* pSrc, Ipp16sc* pDst, int len, IppsIIRState32sc_16sc* pState, int scaleFactor);
IppStatus ippsIIR32fc_16sc_Sfs(const Ipp16sc* pSrc, Ipp16sc* pDst, int len, IppsIIRState32fc_16sc* pState, int scaleFactor);
IppStatus ippsIIR64fc_16sc_Sfs(const Ipp16sc* pSrc, Ipp16sc* pDst, int len, IppsIIRState64fc_16sc* pState, int scaleFactor);
IppStatus ippsIIR64fc_32sc_Sfs(const Ipp32sc* pSrc, Ipp32sc* pDst, int len, IppsIIRState64fc_32sc* pState, int scaleFactor);
Case 2: Not-in-place operation on floating point samples
IppStatus ippsIIR_32f(const Ipp32f* pSrc, Ipp32f* pDst, int len, IppsIIRState_32f* pState);
IppStatus ippsIIR_64f(const Ipp64f* pSrc, Ipp64f* pDst, int len, IppsIIRState_64f* pState);
IppStatus ippsIIR64f_32f(const Ipp32f* pSrc, Ipp32f* pDst, int len, IppsIIRState64f_32f* pState);
IppStatus ippsIIR_32fc(const Ipp32fc* pSrc, Ipp32fc* pDst, int len, IppsIIRState_32fc* pState);
IppStatus ippsIIR_64fc(const Ipp64fc* pSrc, Ipp64fc* pDst, int len, IppsIIRState_64fc* pState);
IppStatus ippsIIR64fc_32fc(const Ipp32fc* pSrc, Ipp32fc* pDst, int len, IppsIIRState64fc_32fc* pState);
Case 3: In-place operation on integer samples
IppStatus ippsIIR32s_16s_ISfs(Ipp16s* pSrcDst, int len, IppsIIRState32s_16s* pState, int scaleFactor);
IppStatus ippsIIR32f_16s_ISfs(Ipp16s* pSrcDst, int len, IppsIIRState32f_16s* pState, int scaleFactor);
IppStatus ippsIIR64f_16s_ISfs(Ipp16s* pSrcDst, int len, IppsIIRState64f_16s* pState, int scaleFactor);
IppStatus ippsIIR64f_32s_ISfs(Ipp32s* pSrcDst, int len, IppsIIRState64f_32s* pState, int scaleFactor);
IppStatus ippsIIR32fc_16sc_ISfs(Ipp16sc* pSrcDst, int len, IppsIIRState32fc_16sc* pState, int scaleFactor);
IppStatus ippsIIR32sc_16sc_ISfs(Ipp16sc* pSrcDst, int len, IppsIIRState32sc_16sc* pState, int scaleFactor);
IppStatus ippsIIR64fc_16sc_ISfs(Ipp16sc* pSrcDst, int len, IppsIIRState64fc_16sc* pState, int scaleFactor);
IppStatus ippsIIR64fc_32sc_ISfs(Ipp32sc* pSrcDst, int len, IppsIIRState64fc_32sc* pState, int scaleFactor);
Case 4: In-place operation on floating point samples
IppStatus ippsIIR_32f_I(Ipp32f* pSrcDst, int len, IppsIIRState_32f* pState);
IppStatus ippsIIR_64f_I(Ipp64f* pSrcDst, int len, IppsIIRState_64f* pState);
IppStatus ippsIIR64f_32f_I(Ipp32f* pSrcDst, int len, IppsIIRState64f_32f* pState);
IppStatus ippsIIR_32fc_I(Ipp32fc* pSrcDst, int len, IppsIIRState_32fc* pState);
IppStatus ippsIIR_64fc_I(Ipp64fc* pSrcDst, int len, IppsIIRState_64fc* pState);
IppStatus ippsIIR64fc_32fc_I(Ipp32fc* pSrcDst, int len, IppsIIRState64fc_32fc* pState);
Case 4: Operation with specified number of vector.
IppStatus ippsIIR_32f_P(const Ipp32f** ppSrc, Ipp32f** ppDst, int len, int nChannels, IppsIIRState_32f** ppState);
IppStatus ippsIIR_32f_IP(Ipp32f** ppSrcDst, int len, int nChannels, IppsIIRState_32f** ppState);
pState |
Pointer to the IIR filter state structure. |
ppState |
Pointer to the array of the pointers to the IIR filter state structures. |
pSrc |
Pointer to the source vector. |
ppSrc |
Pointer to the array of pointers to the source vectors. |
pDst |
Pointer to the destination vector. |
pSrcDst |
Pointer to the source and destination vector for the in-place operations. |
ppSrcDst |
Pointer to the array of pointers to the source and destination vectors for the in-place operations. |
len |
Number of elements of the vector to be filtered. |
nChannels |
Number of vectors to be filtered. |
scaleFactor |
Scale factor, refer to Integer Scaling. |
The function ippsIIR is declared in the ipps.h file. This function filters len elements of the source vector pSrc or pSrcDst through an IIR filter, and stores the results in pDst or pSrcDst, respectively. The filter parameters are specified in pState.The output of the integer sample is scaled according to scaleFactor and can be saturated.
Do not modify the scaleFactor value unless the state structure is changed.
The filter state must be initialized before calling the function ippsIIR. Specify the number of taps tapsLen, the tap values in pTaps, the delay line values in pDlyLine, and the order or numBq value beforehand.
Function flavors described in the Case 4 filter simultaneously the nChannels source vectors. Each vector must have the len elements and is filtered with its own state structure. These state structures must be initialized beforehand.
The example below show how the Intel IPP functions for IIR filtering can be used.
Example "Using the ippsIIR_32f Function to Suppress a 60 Hz Signal" illustrates using ippsIIR_32f function.
Example "Using the ippsIIR Function to Filter a Sample" demonstrates how to use the function ippsIIR to filter a sample. The function ippsConvert_64f32s_Sfs converts floating-point taps into integer data type before calling ippsIIRInitAlloc_32s.
ippStsNoErr |
Indicates no error. |
ippStsNullPtrErr |
Indicates an error when one of the specified pointers is NULL. |
ippStsSizeErr |
Indicates an error when len is less or equal to 0. |
ippStsChannelErr |
Indicates an error when nChannels is less or equal to 0. |
ippStsContextMatchErr |
Indicates an error when the state identifier is incorrect. |
IppStatus iir( void ) {
#undef NUMITERS
#define NUMITERS 150
int n;
IppStatus status;
IppsIIRState_32f *ctx;
Ipp32f *x = ippsMalloc_32f( NUMITERS ), *y = ippsMalloc_32f( NUMITERS );
/// A second-order notch filter having notch freq at 60 Hz
const float taps[] = {
0.940809f,-1.105987f,0.940809f,1,-1.105987f,0.881618f
};
/// generate a signal having 60 Hz freq sampled with 400 Hz freq
for(n=0;n<NUMITERS;++n)x[n]=(float)sin(IPP_2PI *n *60 /400);
ippsIIRInitAlloc_32f( &ctx, taps, 2, NULL );
status = ippsIIR_32f( x, y, NUMITERS, ctx );
printf_32f( " IIR 32f output+120 =", y+120, 5, status );
ippsIIRFree_32f( ctx );
ippsFree( y );
ippsFree( x );
return status;
}
Output:
IIR 32f output + 120 = -0.000094 0.000339 0.000458 0.000208 -0.000173
Matlab* Analog:
>> B = [0.940809,-1.105987,0.940809]; A = [1,-1.105987,0.881618];
n = 0:150; x = sin(2*pi*n*60/400); y = filter(B,A,x); y(121:125)
IppStatus iir16s( void ) {
#undef NUMITERS
#define NUMITERS 150
int n, tapsfactor = 30;
IppStatus status;
IppsIIRState32s_16s *ctx;
Ipp16s *x = ippsMalloc_16s( NUMITERS ), *y = ippsMalloc_16s( NUMITERS );
/// A second-order notch filter having notch freq at 60 Hz
Ipp64f taps[6] = {
0.940809f,-1.105987f,0.940809f,1,-1.105987f,0.881618f
};
Ipp32s taps32s[6];
Ipp64f tmax, tmp[6];
ippsAbs_64f( taps, tmp, 6 );
ippsMax_64f( tmp, 6, &tmax );
tapsfactor = 0;
if( tmax > IPP_MAX_32S )
while( (tmax/=2) > IPP_MAX_32S ) ++tapsfactor;
else
while( (tmax*=2) < IPP_MAX_32S ) --tapsfactor;
if(tapsfactor >0 )
ippsDivC_64f_I( (float)(1<<(++tapsfactor)), taps, 6 );
else if( tapsfactor < 0 )
ippsMulC_64f_I( (float)(1<<(-(tapsfactor))), taps, 6 );
ippsConvert_64f32s_Sfs( taps, taps32s, 6, ippRndNear, 0 );
/// generate a signal of 60 Hz freq that is sampled with 400 Hz freq
for(n=0; n<NUMITERS; ++n) x[n] = (Ipp16s)(1000*sin(IPP_2PI*n*60/400));
ippsIIRInitAlloc32s_16s( &ctx, taps32s, 2, tapsfactor, NULL );
status = ippsIIR32s_16s_Sfs( x, y, NUMITERS, ctx, 0 );
printf_16s( " IIR 32s output+120 =", y+120, 5, status );
ippsIIRFree32s_16s( ctx );
ippsFree( y );
ippsFree( x );
return status;
}
Output:
IIR 32s output + 120 = 0 0 0 0 0
#include <ipp.h>
/*
y[n] = ( 1 * x[n- 2])
+ ( 2 * x[n- 1])
+ ( 1 * x[n- 0])
+ ( -0.1958157127 * y[n- 2])
+ ( -0.3695273774 * y[n- 1])
*/
#define NZEROS 2
#define NPOLES 2
#define GAIN 2.555350342e+00f
static float xv[NZEROS+1], yv[NPOLES+1];
static void filterloop( const float* x, float* y, int len )
{ for (int i=0; i<len; i++ )
{ xv[0] = xv[1]; xv[1] = xv[2];
xv[2] = x[i] / GAIN;
yv[0] = yv[1]; yv[1] = yv[2];
yv[2] = (xv[0] + xv[2]) + 2 * xv[1]
+ ( -0.1958157127f * yv[0]) + ( -0.3695273774f * yv[1]);
y[i] = yv[2];
}
}
const int LEN = 100;
int main() {
float x[LEN], yu[LEN], yi[LEN];
for(int i=0; i<LEN; i++) x[i] = i-3;
/// customer will compute
/// -1.1740073 -2.6968584 -1.9042342 -0.33358926
filterloop(x,yu,LEN);
/// matlab gives
///>> b=[1 2 1];a=[1 0.3695273774 0.1958157127 ];x=[-3:1:15]/2.555350342;filter(b,a,x)
/// -1.1740 -2.6969 -1.9042 -0.3336
/// IPP will compute
/// -1.1740074 -2.6968584 -1.9042342 -0.33358920
const int order = 2;
float taps[6] = {1.0f, 2.0f, 1.0f, 1.0f, 0.3695273774f, 0.1958157127f};
IppsIIRState_32f *ctx;
ippsIIRInitAlloc_32f( &ctx, taps, order, (Ipp32f*)0 );
ippsDivC_32f_I( GAIN, x, LEN);
ippsIIR_32f( x, yi, LEN, ctx );
ippsIIRFree_32f( ctx );
return 0;
}
Copyright © 2000 - 2011, Intel Corporation. All rights reserved.