Many routines in the libm library are more highly optimized for Intel® microprocessors than for non-Intel microprocessors.
To use the Intel math library, include the header file, mathimf.h, in your program. Here are two example programs that illustrate the use of the math library on Linux* operating systems.
// real_math.c
#include <stdio.h>
#include <mathimf.h>
int main() {
float fp32bits;
double fp64bits;
long double fp80bits;
long double pi_by_four = 3.141592653589793238/4.0;
// pi/4 radians is about 45 degrees
fp32bits = (float) pi_by_four; // float approximation to pi/4
fp64bits = (double) pi_by_four; // double approximation to pi/4
fp80bits = pi_by_four; // long double (extended) approximation to pi/4
// The sin(pi/4) is known to be 1/sqrt(2) or approximately .7071067
printf("When x = %8.8f, sinf(x) = %8.8f \n", fp32bits, sinf(fp32bits));
printf("When x = %16.16f, sin(x) = %16.16f \n", fp64bits, sin(fp64bits));
printf("When x = %20.20Lf, sinl(x) = %20.20f \n", fp80bits, sinl(fp80bits));
return 0;
}
The command for compiling real_math.c is:
icc real_math.c
The output of a.out will look like this:
When x = 0.78539816, sinf(x) = 0.70710678
When x = 0.7853981633974483, sin(x) = 0.7071067811865475
When x = 0.78539816339744827900, sinl(x) = 0.70710678118654750275
// complex_math.c
#include <stdio.h>
#include <complex.h>
int main()
{
float _Complex c32in,c32out;
double _Complex c64in,c64out;
double pi_by_four= 3.141592653589793238/4.0;
c64in = 1.0 + I* pi_by_four;
// Create the double precision complex number 1 + (pi/4) * i
// where I is the imaginary unit.
c32in = (float _Complex) c64in;
// Create the float complex value from the double complex value.
c64out = cexp(c64in);
c32out = cexpf(c32in);
// Call the complex exponential,
// cexp(z) = cexp(x+iy) = e^ (x + i y) = e^x * (cos(y) + i sin(y))
printf("When z = %7.7f + %7.7f i, cexpf(z) = %7.7f + %7.7f i \n"
,crealf(c32in),cimagf(c32in),crealf(c32out),cimagf(c32out));
printf("When z = %12.12f + %12.12f i, cexp(z) = %12.12f + %12.12f i \n"
,creal(c64in),cimag(c64in),creal(c64out),cimagf(c64out));
return 0;
}
The command to compile complex_math.c is:
icc -std=c99 complex_math.c
The output of a.out will look like this:
When z = 1.0000000 + 0.7853982 i, cexpf(z) = 1.9221154 + 1.9221156 i
When z = 1.000000000000 + 0.785398163397 i, cexp(z) = 1.922115514080 + 1.922115514080 i
_Complex data types are supported in C but not in C++ programs. It is necessary to include the -std=c99 compiler option when compiling programs that require support for _Complex data types.
Exception Conditions
If you call a math function using argument(s) that may produce undefined results, an error number is assigned to the system variable errno. Math function errors are usually domain errors or range errors.
Domain errors result from arguments that are outside the domain of the function. For example, acos is defined only for arguments between -1 and +1 inclusive. Attempting to evaluate acos(-2) or acos(3) results in a domain error, where the return value is QNaN.
Range errors occur when a mathematically valid argument results in a function value that exceeds the range of representable values for the floating-point data type. Attempting to evaluate exp(1000) results in a range error, where the return value is INF.
When domain or range error occurs, the following values are assigned to errno:
domain error (EDOM): errno = 33
range error (ERANGE): errno = 34
The following example shows how to read the errno value for an EDOM and ERANGE error.
// errno.c
#include <errno.h>
#include <mathimf.h>
#include <stdio.h>
int main(void)
{
double neg_one=-1.0;
double zero=0.0;
// The natural log of a negative number is considered a domain error - EDOM
printf("log(%e) = %e and errno(EDOM) = %d \n",neg_one,log(neg_one),errno);
// The natural log of zero is considered a range error - ERANGE
printf("log(%e) = %e and errno(ERANGE) = %d \n",zero,log(zero),errno);
}
The output of errno.c will look like this:
log(-1.000000e+00) = nan and errno(EDOM) = 33
log(0.000000e+00) = -inf and errno(ERANGE) = 34
For the math functions in this section, a corresponding value for errno is listed when applicable.
Other Considerations
Some math functions are inlined automatically by the compiler. The functions actually inlined may vary and may depend on any vectorization or processor-specific compilation options used.
A change of the default precision control or rounding mode may affect the results returned by some of the mathematical functions. See Overview: Tuning Performance in Floating-point Operations>Tuning Performance.
Copyright © 1996-2011, Intel Corporation. All rights reserved.