MODULE

Statement: Marks the beginning of a module program unit, which contains specifications and definitions that can be used by one or more program units.

Syntax

MODULE name

   [specification-part]

[CONTAINS

   module-subprogram

   [module-subprogram]...]

END[ MODULE [name]]

name

Is the name of the module.

specification-part

Is one or more specification statements, except for the following:

  • ENTRY

  • FORMAT

  • AUTOMATIC (or its equivalent attribute)

  • INTENT (or its equivalent attribute)

  • OPTIONAL (or its equivalent attribute)

  • Statement functions

An automatic object must not appear in a specification statement.

module-subprogram

Is a function or subroutine subprogram that defines the module procedure. A function must end with END FUNCTION and a subroutine must end with END SUBROUTINE.

A module subprogram can contain internal procedures.

Description

If a name follows the END statement, it must be the same as the name specified in the MODULE statement.

The module name is considered global and must be unique. It cannot be the same as any local name in the main program or the name of any other program unit, external procedure, or common block in the executable program.

A module is host to any module procedures it contains, and entities in the module are accessible to the module procedures through host association.

A module must not reference itself (either directly or indirectly).

You can use the PRIVATE attribute to restrict access to procedures or variables within a module.

Although ENTRY statements, FORMAT statements, and statement functions are not allowed in the specification part of a module, they are allowed in the specification part of a module subprogram.

Any executable statements in a module can only be specified in a module subprogram.

A module can contain one or more procedure interface blocks, which let you specify an explicit interface for an external subprogram or dummy subprogram.

Example

The following example shows a simple module that can be used to provide global data:

MODULE MOD_A

INTEGER :: B, C

REAL E(25,5)

END MODULE MOD_A

...

SUBROUTINE SUB_Z

USE MOD_A ! Makes scalar variables B and C, and array

... ! E available to this subroutine

END SUBROUTINE SUB_Z

The following example shows a module procedure:

MODULE RESULTS

...

CONTAINS

FUNCTION MOD_RESULTS(X,Y) ! A module procedure

...

END FUNCTION MOD_RESULTS

END MODULE RESULTS

The following example shows a module containing a derived type:

MODULE EMPLOYEE_DATA

TYPE EMPLOYEE

INTEGER ID

CHARACTER(LEN=40) NAME

END TYPE EMPLOYEE

END MODULE

The following example shows a module containing an interface block:

MODULE ARRAY_CALCULATOR

INTERFACE

FUNCTION CALC_AVERAGE(D)

REAL :: CALC_AVERAGE

REAL, INTENT(IN) :: D(:)

END FUNCTION

END INTERFACE

END MODULE ARRAY_CALCULATOR

The following example shows a derived-type definition that is public with components that are private:

MODULE MATTER

TYPE ELEMENTS

PRIVATE

INTEGER C, D

END TYPE

...

END MODULE MATTER

In this case, components C and D are private to type ELEMENTS, but type ELEMENTS is not private to MODULE MATTER. Any program unit that uses the module MATTER can declare variables of type ELEMENTS, and pass as arguments values of type ELEMENTS.

This design allows you to change components of a type without affecting other program units that use the module.

If a derived type is needed in more than one program unit, the definition should be placed in a module and accessed by a USE statement whenever it is needed, as follows:

MODULE STUDENTS

TYPE STUDENT_RECORD

...

END TYPE

CONTAINS

SUBROUTINE COURSE_GRADE(...)

TYPE(STUDENT_RECORD) NAME

...

END SUBROUTINE

END MODULE STUDENTS

...

PROGRAM SENIOR_CLASS

USE STUDENTS

TYPE(STUDENT_RECORD) ID

...

END PROGRAM

Program SENIOR_CLASS has access to type STUDENT_RECORD, because it uses module STUDENTS. Module procedure COURSE_GRADE also has access to type STUDENT_RECORD, because the derived-type definition appears in its host.

The following shows another example:

MODULE mod1

REAL(8) a,b,c,d

INTEGER(4) Int1, Int2, Int3

CONTAINS

function fun1(x)

....

end function fun1

END MODULE

See Also