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1 INTRODUCTION

1 Introduction

1.1 Intended audience

These lecture notes outline a single semester course intended for upper division

undergraduates.

1.2 Major sources

The textbooks which I have consulted most frequently whilst developing course

material are:

Classical electricity and magnetism: W.K.H. Panofsky, and M. Phillips, 2nd edition

(Addison-Wesley, Reading MA, 1962).

The Feynman lectures on physics: R.P. Feynman, R.B. Leighton, and M. Sands, Vol.

II (Addison-Wesley, Reading MA, 1964).

Special relativity: W. Rindler (Oliver & Boyd, Edinburgh & London UK, 1966).

Electromagnetic fields and waves: P. Lorrain, and D.R. Corson, 3rd edition (W.H. Free-

man & Co., San Francisco CA, 1970).

Electromagnetism: I.S. Grant, and W.R. Phillips (John Wiley & Sons, Chichester

UK, 1975).

Foundations of electromagnetic theory: J.R. Reitz, F.J. Milford, and R.W. Christy,

3rd edition (Addison-Wesley, Reading MA, 1980).

The classical theory of fields: E.M. Lifshitz, and L.D. Landau, 4th edition [Butterworth-

Heinemann, Oxford UK, 1980].

Introduction to electrodynamics: D.J. Griffiths, 2nd edition (Prentice Hall, Engle-

wood Cliffs NJ, 1989).
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1 INTRODUCTION 1.3 Preface

Classical electromagnetic radiation: M.A. Heald, and J.B. Marion, 3rd edition (Saun-

ders College Publishing, Fort Worth TX, 1995).

Classical electrodynamics: W. Greiner (Springer-Verlag, New York NY, 1998).

In addition, the section on vectors is largely based on my undergraduate lecture

notes taken from a course given by Dr. Stephen Gull at the University of Cam-

bridge.

1.3 Preface

The main topic of this course is Maxwell’s equations. These are a set of eight

first-order partial differential equations which constitute a complete description

of electric and magnetic phenomena. To be more exact, Maxwell’s equations

constitute a complete description of the behaviour of electric and magnetic fields.

Students entering this course should be quite familiar with the concepts of electric

and magnetic fields. Nevertheless, few can answer the following important ques-

tion: do electric and magnetic fields have a real physical existence, or are they

merely theoretical constructs which we use to calculate the electric and magnetic

forces exerted by charged particles on one another? As we shall see, the process

of formulating an answer to this question enables us to come to a better under-

standing of the nature of electric and magnetic fields, and the reasons why it is

necessary to use such concepts in order to fully describe electric and magnetic

phenomena.

At any given point in space, an electric or magnetic field possesses two proper-

ties, a magnitude and a direction. In general, these properties vary (continuously)

from point to point. It is conventional to represent such a field in terms of its

components measured with respect to some conveniently chosen set of Cartesian

axes (i.e., the conventional x-, y-, and z-axes). Of course, the orientation of these

axes is arbitrary. In other words, different observers may well choose different

coordinate axes to describe the same field. Consequently, electric and magnetic

fields may have different components according to different observers. We can

see that any description of electric and magnetic fields is going to depend on

8



1 INTRODUCTION 1.4 Outline of course

two seperate things. Firstly, the nature of the fields themselves, and, secondly,

our arbitrary choice of the coordinate axes with respect to which we measure

these fields. Likewise, Maxwell’s equations—the equations which describe the

behaviour of electric and magnetic fields—depend on two separate things. Firstly,

the fundamental laws of physics which govern the behaviour of electric and mag-

netic fields, and, secondly, our arbitrary choice of coordinate axes. It would be

helpful if we could easily distinguish those elements of Maxwell’s equations which

depend on physics from those which only depend on coordinates. In fact, we can

achieve this by using what mathematicians call vector field theory. This theory

enables us to write Maxwell’s equations in a manner which is completely indepen-

dent of our choice of coordinate axes. As an added bonus, Maxwell’s equations

look a lot simpler when written in a coordinate-free manner. In fact, instead of

eight first-order partial differential equations, we only require four such equations

within the context of vector field theory.

1.4 Outline of course

This course is organized as follows. Section 2 consists of a brief review of those

elements of vector field theory which are relevent to Maxwell’s equations. In

Sect. 3, we derive the time-independent version of Maxwell’s equations. In

Sect. 4, we generalize to the full time-dependent set of Maxwell equations. Sec-

tion 5 discusses the application of Maxwell’s equations to electrostatics. In Sect. 6,

we incorporate dielectric and magnetic media into Maxwell’s equations. Sec-

tion 7 investigates the application of Maxwell’s equations to magnetic induction.

In Sect. 8, we examine how Maxwell’s equations conserve electromagnetic energy

and momentum. In Sect. 9, we employ Maxwell’s equations to investigate elec-

tromagnetic waves. We conclude, in Sect. 10, with a discussion of the relativistic

formulation of Maxwell’s equations.
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1 INTRODUCTION 1.5 Acknowledgements

1.5 Acknowledgements

My thanks to Prof. Wang-Jung Yoon [Chonnam National University, Republic of
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2 VECTORS

2 Vectors

2.1 Introduction

In this section, we shall give a brief outline of those aspects of vector algebra, vec-

tor calculus, and vector field theory which are needed to derive and understand

Maxwell’s equations.

This section is largely based on my undergraduate lecture notes from a course

given by Dr. Stephen Gull at the University of Cambridge.

2.2 Vector algebra

P

Q

Figure 1:

In applied mathematics, physical quantities are (predominately) represented

by two distinct classes of objects. Some quantities, denoted scalars, are repre-

sented by real numbers. Others, denoted vectors, are represented by directed line

elements in space: e.g.,
→
PQ (see Fig. 1). Note that line elements (and, there-

fore, vectors) are movable, and do not carry intrinsic position information. In

fact, vectors just possess a magnitude and a direction, whereas scalars possess

a magnitude but no direction. By convention, vector quantities are denoted by

bold-faced characters (e.g., a) in typeset documents, and by underlined charac-

ters (e.g., a) in long-hand. Vectors can be added together, but the same units

must be used, just like in scalar addition. Vector addition can be represented

using a parallelogram:
→
PR=

→
PQ +

→
QR (see Fig. 2). Suppose that a ≡

→
PQ≡

→
SR,

11



2 VECTORS 2.2 Vector algebra

b

Q

R

S

P

a

Figure 2:

b ≡
→
QR≡

→
PS, and c ≡

→
PR. It is clear from Fig. 2 that vector addition is commuta-

tive: i.e., a + b = b + a. It can also be shown that the associative law holds: i.e.,

a + (b + c) = (a + b) + c.

There are two approaches to vector analysis. The geometric approach is based

on line elements in space. The coordinate approach assumes that space is defined

by Cartesian coordinates, and uses these to characterize vectors. In physics, we

generally adopt the second approach, because it is far more convenient.

In the coordinate approach, a vector is denoted as the row matrix of its com-

ponents along each of the Cartesian axes (the x-, y-, and z-axes, say):

a ≡ (ax, ay, az). (2.1)

Here, ax is the x-coordinate of the “head” of the vector minus the x-coordinate of

its “tail.” If a ≡ (ax, ay, az) and b ≡ (bx, by, bz) then vector addition is defined

a + b ≡ (ax + bx, ay + by, az + bz). (2.2)

If a is a vector and n is a scalar then the product of a scalar and a vector is defined

n a ≡ (nax, n ay, n az). (2.3)

It is clear that vector algebra is distributive with respect to scalar multiplication:

i.e., n (a + b) = n a + nb.

12



2 VECTORS 2.2 Vector algebra

x

x’

y
y’

θ

Figure 3:

Unit vectors can be defined in the x-, y-, and z-directions as ex ≡ (1, 0, 0),

ey ≡ (0, 1, 0), and ez ≡ (0, 0, 1). Any vector can be written in terms of these unit

vectors:

a = ax ex + ay ey + az ez. (2.4)

In mathematical terminology, three vectors used in this manner form a basis of

the vector space. If the three vectors are mutually perpendicular then they are

termed orthogonal basis vectors. However, any set of three non-coplanar vectors

can be used as basis vectors.

Examples of vectors in physics are displacements from an origin,

r = (x, y, z), (2.5)

and velocities,

v =
dr

dt
= lim
δt→0

r(t+ δt) − r(t)

δt
. (2.6)

Suppose that we transform to a new orthogonal basis, the x ′-, y ′-, and z ′-axes,

which are related to the x-, y-, and z-axes via a rotation through an angle θ

around the z-axis (see Fig. 3). In the new basis, the coordinates of the general

displacement r from the origin are (x ′, y ′, z ′). These coordinates are related to

the previous coordinates via the transformation:

x ′ = x cos θ+ y sin θ, (2.7)

y ′ = −x sin θ+ y cos θ, (2.8)

z ′ = z. (2.9)

13



2 VECTORS 2.3 Vector areas

We do not need to change our notation for the displacement in the new basis.

It is still denoted r. The reason for this is that the magnitude and direction of r

are independent of the choice of basis vectors. The coordinates of r do depend on

the choice of basis vectors. However, they must depend in a very specific manner

[i.e., Eqs. (2.7)–(2.9)] which preserves the magnitude and direction of r.

Since any vector can be represented as a displacement from an origin (this is

just a special case of a directed line element), it follows that the components of

a general vector a must transform in an analogous manner to Eqs. (2.7)–(2.9).

Thus,

ax ′ = ax cos θ+ ay sin θ, (2.10)

ay ′ = −ax sin θ+ ay cos θ, (2.11)

az ′ = az, (2.12)

with similar transformation rules for rotation about the y- and z-axes. In the co-

ordinate approach, Eqs. (2.10)–(2.12) constitute the definition of a vector. The

three quantities (ax, ay, az) are the components of a vector provided that they

transform under rotation like Eqs. (2.10)–(2.12). Conversely, (ax, ay, az) cannot

be the components of a vector if they do not transform like Eqs. (2.10)–(2.12).

Scalar quantities are invariant under transformation. Thus, the individual com-

ponents of a vector (ax, say) are real numbers, but they are not scalars. Displace-

ment vectors, and all vectors derived from displacements, automatically satisfy

Eqs. (2.10)–(2.12). There are, however, other physical quantities which have

both magnitude and direction, but which are not obviously related to displace-

ments. We need to check carefully to see whether these quantities are vectors.

2.3 Vector areas

Suppose that we have planar surface of scalar area S. We can define a vector

area S whose magnitude is S, and whose direction is perpendicular to the plane,

in the sense determined by the right-hand grip rule on the rim (see Fig. 4). This

quantity clearly possesses both magnitude and direction. But is it a true vector?

We know that if the normal to the surface makes an angle αx with the x-axis then

14



2 VECTORS 2.3 Vector areas

S

Figure 4:

the area seen looking along the x-direction is S cosαx. This is the x-component

of S. Similarly, if the normal makes an angle αy with the y-axis then the area

seen looking along the y-direction is S cosαy. This is the y-component of S. If

we limit ourselves to a surface whose normal is perpendicular to the z-direction

then αx = π/2 − αy = α. It follows that S = S (cosα, sinα, 0). If we rotate the

basis about the z-axis by θ degrees, which is equivalent to rotating the normal to

the surface about the z-axis by −θ degrees, then

Sx ′ = S cos (α− θ) = S cosα cos θ+ S sinα sin θ = Sx cos θ+ Sy sin θ, (2.13)

which is the correct transformation rule for the x-component of a vector. The

other components transform correctly as well. This proves that a vector area is a

true vector.

According to the vector addition theorem, the projected area of two plane

surfaces, joined together at a line, looking along the x-direction (say) is the x-

component of the resultant of the vector areas of the two surfaces. Likewise, for

many joined-up plane areas, the projected area in the x-direction, which is the

same as the projected area of the rim in the x-direction, is the x-component of

the resultant of all the vector areas:

S =
∑

i

Si. (2.14)

If we approach a limit, by letting the number of plane facets increase, and their

areas reduce, then we obtain a continuous surface denoted by the resultant vector

15



2 VECTORS 2.4 The scalar product

area:

S =
∑

i

δSi. (2.15)

It is clear that the projected area of the rim in the x-direction is just Sx. Note that

the rim of the surface determines the vector area rather than the nature of the

surface. So, two different surfaces sharing the same rim both possess the same

vector area.

In conclusion, a loop (not all in one plane) has a vector area S which is the

resultant of the vector areas of any surface ending on the loop. The components

of S are the projected areas of the loop in the directions of the basis vectors. As a

corollary, a closed surface has S = 0, since it does not possess a rim.

2.4 The scalar product

A scalar quantity is invariant under all possible rotational transformations. The

individual components of a vector are not scalars because they change under

transformation. Can we form a scalar out of some combination of the compo-

nents of one, or more, vectors? Suppose that we were to define the “ampersand”

product,

a & b = ax by + ay bz + az bx = scalar number, (2.16)

for general vectors a and b. Is a & b invariant under transformation, as must

be the case if it is a scalar number? Let us consider an example. Suppose that

a = (1, 0, 0) and b = (0, 1, 0). It is easily seen that a & b = 1. Let us now rotate

the basis through 45◦ about the z-axis. In the new basis, a = (1/
√
2, −1/

√
2, 0)

and b = (1/
√
2, 1/

√
2, 0), giving a & b = 1/2. Clearly, a & b is not invariant under

rotational transformation, so the above definition is a bad one.

Consider, now, the dot product or scalar product:

a · b = ax bx + ay by + az bz = scalar number. (2.17)

Let us rotate the basis though θ degrees about the z-axis. According to Eqs. (2.10)–

(2.12), in the new basis a · b takes the form

a · b = (ax cos θ+ ay sin θ) (bx cos θ+ by sin θ)

16



2 VECTORS 2.4 The scalar product

+(−ax sin θ+ ay cos θ) (−bx sin θ+ by cos θ) + az bz (2.18)

= ax bx + ay by + az bz.

Thus, a ·b is invariant under rotation about the z-axis. It can easily be shown that

it is also invariant under rotation about the x- and y-axes. Clearly, a · b is a true

scalar, so the above definition is a good one. Incidentally, a · b is the only simple

combination of the components of two vectors which transforms like a scalar. It

is easily shown that the dot product is commutative and distributive:

a · b = b · a,

a · (b + c) = a · b + a · c. (2.19)

The associative property is meaningless for the dot product, because we cannot

have (a · b) · c, since a · b is scalar.

We have shown that the dot product a ·b is coordinate independent. But what

is the physical significance of this? Consider the special case where a = b. Clearly,

a · b = a 2
x + a 2

y + a 2
z = Length (OP)2, (2.20)

if a is the position vector of P relative to the origin O. So, the invariance of a · a

is equivalent to the invariance of the length, or magnitude, of vector a under

transformation. The length of vector a is usually denoted |a| (“the modulus of

a”) or sometimes just a, so

a · a = |a|2 = a2. (2.21)

b − a

O
θ

A

B

.

b

a

Figure 5:
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2 VECTORS 2.5 The vector product

Let us now investigate the general case. The length squared of AB (see Fig. 5)

is

(b − a) · (b − a) = |a|2 + |b|2 − 2 a · b. (2.22)

However, according to the “cosine rule” of trigonometry,

(AB)2 = (OA)2 + (OB)2 − 2 (OA) (OB) cos θ, (2.23)

where (AB) denotes the length of side AB. It follows that

a · b = |a| |b| cos θ. (2.24)

Clearly, the invariance of a·b under transformation is equivalent to the invariance

of the angle subtended between the two vectors. Note that if a ·b = 0 then either

|a| = 0, |b| = 0, or the vectors a and b are perpendicular. The angle subtended

between two vectors can easily be obtained from the dot product:

cos θ =
a · b

|a| |b|
. (2.25)

The work W performed by a constant force F moving an object through a

displacement r is the product of the magnitude of F times the displacement in

the direction of F. If the angle subtended between F and r is θ then

W = |F| (|r| cos θ) = F · r. (2.26)

The rate of flow of liquid of constant velocity v through a loop of vector area S

is the product of the magnitude of the area times the component of the velocity

perpendicular to the loop. Thus,

Rate of flow = v · S. (2.27)

2.5 The vector product

We have discovered how to construct a scalar from the components of two gen-

eral vectors a and b. Can we also construct a vector which is not just a linear

combination of a and b? Consider the following definition:

a x b = (ax bx, ay by, az bz). (2.28)

18



2 VECTORS 2.5 The vector product

Is a x b a proper vector? Suppose that a = (1, 0, 0), b = (0, 1, 0). Clearly,

a x b = 0. However, if we rotate the basis through 45◦ about the z-axis then

a = (1/
√
2, −1/

√
2, 0), b = (1/

√
2, 1/

√
2, 0), and a x b = (1/2, −1/2, 0). Thus,

a x b does not transform like a vector, because its magnitude depends on the

choice of axes. So, above definition is a bad one.

Consider, now, the cross product or vector product:

a × b = (ay bz − az by, az bx − ax bz, ax by − ay bx) = c. (2.29)

Does this rather unlikely combination transform like a vector? Let us try rotating

the basis through θ degrees about the z-axis using Eqs. (2.10)–(2.12). In the new

basis,

cx ′ = (−ax sin θ+ ay cos θ)bz − az (−bx sin θ+ by cos θ)

= (ay bz − az by) cos θ+ (az bx − ax bz) sin θ

= cx cos θ+ cy sin θ. (2.30)

Thus, the x-component of a × b transforms correctly. It can easily be shown that

the other components transform correctly as well, and that all components also

transform correctly under rotation about the y- and z-axes. Thus, a×b is a proper

vector. Incidentally, a × b is the only simple combination of the components of

two vectors which transforms like a vector (which is non-coplanar with a and b).

The cross product is anticommutative,

a × b = −b × a, (2.31)

distributive,

a × (b + c) = a × b + a × c, (2.32)

but is not associative:

a × (b × c) 6= (a × b) × c. (2.33)

The cross product transforms like a vector, which means that it must have a

well-defined direction and magnitude. We can show that a × b is perpendicular

to both a and b. Consider a · a × b. If this is zero then the cross product must be

19



2 VECTORS 2.5 The vector product

a  b

θ
b

a index finger

middle finger

thumb

Figure 6:

perpendicular to a. Now

a · a × b = ax (ay bz − az by) + ay (az bx − ax bz) + az (ax by − ay bx)

= 0. (2.34)

Therefore, a×b is perpendicular to a. Likewise, it can be demonstrated that a×b

is perpendicular to b. The vectors a, b, and a×b form a right-handed set, like the

unit vectors ex, ey, and ez. In fact, ex × ey = ez. This defines a unique direction

for a × b, which is obtained from the right-hand rule (see Fig. 6).

Let us now evaluate the magnitude of a × b. We have

(a × b)2 = (ay bz − az by)
2 + (az bx − ax bz)

2 + (ax bz − ay bx)
2

= (a 2
x + a 2

y + a 2
z ) (b 2

x + b 2
y + b 2

z ) − (ax bx + ay by + az bz)
2

= |a|2 |b|2 − (a · b)2

= |a|2 |b|2 − |a|2 |b|2 cos2 θ = |a|2 |b|2 sin2 θ. (2.35)

Thus,

|a × b| = |a| |b| sin θ. (2.36)

Clearly, a × a = 0 for any vector, since θ is always zero in this case. Also, if

a × b = 0 then either |a| = 0, |b| = 0, or b is parallel (or antiparallel) to a.

Consider the parallelogram defined by vectors a and b (see Fig. 7). The scalar

area is ab sin θ. The vector area has the magnitude of the scalar area, and is

20



2 VECTORS 2.6 Rotation

a
θ

b

Figure 7:

normal to the plane of the parallelogram, which means that it is perpendicular to

both a and b. Clearly, the vector area is given by

S = a × b, (2.37)

with the sense obtained from the right-hand grip rule by rotating a on to b.

Suppose that a force F is applied at position r (see Fig. 8). The moment, or

torque, about the origin O is the product of the magnitude of the force and the

length of the lever arm OQ. Thus, the magnitude of the moment is |F| |r| sin θ.

The direction of the moment is conventionally the direction of the axis through

O about which the force tries to rotate objects, in the sense determined by the

right-hand grip rule. It follows that the vector moment is given by

M = r × F. (2.38)

2.6 Rotation

Let us try to define a rotation vector θ whose magnitude is the angle of the rota-

tion, θ, and whose direction is the axis of the rotation, in the sense determined

by the right-hand grip rule. Is this a good vector? The short answer is, no. The

problem is that the addition of rotations is not commutative, whereas vector ad-

dition is commuative. Figure 9 shows the effect of applying two successive 90◦

rotations, one about x-axis, and the other about the z-axis, to a six-sided die. In

the left-hand case, the z-rotation is applied before the x-rotation, and vice versa
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2 VECTORS 2.6 Rotation

F

P

O Q
r sinθ

θ

r

Figure 8:

in the right-hand case. It can be seen that the die ends up in two completely

different states. Clearly, the z-rotation plus the x-rotation does not equal the x-

rotation plus the z-rotation. This non-commuting algebra cannot be represented

by vectors. So, although rotations have a well-defined magnitude and direction,

they are not vector quantities.

But, this is not quite the end of the story. Suppose that we take a general

vector a and rotate it about the z-axis by a small angle δθz. This is equivalent to

rotating the basis about the z-axis by −δθz. According to Eqs. (2.10)–(2.12), we

have

a ′ ' a + δθz ez × a, (2.39)

where use has been made of the small angle expansions sin θ ' θ and cos θ ' 1.

The above equation can easily be generalized to allow small rotations about the

x- and y-axes by δθx and δθy, respectively. We find that

a ′ ' a + δθ × a, (2.40)

where

δθ = δθx ex + δθy ey + δθz ez. (2.41)

Clearly, we can define a rotation vector δθ, but it only works for small angle

rotations (i.e., sufficiently small that the small angle expansions of sine and cosine

are good). According to the above equation, a small z-rotation plus a small x-

rotation is (approximately) equal to the two rotations applied in the opposite
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2 VECTORS 2.6 Rotation

z-axis x-axis

x-axis z-axis

y

z

x

Figure 9:
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2 VECTORS 2.7 The scalar triple product

b

a

c

Figure 10:

order. The fact that infinitesimal rotation is a vector implies that angular velocity,

ω = lim
δt→0

δθ

δt
, (2.42)

must be a vector as well. Also, if a ′ is interpreted as a(t+δt) in the above equation

then it is clear that the equation of motion of a vector precessing about the origin

with angular velocity ω is
da

dt
= ω × a. (2.43)

2.7 The scalar triple product

Consider three vectors a, b, and c. The scalar triple product is defined a · b × c.

Now, b× c is the vector area of the parallelogram defined by b and c. So, a ·b× c

is the scalar area of this parallelogram times the component of a in the direction

of its normal. It follows that a · b × c is the volume of the parallelepiped defined

by vectors a, b, and c (see Fig. 10). This volume is independent of how the triple

product is formed from a, b, and c, except that

a · b × c = −a · c × b. (2.44)

So, the “volume” is positive if a, b, and c form a right-handed set (i.e., if a lies

above the plane of b and c, in the sense determined from the right-hand grip

rule by rotating b onto c) and negative if they form a left-handed set. The triple

24



2 VECTORS 2.8 The vector triple product

product is unchanged if the dot and cross product operators are interchanged:

a · b × c = a × b · c. (2.45)

The triple product is also invariant under any cyclic permutation of a, b, and c,

a · b × c = b · c × a = c · a × b, (2.46)

but any anti-cyclic permutation causes it to change sign,

a · b × c = −b · a × c. (2.47)

The scalar triple product is zero if any two of a, b, and c are parallel, or if a, b,

and c are co-planar.

If a, b, and c are non-coplanar, then any vector r can be written in terms of

them:

r = α a + βb + γ c. (2.48)

Forming the dot product of this equation with b × c, we then obtain

r · b × c = α a · b × c, (2.49)

so

α =
r · b × c

a · b × c
. (2.50)

Analogous expressions can be written for β and γ. The parameters α, β, and γ

are uniquely determined provided a ·b× c 6= 0: i.e., provided that the three basis

vectors are not co-planar.

2.8 The vector triple product

For three vectors a, b, and c, the vector triple product is defined a × (b × c).

The brackets are important because a × (b × c) 6= (a × b) × c. In fact, it can be

demonstrated that

a × (b × c) ≡ (a · c) b − (a · b) c (2.51)

and

(a × b) × c ≡ (a · c) b − (b · c) a. (2.52)
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2 VECTORS 2.9 Vector calculus

Let us try to prove the first of the above theorems. The left-hand side and

the right-hand side are both proper vectors, so if we can prove this result in

one particular coordinate system then it must be true in general. Let us take

convenient axes such that the x-axis lies along b, and c lies in the x-y plane. It

follows that b = (bx, 0, 0), c = (cx, cy, 0), and a = (ax, ay, az). The vector b × c

is directed along the z-axis: b × c = (0, 0, bx cy). It follows that a × (b × c) lies

in the x-y plane: a × (b × c) = (ay bx cy, −ax bx cy, 0). This is the left-hand side

of Eq. (2.51) in our convenient axes. To evaluate the right-hand side, we need

a · c = ax cx + ay cy and a · b = ax bx. It follows that the right-hand side is

RHS = ( [ax cx + ay cy]bx, 0, 0) − (ax bx cx, ax bx cy, 0)

= (ay cy bx, −ax bx cy, 0) = LHS, (2.53)

which proves the theorem.

2.9 Vector calculus

Suppose that vector a varies with time, so that a = a(t). The time derivative of

the vector is defined
da

dt
= lim
δt→0





a(t+ δt) − a(t)

δt



 . (2.54)

When written out in component form this becomes

da

dt
=

(

dax

dt
,
day

dt
,
daz

dt

)

. (2.55)

Suppose that a is, in fact, the product of a scalar φ(t) and another vector b(t).

What now is the time derivative of a? We have

dax

dt
=
d

dt
(φbx) =

dφ

dt
bx + φ

dbx

dt
, (2.56)

which implies that
da

dt
=
dφ

dt
b + φ

db

dt
. (2.57)
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2 VECTORS 2.10 Line integrals
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Figure 11:

It is easily demonstrated that

d

dt
(a · b) =

da

dt
· b + a · db

dt
. (2.58)

Likewise,
d

dt
(a × b) =

da

dt
× b + a × db

dt
. (2.59)

It can be seen that the laws of vector differentiation are analogous to those in

conventional calculus.

2.10 Line integrals

Consider a two-dimensional function f(x, y) which is defined for all x and y.

What is meant by the integral of f along a given curve from P to Q in the x-y

plane? We first draw out f as a function of length l along the path (see Fig. 11).

The integral is then simply given by

∫Q

P

f(x, y)dl = Area under the curve. (2.60)

As an example of this, consider the integral of f(x, y) = xy between P and

Q along the two routes indicated in Fig. 12. Along route 1 we have x = y, so
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x
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1

Figure 12:

dl =
√
2 dx. Thus, ∫Q

P

xydl =

∫ 1

0

x2
√
2 dx =

√
2

3
. (2.61)

The integration along route 2 gives

∫Q

P

xydl =

∫ 1

0

xydx

∣

∣

∣

∣

∣

∣

y=0

+

∫ 1

0

xydy

∣

∣

∣

∣

∣

∣

x=1

= 0+

∫ 1

0

ydy =
1

2
. (2.62)

Note that the integral depends on the route taken between the initial and final

points.

The most common type of line integral is that where the contributions from

dx and dy are evaluated separately, rather that through the path length dl:

∫Q

P

[f(x, y)dx+ g(x, y)dy] . (2.63)

As an example of this, consider the integral

∫Q

P

[

y3 dx+ xdy
]

(2.64)

along the two routes indicated in Fig. 13. Along route 1 we have x = y + 1 and
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2 VECTORS 2.10 Line integrals

y
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dx = dy, so ∫Q

P

=

∫ 1

0

[

y3 dy+ (y+ 1)dy
]

=
7

4
. (2.65)

Along route 2,
∫Q

P

=

∫ 2

1

y3 dx

∣

∣

∣

∣

∣

∣

y=0

+

∫ 1

0

xdy

∣

∣

∣

∣

∣

∣

x=2

= 2. (2.66)

Again, the integral depends on the path of integration.

Suppose that we have a line integral which does not depend on the path of

integration. It follows that

∫Q

P

(f dx+ gdy) = F(Q) − F(P) (2.67)

for some function F. Given F(P) for one point P in the x-y plane, then

F(Q) = F(P) +

∫Q

P

(f dx+ gdy) (2.68)

defines F(Q) for all other points in the plane. We can then draw a contour map of

F(x, y). The line integral between points P and Q is simply the change in height

in the contour map between these two points:

∫Q

P

(f dx+ gdy) =

∫Q

P

dF(x, y) = F(Q) − F(P). (2.69)
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2 VECTORS 2.11 Vector line integrals

Thus,

dF(x, y) = f(x, y)dx+ g(x, y)dy. (2.70)

For instance, if F = xy3 then dF = y3 dx+ 3 x y2 dy and
∫Q

P

(

y3 dx+ 3 x y2 dy
)

=
[

xy3
]Q

P
(2.71)

is independent of the path of integration.

It is clear that there are two distinct types of line integral. Those which depend

only on their endpoints and not on the path of integration, and those which

depend both on their endpoints and the integration path. Later on, we shall

learn how to distinguish between these two types.

2.11 Vector line integrals

A vector field is defined as a set of vectors associated with each point in space.

For instance, the velocity v(r) in a moving liquid (e.g., a whirlpool) constitutes a

vector field. By analogy, a scalar field is a set of scalars associated with each point

in space. An example of a scalar field is the temperature distribution T(r) in a

furnace.

Consider a general vector field A(r). Let dl = (dx, dy, dz) be the vector ele-

ment of line length. Vector line integrals often arise as

∫Q

P

A · dl =

∫Q

P

(Ax dx+Ay dy+Az dz). (2.72)

For instance, if A is a force then the line integral is the work done in going from

P to Q.

As an example, consider the work done in a repulsive, inverse-square, central

field, F = −r/|r3|. The element of work done is dW = F · dl. Take P = (∞, 0, 0)
and Q = (a, 0, 0). Route 1 is along the x-axis, so

W =

∫a

∞

(

−
1

x2

)

dx =

[

1

x

]a

∞
=
1

a
. (2.73)
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2 VECTORS 2.12 Surface integrals

The second route is, firstly, around a large circle (r = constant) to the point (a,

∞, 0), and then parallel to the y-axis. In the first, part no work is done, since F

is perpendicular to dl. In the second part,

W =

∫ 0

∞

−ydy

(a2 + y2)3/2
=





1

(y2 + a2)1/2





0

∞

=
1

a
. (2.74)

In this case, the integral is independent of the path. However, not all vector line

integrals are path independent.

2.12 Surface integrals

Let us take a surface S, which is not necessarily co-planar, and divide in up into

(scalar) elements δSi. Then
∫∫

S

f(x, y, z)dS = lim
δSi→0

∑

i

f(x, y, z) δSi (2.75)

is a surface integral. For instance, the volume of water in a lake of depth D(x, y)

is

V =

∫∫

D(x, y)dS. (2.76)

To evaluate this integral we must split the calculation into two ordinary integrals.

The volume in the strip shown in Fig. 14 is




∫ x2

x1

D(x, y)dx



 dy. (2.77)

Note that the limits x1 and x2 depend on y. The total volume is the sum over all

strips:

V =

∫y2

y1

dy





∫ x2(y)

x1(y)

D(x, y)dx



 ≡
∫∫

S

D(x, y)dxdy. (2.78)

Of course, the integral can be evaluated by taking the strips the other way around:

V =

∫ x2

x1

dx

∫y2(x)

y1(x)

D(x, y)dy. (2.79)
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Interchanging the order of integration is a very powerful and useful trick. But

great care must be taken when evaluating the limits.

As an example, consider ∫∫

S

x2 ydxdy, (2.80)

where S is shown in Fig. 15. Suppose that we evaluate the x integral first:

dy





∫ 1−y

0

x2 ydx



 = ydy





x3

3





1−y

0

=
y

3
(1− y)3 dy. (2.81)

Let us now evaluate the y integral:

∫ 1

0





y

3
− y2 + y3 −

y4

3



dy =
1

60
. (2.82)

We can also evaluate the integral by interchanging the order of integration:

∫ 1

0

x2 dx

∫ 1−x

0

ydy =

∫ 1

0

x2

2
(1− x)2 dx =

1

60
. (2.83)

In some cases, a surface integral is just the product of two separate integrals.

For instance, ∫ ∫

S

x2 ydxdy (2.84)
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where S is a unit square. This integral can be written

∫ 1

0

dx

∫ 1

0

x2 ydy =





∫ 1

0

x2 dx









∫ 1

0

ydy



 =
1

3

1

2
=
1

6
, (2.85)

since the limits are both independent of the other variable.

In general, when interchanging the order of integration, the most important

part of the whole problem is getting the limits of integration right. The only

foolproof way of doing this is to draw a diagram.

2.13 Vector surface integrals

Surface integrals often occur during vector analysis. For instance, the rate of flow

of a liquid of velocity v through an infinitesimal surface of vector area dS is v ·dS.

The net rate of flow through a surface S made up of lots of infinitesimal surfaces

is ∫∫

S

v · dS = lim
dS→0

[∑
v cos θdS

]

, (2.86)

where θ is the angle subtended between the normal to the surface and the flow

velocity.

Analogously to line integrals, most surface integrals depend both on the sur-

face and the rim. But some (very important) integrals depend only on the rim,
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2 VECTORS 2.14 Volume integrals

and not on the nature of the surface which spans it. As an example of this, con-

sider incompressible fluid flow between two surfaces S1 and S2 which end on the

same rim. The volume between the surfaces is constant, so what goes in must

come out, and ∫∫

S1

v · dS =

∫ ∫

S2

v · dS. (2.87)

It follows that ∫∫

v · dS (2.88)

depends only on the rim, and not on the form of surfaces S1 and S2.

2.14 Volume integrals

A volume integral takes the form
∫∫∫

V

f(x, y, z)dV, (2.89)

where V is some volume, and dV = dxdydz is a small volume element. The

volume element is sometimes written d3r, or even dτ. As an example of a volume

integral, let us evaluate the centre of gravity of a solid hemisphere of radius a

(centered on the origin). The height of the centre of gravity is given by

z =

∫∫∫

z dV

/

∫∫∫

dV. (2.90)

The bottom integral is simply the volume of the hemisphere, which is 2πa3/3.

The top integral is most easily evaluated in spherical polar coordinates, for which

z = r cos θ and dV = r2 sin θdr dθdφ. Thus,
∫ ∫ ∫

z dV =

∫a

0

dr

∫π/2

0

dθ

∫ 2π

0

dφ r cos θ r2 sin θ

=

∫a

0

r3 dr

∫π/2

0

sin θ cos θdθ

∫ 2π

0

dφ =
πa4

4
, (2.91)

giving

z =
πa4

4

3

2πa3
=
3 a

8
. (2.92)
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2 VECTORS 2.15 Gradient

2.15 Gradient

A one-dimensional function f(x) has a gradient df/dx which is defined as the

slope of the tangent to the curve at x. We wish to extend this idea to cover scalar

fields in two and three dimensions.

x

y

P

θ

contours of h(x, y)

Figure 16:

Consider a two-dimensional scalar field h(x, y), which is (say) the height of

a hill. Let dl = (dx, dy) be an element of horizontal distance. Consider dh/dl,

where dh is the change in height after moving an infinitesimal distance dl. This

quantity is somewhat like the one-dimensional gradient, except that dh depends

on the direction of dl, as well as its magnitude. In the immediate vicinity of some

point P, the slope reduces to an inclined plane (see Fig. 16). The largest value of

dh/dl is straight up the slope. For any other direction

dh

dl
=

(

dh

dl

)

max
cos θ. (2.93)

Let us define a two-dimensional vector, gradh, called the gradient of h, whose

magnitude is (dh/dl)max, and whose direction is the direction up the steepest

slope. Because of the cos θ property, the component of gradh in any direction

equals dh/dl for that direction. [The argument, here, is analogous to that used

for vector areas in Sect. 2.3. See, in particular, Eq. (2.13). ]

The component of dh/dl in the x-direction can be obtained by plotting out the

profile of h at constant y, and then finding the slope of the tangent to the curve

at given x. This quantity is known as the partial derivative of h with respect to x
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2 VECTORS 2.15 Gradient

at constant y, and is denoted (∂h/∂x)y. Likewise, the gradient of the profile at

constant x is written (∂h/∂y)x. Note that the subscripts denoting constant-x and

constant-y are usually omitted, unless there is any ambiguity. If follows that in

component form

gradh =

(

∂h

∂x
,
∂h

∂y

)

. (2.94)

Now, the equation of the tangent plane at P = (x0, y0) is

hT(x, y) = h(x0, y0) + α (x− x0) + β (y− y0). (2.95)

This has the same local gradients as h(x, y), so

α =
∂h

∂x
, β =

∂h

∂y
, (2.96)

by differentiation of the above. For small dx = x − x0 and dy = y − y0, the

function h is coincident with the tangent plane. We have

dh =
∂h

∂x
dx+

∂h

∂y
dy, (2.97)

but gradh = (∂h/∂x, ∂h/∂y) and dl = (dx, dy), so

dh = gradh · dl. (2.98)

Incidentally, the above equation demonstrates that gradh is a proper vector, since

the left-hand side is a scalar, and, according to the properties of the dot prod-

uct, the right-hand side is also a scalar, provided that dl and gradh are both

proper vectors (dl is an obvious vector, because it is directly derived from dis-

placements).

Consider, now, a three-dimensional temperature distribution T(x, y, z) in (say)

a reaction vessel. Let us define grad T , as before, as a vector whose magnitude is

(dT/dl)max, and whose direction is the direction of the maximum gradient. This

vector is written in component form

grad T =

(

∂T

∂x
,
∂T

∂y
,
∂T

∂z

)

. (2.99)
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Here, ∂T/∂x ≡ (∂T/∂x)y,z is the gradient of the one-dimensional temperature pro-

file at constant y and z. The change in T in going from point P to a neighbouring

point offset by dl = (dx, dy, dz) is

dT =
∂T

∂x
dx+

∂T

∂y
dy+

∂T

∂z
dz. (2.100)

In vector form, this becomes

dT = grad T · dl. (2.101)

Suppose that dT = 0 for some dl. It follows that

dT = grad T · dl = 0. (2.102)

So, dl is perpendicular to grad T . Since dT = 0 along so-called “isotherms”

(i.e., contours of the temperature), we conclude that the isotherms (contours)

are everywhere perpendicular to grad T (see Fig. 17).

l
T = constant

isotherms

T
d

grad 

Figure 17:

It is, of course, possible to integrate dT . The line integral from point P to point

Q is written ∫Q

P

dT =

∫Q

P

grad T · dl = T(Q) − T(P). (2.103)

This integral is clearly independent of the path taken between P and Q, so∫Q
P

grad T · dl must be path independent.
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In general,
∫Q
P

A · dl depends on path, but for some special vector fields the

integral is path independent. Such fields are called conservative fields. It can be

shown that if A is a conservative field then A = gradφ for some scalar field φ.

The proof of this is straightforward. Keeping P fixed we have

∫Q

P

A · dl = V(Q), (2.104)

where V(Q) is a well-defined function, due to the path independent nature of the

line integral. Consider moving the position of the end point by an infinitesimal

amount dx in the x-direction. We have

V(Q+ dx) = V(Q) +

∫Q+dx

Q

A · dl = V(Q) +Ax dx. (2.105)

Hence,
∂V

∂x
= Ax, (2.106)

with analogous relations for the other components of A. It follows that

A = gradV. (2.107)

In physics, the force due to gravity is a good example of a conservative field.

If A is a force, then
∫

A · dl is the work done in traversing some path. If A is

conservative then ∮

A · dl = 0, (2.108)

where
∮

corresponds to the line integral around some closed loop. The fact that

zero net work is done in going around a closed loop is equivalent to the con-

servation of energy (this is why conservative fields are called “conservative”). A

good example of a non-conservative field is the force due to friction. Clearly, a

frictional system loses energy in going around a closed cycle, so
∮

A · dl 6= 0.

It is useful to define the vector operator

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

, (2.109)
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which is usually called the grad or del operator. This operator acts on everything

to its right in a expression, until the end of the expression or a closing bracket is

reached. For instance,

grad f = ∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

. (2.110)

For two scalar fields φ and ψ,

grad (φψ) = φ gradψ+ψ gradφ (2.111)

can be written more succinctly as

∇(φψ) = φ∇ψ+ψ∇φ. (2.112)

Suppose that we rotate the basis about the z-axis by θ degrees. By analogy

with Eqs. (2.7)–(2.9), the old coordinates (x, y, z) are related to the new ones

(x ′, y ′, z ′) via

x = x ′ cos θ− y ′ sin θ, (2.113)

y = x ′ sin θ+ y ′ cos θ, (2.114)

z = z ′. (2.115)

Now,
∂

∂x ′
=

(

∂x

∂x ′

)

y ′,z ′

∂

∂x
+

(

∂y

∂x ′

)

y ′,z ′

∂

∂y
+

(

∂z

∂x ′

)

y ′,z ′

∂

∂z
, (2.116)

giving
∂

∂x ′
= cos θ

∂

∂x
+ sin θ

∂

∂y
, (2.117)

and

∇x ′ = cos θ∇x + sin θ∇y. (2.118)

It can be seen that the differential operator ∇ transforms like a proper vector,

according to Eqs. (2.10)–(2.12). This is another proof that ∇f is a good vector.
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2 VECTORS 2.16 Divergence

2.16 Divergence

Let us start with a vector field A. Consider
∮
S

A · dS over some closed surface S,

where dS denotes an outward pointing surface element. This surface integral is

usually called the flux of A out of S. If A is the velocity of some fluid, then
∮
S

A·dS

is the rate of flow of material out of S.

If A is constant in space then it is easily demonstrated that the net flux out of

S is zero, ∮

A · dS = A ·
∮

dS = A · S = 0, (2.119)

since the vector area S of a closed surface is zero.

z + dz

y + dy

y

z
y

xz
x x + dx

Figure 18:

Suppose, now, that A is not uniform in space. Consider a very small rectangu-

lar volume over which A hardly varies. The contribution to
∮

A · dS from the two

faces normal to the x-axis is

Ax(x+ dx)dydz−Ax(x)dydz =
∂Ax

∂x
dxdydz =

∂Ax

∂x
dV, (2.120)

where dV = dxdydz is the volume element (see Fig. 18). There are analogous

contributions from the sides normal to the y- and z-axes, so the total of all the

contributions is ∮

A · dS =

(

∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

)

dV. (2.121)
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The divergence of a vector field is defined

divA = ∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
. (2.122)

Divergence is a good scalar (i.e., it is coordinate independent), since it is the dot

product of the vector operator ∇ with A. The formal definition of divA is

divA = lim
dV→0

∮
A · dS

dV
. (2.123)

This definition is independent of the shape of the infinitesimal volume element.

interior contributions cancel
.

S

Figure 19:

One of the most important results in vector field theory is the so-called diver-

gence theorem or Gauss’ theorem. This states that for any volume V surrounded

by a closed surface S, ∮

S

A · dS =

∫

V

divA dV, (2.124)

where dS is an outward pointing volume element. The proof is very straightfor-

ward. We divide up the volume into lots of very small cubes, and sum
∫

A · dS

over all of the surfaces. The contributions from the interior surfaces cancel out,

leaving just the contribution from the outer surface (see Fig. 19). We can use

Eq. (2.121) for each cube individually. This tells us that the summation is equiv-

alent to
∫
divA dV over the whole volume. Thus, the integral of A · dS over
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2 VECTORS 2.16 Divergence

the outer surface is equal to the integral of divA over the whole volume, which

proves the divergence theorem.

Now, for a vector field with divA = 0,
∮

S

A · dS = 0 (2.125)

for any closed surface S. So, for two surfaces on the same rim (see Fig. 20),
∫

S1

A · dS =

∫

S2

A · dS. (2.126)

Thus, if divA = 0 then the surface integral depends on the rim but not the nature

of the surface which spans it. On the other hand, if divA 6= 0 then the integral

depends on both the rim and the surface.

Rim

S

S

1

2

Figure 20:

Consider an incompressible fluid whose velocity field is v. It is clear that∮
v · dS = 0 for any closed surface, since what flows into the surface must flow

out again. Thus, according to the divergence theorem,
∫
div v dV = 0 for any

volume. The only way in which this is possible is if div v is everywhere zero.

Thus, the velocity components of an incompressible fluid satisfy the following

differential relation:
∂vx

∂x
+
∂vy

∂y
+
∂vz

∂z
= 0. (2.127)

Consider, now, a compressible fluid of density ρ and velocity v. The surface

integral
∮
S
ρ v · dS is the net rate of mass flow out of the closed surface S. This
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must be equal to the rate of decrease of mass inside the volume V enclosed by S,

which is written −(∂/∂t)(
∫
V
ρdV). Thus,

∮

S

ρ v · dS = −
∂

∂t

(

∫

V

ρ dV

)

(2.128)

for any volume. It follows from the divergence theorem that

div (ρ v) = −
∂ρ

∂t
. (2.129)

This is called the equation of continuity of the fluid, since it ensures that fluid

is neither created nor destroyed as it flows from place to place. If ρ is constant

then the equation of continuity reduces to the previous incompressible result,

div v = 0.

21

Figure 21:

It is sometimes helpful to represent a vector field A by lines of force or field-

lines. The direction of a line of force at any point is the same as the direction of A.

The density of lines (i.e., the number of lines crossing a unit surface perpendicular

to A) is equal to |A|. For instance, in Fig. 21, |A| is larger at point 1 than at point

2. The number of lines crossing a surface element dS is A ·dS. So, the net number

of lines leaving a closed surface is
∮

S

A · dS =

∫

V

divA dV. (2.130)

If divA = 0 then there is no net flux of lines out of any surface. Such a field is

called a solenoidal vector field. The simplest example of a solenoidal vector field

is one in which the lines of force all form closed loops.
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2 VECTORS 2.17 The Laplacian

2.17 The Laplacian

So far we have encountered

gradφ =

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

, (2.131)

which is a vector field formed from a scalar field, and

divA =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
, (2.132)

which is a scalar field formed from a vector field. There are two ways in which

we can combine grad and div. We can either form the vector field grad (divA)

or the scalar field div (gradφ). The former is not particularly interesting, but

the scalar field div (gradφ) turns up in a great many physics problems, and is,

therefore, worthy of discussion.

Let us introduce the heat flow vector h, which is the rate of flow of heat en-

ergy per unit area across a surface perpendicular to the direction of h. In many

substances, heat flows directly down the temperature gradient, so that we can

write

h = −κ grad T, (2.133)

where κ is the thermal conductivity. The net rate of heat flow
∮
S

h · dS out of

some closed surface S must be equal to the rate of decrease of heat energy in the

volume V enclosed by S. Thus, we can write
∮

S

h · dS = −
∂

∂t

(

∫

c T dV

)

, (2.134)

where c is the specific heat. It follows from the divergence theorem that

divh = −c
∂T

∂t
. (2.135)

Taking the divergence of both sides of Eq. (2.133), and making use of Eq. (2.135),

we obtain

div (κ grad T) = c
∂T

∂t
, (2.136)
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or

∇ · (κ∇T) = c
∂T

∂t
. (2.137)

If κ is constant then the above equation can be written

div (grad T) =
c

κ

∂T

∂t
. (2.138)

The scalar field div (grad T) takes the form

div (grad T) =
∂

∂x

(

∂T

∂x

)

+
∂

∂y

(

∂T

∂y

)

+
∂

∂z

(

∂T

∂z

)

=
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
≡ ∇2T. (2.139)

Here, the scalar differential operator

∇2 ≡ ∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(2.140)

is called the Laplacian. The Laplacian is a good scalar operator (i.e., it is coordi-

nate independent) because it is formed from a combination of div (another good

scalar operator) and grad (a good vector operator).

What is the physical significance of the Laplacian? In one dimension, ∇2T

reduces to ∂2T/∂x2. Now, ∂2T/∂x2 is positive if T(x) is concave (from above) and

negative if it is convex. So, if T is less than the average of T in its surroundings

then ∇2T is positive, and vice versa.

In two dimensions,

∇2T =
∂2T

∂x2
+
∂2T

∂y2
. (2.141)

Consider a local minimum of the temperature. At the minimum, the slope of T

increases in all directions, so ∇2T is positive. Likewise, ∇2T is negative at a local

maximum. Consider, now, a steep-sided valley in T . Suppose that the bottom of

the valley runs parallel to the x-axis. At the bottom of the valley ∂2T/∂y2 is large

and positive, whereas ∂2T/∂x2 is small and may even be negative. Thus, ∇2T is

positive, and this is associated with T being less than the average local value.
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Let us now return to the heat conduction problem:

∇2T =
c

κ

∂T

∂t
. (2.142)

It is clear that if ∇2T is positive then T is locally less than the average value, so

∂T/∂t > 0: i.e., the region heats up. Likewise, if ∇2T is negative then T is locally

greater than the average value, and heat flows out of the region: i.e., ∂T/∂t < 0.

Thus, the above heat conduction equation makes physical sense.

2.18 Curl

Consider a vector field A, and a loop which lies in one plane. The integral of A

around this loop is written
∮

A · dl, where dl is a line element of the loop. If A is

a conservative field then A = gradφ and
∮

A · dl = 0 for all loops. In general, for

a non-conservative field,
∮

A · dl 6= 0.

For a small loop we expect
∮

A · dl to be proportional to the area of the loop.

Moreover, for a fixed area loop we expect
∮

A · dl to depend on the orientation of

the loop. One particular orientation will give the maximum value:
∮

A ·dl = Imax.

If the loop subtends an angle θ with this optimum orientation then we expect

I = Imax cos θ. Let us introduce the vector field curl A whose magnitude is

|curl A| = lim
dS→0

∮
A · dl

dS
(2.143)

for the orientation giving Imax. Here, dS is the area of the loop. The direction

of curl A is perpendicular to the plane of the loop, when it is in the orientation

giving Imax, with the sense given by the right-hand grip rule.

Let us now express curl A in terms of the components of A. First, we shall

evaluate
∮

A · dl around a small rectangle in the y-z plane (see Fig. 22). The

contribution from sides 1 and 3 is

Az(y+ dy)dz−Az(y)dz =
∂Az

∂y
dydz. (2.144)
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z + dz

z y y + dy

1 3

2

4

z

y

Figure 22:

The contribution from sides 2 and 4 is

−Ay(z+ dz)dy+Ay(z)dy = −
∂Ay

∂y
dydz. (2.145)

So, the total of all contributions gives
∮

A · dl =

(

∂Az

∂y
−
∂Ay

∂z

)

dS, (2.146)

where dS = dydz is the area of the loop.

Consider a non-rectangular (but still small) loop in the y-z plane. We can

divide it into rectangular elements, and form
∮

A · dl over all the resultant loops.

The interior contributions cancel, so we are just left with the contribution from

the outer loop. Also, the area of the outer loop is the sum of all the areas of the

inner loops. We conclude that
∮

A · dl =

(

∂Az

∂y
−
∂Ay

∂z

)

dSx (2.147)

is valid for a small loop dS = (dSx, 0, 0) of any shape in the y-z plane. Likewise,

we can show that if the loop is in the x-z plane then dS = (0, dSy, 0) and
∮

A · dl =

(

∂Ax

∂z
−
∂Az

∂x

)

dSy. (2.148)

Finally, if the loop is in the x-y plane then dS = (0, 0, dSz) and
∮

A · dl =

(

∂Ay

∂x
−
∂Ax

∂y

)

dSz. (2.149)
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Figure 23:

Imagine an arbitrary loop of vector area dS = (dSx, dSy, dSz). We can con-

struct this out of three loops in the x-, y-, and z-directions, as indicated in Fig. 23.

If we form the line integral around all three loops then the interior contributions

cancel, and we are left with the line integral around the original loop. Thus,
∮

A · dl =

∮

A · dl1 +

∮

A · dl2 +

∮

A · dl3, (2.150)

giving ∮

A · dl = curl A · dS = |curl A| |dS| cos θ, (2.151)

where

curl A =

(

∂Az

∂y
−
∂Ay

∂z
,
∂Ax

∂z
−
∂Az

∂x
,
∂Ay

∂x
−
∂Ax

∂y

)

. (2.152)

Note that

curl A = ∇× A. (2.153)

This demonstrates that curl A is a good vector field, since it is the cross product

of the ∇ operator (a good vector operator) and the vector field A.

Consider a solid body rotating about the z-axis. The angular velocity is given

by ω = (0, 0, ω), so the rotation velocity at position r is

v = ω × r (2.154)
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[see Eq. (2.43) ]. Let us evaluate curl v on the axis of rotation. The x-component

is proportional to the integral
∮

v · dl around a loop in the y-z plane. This is

plainly zero. Likewise, the y-component is also zero. The z-component is
∮

v ·
dl/dS around some loop in the x-y plane. Consider a circular loop. We have∮

v · dl = 2π rω r with dS = π r2. Here, r is the radial distance from the rotation

axis. It follows that (curl v)z = 2ω, which is independent of r. So, on the axis,

curl v = (0 , 0 , 2ω). Off the axis, at position r0, we can write

v = ω × (r − r0) + ω × r0. (2.155)

The first part has the same curl as the velocity field on the axis, and the second

part has zero curl, since it is constant. Thus, curl v = (0, 0, 2ω) everywhere in

the body. This allows us to form a physical picture of curl A. If we imagine A as

the velocity field of some fluid, then curl A at any given point is equal to twice

the local angular rotation velocity: i.e., 2 ω. Hence, a vector field with curl A = 0

everywhere is said to be irrotational.

Another important result of vector field theory is the curl theorem or Stokes’

theorem, ∮

C

A · dl =

∫

S

curl A · dS, (2.156)

for some (non-planar) surface S bounded by a rim C. This theorem can easily be

proved by splitting the loop up into many small rectangular loops, and forming

the integral around all of the resultant loops. All of the contributions from the

interior loops cancel, leaving just the contribution from the outer rim. Making

use of Eq. (2.151) for each of the small loops, we can see that the contribution

from all of the loops is also equal to the integral of curl A · dS across the whole

surface. This proves the theorem.

One immediate consequence of Stokes’ theorem is that curl A is “incompress-

ible.” Consider two surfaces, S1 and S2, which share the same rim. It is clear

from Stokes’ theorem that
∫

curl A · dS is the same for both surfaces. Thus, it

follows that
∮

curl A · dS = 0 for any closed surface. However, we have from the

divergence theorem that
∮

curl A · dS =
∫
div (curl A)dV = 0 for any volume.

Hence,

div (curl A) ≡ 0. (2.157)
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So, curl A is a solenoidal field.

We have seen that for a conservative field
∮

A · dl = 0 for any loop. This is en-

tirely equivalent to A = gradφ. However, the magnitude of curl A is lim dS→0

∮
A ·

dl/dS for some particular loop. It is clear then that curl A = 0 for a conservative

field. In other words,

curl (gradφ) ≡ 0. (2.158)

Thus, a conservative field is also an irrotational one.

Finally, it can be shown that

curl (curl A) = grad (divA) − ∇2A, (2.159)

where

∇2A = (∇2Ax, ∇2Ay, ∇2Az). (2.160)

It should be emphasized, however, that the above result is only valid in Cartesian

coordinates.

2.19 Summary

Vector addition:

a + b ≡ (ax + bx, ay + by, az + bz)

Scalar multiplication:

n a ≡ (nax, n ay, n az)

Scalar product:

a · b = ax bx + ay by + az bz

Vector product:

a × b = (ay bz − az by, az bx − ax bz, ax by − ay bx)

Scalar triple product:

a · b × c = a × b · c = b · c × a = −b · a × c
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Vector triple product:

a × (b × c) = (a · c) b − (a · b) c

(a × b) × c = (a · c) b − (b · c) a

Gradient:

gradφ =

(

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)

Divergence:

divA =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

Curl:

curl A =

(

∂Az

∂y
−
∂Ay

∂z
,
∂Ax

∂z
−
∂Az

∂x
,
∂Ay

∂x
−
∂Ax

∂y

)

Gauss’ theorem: ∮

S

A · dS =

∫

V

divA dV

Stokes’ theorem: ∮

C

A · dl =

∫

S

curl A · dS

Del operator:

∇ =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

gradφ = ∇φ
divA = ∇ · A

curl A = ∇× A

Vector identities:

∇ · ∇φ = ∇2φ =





∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2





∇ · ∇ × A = 0

∇×∇φ = 0

∇2A = ∇ (∇ · A) − ∇×∇× A
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Other vector identities:

∇(φψ) = φ∇ψ+ψ∇φ
∇ · (φA) = φ∇ · A + A · ∇φ

∇× (φA) = φ∇× A + ∇φ× A

∇ · (A × B) = B · ∇ × A − A · ∇ × B

∇× (A × B) = A (∇ · B) − B (∇ · A) + (B · ∇)A − (A · ∇)B

∇(A · B) = A × (∇× B) + B × (∇× A) + (A · ∇)B + (B · ∇)A

Cylindrical polar coordinates:

x = r cos θ, y = r sin θ, z = z, dV = r dr dθdz

∇f =

(

∂f

∂r
,
1

r

∂f

∂θ
,
∂f

∂z

)

∇ · A =
1

r

∂(rAr)

∂r
+
1

r

∂Aθ

∂θ
+
∂Az

∂z

∇× A =





1

r

∂Az

∂θ
−
∂Aθ

∂z
,
∂Ar

∂z
−
∂Az

∂r
,
1

r

∂(rAθ)

∂r
−
1

r

∂Ar

∂θ





∇2f =
1

r

∂

∂r

(

r
∂f

∂r

)

+
1

r2
∂2f

∂θ2
+
∂2f

∂z2

Spherical polar coordinates:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, dV = r2 sin θdr dθdφ

∇f =

(

∂f

∂r
,
1

r

∂f

∂θ
,

1

r sin θ

∂f

∂φ

)

∇ · A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ

(∇× A)r =
1

r sin θ

∂(sin θAφ)

∂θ
−

1

r sin θ

∂Aθ

∂φ

(∇× A)θ =
1

r sin θ

∂Ar

∂φ
−
1

r

∂(rAφ)

∂r

(∇× A)z =
1

r

∂(rAθ)

∂r
−
1

r

∂Ar

∂θ

∇2f =
1

r2
∂

∂r

(

r2
∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r2 sin2 θ

∂2f

∂φ2
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3 Time-independent Maxwell equations

3.1 Introduction

In this section, we shall take the familiar force laws of electrostatics and magne-

tostatics, and recast them as vector field equations.

3.2 Coulomb’s law

Between 1785 and 1787, the French physicist Charles Augustine de Coulomb

performed a series of experiments involving electric charges, and eventually es-

tablished what is nowadays known as Coulomb’s law. According to this law, the

force acting between two electric charges is radial, inverse-square, and propor-

tional to the product of the charges. Two like charges repel one another, whereas

two unlike charges attract. Suppose that two charges, q1 and q2, are located at

position vectors r1 and r2. The electrical force acting on the second charge is

written

f2 =
q1 q2

4π ε0

r2 − r1

|r2 − r1|3
(3.1)

in vector notation (see Fig. 24). An equal and opposite force acts on the first

charge, in accordance with Newton’s third law of motion. The SI unit of electric

charge is the coulomb (C). The magnitude of the charge on an electron is 1.6022×
10−19 C. The universal constant ε0 is called the permittivity of free space, and takes

the value

ε0 = 8.8542× 10−12 C 2 N−1m−2. (3.2)

Coulomb’s law has the same mathematical form as Newton’s law of gravity.

Suppose that two masses, m1 and m2, are located at position vectors r1 and r2.

The gravitational force acting on the second mass is written

f2 = −Gm1m2

r2 − r1

|r2 − r1|3
(3.3)
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Figure 24:

in vector notation. The gravitational constant G takes the value

G = 6.6726× 10−11 N m2 kg−2. (3.4)

Coulomb’s law and Newton’s law are both inverse-square force laws: i.e.

|f2| ∝
1

|r2 − r1|2
. (3.5)

However, they differ in two crucial respects. Firstly, the force due to gravity is

always attractive (there is no such thing as a negative mass). Secondly, the mag-

nitudes of the two forces are vastly different. Consider the ratio of the electrical

and gravitational forces acting on two particles. This ratio is a constant, indepen-

dent of the relative positions of the particles, and is given by

|felectrical|

|fgravitational|
=
q1

m1

q2

m2

1

4π ε0G
. (3.6)

For electrons, the charge to mass ratio is q/m = 1.759× 1011 C kg−1, so

|felectrical|

|fgravitational|
= 4.17× 1042. (3.7)

This is a colossal number! Suppose we are studying a physics problem involving

the motion of particles in a box under the action of two forces with the same

range, but differing in magnitude by a factor 1042. It would seem a plausible

approximation (to say the least) to start the investgation by neglecting the weaker
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3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.2 Coulomb’s law

force. Applying this reasoning to the motion of particles in the Universe, we

would expect the Universe to be governed entirely by electrical forces. However,

this is not the case. The force which holds us to the surface of the Earth, and

prevents us from floating off into space, is gravity. The force which causes the

Earth to orbit the Sun is also gravity. In fact, on astronomical length-scales gravity

is the dominant force, and electrical forces are largely irrelevant. The key to

understanding this paradox is that there are both positive and negative electric

charges, whereas there are only positive gravitational “charges.” This means that

gravitational forces are always cumulative, whereas electrical forces can cancel

one another out. Suppose, for the sake of argument, that the Universe starts out

with randomly distributed electric charges. Initially, we expect electrical forces to

completely dominate gravity. These forces try to make every positive charge get

as far away as possible from the other positive charges, and as close as possible

to the other negative charges. After a while, we expect the positive and negative

charges to form close pairs. Just how close is determined by quantum mechanics,

but, in general, it is pretty close: i.e., about 10−10 m. The electrical forces due to

the charges in each pair effectively cancel one another out on length-scales much

larger than the mutual spacing of the pair. It is only possible for gravity to be the

dominant long-range force if the number of positive charges in the Universe is

almost equal to the number of negative charges. In this situation, every positive

charge can find a negative charge to team up with, and there are virtually no

charges left over. In order for the cancellation of long-range electrical forces to be

effective, the relative difference in the number of positive and negative charges in

the Universe must be incredibly small. In fact, positive and negative charges have

to cancel each other out to such accuracy that most physicists believe that the net

charge of the universe is exactly zero. But, it is not enough for the Universe to

start out with zero charge. Suppose there were some elementary particle process

which did not conserve electric charge. Even if this were to go on at a very low

rate, it would not take long before the fine balance between positive and negative

charges in the Universe was wrecked. So, it is important that electric charge is

a conserved quantity (i.e., the net charge of the Universe can neither increase or

decrease). As far as we know, this is the case. To date, no elementary particle

reactions have been discovered which create or destroy net electric charge.
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In summary, there are two long-range forces in the Universe, electromagnetism

and gravity. The former is enormously stronger than the latter, but is usually “hid-

den” away inside neutral atoms. The fine balance of forces due to negative and

positive electric charges starts to break down on atomic scales. In fact, inter-

atomic and intermolecular forces are all electrical in nature. So, electrical forces

are basically what prevent us from falling though the floor. But, this is electro-

magnetism on the microscopic or atomic scale—what is usually termed quantum

electromagnetism. This course is about classical electromagnetism. That is, elec-

tromagnetism on length-scales much larger than the atomic scale. Classical elec-

tromagnetism generally describes phenomena in which some sort of “violence”

is done to matter, so that the close pairing of negative and positive charges is

disrupted. This allows electrical forces to manifest themselves on macroscopic

length-scales. Of course, very little disruption is necessary before gigantic forces

are generated. It is no coincidence that the vast majority of useful machines

which humankind has devised during the last century or so are electrical in na-

ture.

Coulomb’s law and Newton’s law are both examples of what are usually re-

ferred to as action at a distance theories. According to Eqs. (3.1) and (3.3), if

the first charge or mass is moved then the force acting on the second charge or

mass immediately responds. In particular, equal and opposite forces act on the

two charges or masses at all times. However, this cannot be correct according to

Einstein’s theory of relativity, which implies that the maximum speed with which

information can propagate through the Universe is the speed of light in vacuum.

So, if the first charge or mass is moved then there must always be time delay (i.e.,

at least the time needed for a light signal to propagate between the two charges

or masses) before the second charge or mass responds. Consider a rather extreme

example. Suppose the first charge or mass is suddenly annihilated. The second

charge or mass only finds out about this some time later. During this time in-

terval, the second charge or mass experiences an electrical or gravitational force

which is as if the first charge or mass were still there. So, during this period, there

is an action but no reaction, which violates Newton’s third law of motion. It is

clear that action at a distance is not compatible with relativity, and, consequently,

that Newton’s third law of motion is not strictly true. Of course, Newton’s third
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law is intimately tied up with the conservation of linear momentum in the Uni-

verse. This is a concept which most physicists are loath to abandon. It turns out

that we can “rescue” momentum conservation by abandoning action at a distance

theories, and instead adopting so-called field theories in which there is a medium,

called a field, which transmits the force from one particle to another. In elec-

tromagnetism there are, in fact, two fields—the electric field, and the magnetic

field. Electromagnetic forces are transmitted via these fields at the speed of light,

which implies that the laws of relativity are never violated. Moreover, the fields

can soak up energy and momentum. This means that even when the actions and

reactions acting on particles are not quite equal and opposite, momentum is still

conserved. We can bypass some of the problematic aspects of action at a distance

by only considering steady-state situations. For the moment, this is how we shall

proceed.

Consider N charges, q1 though qN, which are located at position vectors r1
through rN. Electrical forces obey what is known as the principle of superposition.

The electrical force acting on a test charge q at position vector r is simply the

vector sum of all of the Coulomb law forces from each of the N charges taken in

isolation. In other words, the electrical force exerted by the ith charge (say) on

the test charge is the same as if all the other charges were not there. Thus, the

force acting on the test charge is given by

f(r) = q

N∑

i=1

qi

4π ε0

r − ri

|r − ri|3
. (3.8)

It is helpful to define a vector field E(r), called the electric field, which is the force

exerted on a unit test charge located at position vector r. So, the force on a test

charge is written

f = qE, (3.9)

and the electric field is given by

E(r) =

N∑

i=1

qi

4π ε0

r − ri

|r − ri|3
. (3.10)

At this point, we have no reason to believe that the electric field has any real

physical existence. It is just a useful device for calculating the force which acts

on test charges placed at various locations.
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The electric field from a single charge q located at the origin is purely radial,

points outwards if the charge is positive, inwards if it is negative, and has magni-

tude

Er(r) =
q

4πε0 r2
, (3.11)

where r = |r|.

E

q

Figure 25:

We can represent an electric field by field-lines. The direction of the lines

indicates the direction of the local electric field, and the density of the lines per-

pendicular to this direction is proportional to the magnitude of the local electric

field. Thus, the field of a point positive charge is represented by a group of equally

spaced straight lines radiating from the charge (see Fig. 25).

The electric field from a collection of charges is simply the vector sum of the

fields from each of the charges taken in isolation. In other words, electric fields

are completely superposable. Suppose that, instead of having discrete charges,

we have a continuous distribution of charge represented by a charge density ρ(r).

Thus, the charge at position vector r ′ is ρ(r ′)d3r ′, where d3r ′ is the volume ele-

ment at r ′. It follows from a simple extension of Eq. (3.10) that the electric field

generated by this charge distribution is

E(r) =
1

4π ε0

∫

ρ(r ′)
r − r ′

|r − r ′|3
d3r ′, (3.12)

where the volume integral is over all space, or, at least, over all space for which

ρ(r ′) is non-zero.
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3.3 The electric scalar potential

Suppose that r = (x, y, z) and r ′ = (x ′, y ′, z ′) in Cartesian coordinates. The x

component of (r − r ′)/|r − r ′|3 is written

x− x ′

[(x− x ′)2 + (y− y ′)2 + (z− z ′)2] 3/2
. (3.13)

However, it is easily demonstrated that

x− x ′

[(x− x ′)2 + (y− y ′)2 + (z− z ′)2] 3/2
= (3.14)

−
∂

∂x





1

[(x− x ′)2 + (y− y ′)2 + (z− z ′)2] 1/2



 .

Since there is nothing special about the x-axis, we can write

r − r ′

|r − r ′|3
= −∇





1

|r − r ′|



 , (3.15)

where ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) is a differential operator which involves the com-

ponents of r but not those of r ′. It follows from Eq. (3.12) that

E = −∇φ, (3.16)

where

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.17)

Thus, the electric field generated by a collection of fixed charges can be written as

the gradient of a scalar potential, and this potential can be expressed as a simple

volume integral involving the charge distribution.

The scalar potential generated by a charge q located at the origin is

φ(r) =
q

4πε0 r
. (3.18)

According to Eq. (3.10), the scalar potential generated by a set of N discrete

charges qi, located at ri, is

φ(r) =

N∑

i=1

φi(r), (3.19)
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where

φi(r) =
qi

4π ε0 |r − ri|
. (3.20)

Thus, the scalar potential is just the sum of the potentials generated by each of

the charges taken in isolation.

Suppose that a particle of charge q is taken along some path from point P to

point Q. The net work done on the particle by electrical forces is

W =

∫Q

P

f · dl, (3.21)

where f is the electrical force, and dl is a line element along the path. Making

use of Eqs. (3.9) and (3.16), we obtain

W = q

∫Q

P

E · dl = −q

∫Q

P

∇φ · dl = −q [φ(Q) − φ(P) ] . (3.22)

Thus, the work done on the particle is simply minus its charge times the differ-

ence in electric potential between the end point and the beginning point. This

quantity is clearly independent of the path taken between P and Q. So, an elec-

tric field generated by stationary charges is an example of a conservative field. In

fact, this result follows immediately from vector field theory once we are told, in

Eq. (3.16), that the electric field is the gradient of a scalar potential. The work

done on the particle when it is taken around a closed loop is zero, so
∮

C

E · dl = 0 (3.23)

for any closed loop C. This implies from Stokes’ theorem that

∇× E = 0 (3.24)

for any electric field generated by stationary charges. Equation (3.24) also fol-

lows directly from Eq. (3.16), since ∇×∇φ = 0 for any scalar potential φ.

The SI unit of electric potential is the volt, which is equivalent to a joule per

coulomb. Thus, according to Eq. (3.22), the electrical work done on a particle

when it is taken between two points is the product of its charge and the voltage

difference between the points.
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We are familiar with the idea that a particle moving in a gravitational field pos-

sesses potential energy as well as kinetic energy. If the particle moves from point

P to a lower pointQ then the gravitational field does work on the particle causing

its kinetic energy to increase. The increase in kinetic energy of the particle is bal-

anced by an equal decrease in its potential energy, so that the overall energy of

the particle is a conserved quantity. Therefore, the work done on the particle as it

moves from P toQ is minus the difference in its gravitational potential energy be-

tween points Q and P. Of course, it only makes sense to talk about gravitational

potential energy because the gravitational field is conservative. Thus, the work

done in taking a particle between two points is path independent, and, therefore,

well-defined. This means that the difference in potential energy of the particle

between the beginning and end points is also well-defined. We have already seen

that an electric field generated by stationary charges is a conservative field. In

follows that we can define an electrical potential energy of a particle moving in

such a field. By analogy with gravitational fields, the work done in taking a parti-

cle from point P to point Q is equal to minus the difference in potential energy of

the particle between points Q and P. It follows from Eq. (3.22), that the poten-

tial energy of the particle at a general point Q, relative to some reference point P

(where the potential energy is set to zero), is given by

E(Q) = qφ(Q). (3.25)

Free particles try to move down gradients of potential energy, in order to attain a

minimum potential energy state. Thus, free particles in the Earth’s gravitational

field tend to fall downwards. Likewise, positive charges moving in an electric

field tend to migrate towards regions with the most negative voltage, and vice

versa for negative charges.

The scalar electric potential is undefined to an additive constant. So, the trans-

formation

φ(r) → φ(r) + c (3.26)

leaves the electric field unchanged according to Eq. (3.16). The potential can be

fixed unambiguously by specifying its value at a single point. The usual conven-

tion is to say that the potential is zero at infinity. This convention is implicit in

Eq. (3.17), where it can be seen that φ → 0 as |r| → ∞, provided that the total

charge
∫
ρ(r ′)d3r ′ is finite.

61



3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.4 Gauss’ law

3.4 Gauss’ law

E

q

V

r

S

Figure 26:

Consider a single charge located at the origin. The electric field generated by

such a charge is given by Eq. (3.11). Suppose that we surround the charge by a

concentric spherical surface S of radius r (see Fig. 26). The flux of the electric

field through this surface is given by
∮

S

E · dS =

∮

S

Er dSr = Er(r) 4π r
2 =

q

4πε0 r2
4π r2 =

q

ε0
, (3.27)

since the normal to the surface is always parallel to the local electric field. How-

ever, we also know from Gauss’ theorem that
∮

S

E · dS =

∫

V

∇ · E d3r, (3.28)

where V is the volume enclosed by surface S. Let us evaluate ∇ · E directly. In

Cartesian coordinates, the field is written

E =
q

4πε0

(

x

r3
,
y

r3
,
z

r3

)

, (3.29)

where r2 = x2 + y2 + z2. So,

∂Ex

∂x
=

q

4πε0

(

1

r3
−
3 x

r4
x

r

)

=
q

4πε0

r2 − 3 x2

r5
. (3.30)

Here, use has been made of
∂r

∂x
=
x

r
. (3.31)
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Formulae analogous to Eq. (3.30) can be obtained for ∂Ey/∂y and ∂Ez/∂z. The

divergence of the field is thus given by

∇ · E =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
=

q

4πε0

3 r2 − 3 x2 − 3 y2 − 3 z2

r5
= 0. (3.32)

This is a puzzling result! We have from Eqs. (3.27) and (3.28) that
∫

V

∇ · E d3r =
q

ε0
, (3.33)

and yet we have just proved that ∇ · E = 0. This paradox can be resolved after a

close examination of Eq. (3.32). At the origin (r = 0) we find that ∇ · E = 0/0,

which means that ∇ · E can take any value at this point. Thus, Eqs. (3.32) and

(3.33) can be reconciled if ∇ · E is some sort of “spike” function: i.e., it is zero

everywhere except arbitrarily close to the origin, where it becomes very large.

This must occur in such a manner that the volume integral over the spike is

finite.

1/ε

−ε/2 +ε/2 x

Figure 27:

Let us examine how we might construct a one-dimensional spike function.

Consider the “box-car” function

g(x, ε) =

{
1/ε for |x| < ε/2

0 otherwise
(3.34)

(see Fig. 27). It is clear that
∫∞

−∞

g(x, ε)dx = 1. (3.35)
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Now consider the function

δ(x) = lim
ε→0

g(x, ε). (3.36)

This is zero everywhere except arbitrarily close to x = 0. According to Eq. (3.35),

it also possess a finite integral;
∫∞

−∞

δ(x)dx = 1. (3.37)

Thus, δ(x) has all of the required properties of a spike function. The one-dimensional

spike function δ(x) is called the Dirac delta-function after the Cambridge physi-

cist Paul Dirac who invented it in 1927 while investigating quantum mechanics.

The delta-function is an example of what mathematicians call a generalized func-

tion: it is not well-defined at x = 0, but its integral is nevertheless well-defined.

Consider the integral ∫∞

−∞

f(x) δ(x)dx, (3.38)

where f(x) is a function which is well-behaved in the vicinity of x = 0. Since the

delta-function is zero everywhere apart from very close to x = 0, it is clear that
∫∞

−∞

f(x) δ(x)dx = f(0)

∫∞

−∞

δ(x)dx = f(0), (3.39)

where use has been made of Eq. (3.37). The above equation, which is valid for

any well-behaved function, f(x), is effectively the definition of a delta-function. A

simple change of variables allows us to define δ(x− x0), which is a spike function

centred on x = x0. Equation (3.39) gives
∫∞

−∞

f(x) δ(x− x0)dx = f(x0). (3.40)

We actually want a three-dimensional spike function: i.e., a function which

is zero everywhere apart from arbitrarily close to the origin, and whose volume

integral is unity. If we denote this function by δ(r) then it is easily seen that the

three-dimensional delta-function is the product of three one-dimensional delta-

functions:

δ(r) = δ(x) δ(y) δ(z). (3.41)
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This function is clearly zero everywhere except the origin. But is its volume

integral unity? Let us integrate over a cube of dimensions 2 a which is centred on

the origin, and aligned along the Cartesian axes. This volume integral is obviously

separable, so that
∫

δ(r)d3r =

∫a

−a

δ(x)dx

∫a

−a

δ(y)dy

∫a

−a

δ(z)dz. (3.42)

The integral can be turned into an integral over all space by taking the limit a →
∞. However, we know that for one-dimensional delta-functions

∫∞

−∞ δ(x)dx = 1,

so it follows from the above equation that
∫

δ(r)d3r = 1, (3.43)

which is the desired result. A simple generalization of previous arguments yields
∫

f(r) δ(r)d3r = f(0), (3.44)

where f(r) is any well-behaved scalar field. Finally, we can change variables and

write

δ(r − r ′) = δ(x− x ′) δ(y− y ′) δ(z− z ′), (3.45)

which is a three-dimensional spike function centred on r = r ′. It is easily demon-

strated that ∫

f(r) δ(r − r ′)d3r = f(r ′). (3.46)

Up to now, we have only considered volume integrals taken over all space. How-

ever, it should be obvious that the above result also holds for integrals over any

finite volume V which contains the point r = r ′. Likewise, the integral is zero if

V does not contain r = r ′.

Let us now return to the problem in hand. The electric field generated by a

charge q located at the origin has ∇ · E = 0 everywhere apart from the origin,

and also satisfies ∫

V

∇ · E d3r =
q

ε0
(3.47)
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for a spherical volume V centered on the origin. These two facts imply that

∇ · E =
q

ε0
δ(r), (3.48)

where use has been made of Eq. (3.43).

At this stage, vector field theory has yet to show its worth.. After all, we have

just spent an inordinately long time proving something using vector field theory

which we previously proved in one line [see Eq. (3.27) ] using conventional anal-

ysis. It is time to demonstrate the power of vector field theory. Consider, again,

a charge q at the origin surrounded by a spherical surface S which is centered on

the origin. Suppose that we now displace the surface S, so that it is no longer

centered on the origin. What is the flux of the electric field out of S? This is not

a simple problem for conventional analysis, because the normal to the surface is

no longer parallel to the local electric field. However, using vector field theory

this problem is no more difficult than the previous one. We have
∮

S

E · dS =

∫

V

∇ · E d3r (3.49)

from Gauss’ theorem, plus Eq. (3.48). From these equations, it is clear that the

flux of E out of S is q/ε0 for a spherical surface displaced from the origin. How-

ever, the flux becomes zero when the displacement is sufficiently large that the

origin is no longer enclosed by the sphere. It is possible to prove this via con-

ventional analysis, but it is certainly not easy. Suppose that the surface S is not

spherical but is instead highly distorted. What now is the flux of E out of S? This

is a virtually impossible problem in conventional analysis, but it is still easy using

vector field theory. Gauss’ theorem and Eq. (3.48) tell us that the flux is q/ε0
provided that the surface contains the origin, and that the flux is zero otherwise.

This result is completely independent of the shape of S.

ConsiderN charges qi located at ri. A simple generalization of Eq. (3.48) gives

∇ · E =

N∑

i=1

qi

ε0
δ(r − ri). (3.50)

Thus, Gauss’ theorem (3.49) implies that
∮

S

E · dS =

∫

V

∇ · E d3r =
Q

ε0
, (3.51)
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where Q is the total charge enclosed by the surface S. This result is called Gauss’

law, and does not depend on the shape of the surface.

Suppose, finally, that instead of having a set of discrete charges, we have a

continuous charge distribution described by a charge density ρ(r). The charge

contained in a small rectangular volume of dimensions dx, dy, and dz located at

position r is Q = ρ(r)dxdydz. However, if we integrate ∇ · E over this volume

element we obtain

∇ · E dxdydz =
Q

ε0
=
ρdxdydz

ε0
, (3.52)

where use has been made of Eq. (3.51). Here, the volume element is assumed

to be sufficiently small that ∇ · E does not vary significantly across it. Thus, we

obtain

∇ · E =
ρ

ε0
. (3.53)

This is the first of four field equations, called Maxwell’s equations, which to-

gether form a complete description of electromagnetism. Of course, our deriva-

tion of Eq. (3.53) is only valid for electric fields generated by stationary charge

distributions. In principle, additional terms might be required to describe fields

generated by moving charge distributions. However, it turns out that this is not

the case, and that Eq. (3.53) is universally valid.

Equation (3.53) is a differential equation describing the electric field gener-

ated by a set of charges. We already know the solution to this equation when the

charges are stationary: it is given by Eq. (3.12),

E(r) =
1

4π ε0

∫

ρ(r ′)
r − r ′

|r − r ′|3
d3r ′. (3.54)

Equations (3.53) and (3.54) can be reconciled provided

∇ ·




r − r ′

|r − r ′|3



 = −∇2





1

|r − r ′|



 = 4π δ(r − r ′), (3.55)

where use has been made of Eq. (3.15). It follows that

∇ · E(r) =
1

4π ε0

∫

ρ(r ′)∇ ·




r − r ′

|r − r ′|3



 d3r ′
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=

∫
ρ(r ′)

ε0
δ(r − r ′)d3r ′ =

ρ(r)

ε0
, (3.56)

which is the desired result. The most general form of Gauss’ law, Eq. (3.51), is

obtained by integrating Eq. (3.53) over a volume V surrounded by a surface S,

and making use of Gauss’ theorem:
∮

S

E · dS =
1

ε0

∫

V

ρ(r)d3r. (3.57)

One particularly interesting application of Gauss’ law is Earnshaw’s theorem,

which states that it is impossible for a collection of charged particles to remain in

static equilibrium solely under the influence of electrostatic forces. For instance,

consider the motion of the ith particle in the electric field, E, generated by all of

the other static particles. The equilibrium position of the ith particle corresponds

to some point ri, where E(ri) = 0. By implication, ri does not correspond to the

equilibrium position of any other particle. However, in order for ri to be a stable

equilibrium point, the particle must experience a restoring force when it is moved

a small distance away from ri in any direction. Assuming that the ith particle is

positively charged, this means that the electric field must point radially towards

ri at all neighbouring points. Hence, if we apply Gauss’ law to a small sphere

centred on ri, then there must be a negative flux of E through the surface of the

sphere, implying the presence of a negative charge at ri. However, there is no

such charge at ri. Hence, we conclude that E cannot point radially towards ri at

all neighbouring points. In other words, there must be some neighbouring points

at which E is directed away from ri. Hence, a positively charged particle placed

at ri can always escape by moving to such points. One corollary of Earnshaw’s

theorem is that classical electrostatics cannot account for the stability of atoms

and molecules.

3.5 Poisson’s equation

We have seen that the electric field generated by a set of stationary charges can

be written as the gradient of a scalar potential, so that

E = −∇φ. (3.58)
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This equation can be combined with the field equation (3.53) to give a partial

differential equation for the scalar potential:

∇2φ = −
ρ

ε0
. (3.59)

This is an example of a very famous type of partial differential equation known

as Poisson’s equation.

In its most general form, Poisson’s equation is written

∇2u = v, (3.60)

where u(r) is some scalar potential which is to be determined, and v(r) is a known

“source function.” The most common boundary condition applied to this equation

is that the potential u is zero at infinity. The solutions to Poisson’s equation are

completely superposable. Thus, if u1 is the potential generated by the source

function v1, and u2 is the potential generated by the source function v2, so that

∇2u1 = v1, ∇2u2 = v2, (3.61)

then the potential generated by v1 + v2 is u1 + u2, since

∇2(u1 + u2) = ∇2u1 + ∇2u2 = v1 + v2. (3.62)

Poisson’s equation has this property because it is linear in both the potential and

the source term.

The fact that the solutions to Poisson’s equation are superposable suggests a

general method for solving this equation. Suppose that we could construct all of

the solutions generated by point sources. Of course, these solutions must satisfy

the appropriate boundary conditions. Any general source function can be built up

out of a set of suitably weighted point sources, so the general solution of Poisson’s

equation must be expressible as a weighted sum over the point source solutions.

Thus, once we know all of the point source solutions we can construct any other

solution. In mathematical terminology, we require the solution to

∇2G(r, r ′) = δ(r − r ′) (3.63)

which goes to zero as |r| → ∞. The functionG(r, r ′) is the solution generated by a

unit point source located at position r ′. This function is known to mathematicians
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as a Green’s function. The solution generated by a general source function v(r) is

simply the appropriately weighted sum of all of the Green’s function solutions:

u(r) =

∫

G(r, r ′) v(r ′)d3r ′. (3.64)

We can easily demonstrate that this is the correct solution:

∇2u(r) =

∫
[

∇2G(r, r ′)
]

v(r ′)d3r ′ =

∫

δ(r − r ′) v(r ′)d3r ′ = v(r). (3.65)

Let us return to Eq. (3.59):

∇2φ = −
ρ

ε0
. (3.66)

The Green’s function for this equation satisfies Eq. (3.63) with |G| → ∞ as |r| → 0.

It follows from Eq. (3.55) that

G(r, r ′) = −
1

4π

1

|r − r ′|
. (3.67)

Note, from Eq. (3.20), that the Green’s function has the same form as the poten-

tial generated by a point charge. This is hardly surprising, given the definition of

a Green’s function. It follows from Eq. (3.64) and (3.67) that the general solution

to Poisson’s equation, (3.66), is written

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.68)

In fact, we have already obtained this solution by another method [see Eq. (3.17) ].

3.6 Ampère’s experiments

As legend has it, in 1820 the Danish physicist Hans Christian Ørsted was giving

a lecture demonstration of various electrical and magnetic effects. Suddenly,

much to his surprise, he noticed that the needle of a compass he was hold-

ing was deflected when he moved it close to a current carrying wire. Up until
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I

magnetic field−lines
current carrying

     wire

Figure 28:

then, magnetism has been thought of as solely a property of some rather unusual

rocks called loadstones. Word of this discovery spread quickly along the scientific

grapevine, and the French physicist Andre Marie Ampère immediately decided to

investigate further. Ampère’s apparatus consisted (essentially) of a long straight

wire carrying an electric current I. Ampère quickly discovered that the needle

of a small compass maps out a series of concentric circular loops in the plane

perpendicular to a current carrying wire (see Fig. 28). The direction of circula-

tion around these magnetic loops is conventionally taken to be the direction in

which the North pole of the compass needle points. Using this convention, the

circulation of the loops is given by a right-hand rule: if the thumb of the right-

hand points along the direction of the current then the fingers of the right-hand

circulate in the same sense as the magnetic loops.

Ampère’s next series of experiments involved bringing a short test wire, carry-

ing a current I ′, close to the original wire, and investigating the force exerted on

the test wire (see Fig. 29). This experiment is not quite as clear cut as Coulomb’s

experiment because, unlike electric charges, electric currents cannot exist as point

entities—they have to flow in complete circuits. We must imagine that the cir-

cuit which connects with the central wire is sufficiently far away that it has no

appreciable influence on the outcome of the experiment. The circuit which con-

nects with the test wire is more problematic. Fortunately, if the feed wires are

twisted around each other, as indicated in Fig. 29, then they effectively cancel

one another out, and also do not influence the outcome of the experiment.
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I

I’

current carrying test wire

Figure 29:

Ampère discovered that the force exerted on the test wire is directly propor-

tional to its length. He also made the following observations. If the current in the

test wire (i.e., the test current) flows parallel to the current in the central wire

then the two wires attract one another. If the current in the test wire is reversed

then the two wires repel one another. If the test current points radially towards

the central wire (and the current in the central wire flows upwards) then the test

wire is subject to a downwards force. If the test current is reversed then the force

is upwards. If the test current is rotated in a single plane, so that it starts parallel

to the central current and ends up pointing radially towards it, then the force on

the test wire is of constant magnitude, and is always at right-angles to the test

current. If the test current is parallel to a magnetic loop then there is no force

exerted on the test wire. If the test current is rotated in a single plane, so that it

starts parallel to the central current and ends up pointing along a magnetic loop,

then the magnitude of the force on the test wire attenuates like cos θ (where θ

is the angle the current is turned through—θ = 0 corresponds to the case where

the test current is parallel to the central current), and its direction is again always

at right-angles to the test current. Finally, Ampère was able to establish that the

attractive force between two parallel current carrying wires is proportional to the

product of the two currents, and falls off like the inverse of the perpendicular

distance between the wires.

This rather complicated force law can be summed up succinctly in vector no-

tation provided that we define a vector field B, called the magnetic field, whose

direction is always parallel to the loops mapped out by a small compass. The de-
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pendence of the force per unit length, F, acting on a test wire with the different

possible orientations of the test current is described by

F = I ′ × B, (3.69)

where I ′ is a vector whose direction and magnitude are the same as those of the

test current. Incidentally, the SI unit of electric current is the ampere (A), which

is the same as a coulomb per second. The SI unit of magnetic field-strength is

the tesla (T), which is the same as a newton per ampere per meter. The variation

of the force per unit length acting on a test wire with the strength of the central

current and the perpendicular distance r to the central wire is summed up by

saying that the magnetic field-strength is proportional to I and inversely propor-

tional to r. Thus, defining cylindrical polar coordinates aligned along the axis of

the central current, we have

Bθ =
µ0 I

2π r
, (3.70)

with Br = Bz = 0. The constant of proportionality µ0 is called the permeability of

free space, and takes the value

µ0 = 4π× 10−7 N A−2. (3.71)

The concept of a magnetic field allows the calculation of the force on a test

wire to be conveniently split into two parts. In the first part, we calculate the

magnetic field generated by the current flowing in the central wire. This field

circulates in the plane normal to the wire: its magnitude is proportional to the

central current, and inversely proportional to the perpendicular distance from the

wire. In the second part, we use Eq. (3.69) to calculate the force per unit length

acting on a short current carrying wire located in the magnetic field generated

by the central current. This force is perpendicular to both the magnetic field and

the direction of the test current. Note that, at this stage, we have no reason to

suppose that the magnetic field has any real physical existence. It is introduced

merely to facilitate the calculation of the force exerted on the test wire by the

central wire.
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3.7 The Lorentz force

The flow of an electric current down a conducting wire is ultimately due to the

motion of electrically charged particles (in most cases, electrons) through the

conducting medium. It seems reasonable, therefore, that the force exerted on

the wire when it is placed in a magnetic field is really the resultant of the forces

exerted on these moving charges. Let us suppose that this is the case.

Let A be the (uniform) cross-sectional area of the wire, and let n be the num-

ber density of mobile charges in the conductor. Suppose that the mobile charges

each have charge q and velocity v. We must assume that the conductor also con-

tains stationary charges, of charge −q and number density n (say), so that the

net charge density in the wire is zero. In most conductors, the mobile charges

are electrons and the stationary charges are atomic nuclei. The magnitude of the

electric current flowing through the wire is simply the number of coulombs per

second which flow past a given point. In one second, a mobile charge moves a

distance v, so all of the charges contained in a cylinder of cross-sectional area

A and length v flow past a given point. Thus, the magnitude of the current is

qnAv. The direction of the current is the same as the direction of motion of the

charges, so the vector current is I ′ = qnA v. According to Eq. (3.69), the force

per unit length acting on the wire is

F = qnA v × B. (3.72)

However, a unit length of the wire contains nA moving charges. So, assuming

that each charge is subject to an equal force from the magnetic field (we have no

reason to suppose otherwise), the force acting on an individual charge is

f = q v × B. (3.73)

We can combine this with Eq. (3.9) to give the force acting on a charge q moving

with velocity v in an electric field E and a magnetic field B:

f = qE + q v × B. (3.74)

This is called the Lorentz force law, after the Dutch physicist Hendrik Antoon

Lorentz who first formulated it. The electric force on a charged particle is parallel
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to the local electric field. The magnetic force, however, is perpendicular to both

the local magnetic field and the particle’s direction of motion. No magnetic force

is exerted on a stationary charged particle.

The equation of motion of a free particle of charge q and mass m moving in

electric and magnetic fields is

m
dv

dt
= qE + q v × B, (3.75)

according to the Lorentz force law. This equation of motion was first verified

in a famous experiment carried out by the Cambridge physicist J.J. Thompson

in 1897. Thompson was investigating cathode rays, a then mysterious form of

radiation emitted by a heated metal element held at a large negative voltage (i.e.,

a cathode) with respect to another metal element (i.e., an anode) in an evacuated

tube. German physicists held that cathode rays were a form of electromagnetic

radiation, whilst British and French physicists suspected that they were, in reality,

a stream of charged particles. Thompson was able to demonstrate that the latter

view was correct. In Thompson’s experiment, the cathode rays passed though

a region of “crossed” electric and magnetic fields (still in vacuum). The fields

were perpendicular to the original trajectory of the rays, and were also mutually

perpendicular.

Let us analyze Thompson’s experiment. Suppose that the rays are originally

traveling in the x-direction, and are subject to a uniform electric field E in the

z-direction and a uniform magnetic field B in the −y-direction. Let us assume, as

Thompson did, that cathode rays are a stream of particles of mass m and charge

q. The equation of motion of the particles in the z-direction is

m
d2z

dt2
= q (E− vB) , (3.76)

where v is the velocity of the particles in the x-direction. Thompson started off his

experiment by only turning on the electric field in his apparatus, and measuring

the deflection d of the ray in the z-direction after it had traveled a distance l

through the electric field. It is clear from the equation of motion that

d =
q

m

E t2

2
=
q

m

E l2

2 v2
, (3.77)
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where the “time of flight” t is replaced by l/v. This formula is only valid if d� l,

which is assumed to be the case. Next, Thompson turned on the magnetic field

in his apparatus, and adjusted it so that the cathode ray was no longer deflected.

The lack of deflection implies that the net force on the particles in the z-direction

was zero. In other words, the electric and magnetic forces balanced exactly. It

follows from Eq. (3.76) that with a properly adjusted magnetic field strength

v =
E

B
. (3.78)

Thus, Eqs. (3.77) and (3.78) and can be combined and rearranged to give the

charge to mass ratio of the particles in terms of measured quantities:

q

m
=
2 dE

l2 B2
. (3.79)

Using this method, Thompson inferred that cathode rays were made up of neg-

atively charged particles (the sign of the charge is obvious from the direction of

the deflection in the electric field) with a charge to mass ratio of −1.7×1011 C/kg.

A decade later, in 1908, the American Robert Millikan performed his famous “oil

drop” experiment, and discovered that mobile electric charges are quantized in

units of −1.6 × 10−19 C. Assuming that mobile electric charges and the particles

which make up cathode rays are one and the same thing, Thompson’s and Mil-

likan’s experiments imply that the mass of these particles is 9.4 × 10−31 kg. Of

course, this is the mass of an electron (the modern value is 9.1 × 10−31 kg), and

−1.6×10−19 C is the charge of an electron. Thus, cathode rays are, in fact, streams

of electrons which are emitted from a heated cathode, and then accelerated be-

cause of the large voltage difference between the cathode and anode.

Consider, now, a particle of mass m and charge q moving in a uniform mag-

netic field, B = B ẑ. According, to Eq. (3.75), the particle’s equation of motion

can be written:

m
dv

dt
= q v × B. (3.80)

This reduces to

dvx

dt
= Ωvy, (3.81)

76



3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.7 The Lorentz force

dvy

dt
= −Ωvx, (3.82)

dvz

dt
= 0. (3.83)

Here, Ω = qB/m is called the cyclotron frequency. The above equations can be

solved to give

vx = v⊥ cos(Ωt), (3.84)

vy = −v⊥ sin(Ωt), (3.85)

vz = v‖, (3.86)

and

x =
v⊥
Ω

sin(Ωt), (3.87)

y =
v⊥
Ω

cos(Ωt), (3.88)

z = v‖ t. (3.89)

According to these equations, the particle trajectory is a spiral whose axis is par-

allel to the magnetic field. The radius of the spiral is ρ = v⊥/Ω, where v⊥ is the

particle’s constant speed in the plane perpendicular to the magnetic field. The

particle drifts parallel to the magnetic field at a constant velocity, v‖. Finally, the

particle gyrates in the plane perpendicular to the magnetic field at the cyclotron

frequency.

Finally, if a particle is subject to a force f and moves a distance δr in a time

interval δt, then the work done on the particle by the force is

δW = f · δr. (3.90)

The power input to the particle from the force field is

P = lim
δt→0

δW

δt
= f · v, (3.91)

where v is the particle’s velocity. It follows from the Lorentz force law, Eq. (3.74),

that the power input to a particle moving in electric and magnetic fields is

P = q v · E. (3.92)
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Note that a charged particle can gain (or lose) energy from an electric field, but

not from a magnetic field. This is because the magnetic force is always perpen-

dicular to the particle’s direction of motion, and, therefore, does no work on the

particle [see Eq. (3.90) ]. Thus, in particle accelerators, magnetic fields are of-

ten used to guide particle motion (e.g., in a circle) but the actual acceleration is

performed by electric fields.

3.8 Ampère’s law

Magnetic fields, like electric fields, are completely superposable. So, if a field B1 is

generated by a current I1 flowing through some circuit, and a field B2 is generated

by a current I2 flowing through another circuit, then when the currents I1 and I2
flow through both circuits simultaneously the generated magnetic field is B1+B2.

B

I I
1 2

2
1

B

Figure 30:

Consider two parallel wires separated by a perpendicular distance r and car-

rying electric currents I1 and I2, respectively (see Fig. 30). The magnetic field

strength at the second wire due to the current flowing in the first wire is B =

µ0 I1/2π r. This field is orientated at right-angles to the second wire, so the force

per unit length exerted on the second wire is

F =
µ0 I1 I2

2π r
. (3.93)

This follows from Eq. (3.69), which is valid for continuous wires as well as short

test wires. The force acting on the second wire is directed radially inwards to-
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wards the first wire. The magnetic field strength at the first wire due to the

current flowing in the second wire is B = µ0 I2/2π r. This field is orientated at

right-angles to the first wire, so the force per unit length acting on the first wire

is equal and opposite to that acting on the second wire, according to Eq. (3.69).

Equation (3.93) is sometimes called Ampère’s law, and is clearly another example

of an action at a distance law: i.e., if the current in the first wire is suddenly

changed then the force on the second wire immediately adjusts. In reality, there

should be a short time delay, at least as long as the propagation time for a light

signal between the two wires. Clearly, Ampère’s law is not strictly correct. How-

ever, as long as we restrict our investigations to steady currents it is perfectly

adequate.

3.9 Magnetic monopoles?

Suppose that we have an infinite straight wire carrying an electric current I. Let

the wire be aligned along the z-axis. The magnetic field generated by such a wire

is written

B =
µ0 I

2π

(

−y

r2
,
x

r2
, 0

)

(3.94)

in Cartesian coordinates, where r =
√

x2 + y2. The divergence of this field is

∇ · B =
µ0 I

2π

(

2 y x

r4
−
2 x y

r4

)

= 0, (3.95)

where use has been made of ∂r/∂x = x/r, etc. We saw in Sect. 3.4 that the

divergence of the electric field appeared, at first sight, to be zero. But, in reality,

it was a delta-function, because the volume integral of ∇ · E was non-zero. Does

the same sort of thing happen for the divergence of the magnetic field? Well, if

we could find a closed surface S for which
∮
S

B·dS 6= 0 then, according to Gauss’

theorem,
∫
V
∇·BdV 6= 0, where V is the volume enclosed by S. This would

certainly imply that ∇ · B is some sort of delta-function. So, can we find such

a surface? The short answer is, no. Consider a cylindrical surface aligned with

the wire. The magnetic field is everywhere tangential to the outward surface

element, so this surface certainly has zero magnetic flux coming out of it. In fact,
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it is impossible to invent any closed surface for which
∮
S

B · dS 6= 0 with B given

by Eq. (3.94) (if you do not believe this, try it yourselves!). This suggests that

the divergence of a magnetic field generated by steady electric currents really is

zero. Admittedly, we have only proved this for infinite straight currents, but, as

will be demonstrated presently, it is true in general.

If ∇ · B = 0 then B is a solenoidal vector field. In other words, field-lines of B

never begin or end. This is certainly the case in Eq. (3.94) where the field-lines

are a set of concentric circles centred on the z-axis. What about magnetic fields

generated by permanent magnets (the modern equivalent of loadstones)? Do

they also never begin or end? Well, we know that a conventional bar magnet has

both a North and South magnetic pole (like the Earth). If we track the magnetic

field-lines with a small compass they all emanate from the South pole, spread

out, and eventually reconverge on the North pole (see Fig. 31). It appears likely

(but we cannot prove it with a compass) that the field-lines inside the magnet

connect from the North to the South pole so as to form closed loops which never

begin or end.

N

S

Figure 31:

Can we produce an isolated North or South magnetic pole: for instance, by

snapping a bar magnet in two? A compass needle would always point towards

an isolated North pole, so this would act like a negative “magnetic charge.” Like-

wise, a compass needle would always point away from an isolated South pole,

so this would act like a positive “magnetic charge.” It is clear from Fig. 32 that

if we take a closed surface S containing an isolated magnetic pole, which is usu-
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ally termed a magnetic monopole, then
∮
S

B · dS 6= 0: the flux will be positive for

an isolated South pole, and negative for an isolated North pole. It follows from

Gauss’ theorem that if
∮
S

B · dS 6= 0 then ∇ · B 6= 0. Thus, the statement that

magnetic fields are solenoidal, or that ∇ · B = 0, is equivalent to the statement

that there are no magnetic monopoles. It is not clear, a priori, that this is a true

statement. In fact, it is quite possible to formulate electromagnetism so as to al-

low for magnetic monopoles. However, as far as we know, there are no magnetic

monopoles in the Universe. At least, if there are any then they are all hiding

from us! We know that if we try to make a magnetic monopole by snapping a

bar magnet in two then we just end up with two smaller bar magnets. If we snap

one of these smaller magnets in two then we end up with two even smaller bar

magnets. We can continue this process down to the atomic level without ever

producing a magnetic monopole. In fact, permanent magnetism is generated by

electric currents circulating on the atomic scale, so this type of magnetism is not

fundamentally different to the magnetism generated by macroscopic currents.

SN

Figure 32:

In conclusion, all steady magnetic fields in the Universe are generated by cir-

culating electric currents of some description. Such fields are solenoidal: that is,

they never begin or end, and satisfy the field equation

∇ · B = 0. (3.96)

This, incidentally, is the second of Maxwell’s equations. Essentially, it says that

there is no such thing as a magnetic monopole. We have only proved that ∇·B = 0

81



3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.10 Ampère’s circuital law

for steady magnetic fields, but, in fact, this is also the case for time-dependent

fields (see later).

3.10 Ampère’s circuital law

Consider, again, an infinite straight wire aligned along the z-axis and carrying a

current I. The field generated by such a wire is written

Bθ =
µ0 I

2π r
(3.97)

in cylindrical polar coordinates. Consider a circular loop C in the x-y plane which

is centred on the wire. Suppose that the radius of this loop is r. Let us evaluate

the line integral
∮
C

B · dl. This integral is easy to perform because the magnetic

field is always parallel to the line element. We have
∮

C

B · dl =

∮

Bθ r dθ = µ0 I. (3.98)

However, we know from Stokes’ theorem that
∮

C

B · dl =

∫

S

∇× B · dS, (3.99)

where S is any surface attached to the loop C.

Let us evaluate ∇× B directly. According to Eq. (3.94),

(∇× B)x =
∂Bz

∂y
−
∂By

∂z
= 0, (3.100)

(∇× B)y =
∂Bx

∂z
−
∂Bz

∂x
= 0, (3.101)

(∇× B)z =
∂By

∂x
−
∂Bx

∂y
=
µ0I

2π





1

r2
−
2 x2

r4
+
1

r2
−
2 y2

r4



 = 0, (3.102)

where use has been made of ∂r/∂x = x/r, etc. We now have a problem. Equations

(3.98) and (3.99) imply that
∫

S

∇× B · dS = µ0 I. (3.103)
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But, we have just demonstrated that ∇×B = 0. This problem is very reminiscent

of the difficulty we had earlier with ∇ · E. Recall that
∫
V
∇ · EdV = q/ε0 for a

volume V containing a discrete charge q, but that ∇·E = 0 at a general point. We

got around this problem by saying that ∇·E is a three-dimensional delta-function

whose spike is coincident with the location of the charge. Likewise, we can get

around our present difficulty by saying that ∇ × B is a two-dimensional delta-

function. A three-dimensional delta-function is a singular (but integrable) point

in space, whereas a two-dimensional delta-function is a singular line in space. It

is clear from an examination of Eqs. (3.100)–(3.102) that the only component of

∇×B which can be singular is the z-component, and that this can only be singular

on the z-axis (i.e., r = 0). Thus, the singularity coincides with the location of the

current, and we can write

∇× B = µ0 I δ(x) δ(y) ẑ. (3.104)

The above equation certainly gives (∇ × B)x = (∇ × B)y = 0, and (∇ × B)z =

0 everywhere apart from the z-axis, in accordance with Eqs. (3.100)–(3.102).

Suppose that we integrate over a plane surface S connected to the loop C. The

surface element is dS = dxdy ẑ, so
∫

S

∇× B · dS = µ0 I

∫ ∫

δ(x) δ(y)dxdy (3.105)

where the integration is performed over the region
√

x2 + y2 ≤ r. However, since

the only part of S which actually contributes to the surface integral is the bit

which lies infinitesimally close to the z-axis, we can integrate over all x and y

without changing the result. Thus, we obtain
∫

S

∇× B · dS = µ0 I

∫∞

−∞

δ(x)dx

∫∞

−∞

δ(y)dy = µ0 I, (3.106)

which is in agreement with Eq. (3.103).

But, why have we gone to so much trouble to prove something using vector

field theory which can be demonstrated in one line via conventional analysis

[see Eq. (3.98) ]? The answer, of course, is that the vector field result is easily

generalized, whereas the conventional result is just a special case. For instance,
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it is clear that Eq. (3.106) is true for any surface attached to the loop C, not

just a plane surface. Moreover, suppose that we distort our simple circular loop

C so that it is no longer circular or even lies in one plane. What now is the line

integral of B around the loop? This is no longer a simple problem for conventional

analysis, because the magnetic field is not parallel to a line element of the loop.

However, according to Stokes’ theorem,
∮

C

B · dl =

∫

S

∇× B · dS, (3.107)

with ∇× B given by Eq. (3.104). Note that the only part of S which contributes

to the surface integral is an infinitesimal region centered on the z-axis. So, as

long as S actually intersects the z-axis, it does not matter what shape the rest the

surface is, and we always get the same answer for the surface integral: namely,
∮

C

B · dl =

∫

S

∇× B · dS = µ0 I. (3.108)

Thus, provided the curve C circulates the z-axis, and, therefore, any surface

S attached to C intersects the z-axis, the line integral
∮
C

B · dl is equal to µ0 I.

Of course, if C does not circulate the z-axis then an attached surface S does not

intersect the z-axis and
∮
C

B · dl is zero. There is one more proviso. The line

integral
∮
C

B · dl is µ0 I for a loop which circulates the z-axis in a clockwise direc-

tion (looking up the z-axis). However, if the loop circulates in an anti-clockwise

direction then the integral is −µ0 I. This follows because in the latter case the

z-component of the surface element dS is oppositely directed to the current flow

at the point where the surface intersects the wire.

Let us now consider N wires directed along the z-axis, with coordinates (xi,

yi) in the x-y plane, each carrying a current Ii in the positive z-direction. It is

fairly obvious that Eq. (3.104) generalizes to

∇× B = µ0

N∑

i=1

Ii δ(x− xi) δ(y− yi) ẑ. (3.109)

If we integrate the magnetic field around some closed curve C, which can have

any shape and does not necessarily lie in one plane, then Stokes’ theorem and
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the above equation imply that
∮

C

B · dl =

∫

S

∇× B · dS = µ0 I, (3.110)

where I is the total current enclosed by the curve. Again, if the curve circulates

the ith wire in a clockwise direction (looking down the direction of current flow)

then the wire contributes Ii to the aggregate current I. On the other hand, if

the curve circulates in an anti-clockwise direction then the wire contributes −Ii.

Finally, if the curve does not circulate the wire at all then the wire contributes

nothing to I.

Equation (3.109) is a field equation describing how a set of z-directed current

carrying wires generate a magnetic field. These wires have zero-thickness, which

implies that we are trying to squeeze a finite amount of current into an infinites-

imal region. This accounts for the delta-functions on the right-hand side of the

equation. Likewise, we obtained delta-functions in Sect. 3.4 because we were

dealing with point charges. Let us now generalize to the more realistic case of

diffuse currents. Suppose that the z-current flowing through a small rectangle

in the x-y plane, centred on coordinates (x, y) and of dimensions dx and dy, is

jz(x, y)dxdy. Here, jz is termed the current density in the z-direction. Let us

integrate (∇×B)z over this rectangle. The rectangle is assumed to be sufficiently

small that (∇×B)z does not vary appreciably across it. According to Eq. (3.110),

this integral is equal to µ0 times the total z-current flowing through the rectangle.

Thus,

(∇× B)z dxdy = µ0 jz dxdy, (3.111)

which implies that

(∇× B)z = µ0 jz. (3.112)

Of course, there is nothing special about the z-axis. Suppose we have a set of

diffuse currents flowing in the x-direction. The current flowing through a small

rectangle in the y-z plane, centred on coordinates (y, z) and of dimensions dy

and dz, is given by jx(y, z)dydz, where jx is the current density in the x-direction.

It is fairly obvious that we can write

(∇× B)x = µ0 jx, (3.113)
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with a similar equation for diffuse currents flowing along the y-axis. We can

combine these equations with Eq. (3.112) to form a single vector field equation

which describes how electric currents generate magnetic fields,

∇× B = µ0 j, (3.114)

where j = (jx, jy, jz) is the vector current density. This is the third Maxwell equa-

tion. The electric current flowing through a small area dS located at position r is

j(r) · dS. Suppose that space is filled with particles of charge q, number density

n(r), and velocity v(r). The charge density is given by ρ(r) = qn. The current

density is given by j(r) = qn v, and is obviously a proper vector field (velocities

are proper vectors since they are ultimately derived from displacements).

If we form the line integral of B around some general closed curve C, making

use of Stokes’ theorem and the field equation (3.114), then we obtain
∮

C

B · dl = µ0

∫

S

j · dS. (3.115)

In other words, the line integral of the magnetic field around any closed loop C

is equal to µ0 times the flux of the current density through C. This result is called

Ampère’s circuital law. If the currents flow in zero-thickness wires then Ampère’s

circuital law reduces to Eq. (3.110).

The flux of the current density through C is evaluated by integrating j · dS

over any surface S attached to C. Suppose that we take two different surfaces

S1 and S2. It is clear that if Ampère’s circuital law is to make any sense then the

surface integral
∫
S1

j · dS had better equal the integral
∫
S2

j · dS. That is, when we

work out the flux of the current though C using two different attached surfaces

then we had better get the same answer, otherwise Eq. (3.115) is wrong (since

the left-hand side is clearly independent of the surface spanning C). We saw in

Sect. 2 that if the integral of a vector field A over some surface attached to a loop

depends only on the loop, and is independent of the surface which spans it, then

this implies that ∇ · A = 0. The flux of the current density through any loop C is

calculated by evaluating the integral
∫
S

j · dS for any surface S which spans the

loop. According to Ampère’s circuital law, this integral depends only on C and is

completely independent of S (i.e., it is equal to the line integral of B around C,
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which depends on C but not on S). This implies that ∇ · j = 0. In fact, we can

obtain this relation directly from the field equation (3.114). We know that the

divergence of a curl is automatically zero, so taking the divergence of Eq. (3.114),

we obtain

∇ · j = 0. (3.116)

We have shown that if Ampère’s circuital law is to make any sense then we

need ∇ · j = 0. Physically, this implies that the net current flowing through any

closed surface S is zero. Up to now, we have only considered stationary charges

and steady currents. It is clear that if all charges are stationary and all currents

are steady then there can be no net current flowing through a closed surface S,

since this would imply a build up of charge in the volume V enclosed by S. In

other words, as long as we restrict our investigation to stationary charges, and

steady currents, then we expect ∇ · j = 0, and Ampère’s circuital law makes

sense. However, suppose that we now relax this restriction. Suppose that some

of the charges in a volume V decide to move outside V . Clearly, there will be a

non-zero net flux of electric current through the bounding surface S whilst this

is happening. This implies from Gauss’ theorem that ∇ · j 6= 0. Under these

circumstances Ampère’s circuital law collapses in a heap. We shall see later that

we can rescue Ampère’s circuital law by adding an extra term involving a time

derivative to the right-hand side of the field equation (3.114). For steady-state

situations (i.e., ∂/∂t = 0), this extra term can be neglected. Thus, the field

equation ∇ × B = µ0 j is, in fact, only two-thirds of Maxwell’s third equation:

there is a term missing on the right-hand side.

We have now derived two field equations involving magnetic fields (actually,

we have only derived one and two-thirds):

∇ · B = 0, (3.117)

∇× B = µ0 j. (3.118)

We obtained these equations by looking at the fields generated by infinitely long,

straight, steady currents. This, of course, is a rather special class of currents. We

should now go back and repeat the process for general currents. In fact, if we

did this we would find that the above field equations still hold (provided that

87



3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.11 Helmholtz’s theorem

the currents are steady). Unfortunately, this demonstration is rather messy and

extremely tedious. There is a better approach. Let us assume that the above field

equations are valid for any set of steady currents. We can then, with relatively

little effort, use these equations to generate the correct formula for the magnetic

field induced by a general set of steady currents, thus proving that our assumption

is correct. More of this later.

3.11 Helmholtz’s theorem

Let us now embark on a slight mathematical digression. Up to now, we have

only studied the electric and magnetic fields generated by stationary charges and

steady currents. We have found that these fields are describable in terms of four

field equations:

∇ · E =
ρ

ε0
, (3.119)

∇× E = 0 (3.120)

for electric fields, and

∇ · B = 0, (3.121)

∇× B = µ0 j (3.122)

for magnetic fields. There are no other field equations. This strongly suggests that

if we know the divergence and the curl of a vector field then we know everything

there is to know about the field. In fact, this is the case. There is a mathematical

theorem which sums this up. It is called Helmholtz’s theorem after the German

polymath Hermann Ludwig Ferdinand von Helmholtz.

Let us start with scalar fields. Field equations are a type of differential equa-

tion: i.e., they deal with the infinitesimal differences in quantities between neigh-

bouring points. The question is, what differential equation completely specifies

a scalar field? This is easy. Suppose that we have a scalar field φ and a field

equation which tells us the gradient of this field at all points: something like

∇φ = A, (3.123)
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where A(r) is a vector field. Note that we need ∇ × A = 0 for self consistency,

since the curl of a gradient is automatically zero. The above equation completely

specifies φ once we are given the value of the field at a single point, P (say).

Thus,

φ(Q) = φ(P) +

∫Q

P

∇φ · dl = φ(P) +

∫Q

P

A · dl, (3.124)

whereQ is a general point. The fact that ∇×A = 0 means that A is a conservative

field, which guarantees that the above equation gives a unique value for φ at a

general point in space.

Suppose that we have a vector field F. How many differential equations do we

need to completely specify this field? Hopefully, we only need two: one giving

the divergence of the field, and one giving its curl. Let us test this hypothesis.

Suppose that we have two field equations:

∇ · F = D, (3.125)

∇× F = C, (3.126)

where D is a scalar field and C is a vector field. For self-consistency, we need

∇ · C = 0, (3.127)

since the divergence of a curl is automatically zero. The question is, do these

two field equations plus some suitable boundary conditions completely specify

F? Suppose that we write

F = −∇U+ ∇× W. (3.128)

In other words, we are saying that a general field F is the sum of a conservative

field, ∇U, and a solenoidal field, ∇ × W. This sounds plausible, but it remains

to be proved. Let us start by taking the divergence of the above equation, and

making use of Eq. (3.125). We get

∇2U = −D. (3.129)

Note that the vector field W does not figure in this equation, because the diver-

gence of a curl is automatically zero. Let us now take the curl of Eq. (3.128):

∇× F = ∇×∇× W = ∇(∇ · W) − ∇2W = −∇2W. (3.130)
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Here, we assume that the divergence of W is zero. This is another thing which

remains to be proved. Note that the scalar fieldU does not figure in this equation,

because the curl of a divergence is automatically zero. Using Eq. (3.126), we get

∇2Wx = −Cx, (3.131)

∇2Wy = −Cy, (3.132)

∇2Wz = −Cz, (3.133)

So, we have transformed our problem into four differential equations, Eq. (3.129)

and Eqs. (3.131)–(3.133), which we need to solve. Let us look at these equations.

We immediately notice that they all have exactly the same form. In fact, they are

all versions of Poisson’s equation. We can now make use of a principle made

famous by Richard P. Feynman: “the same equations have the same solutions.”

Recall that earlier on we came across the following equation:

∇2φ = −
ρ

ε0
, (3.134)

where φ is the electrostatic potential and ρ is the charge density. We proved that

the solution to this equation, with the boundary condition that φ goes to zero at

infinity, is

φ(r) =
1

4πε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.135)

Well, if the same equations have the same solutions, and Eq. (3.135) is the

solution to Eq. (3.134), then we can immediately write down the solutions to

Eq. (3.129) and Eqs. (3.131)–(3.133). We get

U(r) =
1

4π

∫
D(r ′)

|r − r ′|
d3r ′, (3.136)

and

Wx(r) =
1

4π

∫
Cx(r

′)

|r − r ′|
d3r ′, (3.137)

Wy(r) =
1

4π

∫
Cy(r

′)

|r − r ′|
d3r ′, (3.138)

Wz(r) =
1

4π

∫
Cz(r

′)

|r − r ′|
d3r ′. (3.139)
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The last three equations can be combined to form a single vector equation:

W(r) =
1

4π

∫
C(r ′)

|r − r ′|
d3r ′. (3.140)

We assumed earlier that ∇·W = 0. Let us check to see if this is true. Note that

∂

∂x





1

|r − r ′|



 = −
x− x ′

|r − r ′|3
=
x ′ − x

|r − r ′|3
= −

∂

∂x ′





1

|r − r ′|



 , (3.141)

which implies that

∇




1

|r − r ′|



 = −∇ ′




1

|r − r ′|



 , (3.142)

where ∇ ′ is the operator (∂/∂x ′, ∂/∂y ′, ∂/∂z ′). Taking the divergence of Eq. (3.140),

and making use of the above relation, we obtain

∇ · W =
1

4π

∫

C(r ′) · ∇




1

|r − r ′|



 d3r ′ = −
1

4π

∫

C(r ′) · ∇ ′




1

|r − r ′|



 d3r ′. (3.143)

Now ∫∞

−∞

g
∂f

∂x
dx = [gf]

∞
−∞ −

∫∞

−∞

f
∂g

∂x
dx. (3.144)

However, if g f → 0 as x → ±∞ then we can neglect the first term on the right-

hand side of the above equation and write
∫∞

−∞

g
∂f

∂x
dx = −

∫∞

−∞

f
∂g

∂x
dx. (3.145)

A simple generalization of this result yields
∫

g · ∇f d3r = −

∫

f∇ · gd3r, (3.146)

provided that gx f → 0 as |r| → ∞, etc. Thus, we can deduce that

∇ · W =
1

4π

∫ ∇ ′ ·C(r ′)

|r − r ′|
d3r ′ (3.147)

from Eq. (3.143), provided |C(r)| is bounded as |r| → ∞. However, we have

already shown that ∇ · C = 0 from self-consistency arguments, so the above

equation implies that ∇ · W = 0, which is the desired result.
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We have constructed a vector field F which satisfies Eqs. (3.125) and (3.126)

and behaves sensibly at infinity: i.e., |F| → 0 as |r| → ∞. But, is our solution

the only possible solution of Eqs. (3.125) and (3.126) with sensible boundary

conditions at infinity? Another way of posing this question is to ask whether

there are any solutions of

∇2U = 0, ∇2Wi = 0, (3.148)

where i denotes x, y, or z, which are bounded at infinity. If there are then we are

in trouble, because we can take our solution and add to it an arbitrary amount

of a vector field with zero divergence and zero curl, and thereby obtain another

solution which also satisfies physical boundary conditions. This would imply that

our solution is not unique. In other words, it is not possible to unambiguously

reconstruct a vector field given its divergence, its curl, and physical boundary

conditions. Fortunately, the equation

∇2φ = 0, (3.149)

which is called Laplace’s equation, has a very nice property: its solutions are

unique. That is, if we can find a solution to Laplace’s equation which satisfies

the boundary conditions then we are guaranteed that this is the only solution.

We shall prove this later on in the course. Well, let us invent some solutions to

Eqs. (3.148) which are bounded at infinity. How about

U = Wi = 0? (3.150)

These solutions certainly satisfy Laplace’s equation, and are well-behaved at in-

finity. Because the solutions to Laplace’s equations are unique, we know that

Eqs. (3.150) are the only solutions to Eqs. (3.148). This means that there is

no vector field which satisfies physical boundary equations at infinity and has

zero divergence and zero curl. In other words, our solution to Eqs. (3.125) and

(3.126) is the only solution. Thus, we have unambiguously reconstructed the

vector field F given its divergence, its curl, and sensible boundary conditions at

infinity. This is Helmholtz’s theorem.

We have just proved a number of very useful, and also very important, points.

First, according to Eq. (3.128), a general vector field can be written as the sum
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of a conservative field and a solenoidal field. Thus, we ought to be able to write

electric and magnetic fields in this form. Second, a general vector field which is

zero at infinity is completely specified once its divergence and its curl are given.

Thus, we can guess that the laws of electromagnetism can be written as four field

equations,

∇ · E = something, (3.151)

∇× E = something, (3.152)

∇ · B = something, (3.153)

∇× B = something, (3.154)

without knowing the first thing about electromagnetism (other than the fact that

it deals with two vector fields). Of course, Eqs. (3.119)–(3.122) are of exactly

this form. We also know that there are only four field equations, since the above

equations are sufficient to completely reconstruct both E and B. Furthermore, we

know that we can solve the field equations without even knowing what the right-

hand sides look like. After all, we solved Eqs. (3.125)–(3.126) for completely

general right-hand sides. [Actually, the right-hand sides have to go to zero at in-

finity, otherwise integrals like Eq. (3.136) blow up.] We also know that any solu-

tions we find are unique. In other words, there is only one possible steady electric

and magnetic field which can be generated by a given set of stationary charges

and steady currents. The third thing which we proved was that if the right-hand

sides of the above field equations are all zero then the only physical solution is

E = B = 0. This implies that steady electric and magnetic fields cannot generate

themselves. Instead, they have to be generated by stationary charges and steady

currents. So, if we come across a steady electric field we know that if we trace

the field-lines back we shall eventually find a charge. Likewise, a steady mag-

netic field implies that there is a steady current flowing somewhere. All of these

results follow from vector field theory (i.e., from the general properties of fields

in three-dimensional space), prior to any investigation of electromagnetism.
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3.12 The magnetic vector potential

Electric fields generated by stationary charges obey

∇× E = 0. (3.155)

This immediately allows us to write

E = −∇φ, (3.156)

since the curl of a gradient is automatically zero. In fact, whenever we come

across an irrotational vector field in physics we can always write it as the gradient

of some scalar field. This is clearly a useful thing to do, since it enables us to

replace a vector field by a much simpler scalar field. The quantity φ in the above

equation is known as the electric scalar potential.

Magnetic fields generated by steady currents (and unsteady currents, for that

matter) satisfy

∇ · B = 0. (3.157)

This immediately allows us to write

B = ∇× A, (3.158)

since the divergence of a curl is automatically zero. In fact, whenever we come

across a solenoidal vector field in physics we can always write it as the curl of

some other vector field. This is not an obviously useful thing to do, however, since

it only allows us to replace one vector field by another. Nevertheless, Eq. (3.158)

is one of the most useful equations we shall come across in this lecture course.

The quantity A is known as the magnetic vector potential.

We know from Helmholtz’s theorem that a vector field is fully specified by its

divergence and its curl. The curl of the vector potential gives us the magnetic

field via Eq. (3.158). However, the divergence of A has no physical significance.

In fact, we are completely free to choose ∇ · A to be whatever we like. Note that,

according to Eq. (3.158), the magnetic field is invariant under the transformation

A → A − ∇ψ. (3.159)
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In other words, the vector potential is undetermined to the gradient of a scalar

field. This is just another way of saying that we are free to choose ∇ · A. Recall

that the electric scalar potential is undetermined to an arbitrary additive constant,

since the transformation

φ → φ+ c (3.160)

leaves the electric field invariant in Eq. (3.156). The transformations (3.159)

and (3.160) are examples of what mathematicians call gauge transformations.

The choice of a particular function ψ or a particular constant c is referred to as

a choice of the gauge. We are free to fix the gauge to be whatever we like. The

most sensible choice is the one which makes our equations as simple as possible.

The usual gauge for the scalar potential φ is such that φ → 0 at infinity. The

usual gauge for A is such that

∇ · A = 0. (3.161)

This particular choice is known as the Coulomb gauge.

It is obvious that we can always add a constant to φ so as to make it zero at

infinity. But it is not at all obvious that we can always perform a gauge transfor-

mation such as to make ∇·A zero. Suppose that we have found some vector field

A whose curl gives the magnetic field but whose divergence in non-zero. Let

∇ · A = v(r). (3.162)

The question is, can we find a scalar field ψ such that after we perform the gauge

transformation (3.159) we are left with ∇ · A = 0. Taking the divergence of

Eq. (3.159) it is clear that we need to find a function ψ which satisfies

∇2ψ = v. (3.163)

But this is just Poisson’s equation. We know that we can always find a unique

solution of this equation (see Sect. 3.11). This proves that, in practice, we can

always set the divergence of A equal to zero.

Let us again consider an infinite straight wire directed along the z-axis and

carrying a current I. The magnetic field generated by such a wire is written

B =
µ0 I

2π

(

−y

r2
,
x

r2
, 0

)

. (3.164)
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We wish to find a vector potential A whose curl is equal to the above magnetic

field, and whose divergence is zero. It is not difficult to see that

A = −
µ0 I

4π

(

0, 0, ln[x2 + y2]
)

(3.165)

fits the bill. Note that the vector potential is parallel to the direction of the cur-

rent. This would seem to suggest that there is a more direct relationship between

the vector potential and the current than there is between the magnetic field and

the current. The potential is not very well-behaved on the z-axis, but this is just

because we are dealing with an infinitely thin current.

Let us take the curl of Eq. (3.158). We find that

∇× B = ∇×∇× A = ∇(∇ · A) − ∇2A = −∇2A, (3.166)

where use has been made of the Coulomb gauge condition (3.161). We can

combine the above relation with the field equation (3.114) to give

∇2A = −µ0 j. (3.167)

Writing this in component form, we obtain

∇2Ax = −µ0 jx, (3.168)

∇2Ay = −µ0 jy, (3.169)

∇2Az = −µ0 jz. (3.170)

But, this is just Poisson’s equation three times over. We can immediately write the

unique solutions to the above equations:

Ax(r) =
µ0

4π

∫
jx(r

′)

|r − r ′|
d3r ′, (3.171)

Ay(r) =
µ0

4π

∫
jy(r

′)

|r − r ′|
d3r ′, (3.172)

Az(r) =
µ0

4π

∫
jz(r

′)

|r − r ′|
d3r ′. (3.173)

These solutions can be recombined to form a single vector solution

A(r) =
µ0

4π

∫
j(r ′)

|r − r ′|
d3r ′. (3.174)

96



3 TIME-INDEPENDENT MAXWELL EQUATIONS 3.13 The Biot-Savart law

Of course, we have seen a equation like this before:

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (3.175)

Equations (3.174) and (3.175) are the unique solutions (given the arbitrary

choice of gauge) to the field equations (3.119)–(3.122): they specify the mag-

netic vector and electric scalar potentials generated by a set of stationary charges,

of charge density ρ(r), and a set of steady currents, of current density j(r). Inci-

dentally, we can prove that Eq. (3.174) satisfies the gauge condition ∇ · A = 0 by

repeating the analysis of Eqs. (3.140)–(3.147) (with W → A and C → µ0 j), and

using the fact that ∇ · j = 0 for steady currents.

3.13 The Biot-Savart law

According to Eq. (3.156), we can obtain an expression for the electric field gen-

erated by stationary charges by taking minus the gradient of Eq. (3.175). This

yields

E(r) =
1

4πε0

∫

ρ(r ′)
r − r ′

|r − r ′|3
d3r ′, (3.176)

which we recognize as Coulomb’s law written for a continuous charge distribu-

tion. According to Eq. (3.158), we can obtain an equivalent expression for the

magnetic field generated by steady currents by taking the curl of Eq. (3.174).

This gives

B(r) =
µ0

4π

∫
j(r ′) × (r − r ′)

|r − r ′|3
d3r ′, (3.177)

where use has been made of the vector identity ∇× (φA) = φ∇× A + ∇φ× A.

Equation (3.177) is known as the Biot-Savart law after the French physicists Jean

Baptiste Biot and Felix Savart: it completely specifies the magnetic field generated

by a steady (but otherwise quite general) distributed current.

Let us reduce our distributed current to an idealized zero thickness wire. We

can do this by writing

j(r)d3r = I(r)dl, (3.178)
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where I is the vector current (i.e., its direction and magnitude specify the direc-

tion and magnitude of the current) and dl is an element of length along the wire.

Equations (3.177) and (3.178) can be combined to give

B(r) =
µ0

4π

∫
I(r ′) × (r − r ′)

|r − r ′|3
dl, (3.179)

which is the form in which the Biot-Savart law is most usually written. This law is

to magnetostatics (i.e., the study of magnetic fields generated by steady currents)

what Coulomb’s law is to electrostatics (i.e., the study of electric fields generated

by stationary charges). Furthermore, it can be experimentally verified given a set

of currents, a compass, a test wire, and a great deal of skill and patience. This

justifies our earlier assumption that the field equations (3.117) and (3.118) are

valid for general current distributions (recall that we derived them by studying

the fields generated by infinite, straight wires). Note that both Coulomb’s law

and the Biot-Savart law are gauge independent: i.e., they do not depend on the

particular choice of gauge.

φ
ρ

l

z

dl

P

I

r − r’

Figure 33:

Consider an infinite straight wire, directed along the z-axis, and carrying a

current I (see Fig. 33). Let us reconstruct the magnetic field generated by the

wire at point P using the Biot-Savart law. Suppose that the perpendicular distance

to the wire is ρ. It is easily seen that

I × (r − r ′) = Iρ θ̂, (3.180)
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l = ρ tanφ, (3.181)

dl =
ρ

cos2φ
dφ, (3.182)

|r − r ′| =
ρ

cosφ
. (3.183)

Thus, according to Eq. (3.179), we have

Bθ =
µ0

4π

∫π/2

−π/2

I ρ

ρ3 (cosφ)−3

ρ

cos2φ
dφ

=
µ0 I

4π ρ

∫π/2

−π/2

cosφdφ =
µ0 I

4π ρ
[sinφ]

π/2
−π/2 , (3.184)

which gives the familiar result

Bθ =
µ0 I

2π ρ
. (3.185)

So, we have come full circle in our investigation of magnetic fields. Note that

the simple result (3.185) can only be obtained from the Biot-Savart law after

some non-trivial algebra. Examination of more complicated current distributions

using this law invariably leads to lengthy, involved, and extremely unpleasant

calculations.

3.14 Electrostatics and magnetostatics

We have now completed our theoretical investigation of electrostatics and mag-

netostatics. Our next task is to incorporate time variation into our analysis. How-

ever, before we start this, let us briefly review our progress so far. We have found

that the electric fields generated by stationary charges, and the magnetic fields

generated by steady currents, are describable in terms of four field equations:

∇ · E =
ρ

ε0
, (3.186)

∇× E = 0, (3.187)

∇ · B = 0, (3.188)

∇× B = µ0 j. (3.189)
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The boundary conditions are that the fields are zero at infinity, assuming that the

generating charges and currents are localized to some region in space. According

to Helmholtz’s theorem, the above field equations, plus the boundary conditions,

are sufficient to uniquely specify the electric and magnetic fields. The physical

significance of this is that divergence and curl are the only rotationally invariant

first-order differential properties of a general vector field: i.e., the only quantities

which do not change their physical characteristics when the coordinate axes are

rotated. Since physics does not depend on the orientation of the coordinate axes

(which is, after all, quite arbitrary), divergence and curl are the only quantities

which can appear in first-order differential field equations which claim to describe

physical phenomena.

The field equations can be integrated to give:
∮

S

E · dS =
1

ε0

∫

V

ρdV, (3.190)

∮

C

E · dl = 0, (3.191)

∮

S

B · dS = 0, (3.192)

∮

C

B · dl = µ0

∫

S ′

j · dS. (3.193)

Here, S is a closed surface enclosing a volume V . Also, C is a closed loop, and

S ′ is some surface attached to this loop. The field equations (3.186)–(3.189)

can be deduced from Eqs. (3.190)–(3.193) using Gauss’ theorem and Stokes’

theorem. Equation (3.190) is called Gauss’ law, and says that the flux of the

electric field out of a closed surface is proportional to the enclosed electric charge.

Equation (3.192) has no particular name, and says that there is no such things as

a magnetic monopole. Equation (3.193) is called Ampère’s circuital law, and says

that the line integral of the magnetic field around any closed loop is proportional

to the flux of the current through the loop. Finally. Eqs. (3.191) and (3.193) are

incomplete: each acquires an extra term on the right-hand side in time-dependent

situations.
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The field equation (3.187) is automatically satisfied if we write

E = −∇φ. (3.194)

Likewise, the field equation (3.188) is automatically satisfied if we write

B = ∇× A. (3.195)

Here, φ is the electric scalar potential, and A is the magnetic vector potential. The

electric field is clearly unchanged if we add a constant to the scalar potential:

E → E as φ → φ+ c. (3.196)

The magnetic field is similarly unchanged if we add the gradient of a scalar field

to the vector potential:

B → B as A → A + ∇ψ. (3.197)

The above transformations, which leave the E and B fields invariant, are called

gauge transformations. We are free to choose c and ψ to be whatever we like:

i.e., we are free to choose the gauge. The most sensible gauge is the one which

make our equations as simple and symmetric as possible. This corresponds to the

choice

φ(r) → 0 as |r| → ∞, (3.198)

and

∇ · A = 0. (3.199)

The latter convention is known as the Coulomb gauge.

Taking the divergence of Eq. (3.194) and the curl of Eq. (3.195), and making

use of the Coulomb gauge, we find that the four field equations (3.186)–(3.189)

can be reduced to Poisson’s equation written four times over:

∇2φ = −
ρ

ε0
, (3.200)

∇2A = −µ0 j. (3.201)

Poisson’s equation is just about the simplest rotationally invariant second-order

partial differential equation it is possible to write. Note that ∇2 is clearly rota-

tionally invariant, since it is the divergence of a gradient, and both divergence
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and gradient are rotationally invariant. We can always construct the solution

to Poisson’s equation, given the boundary conditions. Furthermore, we have a

uniqueness theorem which tells us that our solution is the only possible solution.

Physically, this means that there is only one electric and magnetic field which is

consistent with a given set of stationary charges and steady currents. This sounds

like an obvious, almost trivial, statement. But there are many areas of physics

(for instance, fluid mechanics and plasma physics) where we also believe, for

physical reasons, that for a given set of boundary conditions the solution should

be unique. The problem is that in most cases when we reduce the problem to a

partial differential equation we end up with something far nastier than Poisson’s

equation. In general, we cannot solve this equation. In fact, we usually cannot

even prove that it possess a solution for general boundary conditions, let alone

that the solution is unique. So, we are very fortunate indeed that in electrostatics

and magnetostatics the problem boils down to solving a nice partial differential

equation. When physicists make statements to the effect that “electromagnetism

is the best understood theory in physics,” which they often do, what they are re-

ally saying is that the partial differential equations which crop up in this theory

are soluble and have nice properties.

Poisson’s equation

∇2u = v (3.202)

is linear, which means that its solutions are superposable. We can exploit this

fact to construct a general solution to this equation. Suppose that we can find the

solution to

∇2G(r, r ′) = δ(r − r ′) (3.203)

which satisfies the boundary conditions. This is the solution driven by a unit

amplitude point source located at position vector r ′. Since any general source

can be built up out of a weighted sum of point sources, it follows that a general

solution to Poisson’s equation can be built up out of a weighted superposition of

point source solutions. Mathematically, we can write

u(r) =

∫

G(r, r ′) v(r ′)d3r ′. (3.204)

The function G is called the Green’s function. The Green’s function for Poisson’s
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equation is

G(r, r ′) = −
1

4π

1

|r − r ′|
. (3.205)

Note that this Green’s function is proportional to the scalar potential of a point

charge located at r ′: this is hardly surprising, given the definition of a Green’s

function.

According to Eqs. (3.200), (3.201), (3.202), (3.204), and (3.205), the scalar

and vector potentials generated by a set of stationary charges and steady currents

take the form

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′, (3.206)

A(r) =
µ0

4π

∫
j(r ′)

|r − r ′|
d3r ′. (3.207)

Making use of Eqs. (3.194), (3.195), (3.206), and (3.207), we obtain the funda-

mental force laws for electric and magnetic fields. Coulomb’s law,

E(r) =
1

4π ε0

∫

ρ(r ′)
r − r ′

|r − r ′|3
d3r ′, (3.208)

and the Biot-Savart law,

B(r) =
µ0

4π

∫
j(r ′) × (r − r ′)

|r − r ′|3
d3r ′. (3.209)

Of course, both of these laws are examples of action at a distance laws, and,

therefore, violate the theory of relativity. However, this is not a problem as long as

we restrict ourselves to fields generated by time-independent charge and current

distributions.

The question, now, is by how much is this scheme which we have just worked

out going to be disrupted when we take time variation into account. The an-

swer, somewhat surprisingly, is by very little indeed. So, in Eqs. (3.186)–(3.209)

we can already discern the basic outline of classical electromagnetism. Let us

continue our investigation.
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4 Time-dependent Maxwell’s equations

4.1 Introduction

In this section, we shall take the time-independent set Maxwell’s equations, de-

rived in the previous section, and generalize it to the full set of time-dependent

Maxwell’s equations.

4.2 Faraday’s law

The history of humankind’s development of physics can be thought of as the

history of the synthesis of ideas. Physicists keep finding that apparently disparate

phenomena can be understood as different aspects of some more fundamental

phenomenon. This process has continued until today all physical phenomena can

be described in terms of three fundamental forces: gravity, the electroweak force,

and the strong force. One of the main goals of modern physics is to find some way

of combining these three forces so that all of physics can be described in terms of

a single unified force. This, essentially, is the purpose of string theory.

The first great synthesis of ideas in physics took place in 1666 when Issac

Newton realised that the force which causes apples to fall downwards is the same

as the force which maintains the planets in elliptical orbits around the Sun. The

second great synthesis, which we are about to study in more detail, took place in

1830 when Michael Faraday discovered that electricity and magnetism are two

aspects of the same thing, usually referred to as electromagnetism. The third great

synthesis, which we shall discuss presently, took place in 1873 when James Clerk

Maxwell demonstrated that light and electromagnetism are intimately related.

The last (but, hopefully, not the final) great synthesis took place in 1967 when

Steve Weinberg and Abdus Salam showed that the electromagnetic force and

the weak nuclear force (i.e., the one which is responsible for β decays) can be

combined to give the electroweak force. Unfortunately, Weinberg’s work lies well

beyond the scope of this lecture course.
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Let us now consider Faraday’s experiments, having put them in their proper

historical context. Prior to 1830, the only known way to make an electric current

flow through a conducting wire was to connect the ends of the wire to the positive

and negative terminals of a battery. We measure a battery’s ability to push current

down a wire in terms of its voltage, by which we mean the voltage difference

between its positive and negative terminals. What does voltage correspond to

in physics? Well, volts are the units used to measure electric scalar potential, so

when we talk about a 6V battery, what we are really saying is that the difference

in electric scalar potential between its positive and negative terminals is six volts.

This insight allows us to write

V = φ(⊕) − φ(	) = −

∫	

⊕
∇φ · dl =

∫	

⊕
E · dl, (4.1)

where V is the battery voltage, ⊕ denotes the positive terminal, 	 the negative

terminal, and dl is an element of length along the wire. Of course, the above

equation is a direct consequence of E = −∇φ. Clearly, a voltage difference be-

tween two ends of a wire attached to a battery implies the presence of an electric

field which pushes charges through the wire. This field is directed from the posi-

tive terminal of the battery to the negative terminal, and is, therefore, such as to

force electrons to flow through the wire from the negative to the positive termi-

nal. As expected, this means that a net positive current flows from the positive

to the negative terminal. The fact that E is a conservative field ensures that the

voltage difference V is independent of the path of the wire. In other words, two

different wires attached to the same battery develop identical voltage differences.

Let us now consider a closed loop of wire (with no battery). The voltage

around such a loop, which is sometimes called the electromotive force or e.m.f., is

V =

∮

E · dl = 0. (4.2)

This is a direct consequence of the field equation ∇ × E = 0. So, since E is a

conservative field then the electromotive force around a closed loop of wire is

automatically zero, and no current flows around the wire. This all seems to make

sense. However, Michael Faraday is about to throw a spanner in our works! He

discovered in 1830 that a changing magnetic field can cause a current to flow
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around a closed loop of wire (in the absence of a battery). Well, if current flows

through a wire then there must be an electromotive force. So,

V =

∮

E · dl 6= 0, (4.3)

which immediately implies that E is not a conservative field, and that ∇× E 6= 0.

Clearly, we are going to have to modify some of our ideas regarding electric fields.

Faraday continued his experiments and found that another way of generating

an electromotive force around a loop of wire is to keep the magnetic field con-

stant and move the loop. Eventually, Faraday was able to formulate a law which

accounted for all of his experiments. The e.m.f. generated around a loop of wire

in a magnetic field is proportional to the rate of change of the flux of the mag-

netic field through the loop. So, if the loop is denoted C, and S is some surface

attached to the loop, then Faraday’s experiments can be summed up by writing

V =

∮

C

E · dl = A
∂

∂t

∫

S

B · dS, (4.4)

where A is a constant of proportionality. Thus, the changing flux of the magnetic

field through the loop creates an electric field directed around the loop. This

process is know as magnetic induction.

S.I. units have been carefully chosen so as to make |A| = 1 in the above equa-

tion. The only thing we now have to decide is whether A = +1 or A = −1. In

other words, which way around the loop does the induced e.m.f. want to drive

the current? We possess a general principle which allows us to decide questions

like this. It is called Le Chatelier’s principle. According to Le Chatelier’s principle,

every change generates a reaction which tries to minimize the change. Essen-

tially, this means that the Universe is stable to small perturbations. When this

principle is applied to the special case of magnetic induction, it is usually called

Lenz’s law. According to Lenz’s law, the current induced around a closed loop is

always such that the magnetic field it produces tries to counteract the change in

magnetic flux which generates the electromotive force. From Fig. 34, it is clear

that if the magnetic field B is increasing and the current I circulates clockwise

(as seen from above) then it generates a field B ′ which opposes the increase in
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I
C

B’

B

Figure 34:

magnetic flux through the loop, in accordance with Lenz’s law. The direction of

the current is opposite to the sense of the current loop C (assuming that the flux

of B through the loop is positive), so this implies that A = −1 in Eq. (4.4). Thus,

Faraday’s law takes the form
∮

C

E · dl = −
∂

∂t

∫

S

B · dS. (4.5)

Experimentally, Faraday’s law is found to correctly predict the e.m.f. (i.e.,
∮

E ·
dl) generated in any wire loop, irrespective of the position or shape of the loop.

It is reasonable to assume that the same e.m.f. would be generated in the absence

of the wire (of course, no current would flow in this case). Thus, Eq. (4.5) is valid

for any closed loop C. If Faraday’s law is to make any sense then it must also be

true for any surface S attached to the loop C. Clearly, if the flux of the magnetic

field through the loop depends on the surface upon which it is evaluated then

Faraday’s law is going to predict different e.m.f.s for different surfaces. Since

there is no preferred surface for a general non-coplanar loop, this would not

make very much sense. The condition for the flux of the magnetic field,
∫
S

B · dS,

to depend only on the loop C to which the surface S is attached, and not on the

nature of the surface itself, is
∮

S ′

B · dS ′ = 0, (4.6)
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for any closed surface S ′.

Faraday’s law, Eq. (4.5), can be converted into a field equation using Stokes’

theorem. We obtain

∇× E = −
∂B

∂t
. (4.7)

This is the final Maxwell equation. It describes how a changing magnetic field

can generate, or induce, an electric field. Gauss’ theorem applied to Eq. (4.6)

yields the familiar field equation

∇ · B = 0. (4.8)

This ensures that the magnetic flux through a loop is a well-defined quantity.

The divergence of Eq. (4.7) yields

∂∇ · B

∂t
= 0. (4.9)

Thus, the field equation (4.7) actually demands that the divergence of the mag-

netic field be constant in time for self-consistency (this means that the flux of the

magnetic field through a loop need not be a well-defined quantity, as long as its

time derivative is well-defined). However, a constant non-solenoidal magnetic

field can only be generated by magnetic monopoles, and magnetic monopoles

do not exist (as far as we are aware). Hence, ∇ · B = 0. The absence of mag-

netic monopoles is an observational fact: it cannot be predicted by any theory. If

magnetic monopoles were discovered tomorrow this would not cause physicists

any problems. We know how to generalize Maxwell’s equations to include both

magnetic monopoles and currents of magnetic monopoles. In this generalized

formalism, Maxwell’s equations are completely symmetric with respect to electric

and magnetic fields, and ∇ · B 6= 0. However, an extra term (involving the cur-

rent of magnetic monopoles) must be added to the right-hand side of Eq. (4.7) in

order to make it self-consistent.

4.3 Electric scalar potential?

Now we have a problem. We can only write the electric field in terms of a scalar

potential (i.e., E = −∇φ) provided that ∇× E = 0. However, we have just found
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that in the presence of a changing magnetic field the curl of the electric field is

non-zero. In other words, E is not, in general, a conservative field. Does this mean

that we have to abandon the concept of electric scalar potential? Fortunately, no.

It is still possible to define a scalar potential which is physically meaningful.

Let us start from the equation

∇ · B = 0, (4.10)

which is valid for both time-varying and non time-varying magnetic fields. Since

the magnetic field is solenoidal, we can write it as the curl of a vector potential:

B = ∇× A. (4.11)

So, there is no problem with the vector potential in the presence of time-varying

fields. Let us substitute Eq. (4.11) into the field equation (4.7). We obtain

∇× E = −
∂∇× A

∂t
, (4.12)

which can be written

∇×
(

E +
∂A

∂t

)

= 0. (4.13)

We know that a curl-free vector field can always be expressed as the gradient of

a scalar potential, so let us write

E +
∂A

∂t
= −∇φ, (4.14)

or

E = −∇φ−
∂A

∂t
. (4.15)

This is a very nice equation! It tells us that the scalar potential φ only describes

the conservative electric field generated by electric charges. The electric field

induced by time-varying magnetic fields is non-conservative, and is described by

the magnetic vector potential A.
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4.4 Gauge transformations

Electric and magnetic fields can be written in terms of scalar and vector poten-

tials, as follows:

E = −∇φ−
∂A

∂t
, (4.16)

B = ∇× A. (4.17)

However, this prescription is not unique. There are many different potentials

which can generate the same fields. We have come across this problem before. It

is called gauge invariance. The most general transformation which leaves the E

and B fields unchanged in Eqs. (4.16) and (4.17) is

φ → φ+
∂ψ

∂t
, (4.18)

A → A − ∇ψ. (4.19)

This is clearly a generalization of the gauge transformation which we found ear-

lier for static fields:

φ → φ+ c, (4.20)

A → A − ∇ψ, (4.21)

where c is a constant. In fact, if ψ(r, t) → ψ(r) + c t then Eqs. (4.18) and (4.19)

reduce to Eqs. (4.20) and (4.21).

We are free to choose the gauge so as to make our equations as simple as

possible. As before, the most sensible gauge for the scalar potential is to make it

go to zero at infinity:

φ(r) → 0 as |r| → ∞. (4.22)

For steady fields, we found that the optimum gauge for the vector potential was

the so-called Coulomb gauge:

∇ · A = 0. (4.23)

We can still use this gauge for non-steady fields. The argument which we gave

earlier (see Sect. 3.12), that it is always possible to transform away the di-

vergence of a vector potential, remains valid. One of the nice features of the
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Coulomb gauge is that when we write the electric field,

E = −∇φ−
∂A

∂t
, (4.24)

we find that the part which is generated by charges (i.e., the first term on the

right-hand side) is conservative, and the part induced by magnetic fields (i.e.,

the second term on the right-hand side) is purely solenoidal. Earlier on, we

proved mathematically that a general vector field can be written as the sum of

a conservative field and a solenoidal field (see Sect. 3.11). Now we are finding

that when we split up the electric field in this manner the two fields have different

physical origins: the conservative part of the field emanates from electric charges,

whereas the solenoidal part is induced by magnetic fields.

Equation (4.24) can be combined with the field equation

∇ · E =
ρ

ε0
(4.25)

(which remains valid for non-steady fields) to give

− ∇2φ−
∂∇ · A

∂t
=
ρ

ε0
. (4.26)

With the Coulomb gauge condition, ∇ · A = 0, the above expression reduces to

∇2φ = −
ρ

ε0
, (4.27)

which is just Poisson’s equation. Thus, we can immediately write down an expres-

sion for the scalar potential generated by non-steady fields. It is exactly the same

as our previous expression for the scalar potential generated by steady fields,

namely

φ(r, t) =
1

4πε0

∫
ρ(r ′, t)

|r − r ′|
d3r ′. (4.28)

However, this apparently simple result is extremely deceptive. Equation (4.28) is

a typical action at a distance law. If the charge density changes suddenly at r ′ then

the potential at r responds immediately. However, we shall see later that the full

time-dependent Maxwell’s equations only allow information to propagate at the

speed of light (i.e., they do not violate relativity). How can these two statements
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be reconciled? The crucial point is that the scalar potential cannot be measured

directly, it can only be inferred from the electric field. In the time-dependent case,

there are two parts to the electric field: that part which comes from the scalar

potential, and that part which comes from the vector potential [see Eq. (4.24) ].

So, if the scalar potential responds immediately to some distance rearrangement

of charge density it does not necessarily follow that the electric field also has an

immediate response. What actually happens is that the change in the part of the

electric field which comes from the scalar potential is balanced by an equal and

opposite change in the part which comes from the vector potential, so that the

overall electric field remains unchanged. This state of affairs persists at least until

sufficient time has elapsed for a light signal to travel from the distant charges to

the region in question. Thus, relativity is not violated, since it is the electric field,

and not the scalar potential, which carries physically accessible information.

It is clear that the apparent action at a distance nature of Eq. (4.28) is highly

misleading. This suggests, very strongly, that the Coulomb gauge is not the opti-

mum gauge in the time-dependent case. A more sensible choice is the so called

Lorentz gauge:

∇ · A = −ε0µ0
∂φ

∂t
. (4.29)

It can be shown, by analogy with earlier arguments (see Sect. 3.12), that it is

always possible to make a gauge transformation, at a given instance in time, such

that the above equation is satisfied. Substituting the Lorentz gauge condition into

Eq. (4.26), we obtain

ε0µ0
∂2φ

∂t2
− ∇2φ =

ρ

ε0
. (4.30)

It turns out that this is a three-dimensional wave equation in which information

propagates at the speed of light. But, more of this later. Note that the magnet-

ically induced part of the electric field (i.e., −∂A/∂t) is not purely solenoidal in

the Lorentz gauge. This is a slight disadvantage of the Lorentz gauge with respect

to the Coulomb gauge. However, this disadvantage is more than offset by other

advantages which will become apparent presently. Incidentally, the fact that the

part of the electric field which we ascribe to magnetic induction changes when we

change the gauge suggests that the separation of the field into magnetically in-

duced and charge induced components is not unique in the general time-varying
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case (i.e., it is a convention).

4.5 The displacement current

Michael Faraday revolutionized physics in 1830 by showing that electricity and

magnetism were interrelated phenomena. He achieved this breakthrough by

careful experimentation. Between 1864 and 1873, James Clerk Maxwell achieved

a similar breakthrough by pure thought. Of course, this was only possible because

he was able to take the experimental results of Faraday, Ampère, etc., as his start-

ing point. Prior to 1864, the laws of electromagnetism were written in integral

form. Thus, Gauss’s law was (in S.I. units) the flux of the electric field through

a closed surface equals the total enclosed charge, divided by ε0. The no magnetic

monopole law was the flux of the magnetic field through any closed surface is zero.

Faraday’s law was the electromotive force generated around a closed loop equals

minus the rate of change of the magnetic flux through the loop. Finally, Ampère’s

circuital law was the line integral of the magnetic field around a closed loop equals

the total current flowing through the loop, multiplied by µ0. Maxwell’s first great

achievement was to realize that these laws could be expressed as a set of first-

order partial differential equations. Of course, he wrote his equations out in

component form, because modern vector notation did not come into vogue until

about the time of the First World War. In modern notation, Maxwell first wrote:

∇ · E =
ρ

ε0
, (4.31)

∇ · B = 0, (4.32)

∇× E = −
∂B

∂t
, (4.33)

∇× B = µ0 j. (4.34)

Maxwell’s second great achievement was to realize that these equations are wrong.

We can see that there is something slightly unusual about Eqs. (4.31)–(4.34).

They are very unfair to electric fields! After all, time-varying magnetic fields can

induce electric fields, but electric fields apparently cannot affect magnetic fields

in any way. However, there is a far more serious problem associated with the
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above equations, which we alluded to earlier on. Consider the integral form of

the last Maxwell equation (i.e., Ampère’s circuital law)
∮

C

B · dl = µ0

∫

S

j · dS. (4.35)

This says that the line integral of the magnetic field around a closed loop C is

equal to µ0 times the flux of the current density through the loop. The problem

is that the flux of the current density through a loop is not, in general, a well-

defined quantity. In order for the flux to be well-defined, the integral of j ·dS over

some surface S attached to a loop C must depend on C, but not on the details of

S. This is only the case if

∇ · j = 0. (4.36)

Unfortunately, the above condition is only satisfied for non time-varying fields.

Why do we say that, in general, ∇ · j 6= 0? Well, consider the flux of j out of

some closed surface S enclosing a volume V . This is clearly equivalent to the rate

at which charge flows out of S. However, if charge is a conserved quantity (and

we certainly believe that it is) then the rate at which charge flows out of S must

equal the rate of decrease of the charge contained in volume V . Thus,
∮

S

j · dS = −
∂

∂t

∫

V

ρdV. (4.37)

Making use of Gauss’ theorem, this yields

∇ · j = −
∂ρ

∂t
. (4.38)

Thus, ∇ · j = 0 is only true in a steady-state (i.e., when ∂/∂t ≡ 0).

The problem with Ampère’s circuital law is well illustrated by the following

very famous example. Consider a long straight wire interrupted by a parallel

plate capacitor. Suppose that C is some loop which circles the wire. In the non

time-dependent situation, the capacitor acts like a break in the wire, so no cur-

rent flows, and no magnetic field is generated. There is clearly no problem with

Ampère’s law in this case. However, in the time-dependent situation, a transient

current flows in the wire as the capacitor charges up, or charges down, and so
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a transient magnetic field is generated. Thus, the line integral of the magnetic

field around C is (transiently) non-zero. According to Ampère’s circuital law, the

flux of the current through any surface attached to C should also be (transiently)

non-zero. Let us consider two such surfaces. The first surface, S1, intersects the

wire. This surface causes us no problem, since the flux of j though the surface

is clearly non-zero (because it intersects a current carrying wire). The second

surface, S2, passes between the plates of the capacitor, and, therefore, does not

intersect the wire at all. Clearly, the flux of the current through this surface is

zero. The current fluxes through surfaces S1 and S2 are obviously different. How-

ever, both surfaces are attached to the same loop C, so the fluxes should be the

same, according to Ampère’s law (4.35). It would appear that Ampère’s circuital

law is about to disintegrate! However, we notice that although the surface S2
does not intersect any electric current, it does pass through a region of strong

changing electric field as it threads between the plates of the charging (or dis-

charging) capacitor. Perhaps, if we add a term involving ∂E/∂t to the right-hand

side of Eq. (4.34) then we can somehow fix up Ampère’s circuital law? This is,

essentially, how Maxwell reasoned more than one hundred years ago.

Let us try out this scheme. Suppose that we write

∇× B = µ0 j + λ
∂E

∂t
(4.39)

instead of Eq. (4.34). Here, λ is some constant. Does this resolve our problem?

We want the flux of the right-hand side of the above equation through some loop

C to be well-defined; i.e., it should only depend on C, and not the particular

surface S (which spans C) upon which it is evaluated. This is another way of

saying that we want the divergence of the right-hand side to be zero. In fact,

we can see that this is necessary for self-consistency, since the divergence of the

left-hand side is automatically zero. So, taking the divergence of Eq. (4.39), we

obtain

0 = µ0∇ · j + λ
∂∇ · E

∂t
. (4.40)

But, we know that

∇ · E =
ρ

ε0
, (4.41)
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so combining the previous two equations we arrive at

µ0∇ · j +
λ

ε0

∂ρ

∂t
= 0. (4.42)

Now, our charge conservation law (4.38) can be written

∇ · j +
∂ρ

∂t
= 0. (4.43)

The previous two equations are in agreement provided λ = ε0µ0. So, if we modify

the final Maxwell equation such that it reads

∇× B = µ0 j + ε0µ0
∂E

∂t
, (4.44)

then we find that the divergence of the right-hand side is zero as a consequence

of charge conservation. The extra term is called the displacement current (this

name was invented by Maxwell). In summary, we have shown that although the

flux of the real current through a loop is not well-defined, if we form the sum of

the real current and the displacement current then the flux of this new quantity

through a loop is well-defined.

Of course, the displacement current is not a current at all. It is, in fact, as-

sociated with the generation of magnetic fields by time-varying electric fields.

Maxwell came up with this rather curious name because many of his ideas regard-

ing electric and magnetic fields were completely wrong. For instance, Maxwell

believed in the æther, and he thought that electric and magnetic fields were some

sort of stresses in this medium. He also thought that the displacement current was

associated with displacements of the æther (hence, the name). The reason that

these misconceptions did not invalidate his equations is quite simple. Maxwell

based his equations on the results of experiments, and he added in his extra term

so as to make these equations mathematically self-consistent. Both of these steps

are valid irrespective of the existence or non-existence of the æther.

“But, hang on a minute,” you might say, “you can’t go around adding terms

to laws of physics just because you feel like it! The field equations (4.31)–(4.34)

are derived directly from the results of famous nineteenth century experiments.

If there is a new term involving the time derivative of the electric field which
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needs to be added into these equations, how come there is no corresponding

nineteenth century experiment which demonstrates this? We have Faraday’s law

which shows that changing magnetic fields generate electric fields. Why is there

no “Joe Blogg’s” law that says that changing electric fields generate magnetic

fields?” This is a perfectly reasonable question. The answer is that the new term

describes an effect which is far too small to have been observed in nineteenth

century experiments. Let us demonstrate this.

First, we shall show that it is comparatively easy to detect the induction of an

electric field by a changing magnetic field in a desktop laboratory experiment.

The Earth’s magnetic field is about 1 gauss (that is, 10−4 tesla). Magnetic fields

generated by electromagnets (which will fit on a laboratory desktop) are typically

about one hundred times bigger than this. Let us, therefore, consider a hypothet-

ical experiment in which a 100 gauss magnetic field is switched on suddenly.

Suppose that the field ramps up in one tenth of a second. What electromotive

force is generated in a 10 centimeter square loop of wire located in this field?

Faraday’s law is written

V = −
∂

∂t

∮

B · dS ∼
BA

t
, (4.45)

where B = 0.01 tesla is the field-strength, A = 0.01 m2 is the area of the loop,

and t = 0.1 seconds is the ramp time. It follows that V ∼ 1 millivolt. Well, one

millivolt is easily detectable. In fact, most hand-held laboratory voltmeters are

calibrated in millivolts. It is clear that we would have no difficulty whatsoever

detecting the magnetic induction of electric fields in a nineteenth century style

laboratory experiment.

Let us now consider the electric induction of magnetic fields. Suppose that our

electric field is generated by a parallel plate capacitor of spacing one centimeter

which is charged up to 100 volts. This gives a field of 104 volts per meter. Suppose,

further, that the capacitor is discharged in one tenth of a second. The law of

electric induction is obtained by integrating Eq. (4.44), and neglecting the first

term on the right-hand side. Thus,
∮

B · dl = ε0µ0
∂

∂t

∫

E · dS. (4.46)
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Let us consider a loop 10 centimeters square. What is the magnetic field gen-

erated around this loop (we could try to measure this with a Hall probe)? Very

approximately, we find that

l B ∼ ε0µ0
E l2

t
, (4.47)

where l = 0.1 meters is the dimensions of the loop, B is the magnetic field-

strength, E = 104 volts per meter is the electric field, and t = 0.1 seconds is the

decay time of the field. We find that B ∼ 10−9 gauss. Modern technology is unable

to detect such a small magnetic field, so we cannot really blame Faraday for not

noticing electric induction in 1830.

“So,” you might say, “why did you bother mentioning this displacement cur-

rent thing in the first place if it is undetectable?” Again, a perfectly fair question.

The answer is that the displacement current is detectable in some experiments.

Suppose that we take an FM radio signal, amplify it so that its peak voltage is one

hundred volts, and then apply it to the parallel plate capacitor in the previous

hypothetical experiment. What size of magnetic field would this generate? Well,

a typical FM signal oscillates at 109 Hz, so t in the previous example changes

from 0.1 seconds to 10−9 seconds. Thus, the induced magnetic field is about 10−1

gauss. This is certainly detectable by modern technology. So, it would seem that

if the electric field is oscillating fast then electric induction of magnetic fields is an

observable effect. In fact, there is a virtually infallible rule for deciding whether

or not the displacement current can be neglected in Eq. (4.44). If electromagnetic

radiation is important then the displacement current must be included. On the

other hand, if electromagnetic radiation is unimportant then the displacement

current can be safely neglected. Clearly, Maxwell’s inclusion of the displacement

current in Eq. (4.44) was a vital step in his later realization that his equations

allowed propagating wave-like solutions. These solutions are, of course, electro-

magnetic waves. But, more of this later.

We are now in a position to write out Maxwell’s equations in all their glory!

We get

∇ · E =
ρ

ε0
, (4.48)

∇ · B = 0, (4.49)
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∇× E = −
∂B

∂t
, (4.50)

∇× B = µ0 j + ε0µ0
∂E

∂t
. (4.51)

These four partial differential equations constitute a complete description of the

behaviour of electric and magnetic fields. The first equation describes how elec-

tric fields are induced by charges. The second equation says that there is no such

thing as a magnetic monopole. The third equation describes the induction of

electric fields by changing magnetic fields, and the fourth equation describes the

generation of magnetic fields by electric currents and the induction of magnetic

fields by changing electric fields. Note that with the inclusion of the displacement

current these equations treat electric and magnetic fields on an equal footing:

i.e., electric fields can induce magnetic fields, and vice versa. Equations (4.48)–

(4.51) sum up the experimental results of Coulomb, Ampère, and Faraday very

succinctly: they are called Maxwell’s equations because James Clerk Maxwell was

the first to write them down (in component form). Maxwell also fixed them up

so that they made mathematical sense.

4.6 Potential formulation

We have seen that Eqs. (4.49) and (4.50) are automatically satisfied if we write

the electric and magnetic fields in terms of potentials:

E = −∇φ−
∂A

∂t
, (4.52)

B = ∇× A. (4.53)

This prescription is not unique, but we can make it unique by adopting the fol-

lowing conventions:

φ(r) → 0 as |r| → ∞, (4.54)

∇ · A = −ε0µ0
∂φ

∂t
. (4.55)
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The above equations can be combined with Eq. (4.48) to give

ε0µ0
∂2φ

∂t2
− ∇2φ =

ρ

ε0
. (4.56)

Let us now consider Eq. (4.51). Substitution of Eqs. (4.52) and (4.53) into

this formula yields

∇×∇× A ≡ ∇(∇ · A) − ∇2A = µ0 j − ε0µ0
∂∇φ
∂t

− ε0µ0
∂2A

∂t2
, (4.57)

or

ε0µ0
∂2A

∂t2
− ∇2A = µ0 j − ∇

(

∇ · A + ε0µ0
∂φ

∂t

)

. (4.58)

We can now see quite clearly where the Lorentz gauge condition (4.29) comes

from. The above equation is, in general, very complicated, since it involves both

the vector and scalar potentials. But, if we adopt the Lorentz gauge, then the last

term on the right-hand side becomes zero, and the equation simplifies consider-

ably, such that it only involves the vector potential. Thus, we find that Maxwell’s

equations reduce to the following:

ε0µ0
∂2φ

∂t2
− ∇2φ =

ρ

ε0
, (4.59)

ε0µ0
∂2A

∂t2
− ∇2A = µ0 j. (4.60)

This is the same (scalar) equation written four times over. In steady-state (i.e.,

∂/∂t = 0), it reduces to Poisson’s equation, which we know how to solve. With

the ∂2/∂t2 terms included, it becomes a slightly more complicated equation (in

fact, a driven three-dimensional wave equation).

4.7 Electromagnetic waves

This is an appropriate point at which to demonstrate that Maxwell’s equations

possess propagating wave-like solutions. Let us start from Maxwell’s equations in
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free space (i.e., with no charges and no currents):

∇ · E = 0, (4.61)

∇ · B = 0, (4.62)

∇× E = −
∂B

∂t
, (4.63)

∇× B = ε0µ0
∂E

∂t
. (4.64)

Note that these equations exhibit a nice symmetry between the electric and mag-

netic fields.

There is an easy way to show that the above equations possess wave-like so-

lutions, and a hard way. The easy way is to assume that the solutions are going

to be wave-like beforehand. Specifically, let us search for plane-wave solutions of

the form:

E(r, t) = E0 cos (k · r −ωt), (4.65)

B(r, t) = B0 cos (k · r −ωt+ φ). (4.66)

Here, E0 and B0 are constant vectors, k is called the wave-vector, and ω is the

angular frequency. The frequency in hertz, f, is related to the angular frequency

viaω = 2π f. The frequency is conventionally defined to be positive. The quantity

φ is a phase difference between the electric and magnetic fields. Actually, it is

more convenient to write

E = E0 e i (k·r−ωt), (4.67)

B = B0 e i (k·r−ωt), (4.68)

where, by convention, the physical solution is the real part of the above equations.

The phase difference φ is absorbed into the constant vector B0 by allowing it to

become complex. Thus, B0 → B0 e iφ. In general, the vector E0 is also complex.

A wave maximum of the electric field satisfies

k · r = ωt+ n2π+ φ, (4.69)
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where n is an integer and φ is some phase angle. The solution to this equation

is a set of equally spaced parallel planes (one plane for each possible value of n),

whose normals lie in the direction of the wave-vector k, and which propagate in

this direction with phase-velocity

v =
ω

k
. (4.70)

The spacing between adjacent planes (i.e., the wave-length) is given by

λ =
2π

k
(4.71)

(see Fig. 35).

vk

λ

Figure 35:

Consider a general plane-wave vector field

A = A0 e i (k·r−ωt). (4.72)

What is the divergence of A? This is easy to evaluate. We have

∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
= (A0x i kx +A0y i ky +A0z i kz) e i (k·r−ωt)

= i k · A. (4.73)
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How about the curl of A? This is slightly more difficult. We have

(∇× A)x =
∂Az

∂y
−
∂Ay

∂z
= (i kyAz − i kzAy)

= i (k × A)x. (4.74)

This is easily generalized to

∇× A = i k × A. (4.75)

We can see that vector field operations on a plane-wave simplify to replacing the

∇ operator with i k.

The first Maxwell equation (4.61) reduces to

i k · E0 = 0, (4.76)

using the assumed electric and magnetic fields (4.67) and (4.68), and Eq. (4.73).

Thus, the electric field is perpendicular to the direction of propagation of the

wave. Likewise, the second Maxwell equation gives

i k · B0 = 0, (4.77)

implying that the magnetic field is also perpendicular to the direction of propa-

gation. Clearly, the wave-like solutions of Maxwell’s equation are a type of trans-

verse wave. The third Maxwell equation gives

i k × E0 = iωB0, (4.78)

where use has been made of Eq. (4.75). Dotting this equation with E0 yields

E0 · B0 =
E0 · k × E0

ω
= 0. (4.79)

Thus, the electric and magnetic fields are mutually perpendicular. Dotting equa-

tion (4.78) with B0 yields

B0 · k × E0 = ωB 2
0 > 0. (4.80)

Thus, the vectors E0, B0, and k are mutually perpendicular, and form a right-

handed set. The final Maxwell equation gives

i k × B0 = −i ε0µ0ωE0. (4.81)
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Combining this with Eq. (4.78) yields

k × (k × E0) = (k · E0) k − k2 E0 = −k2 E0 = −ε0µ0ω
2 E0, (4.82)

or

k2 = ε0µ0ω
2, (4.83)

where use has been made of Eq. (4.76). However, we know from Eq. (4.70)

that the phase-velocity c is related to the magnitude of the wave-vector and the

angular wave frequency via c = ω/k. Thus, we obtain

c =
1√
ε0µ0

. (4.84)

So, we have found transverse wave solutions of the free-space Maxwell equa-

tions, propagating at some phase-velocity c, which is given by a combination of

ε0 and µ0. The constants ε0 and µ0 are easily measurable. The former is related

to the force acting between stationary electric charges, and the latter to the force

acting between steady electric currents. Both of these constants were fairly well-

known in Maxwell’s time. Maxwell, incidentally, was the first person to look for

wave-like solutions of his equations, and, thus, to derive Eq. (4.84). The modern

values of ε0 and µ0 are

ε0 = 8.8542× 10−12 C2 N−1 m−2, (4.85)

µ0 = 4π× 10−7 N A−2. (4.86)

Let us use these values to find the phase-velocity of “electromagnetic waves.” We

obtain

c =
1√
ε0µ0

= 2.998× 108 m s−1. (4.87)

Of course, we immediately recognize this as the velocity of light. Maxwell also

made this connection back in the 1870’s. He conjectured that light, whose nature

had previously been unknown, was a form of electromagnetic radiation. This

was a remarkable prediction. After all, Maxwell’s equations were derived from

the results of benchtop laboratory experiments, involving charges, batteries, coils,

and currents, which apparently had nothing whatsoever to do with light.
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Radiation Type Wave-length Range (m)

Gamma Rays < 10−11

X-Rays 10−11–10−9

Ultraviolet 10−9–10−7

Visible 10−7–10−6

Infrared 10−6–10−4

Microwave 10−4–10−1

TV-FM 10−1–101

Radio > 101

Table 1: The electromagnetic spectrum

Maxwell was able to make another remarkable prediction. The wave-length of

light was well-known in the late nineteenth century from studies of diffraction

through slits, etc. Visible light actually occupies a surprisingly narrow wave-

length range. The shortest wave-length blue light which is visible has λ = 0.4

microns (one micron is 10−6 meters). The longest wave-length red light which is

visible has λ = 0.76microns. However, there is nothing in our analysis which sug-

gests that this particular range of wave-lengths is special. Electromagnetic waves

can have any wave-length. Maxwell concluded that visible light was a small part

of a vast spectrum of previously undiscovered types of electromagnetic radiation.

Since Maxwell’s time, virtually all of the non-visible parts of the electromagnetic

spectrum have been observed. Table 1 gives a brief guide to the electromagnetic

spectrum. Electromagnetic waves are of particular importance because they are

our only source of information regarding the universe around us. Radio waves

and microwaves (which are comparatively hard to scatter) have provided much

of our knowledge about the centre of our own galaxy. This is completely unob-

servable in visible light, which is strongly scattered by interstellar gas and dust

lying in the galactic plane. For the same reason, the spiral arms of our galaxy can

only be mapped out using radio waves. Infrared radiation is useful for detecting

proto-stars, which are not yet hot enough to emit visible radiation. Of course,

visible radiation is still the mainstay of astronomy. Satellite based ultraviolet

observations have yielded invaluable insights into the structure and distribution

of distant galaxies. Finally, X-ray and γ-ray astronomy usually concentrates on

exotic objects in the Galaxy, such as pulsars and supernova remnants.
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Equations (4.76), (4.78), and the relation c = ω/k, imply that

B0 =
E0

c
. (4.88)

Thus, the magnetic field associated with an electromagnetic wave is smaller in

magnitude than the electric field by a factor c. Consider a free charge interacting

with an electromagnetic wave. The force exerted on the charge is given by the

Lorentz formula

f = q (E + v × B). (4.89)

The ratio of the electric and magnetic forces is

fmagnetic

felectric

∼
vB0

E0
∼
v

c
. (4.90)

So, unless the charge is relativistic, the electric force greatly exceeds the mag-

netic force. Clearly, in most terrestrial situations electromagnetic waves are an

essentially electric phenomenon (as far as their interaction with matter goes). For

this reason, electromagnetic waves are usually characterized by their wave-vector

(which specifies the direction of propagation and the wave-length) and the plane

of polarization (i.e., the plane of oscillation) of the associated electric field. For

a given wave-vector k, the electric field can have any direction in the plane nor-

mal to k. However, there are only two independent directions in a plane (i.e., we

can only define two linearly independent vectors in a plane). This implies that

there are only two independent polarizations of an electromagnetic wave, once

its direction of propagation is specified.

Let us now derive the velocity of light from Maxwell’s equation the hard way.

Suppose that we take the curl of the fourth Maxwell equation, Eq. (4.64). We

obtain

∇×∇× B = ∇(∇ · B) − ∇2B = −∇2B = ε0µ0
∂∇× E

∂t
. (4.91)

Here, we have used the fact that ∇ · B = 0. The third Maxwell equation,

Eq. (4.63), yields


∇2 −
1

c2
∂2

∂t2



B = 0, (4.92)
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where use has been made of Eq. (4.87). A similar equation can obtained for the

electric field by taking the curl of Eq. (4.63):


∇2 −
1

c2
∂2

∂t2



E = 0, (4.93)

We have found that electric and magnetic fields both satisfy equations of the

form


∇2 −
1

c2
∂2

∂t2



A = 0 (4.94)

in free space. As is easily verified, the most general solution to this equation (with

a positive frequency) is

Ax = Fx(k · r − k c t), (4.95)

Ay = Fy(k · r − k c t), (4.96)

Az = Fz(k · r − k c t), (4.97)

where Fx(φ), Fy(φ), and Fz(φ) are one-dimensional scalar functions. Looking

along the direction of the wave-vector, so that r = (k/k) r, we find that

Ax = Fx[ k (r− c t) ], (4.98)

Ay = Fy[ k (r− c t) ], (4.99)

Az = Fz[ k (r− c t) ]. (4.100)

The x-component of this solution is shown schematically in Fig. 36. It clearly

propagates in r with velocity c. If we look along a direction which is perpendic-

ular to k then k · r = 0, and there is no propagation. Thus, the components of

A are arbitrarily shaped pulses which propagate, without changing shape, along

the direction of k with velocity c. These pulses can be related to the sinusoidal

plane-wave solutions which we found earlier by Fourier transformation. Thus,

any arbitrary shaped pulse propagating in the direction of k with velocity c can

be broken down into lots of sinusoidal oscillations propagating in the same direc-

tion with the same velocity.

The operator

∇2 −
1

c2
∂2

∂t2
(4.101)
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rc t

F (r, t=0) F (r, t=t)x x

Figure 36:

is called the d’Alembertian. It is the four-dimensional equivalent of the Lapla-

cian. Recall that the Laplacian is invariant under rotational transformation. The

d’Alembertian goes one better than this, since it is both rotationally invariant

and Lorentz invariant. The d’Alembertian is conventionally denoted 2
2. Thus,

electromagnetic waves in free space satisfy the wave equations

2
2E = 0, (4.102)

2
2B = 0. (4.103)

When written in terms of the vector and scalar potentials, Maxwell’s equations

reduce to

2
2φ = −

ρ

ε0
, (4.104)

2
2A = −µ0 j. (4.105)

These are clearly driven wave equations. Our next task is to find the solutions to

these equations.

4.8 Green’s functions

Earlier on in this lecture course, we had to solve Poisson’s equation

∇2u = v, (4.106)
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where v(r) is denoted the source function. The potential u(r) satisfies the bound-

ary condition

u(r, t) → 0 as |r| → ∞, (4.107)

provided that the source function is reasonably localized. The solutions to Pois-

son’s equation are superposable (because the equation is linear). This property

is exploited in the Green’s function method of solving this equation. The Green’s

function G(r, r ′) is the potential, which satisfies the appropriate boundary condi-

tions, generated by a unit amplitude point source located at r ′. Thus,

∇2G(r, r ′) = δ(r − r ′). (4.108)

Any source function v(r) can be represented as a weighted sum of point sources

v(r) =

∫

δ(r − r ′) v(r ′)d3r ′. (4.109)

It follows from superposability that the potential generated by the source v(r) can

be written as the weighted sum of point source driven potentials (i.e., Green’s

functions)

u(r) =

∫

G(r, r ′) v(r ′)d3r ′. (4.110)

We found earlier that the Green’s function for Poisson’s equation is

G(r, r ′) = −
1

4π

1

|r − r ′|
. (4.111)

It follows that the general solution to Eq. (4.106) is written

u(r) = −
1

4π

∫
v(r ′)

|r − r ′|
d3r ′. (4.112)

Note that the point source driven potential (4.111) is perfectly sensible. It is

spherically symmetric about the source, and falls off smoothly with increasing

distance from the source.

We now need to solve the wave equation


∇2 −
1

c2
∂2

∂t2



u = v, (4.113)
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where v(r, t) is a time-varying source function. The potential u(r, t) satisfies the

boundary conditions

u(r) → 0 as |r| → ∞ and |t| → ∞. (4.114)

The solutions to Eq. (4.113) are superposable (since the equation is linear), so a

Green’s function method of solution is again appropriate. The Green’s function

G(r, r ′; t, t ′) is the potential generated by a point impulse located at position r ′

and applied at time t ′. Thus,


∇2 −
1

c2
∂2

∂t2



G(r, r ′; t, t ′) = δ(r − r ′) δ(t− t ′). (4.115)

Of course, the Green’s function must satisfy the correct boundary conditions. A

general source v(r, t) can be built up from a weighted sum of point impulses

v(r, t) =

∫ ∫

δ(r − r ′) δ(t− t ′) v(r ′, t ′)d3r ′ dt ′. (4.116)

It follows that the potential generated by v(r, t) can be written as the weighted

sum of point impulse driven potentials

u(r, t) =

∫ ∫

G(r, r ′; t, t ′) v(r ′, t ′)d3r ′ dt ′. (4.117)

So, how do we find the Green’s function?

Consider

G(r, r ′; t, t ′) =
F(t− t ′ − |r − r ′|/c)

|r − r ′|
, (4.118)

where F(φ) is a general scalar function. Let us try to prove the following theorem:


∇2 −
1

c2
∂2

∂t2



G = −4π F(t− t ′) δ(r − r ′). (4.119)

At a general point, r 6= r ′, the above expression reduces to


∇2 −
1

c2
∂2

∂t2



G = 0. (4.120)
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So, we basically have to show that G is a valid solution of the free space wave

equation. We can easily show that

∂|r − r ′|

∂x
=
x− x ′

|r − r ′|
. (4.121)

It follows by simple differentiation that

∂2G

∂x2
=





3(x− x ′)2 − |r − r ′|2

|r − r ′|5



 F

+





3(x− x ′)2 − |r − r ′|2

|r − r ′|4





F ′

c
+

(x− x ′)2

|r − r ′|3
F ′′

c2
, (4.122)

where F ′(φ) = dF(φ)/dφ. We can derive analogous equations for ∂2G/∂y2 and

∂2G/∂z2. Thus,

∇2G =
∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
=

F ′′

|r − r ′| c2
=
1

c2
∂2G

∂t2
, (4.123)

giving


∇2 −
1

c2
∂2

∂t2



G = 0, (4.124)

which is the desired result. Consider, now, the region around r = r ′. It is clear

from Eq. (4.122) that the dominant term on the right-hand side as |r − r ′| →
0 is the first one, which is essentially F ∂2(|r − r ′|−1)/∂x2. It is also clear that

(1/c2)(∂2G/∂t2) is negligible compared to this term. Thus, as |r − r ′| → 0 we find

that


∇2 −
1

c2
∂2

∂t2



G → F(t− t ′)∇2





1

|r − r ′|



 . (4.125)

However, according to Eqs. (4.108) and (4.111)

∇2





1

|r − r ′|



 = −4π δ(r − r ′). (4.126)

We conclude that


∇2 −
1

c2
∂2

∂t2



G = −4π F(t− t ′) δ(r − r ′), (4.127)

131



4 TIME-DEPENDENT MAXWELL’S EQUATIONS 4.8 Green’s functions

which is the desired result.

Let us now make the special choice

F(φ) = −
δ(φ)

4π
. (4.128)

It follows from Eq. (4.127) that


∇2 −
1

c2
∂2

∂t2



G = δ(r − r ′) δ(t− t ′). (4.129)

Thus,

G(r, r ′; t, t ′) = −
1

4π

δ(t− t ′ − |r − r ′|/c)

|r − r ′|
(4.130)

is the Green’s function for the driven wave equation (4.113).

The time-dependent Green’s function (4.130) is the same as the steady-state

Green’s function (4.111), apart from the delta-function appearing in the former.

What does this delta-function do? Well, consider an observer at point r. Because

of the delta-function, our observer only measures a non-zero potential at one

particular time

t = t ′ +
|r − r ′|

c
. (4.131)

It is clear that this is the time the impulse was applied at position r ′ (i.e., t ′) plus

the time taken for a light signal to travel between points r ′ and r. At time t > t ′,
the locus of all the points at which the potential is non-zero is

|r − r ′| = c (t− t ′). (4.132)

In other words, it is a sphere centred on r ′ whose radius is the distance traveled

by light in the time interval since the impulse was applied at position r ′. Thus,

the Green’s function (4.130) describes a spherical wave which emanates from

position r ′ at time t ′ and propagates at the speed of light. The amplitude of the

wave is inversely proportional to the distance from the source.
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4.9 Retarded potentials

We are now in a position to solve Maxwell’s equations. Recall that in steady-state,

Maxwell’s equations reduce to

∇2φ = −
ρ

ε0
, (4.133)

∇2A = −µ0 j. (4.134)

The solutions to these equations are easily found using the Green’s function for

Poisson’s equation (4.111):

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′ (4.135)

A(r) =
µ0

4π

∫
j(r ′)

|r − r ′|
d3r ′. (4.136)

The time-dependent Maxwell equations reduce to

2
2φ = −

ρ

ε0
, (4.137)

2
2A = −µ0 j. (4.138)

We can solve these equations using the time-dependent Green’s function (4.130).

From Eq. (4.117) we find that

φ(r, t) =
1

4π ε0

∫ ∫
δ(t− t ′ − |r − r ′|/c) ρ(r ′, t ′)

|r − r ′|
d3r ′ dt ′, (4.139)

with a similar equation for A. Using the well-known property of delta-functions,

these equations reduce to

φ(r, t) =
1

4π ε0

∫
ρ(r ′, t− |r − r ′|/c)

|r − r ′|
d3r ′ (4.140)

A(r, t) =
µ0

4π

∫
j(r ′, t− |r − r ′|/c)

|r − r ′|
d3r ′. (4.141)

These are the general solutions to Maxwell’s equations. Note that the time-

dependent solutions, (4.140) and (4.141), are the same as the steady-state solu-

tions, (4.135) and (4.136), apart from the weird way in which time appears in
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the former. According to Eqs. (4.140) and (4.141), if we want to work out the

potentials at position r and time t then we have to perform integrals of the charge

density and current density over all space (just like in the steady-state situation).

However, when we calculate the contribution of charges and currents at position

r ′ to these integrals we do not use the values at time t, instead we use the values

at some earlier time t− |r − r ′|/c. What is this earlier time? It is simply the latest

time at which a light signal emitted from position r ′ would be received at position

r before time t. This is called the retarded time. Likewise, the potentials (4.140)

and (4.141) are called retarded potentials. It is often useful to adopt the following

notation

A(r ′, t− |r − r ′|/c) ≡ [A(r ′, t)] . (4.142)

The square brackets denote retardation (i.e., using the retarded time instead of

the real time). Using this notation Eqs. (4.140) and (4.141), become

φ(r) =
1

4π ε0

∫
[ρ(r ′)]

|r − r ′|
d3r ′, (4.143)

A(r) =
µ0

4π

∫
[j(r ′)]

|r − r ′|
d3r ′. (4.144)

The time dependence in the above equations is taken as read.

We are now in a position to understand electromagnetism at its most funda-

mental level. A charge distribution ρ(r, t) can be thought of as built up out of

a collection, or series, of charges which instantaneously come into existence, at

some point r ′ and some time t ′, and then disappear again. Mathematically, this

is written

ρ(r, t) =

∫ ∫

δ(r − r ′)δ(t− t ′) ρ(r ′, t ′)d3r ′dt ′. (4.145)

Likewise, we can think of a current distribution j(r, t) as built up out of a collec-

tion or series of currents which instantaneously appear and then disappear:

j(r, t) =

∫ ∫

δ(r − r ′)δ(t− t ′) j(r ′, t ′)d3r ′dt ′. (4.146)

Each of these ephemeral charges and currents excites a spherical wave in the

appropriate potential. Thus, the charge density at r ′ and t ′ sends out a wave in
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the scalar potential:

φ(r, t) =
ρ(r ′, t ′)

4π ε0

δ(t− t ′ − |r − r ′|/c)

|r − r ′|
. (4.147)

Likewise, the current density at r ′ and t ′ sends out a wave in the vector potential:

A(r, t) =
µ0 j(r ′, t ′)

4π

δ(t− t ′ − |r − r ′|/c)

|r − r ′|
. (4.148)

These waves can be thought of as messengers which inform other charges and

currents about the charges and currents present at position r ′ and time t ′. How-

ever, these messengers travel at a finite speed: i.e., the speed of light. So, by the

time they reach other charges and currents their message is a little out of date. Ev-

ery charge and every current in the Universe emits these spherical waves. The re-

sultant scalar and vector potential fields are given by Eqs. (4.143) and (4.144). Of

course, we can turn these fields into electric and magnetic fields using Eqs. (4.52)

and (4.53). We can then evaluate the force exerted on charges using the Lorentz

formula. We can see that we have now escaped from the apparent action at a

distance nature of Coulomb’s law and the Biot-Savart law. Electromagnetic in-

formation is carried by spherical waves in the vector and scalar potentials, and,

therefore, travels at the velocity of light. Thus, if we change the position of a

charge then a distant charge can only respond after a time delay sufficient for a

spherical wave to propagate from the former to the latter charge.

Let us compare the steady-state law

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′ (4.149)

with the corresponding time-dependent law

φ(r) =
1

4π ε0

∫
[ρ(r ′)]

|r − r ′|
d3r ′ (4.150)

These two formulae look very similar indeed, but there is an important differ-

ence. We can imagine (rather pictorially) that every charge in the Universe is

continuously performing the integral (4.150), and is also performing a similar

integral to find the vector potential. After evaluating both potentials, the charge
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can calculate the fields, and, using the Lorentz force law, it can then work out

its equation of motion. The problem is that the information the charge receives

from the rest of the Universe is carried by our spherical waves, and is always

slightly out of date (because the waves travel at a finite speed). As the charge

considers more and more distant charges or currents, its information gets more

and more out of date. (Similarly, when astronomers look out to more and more

distant galaxies in the Universe, they are also looking backwards in time. In fact,

the light we receive from the most distant observable galaxies was emitted when

the Universe was only about one third of its present age.) So, what does our

electron do? It simply uses the most up to date information about distant charges

and currents which it possesses. So, instead of incorporating the charge density

ρ(r, t) in its integral, the electron uses the retarded charge density [ρ(r, t)] (i.e.,

the density evaluated at the retarded time). This is effectively what Eq. (4.150)

says.

Consider a thought experiment in which a charge q appears at position r0 at

time t1, persists for a while, and then disappears at time t2. What is the electric

field generated by such a charge? Using Eq. (4.150), we find that

φ(r) =
q

4πε0

1

|r − r0|
for t1 ≤ t− |r − r0|/c ≤ t2

= 0 otherwise. (4.151)

Now, E = −∇φ (since there are no currents, and therefore no vector potential is

generated), so

E(r) =
q

4πε0

r − r0

|r − r0|3
for t1 ≤ t− |r − r0|/c ≤ t2

= 0 otherwise. (4.152)

This solution is shown pictorially in Fig. 37. We can see that the charge effectively

emits a Coulomb electric field which propagates radially away from the charge

at the speed of light. Likewise, it is easy to show that a current carrying wire

effectively emits an Ampèrian magnetic field at the speed of light.

We can now appreciate the essential difference between time-dependent elec-

tromagnetism and the action at a distance laws of Coulomb and Biot & Savart.
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2 t > tt  < t < tt < t1 1 2

Figure 37:

In the latter theories, the field-lines act rather like rigid wires attached to charges

(or circulating around currents). If the charges (or currents) move then so do the

field-lines, leading inevitably to unphysical action at a distance type behaviour.

In the time-dependent theory, charges act rather like water sprinklers: i.e., they

spray out the Coulomb field in all directions at the speed of light. Similarly, cur-

rent carrying wires throw out magnetic field loops at the speed of light. If we

move a charge (or current) then field-lines emitted beforehand are not affected,

so the field at a distant charge (or current) only responds to the change in po-

sition after a time delay sufficient for the field to propagate between the two

charges (or currents) at the speed of light.

In Coulomb’s law and the Biot-Savart law, it is not entirely obvious that the

electric and magnetic fields have a real existence. After all, the only measurable

quantities are the forces acting between charges and currents. We can describe

the force acting on a given charge or current, due to the other charges and cur-

rents in the Universe, in terms of the local electric and magnetic fields, but we

have no way of knowing whether these fields persist when the charge or current

is not present (i.e., we could argue that electric and magnetic fields are just a

convenient way of calculating forces, but, in reality, the forces are transmitted

directly between charges and currents by some form of magic). However, it is

patently obvious that electric and magnetic fields have a real existence in the

time-dependent theory. Consider the following thought experiment. Suppose
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Figure 38:

that a charge q1 comes into existence for a period of time, emits a Coulomb field,

and then disappears. Suppose that a distant charge q2 interacts with this field,

but is sufficiently far from the first charge that by the time the field arrives the

first charge has already disappeared. The force exerted on the second charge is

only ascribable to the electric field: it cannot be ascribed to the first charge, be-

cause this charge no longer exists by the time the force is exerted. The electric

field clearly transmits energy and momentum between the two charges. Any-

thing which possesses energy and momentum is “real” in a physical sense. Later

on in this course, we shall demonstrate that electric and magnetic fields conserve

energy and momentum.

Let us now consider a moving charge. Such a charge is continually emitting

spherical waves in the scalar potential, and the resulting wavefront pattern is

sketched in Fig. 38. Clearly, the wavefronts are more closely spaced in front of

the charge than they are behind it, suggesting that the electric field in front is

larger than the field behind. In a medium, such as water or air, where waves

travel at a finite speed, c (say), it is possible to get a very interesting effect if the

wave source travels at some velocity v which exceeds the wave speed. This is

illustrated in Fig. 39.

The locus of the outermost wave front is now a cone instead of a sphere. The

wave intensity on the cone is extremely large: this is a shock wave! The half-

angle θ of the shock wave cone is simply sin−1(c/v). In water, shock waves are

produced by fast moving boats. We call these bow waves. In air, shock waves are
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ct

vt

θ

Figure 39:

produced by speeding bullets and supersonic jets. In the latter case, we call these

sonic booms. Is there any such thing as an electromagnetic shock wave? At first

sight, the answer to this question would appear to be, no. After all, electromag-

netic waves travel at the speed of light, and no wave source (i.e., an electrically

charged particle) can travel faster than this velocity. This is a rather disappoint-

ing conclusion. However, when an electromagnetic wave travels through matter

a remarkable thing happens. The oscillating electric field of the wave induces a

slight separation of the positive and negative charges in the atoms which make up

the material. We call separated positive and negative charges an electric dipole.

Of course, the atomic dipoles oscillate in sympathy with the field which induces

them. However, an oscillating electric dipole radiates electromagnetic waves.

Amazingly, when we add the original wave to these induced waves, it is exactly

as if the original wave propagates through the material in question at a velocity

which is slower than the velocity of light in vacuum. Suppose, now, that we shoot

a charged particle through the material faster than the slowed down velocity of

electromagnetic waves. This is possible since the waves are traveling slower than

the velocity of light in vacuum. In practice, the particle has to be traveling pretty

close to the velocity of light in vacuum (i.e., it has to be relativistic), but modern

particle accelerators produce copious amounts of such particles. Now, we can get

an electromagnetic shock wave. We expect an intense cone of emission, just like

the bow wave produced by a fast ship. In fact, this type of radiation has been
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observed. It is called Cherenkov radiation, and it is very useful in high energy

physics. Cherenkov radiation is typically produced by surrounding a particle ac-

celerator with perspex blocks. Relativistic charged particles emanating from the

accelerator pass through the perspex traveling faster than the local velocity of

light, and therefore emit Cherenkov radiation. We know the velocity of light (c∗,
say) in perspex (this can be worked out from the refractive index), so if we can

measure the half angle θ of the radiation cone emitted by each particle then we

can evaluate the speed of the particle v via the geometric relation sin θ = c∗/v.

4.10 Advanced potentials?

We have defined the retarded time

tr = t− |r − r ′|/c (4.153)

as the latest time at which a light signal emitted from position r ′ would reach po-

sition r before time t. We have also shown that a solution to Maxwell’s equations

can be written in terms of retarded potentials:

φ(r, t) =
1

4π ε0

∫
ρ(r ′, tr)

|r − r ′|
d3r ′, (4.154)

etc. But, is this the most general solution? Suppose that we define the advanced

time.

ta = t+ |r − r ′|/c. (4.155)

This is the time a light signal emitted at time t from position r would reach

position r ′. It turns out that we can also write a solution to Maxwell’s equations

in terms of advanced potentials:

φ(r, t) =
1

4π ε0

∫
ρ(r ′, ta)

|r − r ′|
d3r ′, (4.156)

etc. In fact, this is just as good a solution to Maxwell’s equation as the one involv-

ing retarded potentials. To get some idea what is going on, let us examine the

Green’s function corresponding to our retarded potential solution:

φ(r, t) =
ρ(r ′, t ′)

4π ε0

δ(t− t ′ − |r − r ′|/c)

|r − r ′|
, (4.157)
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with a similar equation for the vector potential. This says that the charge density

present at position r ′ and time t ′ emits a spherical wave in the scalar potential

which propagates forwards in time. The Green’s function corresponding to our

advanced potential solution is

φ(r, t) =
ρ(r ′, t ′)

4π ε0

δ(t− t ′ + |r − r ′|/c)

|r − r ′|
. (4.158)

This says that the charge density present at position r ′ and time t ′ emits a spher-

ical wave in the scalar potential which propagates backwards in time. “But, hang

on a minute,” you might say, “everybody knows that electromagnetic waves can’t

travel backwards in time. If they did then causality would be violated.” Well, you

know that electromagnetic waves do not propagate backwards in time, I know

that electromagnetic waves do not propagate backwards in time, but the ques-

tion is do Maxwell’s equations know this? Consider the wave equation for the

scalar potential:


∇2 −
1

c2
∂2

∂t2



φ = −
ρ

ε0
. (4.159)

This equation is manifestly symmetric in time (i.e., it is invariant under the trans-

formation t → −t). Thus, backward traveling waves are just as good a solution to

this equation as forward traveling waves. The equation is also symmetric in space

(i.e., it is invariant under the transformation x → −x). So, why do we adopt the

Green’s function (4.157) which is symmetric in space (i.e., it is invariant under

x → −x) but asymmetric in time (i.e., it is not invariant under t → −t)? Would

it not be better to use the completely symmetric Green’s function

φ(r, t) =
ρ(r ′, t ′)

4π ε0

1

2





δ(t− t ′ − |r − r ′|/c)

|r − r ′|
+
δ(t− t ′ + |r − r ′|/c)

|r − r ′|



 ? (4.160)

In other words, a charge emits half of its waves running forwards in time (i.e.,

retarded waves), and the other half running backwards in time (i.e., advanced

waves). This sounds completely crazy! However, in the 1940’s Richard P. Feyn-

man and John A. Wheeler pointed out that under certain circumstances this pre-

scription gives the right answer. Consider a charge interacting with “the rest of

the Universe,” where the “rest of the Universe” denotes all of the distant charges

in the Universe, and is, by implication, an awful long way away from our original
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charge. Suppose that the “rest of the Universe” is a perfect reflector of advanced

waves and a perfect absorber of retarded waves. The waves emitted by the charge

can be written schematically as

F =
1

2
(retarded) +

1

2
(advanced). (4.161)

The response of the rest of the universe is written

R =
1

2
(retarded) −

1

2
(advanced). (4.162)

This is illustrated in the space-time diagram Fig. 40. Here, A and R denote the

advanced and retarded waves emitted by the charge, respectively. The advanced

wave travels to “the rest of the Universe” and is reflected: i.e., the distant charges

oscillate in response to the advanced wave and emit a retarded wave a, as shown.

The retarded wave a is spherical wave which converges on the original charge,

passes through the charge, and then diverges again. The divergent wave is de-

noted aa. Note that a looks like a negative advanced wave emitted by the charge,

whereas aa looks like a positive retarded wave emitted by the charge. This is es-

sentially what Eq. (4.162) says. The retarded waves R and aa are absorbed by

“the rest of the Universe.”

R

time

space

charge rest of universe

A

a

aa

Figure 40:
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If we add the waves emitted by the charge to the response of “the rest of the

Universe” we obtain

F ′ = F+ R = (retarded). (4.163)

Thus, charges appear to emit only retarded waves, which agrees with our every-

day experience. Clearly, in this model we have side-stepped the problem of a

time asymmetric Green’s function by adopting time asymmetric boundary condi-

tions to the Universe: i.e., the distant charges in the Universe absorb retarded

waves and reflect advanced waves. This is possible because the absorption takes

place at the end of the Universe (i.e., at the “big crunch,” or whatever) and the

reflection takes place at the beginning of the Universe (i.e., at the “big bang”). It

is quite plausible that the state of the Universe (and, hence, its interaction with

electromagnetic waves) is completely different at these two times. It should be

pointed out that the Feynman-Wheeler model runs into trouble when one tries to

combine electromagnetism with quantum mechanics. These difficulties have yet

to be resolved, so at present the status of this model is that it is “an interesting

idea,” but it is still not fully accepted into the canon of physics.

4.11 Retarded fields

We know the solution to Maxwell’s equations in terms of retarded potentials. Let

us now construct the associated electric and magnetic fields using

E = −∇φ−
∂A

∂t
, (4.164)

B = ∇× A. (4.165)

It is helpful to write

R = r − r ′, (4.166)

where R = |r−r ′|. The retarded time becomes tr = t−R/c, and a general retarded

quantity is written [F(r, t)] ≡ F(r, tr). Thus, we can write the retarded potential

solutions of Maxwell’s equations in the especially compact form:

φ =
1

4π ε0

∫
[ρ]

R
dV ′, (4.167)
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A =
µ0

4π

∫
[j]

R
dV ′, (4.168)

where dV ′ ≡ d3r ′.

It is easily seen that

∇φ =
1

4π ε0

∫ 

[ρ]∇(R−1) +
[∂ρ/∂t]

R
∇tr



 dV ′

= −
1

4πε0

∫ 



[ρ]

R3
R +

[∂ρ/∂t]

cR2
R



 dV ′, (4.169)

where use has been made of

∇R =
R

R
, ∇(R−1) = −

R

R3
, ∇tr = −

R

cR
. (4.170)

Likewise,

∇× A =
µ0

4π

∫ 
∇(R−1) × [j] +

∇tr × [∂j/∂t]

R



 dV ′

= −
µ0

4π

∫ 


R × [j]

R3
+

R × [∂j/∂t]

cR2



 dV ′. (4.171)

Equations (4.164), (4.165), (4.169), and (4.171) can be combined to give

E =
1

4π ε0

∫ 
[ρ]

R

R3
+

[

∂ρ

∂t

]

R

cR2
−

[∂j/∂t]

c2R



 dV ′, (4.172)

which is the time-dependent generalization of Coulomb’s law, and

B =
µ0

4π

∫ 


[j] × R

R3
+

[∂j/∂t] × R

cR2



 dV ′, (4.173)

which is the time-dependent generalization of the Biot-Savart law.

Suppose that the typical variation time-scale of our charges and currents is t0.

Let us define R0 = c t0, which is the distance a light ray travels in time t0. We can

evaluate Eqs. (4.172) and (4.173) in two asymptotic limits: the near field region

R� R0, and the far field region R� R0. In the near field region

|t− tr|

t0
=
R

R0
� 1, (4.174)
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so the difference between retarded time and standard time is relatively small.

This allows us to expand retarded quantities in a Taylor series. Thus,

[ρ] ' ρ+
∂ρ

∂t
(tr − t) +

1

2

∂2ρ

∂t2
(tr − t)2 + · · · , (4.175)

giving

[ρ] ' ρ−
∂ρ

∂t

R

c
+
1

2

∂2ρ

∂t2
R2

c2
+ · · · . (4.176)

Expansion of the retarded quantities in the near field region yields

E ' 1

4π ε0

∫ 



ρR

R3
−
1

2

∂2ρ

∂t2
R

c2R
−
∂j/∂t

c2R
+ · · ·



 dV ′, (4.177)

B ' µ0

4π

∫ 



j × R

R3
−
1

2

(∂2j/∂t2) × R

c2R
+ · · ·



 dV ′. (4.178)

In Eq. (4.177), the first term on the right-hand side corresponds to Coulomb’s law,

the second term is the correction due to retardation effects, and the third term

corresponds to Faraday induction. In Eq. (4.178), the first term on the right-hand

side is the Biot-Savart law, and the second term is the correction due to retarda-

tion effects. Note that the retardation corrections are only of order (R/R0)
2. We

might suppose, from looking at Eqs. (4.172) and (4.173), that the corrections

should be of order R/R0. However, all of the order R/R0 terms canceled out in

the previous expansion. Suppose, then, that we have a d.c. circuit sitting on a

laboratory benchtop. Let the currents in the circuit change on a typical time-scale

of one tenth of a second. In this time, light can travel about 3 × 107 meters, so

R0 ∼ 30, 000 kilometers. The length-scale of the experiment is about one meter,

so R = 1 meter. Thus, the retardation corrections are of order (3× 107)−2 ∼ 10−15.

It is clear that we are fairly safe just using Coulomb’s law, Faraday’s law, and the

Biot-Savart law to analyze the fields generated by this type of circuit.

In the far field region, R� R0, Eqs. (4.172) and (4.173) are dominated by the

terms which vary like R−1, so

E ' −
1

4π ε0

∫
[∂j⊥/∂t]

c2 R
dV ′, (4.179)

B ' µ0

4π

∫
[∂j⊥/∂t] × R

c R2
dV ′, (4.180)
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where

j⊥ = j −
(j · R)

R2
R. (4.181)

Here, use has been made of [∂ρ/∂t] = −[∇ · j] and [∇ · j] = −[∂j/∂t] · R/cR +

O(1/R2). Suppose that our charges and currents are localized to some region in

the vicinity of r ′ = r∗. Let R∗ = r − r∗, with R∗ = |r − r∗|. Suppose that the extent

of the current and charge containing region is much less than R∗. It follows that

retarded quantities can be written

[ρ(r, t)] ' ρ(r, t− R∗/c), (4.182)

etc. Thus, the electric field reduces to

E ' −
1

4π ε0

[∫
∂j⊥/∂t dV ′]

c2R∗
, (4.183)

whereas the magnetic field is given by

B ' 1

4π ε0

[∫
∂j⊥/∂t dV ′]× R∗

c3R 2
∗

. (4.184)

Note that
E

B
= c, (4.185)

and

E · B = 0. (4.186)

This configuration of electric and magnetic fields is characteristic of an electro-

magnetic wave (see Sect. 4.7). Thus, Eqs. (4.183) and (4.184) describe an elec-

tromagnetic wave propagating radially away from the charge and current con-

taining region. Note that the wave is driven by time-varying electric currents.

Now, charges moving with a constant velocity constitute a steady current, so a

non-steady current is associated with accelerating charges. We conclude that ac-

celerating electric charges emit electromagnetic waves. The wave fields, (4.183)

and (4.184), fall off like the inverse of the distance from the wave source. This

behaviour should be contrasted with that of Coulomb or Biot-Savart fields, which

fall off like the inverse square of the distance from the source. The fact that wave

fields attenuate fairly gently with increasing distance from the source is what
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makes astronomy possible. If wave fields obeyed an inverse square law then no

appreciable radiation would reach us from the rest of the Universe.

In conclusion, electric and magnetic fields look simple in the near field region

(they are just Coulomb fields, etc.) and also in the far field region (they are just

electromagnetic waves). Only in the intermediate region, R ∼ R0, do things start

getting really complicated (so we generally do not look in this region!).

4.12 Summary

This marks the end of our theoretical investigation of Maxwell’s equations. Let us

now summarize what we have learned so far. The field equations which govern

electric and magnetic fields are written:

∇ · E =
ρ

ε0
, (4.187)

∇ · B = 0, (4.188)

∇× E = −
∂B

∂t
, (4.189)

∇× B = µ0 j +
1

c2
∂E

∂t
. (4.190)

These equations can be integrated to give
∮

S

E · dS =
1

ε0

∫

V

ρdV, (4.191)

∮

S

B · dS = 0, (4.192)

∮

C

E · dl = −
∂

∂t

∫

S

B · dS, (4.193)

∮

C

B · dl = µ0

∫

S

j · dS +
1

c2
∂

∂t

∫

S

E · dS. (4.194)

Equations (4.188) and (4.189) are automatically satisfied by writing

E = −∇φ−
∂A

∂t
, (4.195)
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B = ∇× A. (4.196)

This prescription is not unique (there are many choices of φ and A which gen-

erate the same fields) but we can make it unique by adopting the following con-

ventions:

φ(r) → 0 as |r| → ∞, (4.197)

and
1

c2
∂φ

∂t
+ ∇ · A = 0. (4.198)

Equations (4.187) and (4.190) reduce to

2
2φ = −

ρ

ε0
, (4.199)

2
2A = −µ0 j. (4.200)

These are driven wave equations of the general form

2
2u ≡



∇2 −
1

c2
∂2

∂t2



u = v. (4.201)

The Green’s function for this equation which satisfies the boundary conditions

and is consistent with causality is

G(r, r ′; t, t ′) = −
1

4π

δ(t− t ′ − |r − r ′|/c)

|r − r ′|
. (4.202)

Thus, the solutions to Eqs. (4.199) and (4.200) are

φ(r, t) =
1

4π ε0

∫
[ρ]

R
dV ′, (4.203)

A(r, t) =
µ0

4π

∫
[j]

R
dV ′, (4.204)

where R = |r − r ′|, and dV ′ = d3r ′, with [A] ≡ A(r ′, t− R/c). These solutions can

be combined with Eqs. (4.195) and (4.196) to give

E(r, t) =
1

4π ε0

∫ 
[ρ]

R

R3
+

[

∂ρ

∂t

]

R

c R2
−

[∂j/∂t]

c2 R



dV ′, (4.205)

B(r, t) =
µ0

4π

∫ 


[j] × R

R3
+

[∂j/∂t] × R

c R2



dV ′. (4.206)
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Equations (4.187)–(4.206) constitute the complete theory of classical electro-

magnetism. We can express the same information in terms of field equations

[Eqs. (4.187)–(4.190)], integrated field equations [Eqs. (4.191)–(4.194)], re-

tarded electromagnetic potentials [Eqs. (4.203) and (4.204)], and retarded elec-

tromagnetic fields [Eqs. (4.205) and (4.206)]. Let us now consider the applica-

tions of this theory.
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5 Electrostatics

5.1 Introduction

In this section, we shall use Maxwell’s equations to investigate the electric fields

generated by stationary charge distributions.

5.2 Electrostatic energy

Consider a collection of N static point charges qi located at position vectors ri
(where i runs from 1 to N). What is the electrostatic energy stored in such a

collection? Another way of asking this is, how much work would we have to do

in order to assemble the charges, starting from an initial state in which they are

all at rest and very widely separated?

We know that a static electric field is conservative, and can consequently be

written in terms of a scalar potential:

E = −∇φ. (5.1)

We also know that the electric force on a charge q is written

f = qE. (5.2)

The work we would have to do against electrical forces in order to move the

charge from point P to point Q is simply

W = −

∫Q

P

f · dl = −q

∫Q

P

E · dl = q

∫Q

P

∇φ · dl = q [φ(Q) − φ(P)] . (5.3)

The negative sign in the above expression comes about because we would have

to exert a force −f on the charge, in order to counteract the force exerted by the

electric field. Recall that the scalar potential generated by a point charge q ′ at

position r ′ is

φ(r) =
1

4π ε0

q ′

|r − r ′|
. (5.4)
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Let us build up our collection of charges one by one. It takes no work to bring

the first charge from infinity, since there is no electric field to fight against. Let

us clamp this charge in position at r1. In order to bring the second charge into

position at r2, we have to do work against the electric field generated by the first

charge. According to Eqs. (5.3) and Eqs. (5.4), this work is given by

W2 =
1

4π ε0

q2 q1

|r2 − r1|
. (5.5)

Let us now bring the third charge into position. Since electric fields and scalar

potentials are superposable, the work done whilst moving the third charge from

infinity to r3 is simply the sum of the works done against the electric fields gen-

erated by charges 1 and 2 taken in isolation:

W3 =
1

4π ε0





q3 q1

|r3 − r1|
+

q3 q2

|r3 − r2|



 . (5.6)

Thus, the total work done in assembling the three charges is given by

W =
1

4π ε0





q2 q1

|r2 − r1|
+

q3 q1

|r3 − r1|
+

q3 q2

|r3 − r2|



 . (5.7)

This result can easily be generalized to N charges:

W =
1

4π ε0

N∑

i=1

N∑

j<i

qi qj

|ri − rj|
. (5.8)

The restriction that j must be less than i makes the above summation rather

messy. If we were to sum without restriction (other than j 6= i) then each pair

of charges would be counted twice. It is convenient to do just this, and then to

divide the result by two. Thus,

W =
1

2

1

4π ε0

N∑

i=1

N∑

j=1
j6=i

qi qj

|ri − rj|
. (5.9)

This is the potential energy (i.e., the difference between the total energy and the

kinetic energy) of a collection of charges. We can think of this as the work needed

151



5 ELECTROSTATICS 5.2 Electrostatic energy

to bring static charges from infinity and assemble them in the required formation.

Alternatively, this is the kinetic energy which would be released if the collection

were dissolved, and the charges returned to infinity. But where is this potential

energy stored? Let us investigate further.

Equation (5.9) can be written

W =
1

2

N∑

i=1

qiφi, (5.10)

where

φi =
1

4π ε0

N∑

j=1
j6=i

qj

|ri − rj|
(5.11)

is the scalar potential experienced by the i th charge due to the other charges in

the distribution.

Let us now consider the potential energy of a continuous charge distribution.

It is tempting to write

W =
1

2

∫

ρφd3r, (5.12)

by analogy with Eqs. (5.10) and (5.11), where

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′ (5.13)

is the familiar scalar potential generated by a continuous charge distribution. Let

us try this out. We know from Maxwell’s equations that

ρ = ε0∇·E, (5.14)

so Eq. (5.12) can be written

W =
ε0

2

∫

φ∇·Ed3r. (5.15)

Vector field theory yields the standard result

∇ · (Eφ) = φ∇·E + E·∇φ. (5.16)
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However, ∇φ = −E, so we obtain

W =
ε0

2

[

∫

∇·(Eφ)d3r +

∫

E2 d3r

]

(5.17)

Application of Gauss’ theorem gives

W =
ε0

2

(

∮

S

φE · dS +

∫

V

E2 dV

)

, (5.18)

where V is some volume which encloses all of the charges, and S is its bounding

surface. Let us assume that V is a sphere, centred on the origin, and let us take

the limit in which the radius r of this sphere goes to infinity. We know that, in

general, the electric field at large distances from a bounded charge distribution

looks like the field of a point charge, and, therefore, falls off like 1/r2. Likewise,

the potential falls off like 1/r. However, the surface area of the sphere increases

like r2. Hence, it is clear that, in the limit as r → ∞, the surface integral in

Eq. (5.18) falls off like 1/r, and is consequently zero. Thus, Eq. (5.18) reduces to

W =
ε0

2

∫

E2 d3r, (5.19)

where the integral is over all space. This is a very nice result. It tells us that

the potential energy of a continuous charge distribution is stored in the electric

field. Of course, we now have to assume that an electric field possesses an energy

density

U =
ε0

2
E2. (5.20)

We can easily check that Eq. (5.19) is correct. Suppose that we have a charge

Q which is uniformly distributed within a sphere of radius a. Let us imagine

building up this charge distribution from a succession of thin spherical layers of

infinitesimal thickness. At each stage, we gather a small amount of charge from

infinity, and spread it over the surface of the sphere in a thin layer from r to

r + dr. We continue this process until the final radius of the sphere is a. If q(r)

is the charge in the sphere when it has attained radius r, then the work done in

bringing a charge dq to it is

dW =
1

4π ε0

q(r)dq

r
. (5.21)
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This follows from Eq. (5.5), since the electric field generated by a spherical charge

distribution (outside itself) is the same as that of a point charge q(r) located at

the origin (r = 0) (see later). If the constant charge density in the sphere is ρ

then

q(r) =
4

3
π r3 ρ, (5.22)

and

dq = 4π r2 ρdr. (5.23)

Thus, Eq. (5.21) becomes

dW =
4π

3 ε0
ρ2 r4 dr. (5.24)

The total work needed to build up the sphere from nothing to radius a is plainly

W =
4π

3 ε0
ρ2

∫a

0

r4 dr =
4π

15 ε0
ρ2 a5. (5.25)

This can also be written in terms of the total charge Q = (4/3)πa3 ρ as

W =
3

5

Q2

4π ε0 a
. (5.26)

Now that we have evaluated the potential energy of a spherical charge distri-

bution by the direct method, let us work it out using Eq. (5.19). We assume that

the electric field is radial and spherically symmetric, so E = Er(r) r̂. Application

of Gauss’ law, ∮

S

E · dS =
1

ε0

∫

V

ρdV, (5.27)

where V is a sphere of radius r, yields

Er(r) =
Q

4πε0

r

a3
(5.28)

for r < a, and

Er(r) =
Q

4πε0 r2
(5.29)
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for r ≥ a. Note that the electric field generated outside the charge distribution is

the same as that of a point chargeQ located at the origin, r = 0. Equations (5.19),

(5.28), and (5.29) yield

W =
Q2

8π ε0





1

a6

∫a

0

r4 dr+

∫∞

a

dr

r2



 , (5.30)

which reduces to

W =
Q2

8π ε0 a

(

1

5
+ 1

)

=
3

5

Q2

4π ε0 a
. (5.31)

Thus, Eq. (5.19) gives the correct answer.

The reason we have checked Eq. (5.19) so carefully is that on close inspection

it is found to be inconsistent with Eq. (5.10), from which it was supposedly de-

rived! For instance, the energy given by Eq. (5.19) is manifestly positive definite,

whereas the energy given by Eq. (5.10) can be negative (it is certainly nega-

tive for a collection of two point charges of opposite sign). The inconsistency

was introduced into our analysis when we replaced Eq. (5.11) by Eq. (5.13).

In Eq. (5.11), the self-interaction of the i th charge with its own electric field is

specifically excluded, whereas it is included in Eq. (5.13). Thus, the potential

energies (5.10) and (5.19) are different, because in the former we start from

ready-made point charges, whereas in the latter we build up the whole charge

distribution from scratch. Thus, if we were to work out the potential energy of a

point charge distribution using Eq. (5.19) we would obtain the energy (5.10) plus

the energy required to assemble the point charges. What is the energy required to

assemble a point charge? In fact, it is infinite. To see this, let us suppose, for the

sake of argument, that our point charges are actually made of charge uniformly

distributed over a small sphere of radius a. According to Eq. (5.26), the energy

required to assemble the i th point charge is

Wi =
3

5

q 2i
4π ε0 a

. (5.32)

We can think of this as the self-energy of the i th charge. Thus, we can write

W =
ε0

2

∫

E2 d3r =
1

2

N∑

i=1

qiφi +

N∑

i=1

Wi (5.33)
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which enables us to reconcile Eqs. (5.10) and (5.19). Unfortunately, if our point

charges really are point charges then a → 0, and the self-energy of each charge

becomes infinite. Thus, the potential energies predicted by Eqs. (5.10) and (5.19)

differ by an infinite amount. What does this all mean? We have to conclude that

the idea of locating electrostatic potential energy in the electric field is inconsis-

tent with the existence of point charges. One way out of this difficulty would

be to say that all elementary charges, such as electrons, are not points, but in-

stead small distributions of charge. Alternatively, we could say that our classical

theory of electromagnetism breaks down on very small length-scales due to quan-

tum effects. Unfortunately, the quantum mechanical version of electromagnetism

(quantum electrodynamics, or QED, for short) suffers from the same infinities

in the self-energies of particles as the classical version. There is a prescription,

called renormalization, for steering round these infinities, and getting finite an-

swers which agree with experiments to extraordinary accuracy. However, nobody

really understands why this prescription works. The problem of the infinite self-

energies of elementary charged particles is still unresolved.

5.3 Ohm’s law

We all know the simplest version of Ohm’s law:

V = I R, (5.34)

where V is the voltage drop across a resistor of resistance R when a current I

flows through it. Let us generalize this law so that it is expressed in terms of

E and j, rather than V and I. Consider a length l of a conductor of uniform

cross-sectional area A with a current I flowing down it. In general, we expect

the electrical resistance of the conductor to be proportional to its length, and

inversely proportional to its area (i.e., it is harder to push an electrical current

down a long rather than a short wire, and it is easier to push a current down a

wide rather than a narrow conducting channel.) Thus, we can write

R = η
l

A
. (5.35)
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The constant η is called the resistivity, and is measured in units of ohm-meters.

Ohm’s law becomes

V = η
l

A
I. (5.36)

However, I/A = jz (supposing that the conductor is aligned along the z-axis) and

V/l = Ez, so the above equation reduces to

Ez = η jz. (5.37)

There is nothing special about the z-axis (in an isotropic conducting medium), so

the previous formula immediately generalizes to

E = η j. (5.38)

This is the vector form of Ohm’s law.

A charge q which moves through a voltage drop V acquires an energy qV

from the electric field. In a resistor, this energy is dissipated as heat. This type

of heating is called ohmic heating. Suppose that N charges per unit time pass

through a resistor. The current flowing is obviously I = Nq. The total energy

gained by the charges, which appears as heat inside the resistor, is

P = NqV = I V (5.39)

per unit time. Thus, the heating power is

P = I V = I2 R =
V2

R
. (5.40)

Equations (5.39) and (5.40) generalize to

P = j · E = η j2, (5.41)

where P is now the power dissipated per unit volume in a resistive medium.

5.4 Conductors

Most (but not all) electrical conductors obey Ohm’s law. Such conductors are

termed ohmic. Suppose that we apply an electric field to an ohmic conductor.
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What is going to happen? According to Eq. (5.38), the electric field drives cur-

rents. These redistribute the charge inside the conductor until the original electric

field is canceled out. At this point, the currents stop flowing. It might be objected

that the currents could keep flowing in closed loops. According to Ohm’s law, this

would require a non-zero e.m.f.,
∮

E ·dl, acting around each loop (unless the con-

ductor is a superconductor, with η = 0). However, we know that in steady-state
∮

C

E · dl = 0 (5.42)

around any closed loop C. This proves that a steady-state e.m.f. acting around a

closed loop inside a conductor is impossible. The only other alternative is

j = E = 0 (5.43)

inside a conductor. It immediately follows from the Maxwell equation, ∇ · E =

ρ/ε0, that

ρ = 0. (5.44)

So, there are no electric charges in the interior of a conductor. But, how can

a conductor cancel out an applied electric field if it contains no charges? The

answer is that all of the charges reside on the surface of the conductor. In reality,

the charges lie within one or two atomic layers of the surface (see any textbook

on solid-state physics). The difference in scalar potential between two points P

and Q is simply

φ(Q) − φ(P) =

∫Q

P

∇φ · dl = −

∫Q

P

E · dl. (5.45)

However, if P and Q lie inside the same conductor then it is clear from Eq. (5.45)

that the potential difference between P and Q is zero. This is true no matter

where P and Q are situated inside the conductor, so we conclude that the scalar

potential must be uniform inside a conductor. A corollary of this is that the surface

of a conductor is an equipotential (i.e., φ = constant) surface.

Not only is the electric field inside a conductor zero. It is also possible to

demonstrate that the field within an empty cavity lying inside a conductor is also

zero, provided that there are no charges within the cavity. Let us, first of all,
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Figure 41:

apply Gauss’ law to a surface S which surrounds the cavity, but lies wholly in the

conducting material (see Fig. 41). Since the electric field is zero in a conductor, it

follows that zero net charge is enclosed by S. This does not preclude the possibil-

ity that there are equal amounts of positive and negative charges distributed on

the inner surface of the conductor. However, we can easily rule out this possibility

using the steady-state relation
∮

C

E · dl = 0, (5.46)

for any closed loop C. If there are any electric field-lines inside the cavity then

they must run from the positive to the negative surface charges. Consider a loopC

which straddles the cavity and the conductor, such as the one shown in Fig. 41. In

the presence of field-lines, it is clear that the line integral of E along that portion

of the loop which lies inside the cavity is non-zero. However, the line integral of

E along that portion of the loop which runs through the conducting material is

obviously zero (since E = 0 inside a conductor). Thus, the line integral of the

field around the closed loop C is non-zero. This, clearly contradicts Eq. (5.46).

In fact, this equation implies that the line integral of the electric field along any

path which runs through the cavity, from one point on the interior surface of the

conductor to another, is zero. This can only be the case if the electric field itself
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is zero everywhere inside the cavity. There is one proviso to this argument. The

electric field inside a cavity is only zero if the cavity contains no charges. If the

cavity contains charges then our argument fails because it is possible to envisage

that the line integral of the electric field along many different paths across the

cavity could be zero without the fields along these paths necessarily being zero

(this argument is somewhat inexact: we shall improve it later on).

We have shown that if a cavity is completely enclosed by a conductor then no

stationary distribution of charges outside can ever produce any fields inside. So,

we can shield a piece of electrical equipment from stray external electric fields by

placing it inside a metal can. Using similar arguments to those given above, we

can also show that no static distribution of charges inside a closed conductor can

ever produce a field outside the conductor. Clearly, shielding works both ways!

conductor

vacuum
E

pill−box
Gaussian

Figure 42:

Let us consider some small region on the surface of a conductor. Suppose that

the local surface charge density is σ, and that the electric field just outside the

conductor is E. Note that this field must be directed normal to the surface of the

conductor. Any parallel component would be shorted out by surface currents.

Another way of saying this is that the surface of a conductor is an equipotential

surface. We know that ∇φ is always perpendicular to equipotential surfaces, so

E = −∇φ must be locally perpendicular to a conducting surface. Let us use
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Gauss’ law, ∮

S

E · dS =
1

ε0

∫

V

ρdV, (5.47)

where V is a so-called Gaussian pill-box (see Fig. 42). This is a pill-box shaped

volume whose two ends are aligned normal to the surface of the conductor, with

the surface running between them, and whose sides are tangential to the surface

normal. It is clear that E is parallel to the sides of the box, so the sides make

no contribution to the surface integral. The end of the box which lies inside the

conductor also makes no contribution, since E = 0 inside a conductor. Thus,

the only non-zero contribution to the surface integral comes from the end lying

in free space. This contribution is simply E⊥A, where E⊥ denotes an outward

pointing (from the conductor) normal electric field, and A is the cross-sectional

area of the box. The charge enclosed by the box is simply σA, from the definition

of a surface charge density. Thus, Gauss’ law yields

E⊥ =
σ

ε0
(5.48)

as the relationship between the normal electric field immediately outside a con-

ductor and the surface charge density.

E

A
σ

E

Figure 43:

Let us look at the electric field generated by a sheet charge distribution a little

more carefully. Suppose that the charge per unit area is σ. By symmetry, we

expect the field generated below the sheet to be the mirror image of that above
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the sheet (at least, locally). Thus, if we integrate Gauss’ law over a pill-box of

cross sectional area A, as shown in Fig. 43, then the two ends both contribute

EsheetA to the surface integral, where Esheet is the normal electric field generated

above and below the sheet. The charge enclosed by the pill-box is just σA. Thus,

Gauss’ law yields a symmetric electric field

Esheet = +
σ

2 ε0
above, (5.49)

Esheet = −
σ

2 ε0
below. (5.50)

So, how do we get the asymmetric electric field of a conducting surface, which

is zero immediately below the surface (i.e., inside the conductor) and non-zero

immediately above it? Clearly, we have to add in an external field (i.e., a field

which is not generated locally by the sheet charge). The requisite field is

Eext =
σ

2 ε0
(5.51)

both above and below the charge sheet. The total field is the sum of the field

generated locally by the charge sheet and the external field. Thus, we obtain

Etotal = +
σ

ε0
above, (5.52)

Etotal = 0 below, (5.53)

which is in agreement with Eq. (5.48).

The external field exerts a force on the charge sheet. The field generated

locally by the sheet itself obviously cannot exert a force (the sheet cannot exert

a force on itself!). The force per unit area acting on the surface of the conductor

always acts outward, and is given by

p = σEext =
σ2

2 ε0
. (5.54)

Thus, there is an electrostatic pressure acting on any charged conductor. This

effect can be visualized by charging up soap bubbles: the additional electrostatic

pressure eventually causes them to burst. The electrostatic pressure can also be

written

p =
ε0

2
E2, (5.55)
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where E is the field strength immediately above the surface of the conductor.

Note that, according to the above formula, the electrostatic pressure is equiva-

lent to the energy density of the electric field immediately outside the conductor.

This is not a coincidence. Suppose that the conductor expands by an average dis-

tance dx, due to the electrostatic pressure. The electric field is excluded from the

region into which the conductor expands. The volume of this region dV = Adx,

where A is the surface area of the conductor. Thus, the energy of the electric

field decreases by an amount dE = UdV = (ε0/2)E
2 dV , where U is the en-

ergy density of the field. This decrease in energy can be ascribed to the work

which the field does on the conductor in order to make it expand. This work is

dW = pAdx, where p is the force per unit area the field exerts on the conductor.

Thus, dE = dW, from energy conservation, giving

p =
ε0

2
E2. (5.56)

This technique for calculating a force given an expression for the energy of a

system as a function of some adjustable parameter is called the principle of virtual

work, and is very useful.

We have seen that an electric field is excluded from the inside of the conductor,

but not from the outside, giving rise to a net outward force. We can account for

this by saying that the field exerts a negative pressure (ε0/2)E
2 on the conductor.

We know that if we evacuate a metal can then the pressure difference between the

inside and the outside eventually causes it to implode. Likewise, if we place the

can in a strong electric field then the pressure difference between the inside and

the outside will eventually cause it to explode. How big a field do we need before

the electrostatic pressure difference is the same as that obtained by evacuating

the can? In other words, what field exerts a negative pressure of one atmosphere

(i.e., 105 newtons per meter squared) on conductors? The answer is a field of

strength E ∼ 108 volts per meter. Fortunately, this is a rather large field, so there

is no danger of your car exploding when you turn on the stereo!
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Figure 44:

5.5 Boundary conditions on the electric field

What are the most general boundary conditions satisfied by the electric field at

the interface between two media: e.g., the interface between a vacuum and a

conductor? Consider an interface P between two media A and B. Let us, first of

all, apply Gauss’ law, ∮

S

E · dS =
1

ε0

∫

V

ρdV, (5.57)

to a Gaussian pill-box S of cross-sectional area A whose two ends are locally

parallel to the interface (see Fig. 44). The ends of the box can be made arbitrarily

close together. In this limit, the flux of the electric field out of the sides of the

box is obviously negligible. The only contribution to the flux comes from the two

ends. In fact, ∮

S

E · dS = (E⊥A − E⊥B)A, (5.58)

where E⊥A is the perpendicular (to the interface) electric field in medium A at

the interface, etc. The charge enclosed by the pill-box is simply σA, where σ is

the sheet charge density on the interface. Note that any volume distribution of

charge gives rise to a negligible contribution to the right-hand side of the above

equation, in the limit where the two ends of the pill-box are very closely spaced.

Thus, Gauss’ law yields

E⊥A − E⊥B =
σ

ε0
(5.59)
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at the interface: i.e., the presence of a charge sheet on an interface causes a

discontinuity in the perpendicular component of the electric field. What about

the parallel electric field? Let us apply Faraday’s law to a rectangular loop C

whose long sides, length l, run parallel to the interface,
∮

C

E · dl = −
∂

∂t

∫

S

B · dS (5.60)

(see Fig. 44). The length of the short sides is assumed to be arbitrarily small. The

dominant contribution to the loop integral comes from the long sides:
∮

C

E · dl = (E‖A − E‖B) l, (5.61)

where E‖A is the parallel (to the interface) electric field in medium A at the

interface, etc. The flux of the magnetic field through the loop is approximately

B⊥A, where B⊥ is the component of the magnetic field which is normal to the

loop, and A is the area of the loop. But, A → 0 as the short sides of the loop are

shrunk to zero. So, unless the magnetic field becomes infinite (we shall assume

that it does not), the flux also tends to zero. Thus,

E‖A − E‖B = 0 : (5.62)

i.e., there can be no discontinuity in the parallel component of the electric field

across an interface.

5.6 Capacitors

We can store electrical charge on the surface of a conductor. However, electric

fields will be generated immediately above this surface. The conductor can only

successfully store charge if it is electrically insulated from its surroundings. Air

is a very good insulator. Unfortunately, air ceases to be an insulator when the

electric field-strength through it exceeds some critical value which is about Ecrit ∼

106 volts per meter. This phenomenon, which is called break-down, is associated

with the formation of sparks. The most well-known example of the break-down

of air is during a lightning strike. Clearly, a good charge storing device is one
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which holds a large amount of charge but only generates small electric fields.

Such a device is called a capacitor.

Consider two thin, parallel, conducting plates of cross-sectional area A which

are separated by a small distance d (i.e., d �
√
A). Suppose that each plate

carries an equal and opposite charge Q. We expect this charge to spread evenly

over the plates to give an effective sheet charge density σ = ±Q/A on each

plate. Suppose that the upper plate carries a positive charge and that the lower

plate carries a negative charge. According to Eqs. (5.49) and (5.50), the field

generated by the upper plate is normal to the plate and of magnitude

Eupper = +
σ

2ε0
above, (5.63)

Eupper = −
σ

2ε0
below. (5.64)

Likewise, the field generated by the lower plate is

Elower = −
σ

2ε0
above, (5.65)

Elower = +
σ

2ε0
below. (5.66)

Note that we are neglecting any “leakage” of the field at the edges of the plates.

This is reasonable if the plates are closely spaced. The total field is the sum of the

two fields generated by the upper and lower plates. Thus, the net field is normal

to the plates, and of magnitude

E⊥ =
σ

ε0
between, (5.67)

E⊥ = 0 otherwise. (5.68)

Since the electric field is uniform, the potential difference between the plates is

simply

V = E⊥ d =
σd

ε0
. (5.69)

It is conventional to measure the capacity of a conductor, or set of conductors, to

store charge, but generate small electric fields, in terms of a parameter called the
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capacitance. This is usually denoted C. The capacitance of a charge storing device

is simply the ratio of the charge stored to the potential difference generated by

the charge. Thus,

C =
Q

V
. (5.70)

Clearly, a good charge storing device has a high capacitance. Incidentally, ca-

pacitance is measured in coulombs per volt, or farads. This is a rather unwieldy

unit, since good capacitors typically have capacitances which are only about one

millionth of a farad. For a parallel plate capacitor, it is clear that

C =
σA

V
=
ε0A

d
. (5.71)

Note that the capacitance only depends on geometric quantities, such as the area

and spacing of the plates. This is a consequence of the superposability of electric

fields. If we double the charge on conductors then we double the electric fields

generated around them, and we, therefore, double the potential difference be-

tween the conductors. Thus, the potential difference between the conductors is

always directly proportional to the charge carried: the constant of proportionality

(the inverse of the capacitance) can only depend on geometry.

Suppose that the charge ±Q on each plate is built up gradually by transferring

small amounts of charge from one plate to another. If the instantaneous charge

on the plates is ±q, and an infinitesimal amount of positive charge dq is trans-

ferred from the negatively charged plate to the positively charge plate, then the

work done is dW = V dq = qdq/C, where V is the instantaneous voltage differ-

ence between the plates. Note that the voltage difference is such that it opposes

any increase in the charge on either plate. The total work done in charging the

capacitor is

W =
1

C

∫Q

0

qdq =
Q2

2C
=
1

2
CV2, (5.72)

where use has been made of Eq. (5.70). The energy stored in the capacitor is the

same as the work required to charge up the capacitor. Thus,

W =
1

2
CV2. (5.73)

This is a general result which holds for all types of capacitor.
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The energy of a charged parallel plate capacitor is actually stored in the electric

field between the plates. This field is of approximately constant magnitude E⊥ =

V/d, and occupies a region of volume Ad. Thus, given the energy density of an

electric field, U = (ε0/2)E
2, the energy stored in the electric field is

W =
ε0

2

V2

d2
Ad =

1

2
CV2, (5.74)

where use has been made of Eq. (5.71). Note that Eqs. (5.72) and (5.74) agree.

We all know that if we connect a capacitor across the terminals of a battery then

a transient current flows as the capacitor charges up. The capacitor can then

be placed to one side, and, some time later, the stored charge can be used: for

instance, to transiently light a bulb in an electrical circuit. What is interesting

here is that the energy stored in the capacitor is stored as an electric field, so

we can think of a capacitor as a device which either stores energy in, or extracts

energy from, an electric field.

The idea, which we discussed earlier, that an electric field exerts a negative

pressure (ε0/2)E
2 on conductors immediately suggests that the two plates in a

parallel plate capacitor attract one another with a mutual force

F =
ε0

2
E 2
⊥ A =

1

2

CV2

d
. (5.75)

It is not necessary to have two oppositely charged conductors in order to make

a capacitor. Consider an isolated sphere of radius a which carries a charge Q.

The radial electric field generated outside the sphere is given by

Er(r > a) =
Q

4πε0 r2
. (5.76)

The potential difference between the sphere and infinity, or, more realistically,

some large, relatively distant reservoir of charge such as the Earth, is

V =
Q

4πε0 a
. (5.77)

Thus, the capacitance of the sphere is

C =
Q

V
= 4π ε0 a. (5.78)
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The energy of a sphere when it carries a charge Q is again given by (1/2)CV 2. It

can easily be demonstrated that this is really the energy contained in the electric

field around the sphere.

Suppose that we have two spheres of radii a and b, respectively, which are

connected by an electric wire. The wire allows charge to move back and forth

between the spheres until they reach the same potential (with respect to infinity).

Let Q be the charge on the first sphere and Q ′ the charge on the second sphere.

Of course, the total chargeQ0 = Q+Q ′ carried by the two spheres is a conserved

quantity. It follows from Eq. (5.77) that

Q

Q0
=

a

a+ b
, (5.79)

Q ′

Q0
=

b

a+ b
. (5.80)

Note that if one sphere is much smaller than the other one, e.g., b� a, then the

large sphere grabs most of the charge:

Q

Q ′ '
a

b
� 1. (5.81)

The ratio of the electric fields generated just above the surfaces of the two spheres

follows from Eqs. (5.76) and (5.81):

Eb

Ea
' a

b
. (5.82)

If b� a, then the field just above the smaller sphere is far larger than that above

the larger sphere. Equation (5.82) is a simple example of a far more general rule.

The electric field above some point on the surface of a conductor is inversely

proportional to the local radius of curvature of the surface.

It is clear that if we wish to store significant amounts of charge on a con-

ductor then the surface of the conductor must be made as smooth as possible.

Any sharp spikes on the surface will inevitably have comparatively small radii

of curvature. Intense local electric fields are generated in these regions. These

can easily exceed the critical field for the break-down of air, leading to sparking
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and the eventual loss of the charge on the conductor. Sparking can also be very

destructive because the associated electric currents flow through very localized

regions giving rise to intense ohmic heating.

As a final example, consider two co-axial conducting cylinders of radii a and

b, where a < b. Suppose that the charge per unit length carried by the outer

and inner cylinders is +q and −q, respectively. We can safely assume that E =

Er(r) r̂, by symmetry (adopting standard cylindrical polar coordinates). Let us

apply Gauss’ law to a cylinder of radius r, co-axial with the conductors, and of

length l. For a < r < b, we find that

2π r l Er(r) =
q l

ε0
, (5.83)

so

Er =
q

2πε0 r
(5.84)

for a < r < b. It is fairly obvious that Er = 0 if r is not in the range a to b. The

potential difference between the inner and outer cylinders is

V = −

∫ inner

outer

E · dl =

∫outer

inner

E · dl

=

∫b

a

Er dr =
q

2πε0

∫b

a

dr

r
, (5.85)

so

V =
q

2πε0
ln
b

a
. (5.86)

Thus, the capacitance per unit length of the two cylinders is

C =
q

V
=
2π ε0

lnb/a
. (5.87)

5.7 Poisson’s equation

We know that in steady-state we can write

E = −∇φ, (5.88)
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with the scalar potential satisfying Poisson’s equation:

∇2φ = −
ρ

ε0
. (5.89)

We even know the general solution to this equation:

φ(r) =
1

4π ε0

∫
ρ(r ′)

|r − r ′|
d3r ′. (5.90)

So, what else is there to say about Poisson’s equation? Well, consider a positive

(say) point charge in the vicinity of an uncharged, insulated, conducting sphere.

The charge attracts negative charges to the near side of the sphere, and repels

positive charges to the far side. The surface charge distribution induced on the

sphere is such that it is maintained at a constant electrical potential. We now have

a problem. We cannot use formula (5.90) to work out the potential φ(r) around

the sphere, since we do not know how the charges induced on the conducting

surface are distributed. The only things which we know about the surface of the

sphere are that it is an equipotential surface, and carries zero net charge. Clearly,

in the presence of conducting surfaces the solution (5.90) to Poisson’s equation

is completely useless. Let us now try to develop some techniques for solving Pois-

son’s equation which allow us to solve real problems (which invariably involve

conductors).

5.8 The uniqueness theorem

We have already seen the great value of the uniqueness theorem for Poisson’s

equation (or Laplace’s equation) in our discussion of Helmholtz’s theorem (see

Sect. 3.11). Let us now examine this theorem in detail.

Consider a volume V bounded by some surface S. Suppose that we are given

the charge density ρ throughout V , and the value of the scalar potential φS on S.

Is this sufficient information to uniquely specify the scalar potential throughout

V? Suppose, for the sake of argument, that the solution is not unique. Let there

be two potentials φ1 and φ2 which satisfy

∇2φ1 = −
ρ

ε0
, (5.91)
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∇2φ2 = −
ρ

ε0
(5.92)

throughout V , and

φ1 = φS, (5.93)

φ2 = φS (5.94)

on S. We can form the difference between these two potentials:

φ3 = φ1 − φ2. (5.95)

The potential φ3 clearly satisfies

∇2φ3 = 0 (5.96)

throughout V , and

φ3 = 0 (5.97)

on S.

According to vector field theory,

∇ · (φ3∇φ3) ≡ (∇φ3)2 + φ3∇2φ3. (5.98)

Thus, using Gauss’ theorem
∫

V

{
(∇φ3)2 + φ3∇2φ3

}
dV =

∮

S

φ3∇φ3 · dS. (5.99)

But, ∇2φ3 = 0 throughout V , and φ3 = 0 on S, so the above equation reduces to
∫

V

(∇φ3)2 dV = 0. (5.100)

Note that (∇φ3)2 is a positive definite quantity. The only way in which the volume

integral of a positive definite quantity can be zero is if that quantity itself is zero

throughout the volume. This is not necessarily the case for a non-positive definite

quantity: we could have positive and negative contributions from various regions

inside the volume which cancel one another out. Thus, since (∇φ3)2 is positive

definite, it follows that

φ3 = constant (5.101)
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throughout V . However, we know that φ3 = 0 on S, so we get

φ3 = 0 (5.102)

throughout V . In other words,

φ1 = φ2 (5.103)

throughout V and on S. Our initial assumption that φ1 and φ2 are two different

solutions of Poisson’s equation, satisfying the same boundary conditions, turns

out to be incorrect.

The fact that the solutions to Poisson’s equation are unique is very useful. It

means that if we find a solution to this equation—no matter how contrived the

derivation—then this is the only possible solution. One immediate use of the

uniqueness theorem is to prove that the electric field inside an empty cavity in

a conductor is zero. Recall that our previous proof of this was rather involved,

and was also not particularly rigorous (see Sect. 5.4). We know that the interior

surface of the conductor is at some constant potential V , say. So, we have φ = V

on the boundary of the cavity, and ∇2φ = 0 inside the cavity (since it contains

no charges). One rather obvious solution to these equations is φ = V throughout

the cavity. Since the solutions to Poisson’s equation are unique, this is the only

solution. Thus,

E = −∇φ = −∇V = 0 (5.104)

inside the cavity.

Suppose that some volume V contains a number of conductors. We know that

the surface of each conductor is an equipotential surface, but, in general, we do

not know what potential each surface is at (unless we are specifically told that it

is earthed, etc.). However, if the conductors are insulated it is plausible that we

might know the charge on each conductor. Suppose that there are N conductors,

each carrying a charge Qi (i = 1 to N), and suppose that the region V con-

taining these conductors is filled by a known charge density ρ, and bounded by

some surface S which is either infinity or an enclosing conductor. Is this enough

information to uniquely specify the electric field throughout V?

Well, suppose that it is not enough information, so that there are two fields E1
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and E2 which satisfy

∇ · E1 =
ρ

ε0
, (5.105)

∇ · E2 =
ρ

ε0
(5.106)

throughout V , with
∮

Si

E1 · dSi =
Qi

ε0
, (5.107)

∮

Si

E2 · dSi =
Qi

ε0
(5.108)

on the surface of the ith conductor, and, finally,
∮

S

E1 · dS =
Qtotal

ε0
, (5.109)

∮

S

E2 · dS =
Qtotal

ε0
(5.110)

over the bounding surface, where

Qtotal =

N∑

i=1

Qi +

∫

V

ρdV (5.111)

is the total charge contained in volume V .

Let us form the difference field

E3 = E1 − E2. (5.112)

It is clear that

∇ · E3 = 0 (5.113)

throughout V , and ∮

Si

E3 · dSi = 0 (5.114)

for all i, with ∮

S

E3 · dS = 0. (5.115)
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Now, we know that each conductor is at a constant potential, so if

E3 = −∇φ3, (5.116)

then φ3 is a constant on the surface of each conductor. Furthermore, if the outer

surface S is infinity then φ1 = φ2 = φ3 = 0 on this surface. If the outer surface

is an enclosing conductor then φ3 is a constant on this surface. Either way, φ3 is

constant on S.

Consider the vector identity

∇ · (φ3 E3) ≡ φ3∇ · E3 + E3 · ∇φ3. (5.117)

We have ∇ · E3 = 0 throughout V , and ∇φ3 = −E3, so the above identity reduces

to

∇ · (φ3 E3) = −E 2
3 (5.118)

throughout V . Integrating over V , and making use of Gauss’ theorem, yields

∫

V

E 2
3 dV = −

N∑

i=1

∮

Si

φ3 E3 · dSi −

∮

S

φ3 E3 · dS. (5.119)

However, φ3 is a constant on the surfaces Si and S. So, making use of Eqs. (5.114)

and (5.115), we obtain ∫

V

E 2
3 dV = 0. (5.120)

Of course, E 2
3 is a positive definite quantity, so the above relation implies that

E3 = 0 (5.121)

throughout V: i.e., the fields E1 and E2 are identical throughout V .

For a general electrostatic problem involving charges and conductors, it is clear

that if we are given either the potential at the surface of each conductor or the

charge carried by each conductor (plus the charge density throughout the vol-

ume, etc.) then we can uniquely determine the electric field. There are many

other uniqueness theorems which generalize this result still further: i.e., we could

be given the potential of some of the conductors and the charge carried by the

others, and the solution would still be unique.
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At this point, it is worth noting that there are also uniqueness theorems as-

sociated with magnetostatics. For instance, if the current density, j, is specified

throughout some volume V , and either the magnetic field, B, or the vector poten-

tial, A, is specified on the bounding surface S, then the magnetic field is uniquely

determined throughout V and on S. The proof of this proposition proceeds along

the usual lines. Suppose that the magnetic field is not uniquely determined. In

other words, suppose there are two magnetic fields, B1 and B2, satisfying

∇× B1 = µ0 j, (5.122)

∇× B2 = µ0 j, (5.123)

throughout V . Suppose, further, that either B1 = B2 = BS or A1 = A2 = AS on S.

Forming the difference field, B3 = B1 − B2, we have

∇× B3 = 0 (5.124)

throughout V , and either B3 = 0 or A3 = 0 on S. Now, according to vector field

theory,
∫

V

[

(∇× U)2 − U · ∇ ×∇× U
]

dV ≡
∮

S

U × (∇× U) · dS. (5.125)

Setting U = A3, and using B3 = ∇× A3 and Eq. (5.124), we obtain
∫

V

B 23 dV =

∮

S

A3 × B3 · dS. (5.126)

However, we know that either B3 or A3 is zero on S. Hence, we obtain
∫

V

B 23 dV = 0. (5.127)

Since, B 23 is positive definite, the only way in which the above equation can be

satisfied is if B3 is zero throughout V . Hence, B1 = B2 throughout V , and the

solution is therefore unique.

5.9 One-dimensional solution of Poisson’s equation

So, how do we actually solve Poisson’s equation,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −

ρ(x, y, z)

ε0
, (5.128)
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in practice? In general, the answer is that we use a computer. However, there

are a few situations, possessing a high degree of symmetry, where it is possible to

find analytic solutions. Let us discuss some of these solutions.

Suppose, first of all, that there is no variation of quantities in (say) the y- and

z-directions. In this case, Poisson’s equation reduces to an ordinary differential

equation in x, the solution of which is relatively straight-forward. Consider, for

instance, a vacuum diode, in which electrons are emitted from a hot cathode and

accelerated towards an anode, which is held at a large positive potential V0 with

respect to the cathode. We can think of this as an essentially one-dimensional

problem. Suppose that the cathode is at x = 0 and the anode at x = d. Poisson’s

equation takes the form
d2φ

dx2
= −

ρ(x)

ε0
, (5.129)

where φ(x) satisfies the boundary conditions φ(0) = 0 and φ(d) = V0. By energy

conservation, an electron emitted from rest at the cathode has an x-velocity v(x)

which satisfies
1

2
me v

2(x) − eφ(x) = 0. (5.130)

Finally, in a steady-state, the electric current I (between the anode and cathode)

is independent of x (otherwise, charge will build up at some points). In fact,

I = −ρ(x) v(x)A, (5.131)

where A is the cross-sectional area of the diode. The previous three equations

can be combined to give

d2φ

dx2
=

I

ε0A

(

me

2 e

)1/2

φ−1/2. (5.132)

The solution of the above equation which satisfies the boundary conditions is

φ = V0

(

x

d

)4/3

, (5.133)

with

I =
4

9

ε0A

d2

(

2 e

me

)1/2

V
3/2
0 . (5.134)
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This relationship between the current and the voltage in a vacuum diode is called

the Child-Langmuir law.

Let us now consider the solution of Poisson’s equation in more than one di-

mension.

5.10 The method of images

Suppose that we have a point charge q held a distance d from an infinite, grounded,

conducting plate. Let the plate lie in the x-y plane, and suppose that the point

charge is located at coordinates (0, 0, d). What is the scalar potential above the

plane? This is not a simple question because the point charge induces surface

charges on the plate, and we do not know how these are distributed.

What do we know in this problem? We know that the conducting plate is

an equipotential surface. In fact, the potential of the plate is zero, since it is

grounded. We also know that the potential at infinity is zero (this is our usual

boundary condition for the scalar potential). Thus, we need to solve Poisson’s

equation in the region z > 0, for a single point charge q at position (0, 0, d),

subject to the boundary conditions

φ(z = 0) = 0, (5.135)

and

φ → 0 (5.136)

as x2 + y2 + z2 → ∞. Let us forget about the real problem, for a moment, and

concentrate on a slightly different one. We refer to this as the analogue problem.

In the analogue problem, we have a charge q located at (0, 0, d) and a charge

−q located at (0, 0, -d), with no conductors present. We can easily find the scalar

potential for this problem, since we know where all the charges are located. We

get

φanalogue(x, y, z) =
1

4π ε0

{
q

√

x2 + y2 + (z− d)2
−

q
√

x2 + y2 + (z+ d)2

}

.

(5.137)
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Note, however, that

φanalogue(z = 0) = 0, (5.138)

and

φanalogue → 0 (5.139)

as x2+y2+z2 → ∞. In addition, φanalogue satisfies Poisson’s equation for a charge

at (0, 0, d), in the region z > 0. Thus, φanalogue is a solution to the problem posed

earlier, in the region z > 0. Now, the uniqueness theorem tells us that there is

only one solution to Poisson’s equation which satisfies a given, well-posed set of

boundary conditions. So, φanalogue must be the correct potential in the region

z > 0. Of course, φanalogue is completely wrong in the region z < 0. We know

this because the grounded plate shields the region z < 0 from the point charge,

so that φ = 0 in this region. Note that we are leaning pretty heavily on the

uniqueness theorem here! Without this theorem, it would be hard to convince a

skeptical person that φ = φanalogue is the correct solution in the region z > 0.

Now that we know the potential in the region z > 0, we can easily work out the

distribution of charges induced on the conducting plate. We already know that

the relation between the electric field immediately above a conducting surface

and the density of charge on the surface is

E⊥ =
σ

ε0
. (5.140)

In this case,

E⊥ = Ez(z = 0+) = −
∂φ(z = 0+)

∂z
= −

∂φanalogue(z = 0+)

∂z
, (5.141)

so

σ = −ε0
∂φanalogue(z = 0+)

∂z
. (5.142)

It follows from Eq. (5.137) that

∂φ

∂z
=

q

4πε0

{
−(z− d)

[x2 + y2 + (z− d)2]3/2
+

(z+ d)

[x2 + y2 + (z+ d)2]3/2

}

, (5.143)

so

σ(x, y) = −
qd

2π (x2 + y2 + d2)3/2
. (5.144)
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Clearly, the charge induced on the plate has the opposite sign to the point charge.

The charge density on the plate is also symmetric about the z-axis, and is largest

where the plate is closest to the point charge. The total charge induced on the

plate is

Q =

∫

x−y plane

σdS, (5.145)

which yields

Q = −
qd

2π

∫∞

0

2π r dr

(r2 + d2)3/2
, (5.146)

where r2 = x2 + y2. Thus,

Q = −
qd

2

∫∞

0

dk

(k+ d2)3/2
= qd





1

(k+ d2)1/2





∞

0

= −q. (5.147)

So, the total charge induced on the plate is equal and opposite to the point charge

which induces it.

Our point charge induces charges of the opposite sign on the conducting plate.

This, presumably, gives rise to a force of attraction between the charge and the

plate. What is this force? Well, since the potential, and, hence, the electric field,

in the vicinity of the point charge is the same as in the analogue problem, then

the force on the charge must be the same as well. In the analogue problem, there

are two charges ±q a net distance 2 d apart. The force on the charge at position

(0, 0, d) (i.e., the real charge) is

F = −
1

4π ε0

q2

(2 d)2
ẑ. (5.148)

What, finally, is the potential energy of the system. For the analogue problem

this is just

Wanalogue = −
1

4π ε0

q2

2 d
. (5.149)

Note that the fields on opposite sides of the conducting plate are mirror images of

one another in the analogue problem. So are the charges (apart from the change

in sign). This is why the technique of replacing conducting surfaces by imaginary

180



5 ELECTROSTATICS 5.10 The method of images

charges is called the method of images. We know that the potential energy of a

set of charges is equivalent to the energy stored in the electric field. Thus,

W =
ε0

2

∫

all space

E2 dV. (5.150)

In the analogue problem, the fields on either side of the x-y plane are mirror

images of one another, so E2(x, y, z) = E2(x, y,−z). It follows that

Wanalogue = 2
ε0

2

∫

z>0

E2analogue dV. (5.151)

In the real problem

E(z > 0) = Eanalogue(z > 0), (5.152)

E(z < 0) = 0. (5.153)

So,

W =
ε0

2

∫

z>0

E2 dV =
ε0

2

∫

z>0

E2analogue dV =
1

2
Wanalogue, (5.154)

giving

W = −
1

4π ε0

q2

4 d
. (5.155)

There is another method by which we can obtain the above result. Suppose

that the charge is gradually moved towards the plate along the z-axis from infinity

until it reaches position (0, 0, d). How much work is required to achieve this?

We know that the force of attraction acting on the charge is

Fz = −
1

4π ε0

q2

4 z2
. (5.156)

Thus, the work required to move this charge by dz is

dW = −Fz dz =
1

4π ε0

q2

4 z2
dz. (5.157)

The total work needed to move the charge from z = ∞ to z = d is

W =
1

4π ε0

∫d

∞

q2

4 z2
dz =

1

4π ε0



−
q2

4 z





d

∞

= −
1

4π ε0

q2

4 d
. (5.158)
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Of course, this work is equivalent to the potential energy we evaluated earlier,

and is, in turn, the same as the energy contained in the electric field.

As a second example of the method of images, consider a grounded spherical

conductor of radius a placed at the origin. Suppose that a charge q is placed

outside the sphere at (b, 0, 0), where b > a. What is the force of attraction

between the sphere and the charge? In this case, we proceed by considering an

analogue problem in which the sphere is replaced by an image charge −q ′ placed

somewhere on the x-axis at (c, 0, 0). The electric potential throughout space in

the analogue problem is simply

φ =
q

4πε0

1

[(x− b)2 + y2 + z2]1/2
−

q ′

4π ε0

1

[(x− c)2 + y2 + z2]1/2
. (5.159)

The image charge is chosen so as to make the surface φ = 0 correspond to the

surface of the sphere. Setting the above expresion to zero, and performing a little

algebra, we find that the φ = 0 surface satisfies

x2 +
2 (c− λb)

λ− 1
x+ y2 + z2 =

c2 − λb2

λ− 1
, (5.160)

where λ = q ′ 2/q2. Of course, the surface of the sphere satisfies

x2 + y2 + z2 = a2. (5.161)

The above two equations can be made identical by setting λ = c/b and a2 = λb2,

or

q ′ =
a

b
q, (5.162)

and

c =
a2

b
. (5.163)

According to the uniqueness theorem, the potential in the analogue problem is

now identical with that in the real problem, outside the sphere. (Of course, in

the real problem, the potential inside the sphere is zero.) Hence, the force of

attraction between the sphere and the original charge in the real problem is the

same as the force of attraction between the two charges in the analogue problem.

It follows that

f =
qq ′

4π ε0 (b− c)2
=

q2

4π ε0

ab

(b2 − a2)2
. (5.164)
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There are many other image problems, each of which involves replacing a

conductor with an imaginary charge (or charges) which mimics the electric field

in some region (but not everywhere). Unfortunately, we do not have time to

discuss any more of these problems.

5.11 Complex analysis

Let us now investigate another trick for solving Poisson’s equation (actually it

only solves Laplace’s equation). Unfortunately, this method can only be applied

in two dimensions.

The complex variable is conventionally written

z = x+ iy (5.165)

(z should not be confused with a z-coordinate: this is a strictly two-dimensional

problem). We can write functions F(z) of the complex variable just like we would

write functions of a real variable. For instance,

F(z) = z2, (5.166)

F(z) =
1

z
. (5.167)

For a given function, F(z), we can substitute z = x+ iy and write

F(z) = U(x, y) + iV(x, y), (5.168)

where U and V are two real two-dimensional functions. Thus, if

F(z) = z2, (5.169)

then

F(x+ iy) = (x+ iy)2 = (x2 − y2) + 2 i xy, (5.170)

giving

U(x, y) = x2 − y2, (5.171)

V(x, y) = 2 x y. (5.172)
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We can define the derivative of a complex function in just the same manner as

we would define the derivative of a real function. Thus,

dF

dz
= lim |δz|→∞

F(z+ δz) − F(z)

δz
. (5.173)

However, we now have a slight problem. If F(z) is a “well-defined” function (we

shall leave it to the mathematicians to specify exactly what being well-defined

entails: suffice to say that most functions we can think of are well-defined) then it

should not matter from which direction in the complex plane we approach zwhen

taking the limit in Eq. (5.173). There are, of course, many different directions we

could approach z from, but if we look at a regular complex function, F(z) = z2

(say), then
dF

dz
= 2 z (5.174)

is perfectly well-defined, and is, therefore, completely independent of the details

of how the limit is taken in Eq. (5.173).

The fact that Eq. (5.173) has to give the same result, no matter which path

we approach z from, means that there are some restrictions on the functions U

and V in Eq. (5.168). Suppose that we approach z along the real axis, so that

δz = δx. Then,

dF

dz
= lim |δx|→0

U(x+ δx, y) + iV(x+ δx, y) −U(x, y) − iV(x, y)

δx

=
∂U

∂x
+ i

∂V

∂x
. (5.175)

Suppose that we now approach z along the imaginary axis, so that δz = i δy.

Then,

dF

dz
= lim |δy|→0

U(x, y+ δy) + iV(x, y+ δy) −U(x, y) − iV(x, y)

i δy

= −i
∂U

∂y
+
∂V

∂y
. (5.176)

If F(z) is a well-defined function then its derivative must also be well-defined,

which implies that the above two expressions are equivalent. This requires that

∂U

∂x
=

∂V

∂y
, (5.177)
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∂V

∂x
= −

∂U

∂y
. (5.178)

These are called the Cauchy-Riemann relations, and are, in fact, sufficient to en-

sure that all possible ways of taking the limit (5.173) give the same answer.

So far, we have found that a general complex function F(z) can be written

F(z) = U(x, y) + iV(x, y), (5.179)

where z = x + iy. If F(z) is well-defined then U and V automatically satisfy the

Cauchy-Riemann relations. But, what has all of this got to do with electrostatics?

Well, we can combine the two Cauchy-Riemann relations. We get

∂2U

∂x2
=
∂

∂x

∂V

∂y
=
∂

∂y

∂V

∂x
= −

∂

∂y

∂U

∂y
, (5.180)

and
∂2V

∂x2
= −

∂

∂x

∂U

∂y
= −

∂

∂y

∂U

∂x
= −

∂

∂y

∂V

∂y
, (5.181)

which reduce to

∂2U

∂x2
+
∂2U

∂y2
= 0, (5.182)

∂2V

∂x2
+
∂2V

∂y2
= 0. (5.183)

Thus, both U and V automatically satisfy Laplace’s equation in two dimensions;

i.e., both U and V are possible two-dimensional scalar potentials in free space.

Consider the two-dimensional gradients of U and V:

∇U =

(

∂U

∂x
,
∂U

∂y

)

, (5.184)

∇V =

(

∂V

∂x
,
∂V

∂y

)

. (5.185)

Now

∇U · ∇V =
∂U

∂x

∂V

∂x
+
∂U

∂y

∂V

∂y
. (5.186)

185



5 ELECTROSTATICS 5.11 Complex analysis

It follows from the Cauchy-Riemann relations that

∇U · ∇V =
∂V

∂y

∂V

∂x
−
∂V

∂x

∂V

∂y
= 0. (5.187)

Thus, the contours of U are everywhere perpendicular to the contours of V . It

follows that if U maps out the contours of some free space scalar potential then

V indicates the directions of the associated electric field-lines, and vice versa.

y

x
V

U

U = -1

U = 1

U = 0

U = -1

U = 1

U = 0

Figure 45:

For every well-defined complex function we can think of, we get two sets of

free space potentials, and the associated electric field-lines. For example, consider

the function F(z) = z2, for which

U = x2 − y2, (5.188)

V = 2 x y. (5.189)

These are, in fact, the equations of two sets of orthogonal hyperboloids. So,

U(x, y) (the solid lines in Fig. 45) might represent the contours of some scalar

potential and V(x, y) (the dashed lines in Fig. 45) the associated electric field

lines, or vice versa. But, how could we actually generate a hyperboloidal poten-

tial? This is easy. Consider the contours of U at level ±1. These could represent

the surfaces of four hyperboloid conductors maintained at potentials ±V. The
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scalar potential in the region between these conductors is given by V U(x, y), and

the associated electric field-lines follow the contours of V(x, y). Note that

Ex = −
∂φ

∂x
= −V ∂U

∂x
= −2V x (5.190)

Thus, the x-component of the electric field is directly proportional to the distance

from the x-axis. Likewise, for y-component of the field is directly proportional to

the distance from the y-axis. This property can be exploited to make devices

(called quadrupole electrostatic lenses) which are useful for focusing particle

beams.

As a second example, consider the complex function

F(z) = z−
c2

z
, (5.191)

where c is real and positive. Writing F(z) = U(x, y) + iV(x, y), we find that

U(x, y) = x−
c2 x

x2 + y2
. (5.192)

Far from the origin, U → x, which is the potential of a uniform electric field, of

unit amplitude, pointing in the −x-direction. The locus of U = 0 is x = 0, and

x2 + y2 = c2, (5.193)

which corresponds to a circle of radius c centered on the origin. Hence, we

conclude that the potential

φ(x, y, z) = −E0U(x, y) = −E0 x+ E0 c
2 x

x2 + y2
(5.194)

corresponds to that outside a grounded, infinitely long, conducting cylinder of

radius c, running parallel to the z-axis, placed in a uniform x-directed electric

field of magnitude E0. Of course, the potential inside the cylinder (i.e., x2 + y2 <

c2) is zero. The induced charge density on the surface of the cylinder is simply

σ = ε0 Er(r = c) = −ε0
∂φ(r = c)

∂r
= 2 ε0 E0 cos θ, (5.195)
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where r2 = x2 + y2, and x = r cos θ. Note that zero net charge is induced on the

surface.

We can think of the set of all possible well-defined complex functions as a ref-

erence library of solutions to Laplace’s equation in two dimensions. We have only

considered a couple of examples, but there are, of course, very many complex

functions which generate interesting potentials. For instance, F(z) = z1/2 gener-

ates the potential around a semi-infinite, thin, grounded, conducting plate placed

in an external field, whereas F(z) = z3/2 yields the potential outside a grounded,

rectangular, conducting corner under similar circumstances.

5.12 Separation of variables

The method of images and complex analysis are two rather elegant techniques

for solving Poisson’s equation. Unfortunately, they both have an extremely limited

range of application. The final technique we shall discuss in this course, namely,

the separation of variables, is somewhat messy, but possess a far wider range of

application. Let us examine a specific example.

Consider two semi-infinite, grounded, conducting plates lying parallel to the x-

z plane, one at y = 0, and the other at y = π (see Fig. 46). The left end, at x = 0,

is closed off by an infinite strip insulated from the two plates, and maintained

at a specified potential φ0(y). What is the potential in the region between the

plates?

π
conducting plate

x

y

x 
= 

0

y = 0

y = 

Figure 46:

We first of all assume that the potential is z-independent, since everything
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else in the problem is. This reduces the problem to two dimensions. Poisson’s

equation is written
∂2φ

∂x2
+
∂2φ

∂y2
= 0 (5.196)

in the vacuum region between the conductors. The boundary conditions are

φ(x, 0) = 0, (5.197)

φ(x, π) = 0 (5.198)

for x > 0, since the two plates are earthed, plus

φ(0, y) = φ0(y) (5.199)

for 0 ≤ y ≤ π, and

φ(x, y) → 0 (5.200)

as x → ∞. The latter boundary condition is our usual one for the scalar potential

at infinity.

The central assumption in the method of separation of variables is that a multi-

dimensional potential can be written as the product of one-dimensional poten-

tials, so that

φ(x, y) = X(x) Y(y). (5.201)

The above solution is obviously a very special one, and is, therefore, only likely

to satisfy a very small subset of possible boundary conditions. However, it turns

out that by adding together lots of different solutions of this form we can match

to general boundary conditions.

Substituting (5.201) into (5.196), we obtain

Y
d2X

dx2
+ X

d2Y

dy2
= 0. (5.202)

Let us now separate the variables: i.e., let us collect all of the x-dependent terms

on one side of the equation, and all of the y-dependent terms on the other side.

Thus,
1

X

d2X

dx2
= −

1

Y

d2Y

dy2
. (5.203)
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This equation has the form

f(x) = g(y), (5.204)

where f and g are general functions. The only way in which the above equa-

tion can be satisfied, for general x and y, is if both sides are equal to the same

constant. Thus,
1

X

d2X

dx2
= k2 = −

1

Y

d2Y

dy2
. (5.205)

The reason why we write k2, rather than −k2, will become apparent later on.

Equation (5.205) separates into two ordinary differential equations:

d2X

dx2
= k2 X, (5.206)

d2Y

dy2
= −k2 Y. (5.207)

We know the general solution to these equations:

X = A exp(k x) + B exp(−k x), (5.208)

Y = C sin(ky) +D cos(ky), (5.209)

giving

φ = [A exp(k x) + B exp(−k x) ] [C sin(ky) +D cos(ky)]. (5.210)

Here, A, B, C, and D are arbitrary constants. The boundary condition (5.200)

is automatically satisfied if A = 0 and k > 0. Note that the choice k2, instead of

−k2, in Eq. (5.205) facilitates this by making φ either grow or decay monoton-

ically in the x-direction instead of oscillating. The boundary condition (5.197)

is automatically satisfied if D = 0. The boundary condition (5.198) is satisfied

provided that

sin(kπ) = 0, (5.211)

which implies that k is a positive integer, n (say). So, our solution reduces to

φ(x, y) = C exp(−nx) sin(ny), (5.212)

where B has been absorbed into C. Note that this solution is only able to satisfy

the final boundary condition (5.199) provided φ0(y) is proportional to sin(ny).
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Thus, at first sight, it would appear that the method of separation of variables

only works for a very special subset of boundary conditions. However, this is not

the case.

Now comes the clever bit! Since Poisson’s equation is linear, any linear com-

bination of solutions is also a solution. We can therefore form a more general

solution than (5.212) by adding together lots of solutions involving different val-

ues of n. Thus,

φ(x, y) =

∞∑

n=1

Cn exp(−nx) sin(ny), (5.213)

where the Cn are constants. This solution automatically satisfies the boundary

conditions (5.197), (5.198) and (5.200). The final boundary condition (5.199)

reduces to

φ(0, y) =

∞∑

n=1

Cn sin(ny) = φ0(y). (5.214)

The question now is what choice of the Cn fits an arbitrary function φ0(y)? To

answer this question we can make use of two very useful properties of the func-

tions sin(ny). Namely, that they are mutually orthogonal, and form a complete

set. The orthogonality property of these functions manifests itself through the

relation ∫π

0

sin(ny) sin(n ′ y) dy =
π

2
δnn ′, (5.215)

where the function δnn ′ = 1 if n = n ′ and 0 otherwise is called a Kroenecker delta.

The completeness property of sine functions means that any general function

φ0(y) can always be adequately represented as a weighted sum of sine functions

with various different n values. Multiplying both sides of Eq. (5.214) by sin(n ′ y),
and integrating over y, we obtain

∞∑

n=1

Cn

∫π

0

sin(ny) sin(n ′ y) dy =

∫π

0

φ0(y) sin(n ′ y) dy. (5.216)

The orthogonality relation yields

π

2

∞∑

n=1

Cn δnn ′ =
π

2
Cn ′ =

∫π

0

φ0(y) sin(n ′ y) dy, (5.217)
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so

Cn =
2

π

∫π

0

φ0(y) sin(ny)dy. (5.218)

Thus, we now have a general solution to the problem for any driving potential

φ0(y).

If the potential φ0(y) is constant then

Cn =
2φ0

π

∫π

0

sin(ny) dy =
2φ0

nπ
[1− cos(nπ)], (5.219)

giving

Cn = 0 (5.220)

for even n, and

Cn =
4φ0

nπ
(5.221)

for odd n. Thus,

φ(x, y) =
4φ0

π

∑

n=1,3,5

exp(−nx) sin(ny)

n
. (5.222)

In the above problem, we write the potential as the product of one-dimensional

functions. Some of these functions grow and decay monotonically (i.e., the ex-

ponential functions), and the others oscillate (i.e., the sinusoidal functions). The

success of the method depends crucially on the orthogonality and completeness

of the oscillatory functions. A set of functions fn(x) is orthogonal if the integral of

the product of two different members of the set over some range is always zero:

i.e., ∫b

a

fn(x) fm(x)dx = 0, (5.223)

for n 6= m. A set of functions is complete if any other function can be expanded

as a weighted sum of them. It turns out that the scheme set out above can be

generalized to more complicated geometries. For instance, in spherical geome-

try, the monotonic functions are power law functions of the radial variable, and

the oscillatory functions are Legendre polynomials. The latter are both mutually
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orthogonal and form a complete set. There are also cylindrical, ellipsoidal, hyper-

bolic, toroidal, etc. coordinates. In all cases, the associated oscillating functions

are mutually orthogonal and form a complete set. This implies that the method

of separation of variables is of quite general applicability.

Finally, as a simple example of the solution of Poisson’s equation in spherical

geometry, let us consider the case of a conducting sphere of radius a, centered

on the origin, placed in a uniform z-directed electric field of magnitude E0. The

scalar potential φ satisfies ∇2φ = 0 for r ≥ a, with the boundary conditions

φ → −E0 r cos θ (giving E → E0 ẑ) as r → ∞, and φ = 0 at r = a. Here, r and θ

are spherical polar coordinates. Let us try the simplified separable solution

φ(r, θ) = rm cos θ. (5.224)

It is easily demonstrated that the above solution satisfies ∇2φ = 0 providedm = 1

or −2. Thus, the most general solution of ∇2φ which satisfies the boundary

condition at r → ∞ is

φ(r, θ) = −E0 r cos θ+ α r−2 cos θ. (5.225)

The boundary condition at r = a is satisfied provided

α = E0 a
3. (5.226)

Of course, φ = 0 inside the sphere (i.e., r < a). The charge sheet density induced

on the surface of the sphere is given by

σ = ε0 Er(r = a) = −ε0
∂φ(r = a)

∂r
= 3 ε0 E0 cos θ. (5.227)
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6 Dielectric and magnetic media

6.1 Introduction

In this section, we shall use Maxwell’s equations to investigate the effect of di-

electric and magnetic media on electric and magnetic fields.

6.2 Polarization

The terrestrial environment is characterized by dielectric media (e.g., air, water)

which are, for the most part, electrically neutral, since they are made up of neu-

tral atoms and molecules. However, if these atoms and molecules are placed in

an electric field then they tend to polarize. Suppose that when a given neutral

molecule is placed in an electric field E, the centre of charge of its constituent

electrons (whose total charge is q) is displaced by a distance d with respect to

the centre of charge of its constituent atomic nucleus. The dipole moment of the

molecule is defined p = qd. If there are N such molecules per unit volume then

the electric polarization P (i.e., the dipole moment per unit volume) is given by

P = Np. More generally,

P(r) =
∑

i

Ni〈pi〉, (6.1)

where 〈pi〉 is the average dipole moment of the ith type of molecule in the vicinity

of point r, and Ni is the average number of such molecules per unit volume at r.

Consider an infinitesimal cube of dielectric material with x-coordinates be-

tween x and x + dx, y-coordinates between y and y + dy, and z-coordinates

between z and z + dz. Suppose that the dielectric consists of electrically neutral

polar molecules, of varying number density N(r), whose electrons, charge q, dis-

place a constant distance d from the nuclei, charge −q. Thus, the dipole moment

per unit volume is P(r) = N(r)qd. Due to the polarization of the molecules,

a net charge N(x, y, z)qdx dydz enters the bottom face of the cube, perpendic-

ular to the x-axis, whilst a net charge N(x + dx, y, z)qdx dydz leaves the top

face. Hence, the net charge acquired by the cube due to molecular polarization
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in the x-direction is dq = −N(x + dx, y, z)qdx dydz + N(x, y, z)qdx dydz =

−[∂N(x, y, z)/∂x]qdx dxdydz = −[∂Px(x, y, z)/∂x]dxdydz. There are analo-

gous contributions due to polarization in the y- and z-directions. Hence, the net

charge acquired by the cube due to molecular polarization is dq = −[∂Px(x, y, z)/∂x+

∂Py(x, y, z)/∂y+∂Pz(x, y, z)/∂z]dxdydz = −(∇·P)dxdydz. Thus, it follows that

the charge density acquired by the cube due to molecular polarization is simply

−∇·P.

As explained above, it is easily demonstrated that any divergence of the polar-

ization field P(r) of a dielectric medium gives rise to an effective charge density

ρb in the medium, where

ρb = −∇·P. (6.2)

This charge density is attributable to bound charges (i.e., charges which arise from

the polarization of neutral atoms), and is usually distinguished from the charge

density ρf due to free charges, which represents a net surplus or deficit of electrons

in the medium. Thus, the total charge density ρ in the medium is

ρ = ρf + ρb. (6.3)

It must be emphasized that both terms in this equation represent real physical

charge. Nevertheless, it is useful to make the distinction between bound and

free charges, especially when it comes to working out the energy associated with

electric fields in dielectric media.

Gauss’ law takes the differential form

∇·E =
ρ

ε0
=
ρf + ρb

ε0
. (6.4)

This expression can be rearranged to give

∇·D = ρf, (6.5)

where

D = ε0 E + P (6.6)

is termed the electric displacement, and has the same dimensions as P (dipole

moment per unit volume). Gauss’ theorem tells us that
∮

S

D·dS =

∫

V

ρf dV. (6.7)
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In other words, the flux of D out of some closed surface S is equal to the total

free charge enclosed within that surface. Unlike the electric field E (which is

the force acting on a unit charge), or the polarization P (the dipole moment

per unit volume), the electric displacement D has no clear physical meaning.

The only reason for introducing this quantity is that it enables us to calculate

electric fields in the presence of dielectric materials without first having to know

the distribution of bound charges. However, this is only possible if we have a

constitutive relation connecting E and D. It is conventional to assume that the

induced polarization P is directly proportional to the electric field E, so that

P = ε0 χe E, (6.8)

where χe is termed the electric susceptibility of the medium. It follows that

D = ε0 εE, (6.9)

where

ε = 1+ χe (6.10)

is termed the dielectric constant or relative permittivity of the medium. (Likewise,

ε0 is termed the permittivity of free space.) Note that ε is dimensionless. It follows

from Eqs. (6.5) and (6.9) that

∇·E =
ρf

ε0 ε
. (6.11)

Thus, the electric fields produced by free charges in a uniform dielectric medium

are analogous to those produced by the same charges in a vacuum, except that

they are reduced by a factor ε. This reduction can be understood in terms of a

polarization of the atoms or molecules of the dielectric medium that produces

electric fields in opposition to those generated by the free charges. One imme-

diate consequence of this is that the capacitance of a capacitor is increased by

a factor ε if the empty space between the electrodes is filled with a dielectric

medium of dielectric constant ε (assuming that fringing fields can be neglected).

It must be understood that Eqs. (6.8)–(6.11) are just an approximation which

is generally found to hold under terrestrial conditions (provided that the fields are
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not too large) for isotropic media. For anisotropic media (e.g., crystals), Eq. (6.9)

generalizes to

D = ε0 ε·E, (6.12)

where ε is a second-rank tensor known as the dielectric tensor. For strong electric

fields, D ceases to vary linearly with E. Indeed, for sufficiently strong electric

fields, neutral molecules are disrupted, and the whole concept of a dielectric

medium becomes meaningless.

6.3 Boundary conditions for E and D

When the space surrounding a set of charges contains dielectric material of non-

uniform dielectric constant then the electric field no longer has the same func-

tional form as in vacuum. Suppose, for example, that the space is occupied by

two dielectric media whose uniform dielectric constants are ε1 and ε2. What are

the boundary conditions on E and D at the interface between the two media?

Imagine a Gaussian pill-box enclosing part of the interface. The thickness of

the pill-box is allowed to tend towards zero, so that the only contribution to the

outward flux of D comes from the flat faces of the box, which are parallel to

the interface. Assuming that there is no free charge inside the pill-box (which

is reasonable in the limit in which the volume of the box tends to zero), then

Eq. (6.7) yields

D⊥ 2 −D⊥ 1 = 0, (6.13)

where D⊥ 1 is the component of the electric displacement in medium 1 which is

normal to the interface, etc. If the fields and charges are non time-varying then

the differential form of Faraday’s law yield ∇×E = 0, which gives the familiar

boundary condition (obtained by integrating around a small loop which straddles

the interface)

E‖ 2 − E‖ 1 = 0. (6.14)

Generally, there is a bound charge sheet on the interface whose density follows

from Gauss’ law:

σb = ε0 (E⊥ 2 − E⊥ 1). (6.15)
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In conclusion, the normal component of the electric displacement, and the tan-

gential component of the electric field, are both continuous across any interface

between two dielectric media.

6.4 Boundary value problems with dielectrics

Consider a point charge q embedded in a semi-infinite dielectric ε1 a distance

d away from a plane interface which separates the first medium from another

semi-infinite dielectric ε2. The interface is assumed to coincide with the plane

z = 0. We need to find solutions to the equations

ε1∇·E =
ρ

ε0
(6.16)

for z > 0,

ε2∇·E = 0 (6.17)

for z < 0, and

∇× E = 0 (6.18)

everywhere, subject to the boundary conditions at z = 0 that

ε1 Ez(z = 0+) = ε2 Ez(z = 0−), (6.19)

Ex(z = 0+) = Ex(z = 0−), (6.20)

Ey(z = 0+) = Ey(z = 0−). (6.21)

In order to solve this problem, we shall employ a slightly modified form of the

well-known method of images. Since ∇×E = 0 everywhere, the electric field can

be written in terms of a scalar potential. So, E = −∇φ. Consider the region z > 0.

Let us assume that the scalar potential in this region is the same as that obtained

when the whole of space is filled with the dielectric ε1, and, in addition to the

real charge q at position A, there is a second charge q ′ at the image position A ′

(see Fig. 47). If this is the case, then the potential at some point P in the region

z > 0 is given by

φ(z > 0) =
1

4π ε0 ε1





q

R1
+
q ′

R2



 , (6.22)
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Figure 47:

where R1 =
√

r2 + (d− z)2 and R2 =
√

r2 + (d+ z)2, when written in terms of

cylindrical polar coordinates, (r, θ, z), aligned along the z-axis. Note that the

potential (6.22) is clearly a solution of Eq. (6.16) in the region z > 0. It gives

∇ · E = 0, with the appropriate singularity at the position of the point charge q.

Consider the region z < 0. Let us assume that the scalar potential in this region

is the same as that obtained when the whole of space is filled with the dielectric

ε2, and a charge q ′′ is located at the point A. If this is the case, then the potential

in this region is given by

φ(z < 0) =
1

4π ε0 ε2

q ′′

R1
. (6.23)

The above potential is clearly a solution of Eq. (6.17) in the region z < 0. It gives

∇·E = 0, with no singularities.

It now remains to choose q ′ and q ′′ in such a manner that the boundary condi-

tions (6.19)–(6.21) are satisfied. The boundary conditions (6.20) and (6.21) are

obviously satisfied if the scalar potential is continuous at the interface between

the two dielectric media:

φ(z = 0+) = φ(z = 0−). (6.24)
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The boundary condition (6.19) implies a jump in the normal derivative of the

scalar potential across the interface:

ε1
∂φ(z = 0+)

∂z
= ε2

∂φ(z = 0−)

∂z
. (6.25)

The first matching condition yields

q+ q ′

ε1
=
q ′′

ε2
, (6.26)

whereas the second gives

q− q ′ = q ′′. (6.27)

Here, use has been made of

∂

∂z

(

1

R1

)

z=0

= −
∂

∂z

(

1

R2

)

z=0

=
d

(r2 + d2)3/2
. (6.28)

Equations (6.26) and (6.27) imply that

q ′ = −

(

ε2 − ε1

ε2 + ε1

)

q, (6.29)

q ′′ =

(

2 ε2

ε2 + ε1

)

q. (6.30)

The bound charge density is given by ρb = −∇·P, However, inside either

dielectric, P = ε0 χe E, so ∇ · P = ε0 χe∇·E = 0, except at the point charge q.

Thus, there is zero bound charge density in either dielectric medium. However,

there is a bound charge sheet on the interface between the two dielectric media.

In fact, the density of this sheet is given by

σb = ε0 (Ez 1 − Ez 2)z=0. (6.31)

Hence,

σb = ε0
∂φ(z = 0−)

∂z
− ε0

∂φ(z = 0+)

∂z
= −

q

2π

ε2 − ε1

ε1(ε2 + ε1)

d

(r2 + d2)3/2
. (6.32)

In the limit ε2 � ε1, the dielectric ε2 behaves like a conducting medium (i.e.,

E → 0 in the region z < 0), and the bound surface charge density on the interface
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approaches that obtained in the case where the plane z = 0 coincides with a

conducting surface (see Sect. 5.10).

As a second example, consider a dielectric sphere of radius a, and uniform

dielectric constant ε, placed in a uniform z-directed electric field of magnitude

E0. Suppose that the sphere is centered on the origin. Now, for an electrostatic

problem, we can always write E = −∇φ. In the present problem, ∇ · E = 0 both

inside and outside the sphere, since there are no free charges, and the bound

volume charge density is zero in a uniform dielectric medium (or a vacuum).

Hence, the scalar potential satisfies Laplace’s equation, ∇2φ = 0, throughout

space. Adopting spherical polar coordinates, (r, θ,ϕ), aligned along the z-axis,

the boundary conditions are that φ → −E0 r cos θ as r → ∞, and that φ is well-

behaved at r = 0. At the surface of the sphere, r = a, the continuity of E‖ implies

that φ is continuous. Furthermore, the continuity of D⊥ = ε0 εE⊥ leads to the

matching condition
∂φ

∂r

∣

∣

∣

∣

∣

r=a+

= ε
∂φ

∂r

∣

∣

∣

∣

∣

r=a−

. (6.33)

Let us try separable solutions of the form rm cos θ. It is easily demonstrated

that such solutions satisfy Laplace’s equation provided that m = 1 or m = −2.

Hence, the most general solution to Laplace’s equation outside the sphere, which

satisfies the boundary condition at r → ∞, is

φ(r, θ) = −E0 r cos θ+ E0 α
a3 cos θ

r2
. (6.34)

Likewise, the most general solution inside the sphere, which satisfies the bound-

ary condition at r = 0, is

φ(r, θ) = −E1 r cos θ. (6.35)

The continuity of φ at r = a yields

E0 − E0 α = E1. (6.36)

Likewise, the matching condition (6.33) gives

E0 + 2 E0 α = εE1. (6.37)
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Hence,

α =
ε− 1

ε+ 2
, (6.38)

E1 =
3 E0

ε+ 2
. (6.39)

Note that the electric field inside the sphere is uniform, parallel to the external

electric field outside the sphere, and of magnitude E1. Moreover, E1 < E0 , pro-

vided that ε > 1. Finally, the density of the bound charge sheet on the surface of

the sphere is

σb = −ε0

(

∂φ

∂r

∣

∣

∣

∣

∣

r=a+

−
∂φ

∂r

∣

∣

∣

∣

∣

r=a−

)

= 3 ε0
ε− 1

ε+ 2
cos θ. (6.40)

As a final example, consider a spherical cavity, of radius a, in a uniform dielec-

tric medium, of dielectric constant ε, in the presence of a z-directed electric field

of magnitude E0. This problem is analogous to the previous problem, except that

the matching condition (6.33) becomes

ε
∂φ

∂r

∣

∣

∣

∣

∣

r=a+

=
∂φ

∂r

∣

∣

∣

∣

∣

r=a−

. (6.41)

Hence,

α =
1− ε

1+ 2 ε
, (6.42)

E1 =
3 εE0

1+ 2 ε
. (6.43)

Note that the field inside the cavity is uniform, parallel to the external electric

field outside the sphere, and of magnitude E1. Moreover, E1 > E0, provided that

ε > 1. The density of the bound charge sheet on the surface of the cavity is

σb = −ε0

(

∂φ

∂r

∣

∣

∣

∣

∣

r=a+

−
∂φ

∂r

∣

∣

∣

∣

∣

r=a−

)

= 3 ε0
1− ε

1+ 2 ε
cos θ. (6.44)
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6.5 Energy density within a dielectric medium

Consider a system of free charges embedded in a dielectric medium. The increase

in the total energy when a small amount of free charge δρf is added to the system

is given by

δW =

∫

φδρf d
3r, (6.45)

where the integral is taken over all space, and φ(r) is the electrostatic potential.

Here, it is assumed that the original charges and the dielectric are held fixed, so

that no mechanical work is performed. It follows from Eq. (6.5) that

δW =

∫

φ∇·δDd3r, (6.46)

where δD is the change in the electric displacement associated with the charge

increment. Now the above equation can also be written

δW =

∫

∇·(φδD)d3r −

∫

∇φ·δDd3r, (6.47)

giving

δW =

∫

φδD·dS −

∫

∇φ·δDd3r, (6.48)

where use has been made of Gauss’ theorem. If the dielectric medium is of finite

spatial extent then we can neglect the surface term to give

δW = −

∫

∇φ·δDd3r =

∫

E·δDd3r. (6.49)

This energy increment cannot be integrated unless E is a known function of D.

Let us adopt the conventional approach, and assume that D = ε0 εE, where the

dielectric constant ε is independent of the electric field. The change in energy

associated with taking the displacement field from zero to D(r) at all points in

space is given by

W =

∫D

0

δW =

∫D

0

∫

E·δDd3r, (6.50)

or

W =

∫ ∫E

0

ε0 ε δ(E
2)

2
d3r =

1

2

∫

ε0 εE
2 d3r, (6.51)
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which reduces to

W =
1

2

∫

E·Dd3r. (6.52)

Thus, the electrostatic energy density inside a dielectric medium is given by

U =
1

2
E·D. (6.53)

This is a standard result, and is often quoted in textbooks. Nevertheless, it is

important to realize that the above formula is only valid in dielectric media in

which the electric displacement D varies linearly with the electric field E. Note

that Eq. (6.53) is consistent with the expression (5.20) which we obtained earlier.

6.6 Magnetization

All matter is built up out of atoms, and each atom consists of electrons in motion.

The currents associated with this motion are termed atomic currents. Each atomic

current is a tiny closed circuit of atomic dimensions, and may therefore be appro-

priately described as a magnetic dipole. If the atomic currents of a given atom

all flow in the same plane then the atomic dipole moment is directed normal to

the plane (in the sense given by the right-hand rule), and its magnitude is the

product of the total circulating current and the area of the current loop. More

generally, if j(r) is the atomic current density at the point r then the magnetic

moment of the atom is

m =
1

2

∫

r × jd3r, (6.54)

where the integral is over the volume of the atom. If there are N such atoms or

molecules per unit volume then the magnetization M (i.e., the magnetic dipole

moment per unit volume) is given by M = Nm. More generally,

M(r) =
∑

i

Ni〈mi〉, (6.55)

where 〈mi〉 is the average magnetic dipole moment of the ith type of molecule in

the vicinity of point r, and Ni is the average number of such molecules per unit

volume at r.
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Consider a general medium which is made up of molecules which are polar-

izable and possess a net magnetic moment. It is easily demonstrated that any

circulation in the magnetization field M(r) gives rise to an effective current den-

sity jm in the medium. In fact,

jm = ∇× M. (6.56)

This current density is called the magnetization current density, and is usually

distinguished from the true current density, jt, which represents the convection

of free charges in the medium. In fact, there is a third type of current called a

polarization current, which is due to the apparent convection of bound charges.

It is easily demonstrated that the polarization current density, jp, is given by

jp =
∂P

∂t
. (6.57)

Thus, the total current density, j, in the medium takes the form

j = jt + ∇× M +
∂P

∂t
. (6.58)

It must be emphasized that all terms on the right-hand side of the above equation

represent real physical currents, although only the first term is due to the motion

of real charges (over more than atomic dimensions).

The differential form of Ampère’s law is

∇× B = µ0 j + µ0ε0
∂E

∂t
, (6.59)

which can also be written

∇× B = µ0 jt + µ0∇× M + µ0
∂D

∂t
, (6.60)

where use has been made of the definition D = ε0 E + P. The above expression

can be rearranged to give

∇× H = jt +
∂D

∂t
, (6.61)

where

H =
B

µ0
− M (6.62)
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is termed the magnetic intensity, and has the same dimensions as M (i.e., magnetic

dipole moment per unit volume). In a steady-state situation, Stokes’ theorem tell

us that ∮

C

H·dl =

∫

S

jt ·dS. (6.63)

In other words, the line integral of H around some closed curve is equal to the flux

of true current through any surface attached to that curve. Unlike the magnetic

field B (which specifies the force q v×B acting on a charge q moving with veloc-

ity v), or the magnetization M (the magnetic dipole moment per unit volume),

the magnetic intensity H has no clear physical meaning. The only reason for

introducing it is that it enables us to calculate fields in the presence of magnetic

materials without first having to know the distribution of magnetization currents.

However, this is only possible if we possess a constitutive relation connecting B

and H.

6.7 Magnetic susceptibility and permeability

In a large class of materials, there exists an approximately linear relationship

between M and H. If the material is isotropic then

M = χmH, (6.64)

where χm is called the magnetic susceptibility. If χm is positive then the material

is called paramagnetic, and the magnetic field is strengthened by the presence of

the material. On the other hand, if χm is negative then the material is diamag-

netic, and the magnetic field is weakened in the presence of the material. The

magnetic susceptibilities of paramagnetic and diamagnetic materials are gener-

ally extremely small. A few sample values are given in Table. 2.1

A linear relationship between M and H also implies a linear relationship be-

tween B and H. In fact, we can write

B = µH, (6.65)

1Data obtained from the Handbook of Chemistry and Physics, Chemical Rubber Company Press, Boca Raton, FL.
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Material χm

Aluminium 2.3× 10−5

Copper −0.98× 10−5

Diamond −2.2× 10−5

Tungsten 6.8× 10−5

Hydrogen (1 atm) −0.21× 10−8

Oxygen (1 atm) 209.0× 10−8

Nitrogen (1 atm) −0.50× 10−8

Table 2:

where

µ = µ0 (1+ χm) (6.66)

is termed the magnetic permeability of the material in question.2 (Likewise, µ0 is

termed the permeability of free space.) Note that µ has the same units as µ0. It is

clear from Table 2 that the permeabilities of common diamagnetic and paramag-

netic materials do not differ substantially from the permeability of free space. In

fact, to all intents and purposes, the magnetic properties of such materials can be

safely neglected (i.e., µ = µ0).

6.8 Ferromagnetism

There is, however, a third class of magnetic materials called ferromagnetic mate-

rials. Such materials are characterized by a possible permanent magnetization,

and generally have a profound effect on magnetic fields (i.e., µ � µ0). Unfor-

tunately, ferromagnetic materials do not generally exhibit a linear dependence

between M and H, or B and H, so that we cannot employ Eqs. (6.64) and (6.65)

with constant values of χm and µ. It is still expedient to use Eq. (6.65) as the def-

inition of µ, with µ = µ(H). However, this practice can lead to difficulties under

certain circumstances. The permeability of a ferromagnetic material, as defined

by Eq. (6.65), can vary through the entire range of possible values from zero to

infinity, and may be either positive or negative. The most sensible approach is

to consider each problem involving ferromagnetic materials separately, try to de-

termine which region of the B-H diagram is important for the particular case in

2We could alternatively define a dimensionless relative magnetic permeability by writing B = µµ0 H.
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Figure 48:

hand, and then make approximations appropriate to this region.

First, let us consider an unmagnetized sample of ferromagnetic material. If

the magnetic intensity, which is initially zero, is increased monotonically, then

the B-H relationship traces out a curve such as that shown in Fig. 48. This is

called a magnetization curve. It is evident that the permeabilities µ derived from

the curve (according to the rule µ = B/H) are always positive, and show a wide

range of values. The maximum permeability occurs at the “knee” of the curve. In

some materials, this maximum permeability is as large as 105 µ0. The reason for

the knee in the curve is that the magnetization M reaches a maximum value in

the material, so that

B = µ0 (H + M) (6.67)

continues to increase at large H only because of the µ0H term. The maximum

value of M is called the saturation magnetization of the material.

Next, consider a ferromagnetic sample magnetized by the above procedure. If

the magnetic intensity H is decreased, the B-H relation does not follow back down

the curve of Fig. 48, but instead moves along a new curve, sketched in Fig. 49,

to the point R. Thus, the magnetization, once established, does not disappear

with the removal of H. In fact, it takes a reversed magnetic intensity to reduce
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−B

−H HC

R

B

Figure 49:

the magnetization to zero. If H continues to build up in the reversed direction,

then M (and hence B) becomes increasingly negative. Finally, when H increases

again the operating point follows the lower curve of Fig. 49. Thus, the B-H curve

for increasing H is quite different to that for decreasing H. This phenomenon is

known as hysteresis.

The curve sketched in Fig. 49 called the hysteresis loop of the material in ques-

tion. The value of B at the point R is called the retentivity or remanence. The

magnitude of H at the point C is called the coercivity. It is evident that µ is nega-

tive in the second and fourth quadrants of the loop, and positive in the first and

third quadrants. The shape of the hysteresis loop depends not only on the nature

of the ferromagnetic material, but also on the maximum value of H to which the

material has been subjected. However, once this maximum value, Hmax, becomes

sufficiently large to produce saturation in the material, the hysteresis loop does

not change shape with any further increase in Hmax.

Ferromagnetic materials are used either to channel magnetic flux (e.g., around

transformer circuits) or as sources of magnetic field (e.g., permanent magnets).

For use as a permanent magnet, the material is first magnetized by placing it in

a strong magnetic field. However, once the magnet is removed from the exter-

nal field it is subject to a demagnetizing H. Thus, it is vitally important that a

permanent magnet should possess both a large remanence and a large coercivity.
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As will become clear later on, it is generally a good idea for the ferromagnetic

materials used to channel magnetic flux around transformer circuits to possess

small remanences and small coercivities.

6.9 Boundary conditions for B and H

What are the boundary conditions for B and H at the interface between two

magnetic media? The governing equations for a steady-state situation are

∇·B = 0, (6.68)

and

∇× H = jt. (6.69)

Integrating Eq. (6.68) over a Gaussian pill-box enclosing part of the interface

between the two media gives

B⊥ 2 − B⊥ 1 = 0, (6.70)

where B⊥ denotes the component of B perpendicular to the interface. Integrating

Eq. (6.69) around a small loop which straddles the interface yields

H‖ 2 −H‖ 1 = 0, (6.71)

assuming that there is no true current sheet flowing in the interface. Here, H‖
denotes the component of H parallel to the interface. In general, there is a mag-

netization current sheet flowing at the interface whose density is of amplitude

Jm =
B‖ 2 − B‖ 1

µ0
. (6.72)

In conclusion, the normal component of the magnetic field and the tangential

component of the magnetic intensity are both continuous across any interface

between magnetic media.
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6.10 Boundary value problems with ferromagnets

Consider a ferromagnetic sphere, of uniform permeability µ, placed in a uniform

z-directed magnetic field of magnitude B0. Suppose that the sphere is centred

on the origin. In the absence of any true currents, we have ∇ × H = 0. Hence,

we can write H = −∇φm. Given that ∇ · B = 0, and B = µH, it follows that

∇2φm = 0 in any uniform magnetic medium (or a vacuum). Hence, ∇2φm = 0

throughout space. Adopting spherical polar coordinates, (r, θ,ϕ), aligned along

the z-axis, the boundary conditions are that φm → −(B0/µ0) r cos θ at r → ∞,

and that φm is well-behaved at r = 0. At the surface of the sphere, r = a, the

continuity of H‖ implies that φm is continuous. Furthermore, the continuity of

B⊥ = µH⊥ leads to the matching condition

µ0
∂φm

∂r

∣

∣

∣

∣

∣

r=a+

= µ
∂φm

∂r

∣

∣

∣

∣

∣

r=a−

. (6.73)

Let us try separable solutions of the form rm cos θ. It is easily demonstrated

that such solutions satisfy Laplace’s equation provided that m = 1 or m = −2.

Hence, the most general solution to Laplace’s equation outside the sphere, which

satisfies the boundary condition at r → ∞, is

φm(r, θ) = −(B0/µ0) r cos θ+ (B0/µ0)α
a3 cos θ

r2
. (6.74)

Likewise, the most general solution inside the sphere, which satisfies the bound-

ary condition at r = 0, is

φm(r, θ) = −(B1/µ) r cos θ. (6.75)

The continuity of φm at r = a yields

B0 − B0 α = (µ0/µ)B1. (6.76)

Likewise, the matching condition (6.73) gives

B0 + 2B0 α = B1. (6.77)
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d

iron core

wire
a

gap

Figure 50:

Hence,

α =
µ− µ0

µ+ 2µ0
, (6.78)

B1 =
3µB0

µ+ 2µ0
. (6.79)

Note that the magnetic field inside the sphere is uniform, parallel to the external

magnetic field outside the sphere, and of magnitude B1. Moreover, B1 > B0,

provided that µ > µ0.

As a final example, consider an electromagnet of the form sketched in Fig. 50.

A wire, carrying a current I, is wrapped N times around a thin toroidal iron core

of radius a and permeability µ � µ0. The core contains a thin gap of width

d. What is the magnetic field induced in the gap? Let us neglect any leakage

of magnetic field from the core, which is reasonable if µ � µ0. We expect the

magnetic field, Bc, and the magnetic intensity, Hc, in the core to be both toroidal

and essentially uniform. It is also reasonable to suppose that the magnetic field,

Bg, and the magnetic intensity, Hg, in the gap are toroidal and uniform, since

d � a. We have Bc = µHc and Bg = µ0Hg. Moreover, since the magnetic field

is normal to the interface between the core and the gap, the continuity of B⊥
implies that

Bc = Bg. (6.80)
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Thus, the magnetic field-strength in the core is the same as that in the gap.

However, the magnetic intensities in the core and the gap are quite different:

Hc = Bc/µ = Bg/µ = (µ0/µ)Hg. Integration of Eq. (6.69) around the torus

yields ∮

H · dl =

∫

jt · dS = NI. (6.81)

Hence,

(2πa− d)Hc + dHg = NI. (6.82)

It follows that

Bg =
NI

(2πa− d)/µ+ d/µ0
. (6.83)

6.11 Magnetic energy

Consider an electrical conductor. Suppose that a battery with an electromotive

field E ′ is feeding energy into this conductor. The energy is either dissipated as

heat, or is used to generate a magnetic field. Ohm’s law inside the conductor

gives

jt = σ (E + E ′), (6.84)

where jt is the true current density, σ is the conductivity, and E is the inductive

electric field. Taking the scalar product with jt, we obtain

E ′ ·jt =
j 2t
σ

− E·jt. (6.85)

The left-hand side of this equation represents the rate at which the battery does

work on the conductor. The first term on the right-hand side is the rate of ohmic

heating inside the conductor. We tentatively identify the remaining term with

the rate at which energy is fed into the magnetic field. If all fields are quasi-

stationary (i.e., slowly varying) then the displacement current can be neglected,

and the differential form of Ampère’s law reduces to ∇×H = jt. Substituting this

expression into Eq. (6.85), and integrating over all space, we get

∫

E ′ ·(∇× H)d3r =

∫
(∇× H)2

σ
d3r −

∫

E·(∇× H)d3r. (6.86)
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The last term can be integrated by parts using the vector identity

∇·(E × H) ≡ H·(∇× E) − E·(∇× H). (6.87)

Gauss’ theorem plus the differential form of Faraday’s law yield
∫

E·(∇× H)d3r = −

∫

H·∂B

∂t
d3r −

∫

(E × H)·dS. (6.88)

Since E × H falls off at least as fast as 1/r5 in electrostatic and quasi-stationary

magnetic fields (1/r2 comes from electric monopole fields, and 1/r3 from mag-

netic dipole fields), the surface integral in the above expression can be neglected.

Of course, this is not the case for radiation fields, for which E and H fall off like

1/r. Thus, the constraint of “quasi-stationarity” effectively means that the fields

vary sufficiently slowly that any radiation fields can be neglected.

The total power expended by the battery can now be written
∫

E ′ ·(∇× H)d3r =

∫
(∇× H)2

σ
d3r +

∫

H·∂B

∂t
d3r. (6.89)

The first term on the right-hand side has already been identified as the energy loss

rate due to ohmic heating. The last term is obviously the rate at which energy is

fed into the magnetic field. The variation δW in the magnetic field energy can

therefore be written

δW =

∫

H·δBd3r. (6.90)

This result is analogous to the result (6.49) for the variation in the energy of an

electrostatic field.

In order to make Eq. (6.90) integrable, we must assume a functional relation-

ship between H and B. For a medium which magnetizes linearly, the integration

can be carried out in much the same manner as Eq. (6.52), to give

W =
1

2

∫

H·Bd3r. (6.91)

Thus, the magnetostatic energy density inside a linear magnetic material is given

by

U =
1

2
H· B. (6.92)
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Unfortunately, most interesting magnetic materials, such as ferromagnets, exhibit

a nonlinear relationship between H and B. For such materials, Eq. (6.90) can

only be integrated between definite states, and the result, in general, depends on

the past history of the sample. For ferromagnets, the integral of Eq. (6.90) has

a finite, non-zero value when B is integrated around a complete magnetization

cycle. This cyclic energy loss is given by

∆W =

∫ ∮

H· dBd3r. (6.93)

In other words, the energy expended per unit volume when a magnetic material

is carried through a magnetization cycle is equal to the area of its hysteresis loop,

as plotted in a graph of B against H. Thus, it is particularly important to ensure

that the magnetic materials used to form transformer cores possess hysteresis

loops with comparatively small areas, otherwise the transformers are likely to be

extremely lossy.
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7 MAGNETIC INDUCTION

7 Magnetic induction

7.1 Introduction

In this section, we shall use Maxwell’s equations to investigate magnetic induc-

tion and related phenomena.

7.2 Inductance

We have learned about e.m.f., resistance, and capacitance. Let us now investigate

inductance. Electrical engineers like to reduce all pieces of electrical apparatus to

an equivalent circuit consisting only of e.m.f. sources (e.g., batteries), inductors,

capacitors, and resistors. Clearly, once we understand inductors, we shall be

ready to apply the laws of electromagnetism to electrical circuits.

Consider two stationary loops of wire, labeled 1 and 2. Let us run a steady

current I1 around the first loop to produce a magnetic field B1. Some of the field

lines of B1 will pass through the second loop. Let Φ2 be the flux of B1 through

loop 2:

Φ2 =

∫

loop 2

B1 · dS2, (7.1)

where dS2 is a surface element of loop 2. This flux is generally quite difficult

to calculate exactly (unless the two loops have a particularly simple geometry).

However, we can infer from the Biot-Savart law,

B1(r) =
µ0 I1

4π

∮

loop 1

dl1 × (r − r ′)

|r − r ′|3
, (7.2)

that the magnitude of B1 is proportional to the current I1. This is ultimately a

consequence of the linearity of Maxwell’s equations. Here, dl1 is a line element

of loop 1 located at position vector r ′. It follows that the flux Φ2 must also be

proportional to I1. Thus, we can write

Φ2 = M21 I1, (7.3)
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7 MAGNETIC INDUCTION 7.2 Inductance

where M21 is the constant of proportionality. This constant is called the mutual

inductance of the two loops.

Let us write the magnetic field B1 in terms of a vector potential A1, so that

B1 = ∇× A1. (7.4)

It follows from Stokes’ theorem that

Φ2 =

∫

loop 2

B1 · dS2 =

∫

loop 2

∇× A1 · dS2 =

∮

loop 2

A1 · dl2, (7.5)

where dl2 is a line element of loop 2. However, we know that

A1(r) =
µ0 I1

4π

∮

loop 1

dl1

|r − r ′|
. (7.6)

The above equation is just a special case of the more general law,

A1(r) =
µ0

4π

∫

all space

j(r ′)

|r − r ′|
d3r ′, (7.7)

for j(r ′) = dl1 I1/dl1 dA and d3r ′ = dl1 dA, where dA is the cross-sectional area

of loop 1. Thus,

Φ2 =
µ0 I1

4π

∮

loop 1

∮

loop 2

dl1 · dl2

|r − r ′|
, (7.8)

where r is now the position vector of the line element dl2 of loop 2. The above

equation implies that

M21 =
µ0

4π

∮

loop 1

∮

loop 2

dl1 · dl2

|r − r ′|
. (7.9)

In fact, mutual inductances are rarely worked out from first principles—it is usu-

ally too difficult. However, the above formula tells us two important things.

Firstly, the mutual inductance of two loops is a purely geometric quantity, hav-

ing to do with the sizes, shapes, and relative orientations of the loops. Secondly,

the integral is unchanged if we switch the roles of loops 1 and 2. In other words,

M21 = M12. (7.10)
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7 MAGNETIC INDUCTION 7.3 Self-inductance

In fact, we can drop the subscripts, and just call these quantities M. This is a

rather surprising result. It implies that no matter what the shapes and relative

positions of the two loops, the magnetic flux through loop 2 when we run a

current I around loop 1 is exactly the same as the flux through loop 1 when we

send the same current around loop 2.

We have seen that a current I flowing around some loop, 1, generates a mag-

netic flux linking some other loop, 2. However, flux is also generated through the

first loop. As before, the magnetic field, and, therefore, the fluxΦ, is proportional

to the current, so we can write

Φ = L I. (7.11)

The constant of proportionality L is called the self-inductance. Like M it only

depends on the geometry of the loop.

Inductance is measured in S.I. units called henries (H): 1 henry is 1 volt-second

per ampere. The henry, like the farad, is a rather unwieldy unit, since most real-

life inductors have a inductances of order a micro-henry.

7.3 Self-inductance

Consider a long solenoid of length l, and radius r, which has N turns per unit

length, and carries a current I. The longitudinal (i.e., directed along the axis of

the solenoid) magnetic field within the solenoid is approximately uniform, and is

given by

B = µ0NI. (7.12)

This result is easily obtained by integrating Ampère’s law over a rectangular loop

whose long sides run parallel to the axis of the solenoid, one inside the solenoid,

and the other outside, and whose short sides run perpendicular to the axis. The

magnetic flux though each turn of the loop is Bπ r2 = µ0NIπ r
2. The total flux

through the solenoid wire, which has Nl turns, is

Φ = Nlµ0NIπ r
2. (7.13)
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Thus, the self-inductance of the solenoid is

L =
Φ

I
= µ0N

2 π r2 l. (7.14)

Note that the self-inductance only depends on geometric quantities such as the

number of turns per unit length of the solenoid, and the cross-sectional area of

the turns.

Suppose that the current I flowing through the solenoid changes. We have to

assume that the change is sufficiently slow that we can neglect the displacement

current, and retardation effects, in our calculations. This implies that the typical

time-scale of the change must be much longer than the time for a light-ray to

traverse the circuit. If this is the case, then the above formulae remain valid.

A change in the current implies a change in the magnetic flux linking the

solenoid wire, since Φ = L I. According to Faraday’s law, this change generates

an e.m.f. in the wire. By Lenz’s law, the e.m.f. is such as to oppose the change in

the current—i.e., it is a back e.m.f. We can write

V = −
dΦ

dt
= −L

dI

dt
, (7.15)

where V is the generated e.m.f.

Suppose that our solenoid has an electrical resistance R. Let us connect the

ends of the solenoid across the terminals of a battery of e.m.f. V . What is going

to happen? The equivalent circuit is shown in Fig. 51. The inductance and re-

sistance of the solenoid are represented by a perfect inductor, L, and a perfect

resistor, R, connected in series. The voltage drop across the inductor and resistor

is equal to the e.m.f. of the battery, V . The voltage drop across the resistor is

simply I R, whereas the voltage drop across the inductor (i.e., the back e.m.f.) is

LdI/dt. Here, I is the current flowing through the solenoid. It follows that

V = I R+ L
dI

dt
. (7.16)

This is a differential equation for the current I. We can rearrange it to give

dI

dt
+
R

L
I =

V

L
. (7.17)
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V

I

L

R

Figure 51:

The general solution is

I(t) =
V

R
+ k exp(−R t/L). (7.18)

The constant k is fixed by the boundary conditions. Suppose that the battery is

connected at time t = 0, when I = 0. It follows that k = −V/R, so that

I(t) =
V

R
[1− exp(−R t/L) ] . (7.19)

This curve is sketched in Fig. 52. It can be seen that, after the battery is con-

nected, the current ramps up, and attains its steady-state value V/R (which comes

from Ohm’s law), on the characteristic time-scale

τ =
L

R
. (7.20)

This time-scale is sometimes called the time constant of the circuit, or, somewhat

unimaginatively, the L over R time of the circuit.

We can now appreciate the significance of self-inductance. The back e.m.f.

generated in an inductor, as the current tries to change, effectively prevents the

current from rising (or falling) much faster than the L/R time. This effect is
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I

tL / R0
0

V/R

Figure 52:

sometimes advantageous, but often it is a great nuisance. All circuit elements

possess some self-inductance, as well as some resistance, and thus have a finite

L/R time. This means that when we power up a circuit, the current does not

jump up instantaneously to its steady-state value. Instead, the rise is spread out

over the L/R time of the circuit. This is a good thing. If the current were to

rise instantaneously, then extremely large electric fields would be generated by

the sudden jump in the induced magnetic field, leading, inevitably, to breakdown

and electric arcing. So, if there were no such thing as self-inductance, then every

time you switched an electric circuit on or off there would be a blue flash due

to arcing between conductors. Self-inductance can also be a bad thing. Suppose

that we possess a fancy power supply, and we wish to use it to send an electric

signal down a wire (or transmission line). Of course, the wire or transmission

line will possess both resistance and inductance, and will, therefore, have some

characteristic L/R time. Suppose that we try to send a square-wave signal down

the wire. Since the current in the wire cannot rise or fall faster than the L/R

time, the leading and trailing edges of the signal get smoothed out over an L/R

time. The typical difference between the signal fed into the wire (upper trace),

and that which comes out of the other end (lower trace), is illustrated in Fig. 53.

Clearly, there is little point having a fancy power supply unless you also possess
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0

V

0

V

τ
Figure 53:

a low inductance wire or transmission line, so that the signal from the power

supply can be transmitted to some load device without serious distortion.

7.4 Mutual inductance

Consider, now, two long thin solenoids, one wound on top of the other. The length

of each solenoid is l, and the common radius is r. Suppose that the bottom coil

has N1 turns per unit length, and carries a current I1. The magnetic flux passing

through each turn of the top coil is µ0N1 I1 π r
2, and the total flux linking the

top coil is therefore Φ2 = N2 l µ0N1 I1 π r
2, where N2 is the number of turns per

unit length in the top coil. It follows that the mutual inductance of the two coils,

defined Φ2 = MI1, is given by

M = µ0N1N2 π r
2 l. (7.21)

Recall that the self-inductance of the bottom coil is

L1 = µ0N
2
1 π r

2 l, (7.22)

and that of the top coil is

L2 = µ0N
2
2 π r

2 l. (7.23)
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Hence, the mutual inductance can be written

M =
√

L1 L2. (7.24)

Note that this result depends on the assumption that all of the flux produced by

one coil passes through the other coil. In reality, some of the flux leaks out, so that

the mutual inductance is somewhat less than that given in the above formula. We

can write

M = k
√

L1 L2, (7.25)

where the constant k is called the coefficient of coupling, and lies in the range

0 ≤ k ≤ 1.

Suppose that the two coils have resistances R1 and R2. If the bottom coil has

an instantaneous current I1 flowing through it, and a total voltage drop V1, then

the voltage drop due to its resistance is I1 R1. The voltage drop due to the back

e.m.f. generated by the self-inductance of the coil is L1 dI1/dt. There is also a

back e.m.f. due to inductive coupling with the top coil. We know that the flux

through the bottom coil due to the instantaneous current I2 flowing in the top

coil is

Φ1 = MI2. (7.26)

Thus, by Faraday’s law and Lenz’s law, the e.m.f. induced in the bottom coil is

V = −M
dI2

dt
. (7.27)

The voltage drop across the bottom coil due to its mutual inductance with the top

coil is minus this expression. Thus, the circuit equation for the bottom coil is

V1 = R1 I1 + L1
dI1

dt
+M

dI2

dt
. (7.28)

Likewise, the circuit equation for the top coil is

V2 = R2 I2 + L2
dI2

dt
+M

dI1

dt
. (7.29)

Here, V2 is the total voltage drop across the top coil.

Suppose that we suddenly connect a battery of e.m.f. V1 to the bottom coil,

at time t = 0. The top coil is assumed to be open-circuited, or connected to
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a voltmeter of very high internal resistance, so that I2 = 0. What is the e.m.f.

generated in the top coil? Since I2 = 0, the circuit equation for the bottom coil is

V1 = R1 I1 + L1
dI1

dt
, (7.30)

where V1 is constant, and I1(t = 0) = 0. We have already seen the solution to

this equation:

I1 =
V1

R1
[1− exp(−R1 t/L1) ] . (7.31)

The circuit equation for the top coil is

V2 = M
dI1

dt
, (7.32)

giving

V2 = V1
M

L1
exp(−R1 t/L1). (7.33)

It follows from Eq. (7.25) that

V2 = V1 k

√

√

√

√

L2

L1
exp(−R1 t/L1). (7.34)

Since L1/L2 = N 2
1 /N

2
2 , we obtain

V2 = V1 k
N2

N1
exp(−R1 t/L1). (7.35)

Note that V2(t) is discontinuous at t = 0. This is not a problem, since the resis-

tance of the top circuit is infinite, so there is no discontinuity in the current (and,

hence, in the magnetic field). But, what about the displacement current, which

is proportional to ∂E/∂t? Surely, this is discontinuous at t = 0 (which is clearly

unphysical)? The crucial point, here, is that we have specifically neglected the

displacement current in all of our previous analysis, so it does not make much

sense to start worrying about it now. If we had retained the displacement cur-

rent in our calculations, then we would have found that the voltage in the top

circuit jumps up, at t = 0, on a time-scale similar to the light traverse time across

the circuit (i.e., the jump is instantaneous to all intents and purposes, but the

displacement current remains finite).
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Now,
V2(t = 0)

V1
= k

N2

N1
, (7.36)

so if N2 � N1 then the voltage in the bottom circuit is considerably amplified in

the top circuit. This effect is the basis for old-fashioned car ignition systems. A

large voltage spike is induced in a secondary circuit (connected to a coil with very

many turns) whenever the current in a primary circuit (connected to a coil with

not so many turns) is either switched on or off. The primary circuit is connected

to the car battery (whose e.m.f. is typically 12 volts). The switching is done by

a set of points, which are mechanically opened and closed as the engine turns.

The large voltage spike induced in the secondary circuit, as the points are either

opened or closed, causes a spark to jump across a gap in this circuit. This spark

ignites a petrol/air mixture in one of the cylinders. We might think that the

optimum configuration is to have only one turn in the primary circuit, and lots

of turns in the secondary circuit, so that the ratio N2/N1 is made as large as

possible. However, this is not the case. Most of the magnetic field lines generated

by a single turn primary coil are likely to miss the secondary coil altogether.

This means that the coefficient of coupling k is small, which reduces the voltage

induced in the secondary circuit. Thus, we need a reasonable number of turns in

the primary coil in order to localize the induced magnetic field, so that it links

effectively with the secondary coil.

7.5 Magnetic energy

Suppose that at t = 0 a coil of inductance, L, and resistance, R, is connected

across the terminals of a battery of e.m.f., V . The circuit equation is

V = L
dI

dt
+ R I. (7.37)

The power output of the battery is V I. [Every charge q that goes around the

circuit falls through a potential difference qV . In order to raise it back to the

starting potential, so that it can perform another circuit, the battery must do

work qV . The work done per unit time (i.e., the power) is nqV , where n is

the number of charges per unit time passing a given point on the circuit. But,
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I = nq, so the power output is V I.] The total work done by the battery in raising

the current in the circuit from zero at time t = 0 to IT at time t = T is

W =

∫ T

0

VIdt. (7.38)

Using the circuit equation (7.37), we obtain

W = L

∫ T

0

I
dI

dt
dt+ R

∫ T

0

I2 dt, (7.39)

giving

W =
1

2
L I 2T + R

∫ T

0

I2 dt. (7.40)

The second term on the right-hand side represents the irreversible conversion of

electrical energy into heat energy in the resistor. The first term is the amount of

energy stored in the inductor at time T . This energy can be recovered after the in-

ductor is disconnected from the battery. Suppose that the battery is disconnected

at time T . The circuit equation is now

0 = L
dI

dt
+ RI, (7.41)

giving

I = IT exp

[

−
R

L
(t− T)

]

, (7.42)

where we have made use of the boundary condition I(T) = IT . Thus, the current

decays away exponentially. The energy stored in the inductor is dissipated as heat

in the resistor. The total heat energy appearing in the resistor after the battery is

disconnected is ∫∞

T

I2Rdt =
1

2
L I 2T , (7.43)

where use has been made of Eq. (7.42). Thus, the heat energy appearing in the

resistor is equal to the energy stored in the inductor. This energy is actually stored

in the magnetic field generated around the inductor.

Consider, again, our circuit with two coils wound on top of one another. Sup-

pose that each coil is connected to its own battery. The circuit equations are
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thus

V1 = R1 I1 + L1
dI1

dt
+M

dI2

dt
,

V2 = R2 I2 + L2
dI2

dt
+M

dI1

dt
, (7.44)

where V1 is the e.m.f. of the battery in the first circuit, etc. The work done by the

two batteries in increasing the currents in the two circuits, from zero at time 0,

to I1 and I2 at time T , respectively, is

W =

∫ T

0

(V1 I1 + V2 I2)dt

=

∫ T

0

(R1 I
2
1 + R2 I

2
2 )dt+

1

2
L1 I

2
1 +

1

2
L2 I

2
2

+M

∫ T

0

(

I1
dI2

dt
+ I2

dI1

dt

)

dt. (7.45)

Thus,

W =

∫ T

0

(R1 I
2
1 + R2 I

2
2 )dt

+
1

2
L1 I

2
1 +

1

2
L2 I

2
2 +MI1 I2. (7.46)

Clearly, the total magnetic energy stored in the two coils is

WB =
1

2
L1 I

2
1 +

1

2
L2 I

2
2 +MI1 I2. (7.47)

Note that the mutual inductance term increases the stored magnetic energy if

I1 and I2 are of the same sign—i.e., if the currents in the two coils flow in the

same direction, so that they generate magnetic fields which reinforce one another.

Conversely, the mutual inductance term decreases the stored magnetic energy if

I1 and I2 are of the opposite sign. However, the total stored energy can never be

negative, otherwise the coils would constitute a power source (a negative stored

energy is equivalent to a positive generated energy). Thus,

1

2
L1 I

2
1 +

1

2
L2 I

2
2 +MI1 I2 ≥ 0, (7.48)
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which can be written

1

2

(

√

L1 I1 +
√

L2 I2

)2

− I1 I2(
√

L1 L2 −M) ≥ 0, (7.49)

assuming that I1 I2 < 0. It follows that

M ≤
√

L1 L2. (7.50)

The equality sign corresponds to the situation where all of the flux generated by

one coil passes through the other. If some of the flux misses then the inequality

sign is appropriate. In fact, the above formula is valid for any two inductively

coupled circuits.

We intimated previously that the energy stored in an inductor is actually stored

in the surrounding magnetic field. Let us now obtain an explicit formula for the

energy stored in a magnetic field. Consider an ideal solenoid. The energy stored

in the solenoid when a current I flows through it is

W =
1

2
L I2, (7.51)

where L is the self-inductance. We know that

L = µ0N
2 π r2 l, (7.52)

where N is the number of turns per unit length of the solenoid, r the radius, and

l the length. The field inside the solenoid is uniform, with magnitude

B = µ0NI, (7.53)

and is zero outside the solenoid. Equation (7.51) can be rewritten

W =
B2

2µ0
V, (7.54)

where V = π r2 l is the volume of the solenoid. The above formula strongly

suggests that a magnetic field possesses an energy density

U =
B2

2µ0
. (7.55)
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Let us now examine a more general proof of the above formula. Consider a

system ofN circuits (labeled i = 1 toN), each carrying a current Ii. The magnetic

flux through the ith circuit is written [cf., Eq. (7.5) ]

Φi =

∫

B · dSi =

∮

A · dli, (7.56)

where B = ∇ × A, and dSi and dli denote a surface element and a line element

of this circuit, respectively. The back e.m.f. induced in the ith circuit follows from

Faraday’s law:

Vi = −
dΦi

dt
. (7.57)

The rate of work of the battery which maintains the current Ii in the ith circuit

against this back e.m.f. is

Pi = Ii
dΦi

dt
. (7.58)

Thus, the total work required to raise the currents in the N circuits from zero at

time 0, to I0 i at time T , is

W =

N∑

i=1

∫ T

0

Ii
dΦi

dt
dt. (7.59)

The above expression for the work done is, of course, equivalent to the total

energy stored in the magnetic field surrounding the various circuits. This energy

is independent of the manner in which the currents are set up. Suppose, for the

sake of simplicity, that the currents are ramped up linearly, so that

Ii = I0 i
t

T
. (7.60)

The fluxes are proportional to the currents, so they must also ramp up linearly:

Φi = Φ0 i
t

T
. (7.61)

It follows that

W =

N∑

i=1

∫ T

0

I0 iΦ0 i
t

T 2
dt, (7.62)
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giving

W =
1

2

N∑

i=1

I0 iΦ0 i. (7.63)

So, if instantaneous currents Ii flow in the the N circuits, which link instanta-

neous fluxes Φi, then the instantaneous stored energy is

W =
1

2

N∑

i=1

IiΦi. (7.64)

Equations (7.56) and (7.64) imply that

W =
1

2

N∑

i=1

Ii

∮

A · dli. (7.65)

It is convenient, at this stage, to replace our N line currents by N current dis-

tributions of small, but finite, cross-sectional area. Equation (7.65) transforms

to

W =
1

2

∫

V

A · jdV, (7.66)

where V is a volume which contains all of the circuits. Note that for an element

of the ith circuit j = Ii dli/dliAi and dV = dliAi, where Ai is the cross-sectional

area of the circuit. Now, µ0 j = ∇×B (we are neglecting the displacement current

in this calculation), so

W =
1

2µ0

∫

V

A · ∇ × BdV. (7.67)

According to vector field theory,

∇ · (A × B) ≡ B · ∇ × A − A · ∇ × B, (7.68)

which implies that

W =
1

2µ0

∫

V

[−∇ · (A × B) + B · ∇ × A] dV. (7.69)

Using Gauss’ theorem, and B = ∇× A, we obtain

W = −
1

2µ0

∮

S

A × B · dS +
1

2µ0

∫

V

B2 dV, (7.70)
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where S is the bounding surface of V . Let us take this surface to infinity. It is

easily demonstrated that the magnetic field generated by a current loop falls of

like r−3 at large distances. The vector potential falls off like r−2. However, the

area of surface S only increases like r2. It follows that the surface integral is

negligible in the limit r → ∞. Thus, the above expression reduces to

W =

∫

all space

B2

2µ0
dV. (7.71)

Since this expression is valid for any magnetic field whatsoever, we can safely

conclude that the energy density of a general magnetic field is given by

U =
B2

2µ0
. (7.72)

Note, also, that the above expression is consistent with the expression (6.92)

which we obtained during our investigation of magnetic media.

7.6 Alternating current circuits

Alternating current (AC) circuits are made up of e.m.f. sources and three different

types of passive element: resistors, inductors, and capacitors, Resistors satisfy

Ohm’s law:

V = I R, (7.73)

where R is the resistance, I the current flowing through the resistor, and V the

voltage drop across the resistor (in the direction in which the current flows).

Inductors satisfy

V = L
dI

dt
, (7.74)

where L is the inductance. Finally, capacitors obey

V =
q

C
=

∫ t

0

I dt

/

C, (7.75)

where C is the capacitance, q is the charge stored on the plate with the most

positive potential, and I = 0 for t < 0. Note that any passive component of a real
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7 MAGNETIC INDUCTION 7.6 Alternating current circuits

electrical circuit can always be represented as a combination of ideal resistors,

inductors, and capacitors.

Let us consider the classic LCR circuit, which consists of an inductor, L, a

capacitor, C, and a resistor, R, all connected in series with an e.m.f. source, V .

The circuit equation is obtained by setting the input voltage V equal to the sum

of the voltage drops across the three passive elements in the circuit. Thus,

V = I R+ L
dI

dt
+

∫ t

0

I dt

/

C. (7.76)

This is an integro-differential equation which, in general, is quite tricky to solve.

Suppose, however, that both the voltage and the current oscillate at some fixed

angular frequency ω, so that

V(t) = V0 exp(iωt), (7.77)

I(t) = I0 exp(iωt), (7.78)

where the physical solution is understood to be the real part of the above expres-

sions. The assumed behaviour of the voltage and current is clearly relevant to

electrical circuits powered by the mains voltage (which oscillates at 60 hertz).

Equations (7.76)–(7.78) yield

V0 exp(iωt) = I0 exp(iωt)R+ L iωI0 exp(iωt) +
I0 exp(iωt)

iωC
, (7.79)

giving

V0 = I0

(

iωL+
1

iωC
+ R

)

. (7.80)

It is helpful to define the impedance of the circuit:

Z =
V

I
= iωL+

1

iωC
+ R. (7.81)

Impedance is a generalization of the concept of resistance. In general, the impedance

of an AC circuit is a complex quantity.

The average power output of the e.m.f. source is

P = 〈V(t) I(t)〉, (7.82)
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where the average is taken over one period of the oscillation. Let us, first of all,

calculate the power using real (rather than complex) voltages and currents. We

can write

V(t) = |V0| cos(ωt), (7.83)

I(t) = |I0| cos(ωt− θ), (7.84)

where θ is the phase-lag of the current with respect to the voltage. It follows that

P = |V0| |I0|

∫ωt=2π

ωt=0

cos(ωt) cos(ωt− θ)
d(ωt)

2π

= |V0| |I0|

∫ωt=2π

ωt=0

cos(ωt) [cos(ωt) cos θ+ sin(ωt) sin θ]
d(ωt)

2π
,(7.85)

giving

P =
1

2
|V0| |I0| cos θ, (7.86)

since 〈cos(ωt) sin(ωt)〉 = 0 and 〈cos(ωt) cos(ωt)〉 = 1/2. In complex repre-

sentation, the voltage and the current are written

V(t) = |V0| exp(iωt), (7.87)

I(t) = |I0| exp[i (ωt− θ)]. (7.88)

Note that
1

2
(V I∗ + V∗ I) = |V0| |I0| cos θ. (7.89)

It follows that

P =
1

4
(V I∗ + V∗ I) =

1

2
Re(V I∗). (7.90)

Making use of Eq. (7.81), we find that

P =
1

2
Re(Z) |I|2 =

1

2

Re(Z) |V |2

|Z|2
. (7.91)

Note that power dissipation is associated with the real part of the impedance. For

the special case of an LCR circuit,

P =
1

2
R |I0|

2. (7.92)
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7 MAGNETIC INDUCTION 7.7 Transmission lines

It is clear that only the resistor dissipates energy in this circuit. The inductor

and the capacitor both store energy, but they eventually return it to the circuit

without dissipation.

According to Eq. (7.81), the amplitude of the current which flows in an LCR

circuit for a given amplitude of the input voltage is given by

|I0| =
|V0|

|Z|
=

|V0|
√

(ωL− 1/ωC)2 + R2
. (7.93)

The response of the circuit is clearly resonant, peaking atω = 1/
√
LC, and reach-

ing 1/
√
2 of the peak value atω = 1/

√
LC±R/2 L (assuming that R�

√

L/C). In

fact, LCR circuits are used in radio tuners to filter out signals whose frequencies

fall outside a given band.

The phase-lag of the current with respect to the voltage is given by

θ = arg(Z) = tan−1





ωL− 1/ωC

R



 . (7.94)

The phase-lag varies from −π/2 for frequencies significantly below the resonant

frequency, to zero at the resonant frequency (ω = 1/
√
LC), to π/2 for frequencies

significantly above the resonant frequency.

It is clear that in conventional AC circuits the circuit equation reduces to a

simple algebraic equation, and the behaviour of the circuit is summed up by

the complex impedance Z. The real part of Z tells us the power dissipated in

the circuit, the magnitude of Z gives the ratio of the peak current to the peak

voltage, and the argument of Z gives the phase-lag of the current with respect to

the voltage.

7.7 Transmission lines

The central assumption made in the analysis of conventional AC circuits is that

the voltage (and, hence, the current) has the same phase throughout the circuit.

Unfortunately, if the circuit is sufficiently large, or the frequency of oscillation,
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ω, is sufficiently high, then this assumption becomes invalid. The assumption of

a constant phase throughout the circuit is reasonable if the wave-length of the

oscillation, λ = 2π c/ω, is much larger than the dimensions of the circuit. (Here,

we assume that signals propagate around electrical circuits at about the velocity

of light. This assumption will be justified later on.) This is generally not the case

in electrical circuits which are associated with communication. The frequencies in

such circuits tend to be very high, and the dimensions are, almost by definition,

large. For instance, leased telephone lines (the type you attach computers to) run

at 56 kHz. The corresponding wave-length is about 5 km, so the constant-phase

approximation clearly breaks down for long-distance calls. Computer networks

generally run at about 100 MHz, corresponding to λ ∼ 3 m. Thus, the constant-

phase approximation also breaks down for most computer networks, since such

networks are generally significantly larger than 3 m. It turns out that you need

a special sort of wire, called a transmission line, to propagate signals around

circuits whose dimensions greatly exceed the wave-length, λ. Let us investigate

transmission lines.

An idealized transmission line consists of two parallel conductors of uniform

cross-sectional area. The conductors possess a capacitance per unit length, C,

and an inductance per unit length, L. Suppose that xmeasures the position along

the line.

Consider the voltage difference between two neighbouring points on the line,

located at positions x and x+ δx, respectively. The self-inductance of the portion

of the line lying between these two points is L δx. This small section of the line can

be thought of as a conventional inductor, and, therefore, obeys the well-known

equation

V(x, t) − V(x+ δx, t) = L δx
∂I(x, t)

∂t
, (7.95)

where V(x, t) is the voltage difference between the two conductors at position x

and time t, and I(x, t) is the current flowing in one of the conductors at position

x and time t [the current flowing in the other conductor is −I(x, t) ]. In the limit

δx → 0, the above equation reduces to

∂V

∂x
= −L

∂I

∂t
. (7.96)
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Consider the difference in current between two neighbouring points on the

line, located at positions x and x+δx, respectively. The capacitance of the portion

of the line lying between these two points is Cδx. This small section of the line

can be thought of as a conventional capacitor, and, therefore, obeys the well-

known equation
∫ t

0

I(x, t)dt−

∫ t

0

I(x+ δx, t)dt = CδxV(x, t), (7.97)

where t = 0 denotes a time at which the charge stored in either of the conductors

in the region x to x+ δx is zero. In the limit δx → 0, the above equation yields

∂I

∂x
= −C

∂V

∂t
. (7.98)

Equations (7.96) and (7.98) are generally known as the telegrapher’s equations,

since an old fashioned telegraph line can be thought of as a primitive transmission

line (telegraph lines consist of a single wire: the other conductor is the Earth.)

Differentiating Eq. (7.96) with respect to x, we obtain

∂2V

∂x2
= −L

∂2I

∂x ∂t
. (7.99)

Differentiating Eq. (7.98) with respect to t yields

∂2I

∂x ∂t
= −C

∂2V

∂t2
. (7.100)

The above two equations can be combined to give

LC
∂2V

∂t2
=
∂2V

∂x2
. (7.101)

This is clearly a wave equation, with wave velocity v = 1/
√
LC. An analogous

equation can be written for the current, I.

Consider a transmission line which is connected to a generator at one end

(x = 0), and a resistor, R, at the other (x = l). Suppose that the generator

outputs a voltage V0 cos(ωt). If follows that

V(0, t) = V0 cos(ωt). (7.102)
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The solution to the wave equation (7.101), subject to the above boundary condi-

tion, is

V(x, t) = V0 cos(ωt− k x), (7.103)

where k = ω/v. This clearly corresponds to a wave which propagates from the

generator towards the resistor. Equations (7.96) and (7.103) yield

I(x, t) =
V0

√

L/C
cos(ωt− k x). (7.104)

For self-consistency, the resistor at the end of the line must have a particular

value:

R =
V(l, t)

I(l, t)
=

√

√

√

√

L

C
. (7.105)

The so-called input impedance of the line is defined

Zin =
V(0, t)

I(0, t)
=

√

√

√

√

L

C
. (7.106)

Thus, a transmission line terminated by a resistor R =
√

L/C acts very much like

a conventional resistor R = Zin in the circuit containing the generator. In fact, the

transmission line could be replaced by an effective resistor R = Zin in the circuit

diagram for the generator circuit. The power loss due to this effective resistor

corresponds to power which is extracted from the circuit, transmitted down the

line, and absorbed by the terminating resistor.

The most commonly occurring type of transmission line is a co-axial cable,

which consists of two co-axial cylindrical conductors of radii a and b (with b >

a). We have already shown that the capacitance per unit length of such a cable

is (see Sect. 5.6)

C =
2π ε0

ln(b/a)
. (7.107)

Let us now calculate the inductance per unit length. Suppose that the inner

conductor carries a current I. According to Ampère’s law, the magnetic field in

the region between the conductors is given by

Bθ =
µ0 I

2π r
. (7.108)
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The flux linking unit length of the cable is

Φ =

∫b

a

Bθ dr =
µ0 I

2π
ln(b/a). (7.109)

Thus, the self-inductance per unit length is

L =
Φ

I
=
µ0

2π
ln(b/a). (7.110)

So, the speed of propagation of a wave down a co-axial cable is

v =
1√
LC

=
1√
ε0 µ0

= c. (7.111)

Not surprisingly, the wave (which is a type of electromagnetic wave) propagates

at the speed of light. The impedance of the cable is given by

Z0 =

√

√

√

√

L

C
=

(

µ0

4π2 ε0

)1/2

ln (b/a) = 60 ln (b/a) ohms. (7.112)

If we fill the region between the two cylindrical conductors with a dielectric

of dielectric constant ε, then, according to the discussion in Sect. 6.2, the capac-

itance per unit length of the transmission line goes up by a factor ε. However,

the dielectric has no effect on magnetic fields, so the inductance per unit length

of the line remains unchanged. It follows that the propagation speed of signals

down a dielectric filled co-axial cable is

v =
1√
LC

=
c√
ε
. (7.113)

As we shall see later, this is simply the propagation velocity of electromagnetic

waves through a dielectric medium. The impedance of the cable becomes

Z0 = 60
ln(b/a)√

ε
ohms. (7.114)

We have seen that if a transmission line is terminated by a resistor whose

resistance R matches the impedance Z0 of the line then all of the power sent
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down the line is absorbed by the resistor. What happens if R 6= Z0? The answer

is that some of the power is reflected back down the line. Suppose that the

beginning of the line lies at x = −l, and the end of the line is at x = 0. Let us

consider a solution

V(x, t) = V0 exp[i (ωt− k x)] + KV0 exp[i (ωt+ k x)]. (7.115)

This corresponds to a voltage wave of amplitude V0 which travels down the line,

and is reflected at the end of the line, with reflection coefficient K. It is easily

demonstrated from the telegrapher’s equations that the corresponding current

waveform is

I(x, t) =
V0

Z0
exp[i (ωt− k x)] −

KV0

Z0
exp[i (ωt+ k x)]. (7.116)

Since the line is terminated by a resistance R at x = 0, we have, from Ohm’s law,

V(0, t)

I(0, t)
= R. (7.117)

This yields an expression for the coefficient of reflection,

K =
R− Z0

R+ Z0
. (7.118)

The input impedance of the line is given by

Zin =
V(−l, t)

I(−l, t)
= Z0

R cos(k l) + iZ0 sin(k l)

Z0 cos(k l) + iR sin(k l)
. (7.119)

Clearly, if the resistor at the end of the line is properly matched, so that R = Z0,

then there is no reflection (i.e., K = 0), and the input impedance of the line is Z0.

If the line is short-circuited, so that R = 0, then there is total reflection at the end

of the line (i.e., K = −1), and the input impedance becomes

Zin = iZ0 tan(k l). (7.120)

This impedance is purely imaginary, implying that the transmission line absorbs

no net power from the generator circuit. In fact, the line acts rather like a pure

inductor or capacitor in the generator circuit (i.e., it can store, but cannot absorb,
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energy). If the line is open-circuited, so that R → ∞, then there is again total

reflection at the end of the line (i.e., K = 1), and the input impedance becomes

Zin = iZ0 tan(k l− π/2). (7.121)

Thus, the open-circuited line acts like a closed-circuited line which is shorter by

one quarter of a wave-length. For the special case where the length of the line is

exactly one quarter of a wave-length (i.e., k l = π/2), we find

Zin =
Z 20
R
. (7.122)

Thus, a quarter-wave line looks like a pure resistor in the generator circuit. Fi-

nally, if the length of the line is much less than the wave-length (i.e., k l � 1)

then we enter the constant-phase regime, and Zin ' R (i.e., we can forget about

the transmission line connecting the terminating resistor to the generator circuit).

Suppose that we wish to build a radio transmitter. We can use a standard

half-wave antenna (i.e., an antenna whose length is half the wave-length of the

emitted radiation) to emit the radiation. In electrical circuits, such an antenna

acts like a resistor of resistance 73 ohms (it is more usual to say that the antenna

has an impedance of 73 ohms—see Sect. 9.2). Suppose that we buy a 500 kW

generator to supply the power to the antenna. How do we transmit the power

from the generator to the antenna? We use a transmission line, of course. (It

is clear that if the distance between the generator and the antenna is of order

the dimensions of the antenna (i.e., λ/2) then the constant-phase approximation

breaks down, and so we have to use a transmission line.) Since the impedance

of the antenna is fixed at 73 ohms, we need to use a 73 ohm transmission line

(i.e., Z0 = 73 ohms) to connect the generator to the antenna, otherwise some of

the power we send down the line is reflected (i.e., not all of the power output of

the generator is converted into radio waves). If we wish to use a co-axial cable

to connect the generator to the antenna, then it is clear from Eq. (7.114) that the

radii of the inner and outer conductors need to be such that b/a = 3.38 exp(
√
ε).

Suppose, finally, that we upgrade our transmitter to use a full-wave antenna

(i.e., an antenna whose length equals the wave-length of the emitted radiation).

A full-wave antenna has a different impedance than a half-wave antenna. Does
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this mean that we have to rip out our original co-axial cable, and replace it by

one whose impedance matches that of the new antenna? Not necessarily. Let Z0
be the impedance of the co-axial cable, and Z1 the impedance of the antenna.

Suppose that we place a quarter-wave transmission line (i.e., one whose length is

one quarter of a wave-length) of characteristic impedance Z1/4 =
√
Z0 Z1 between

the end of the cable and the antenna. According to Eq. (7.122) (with Z0 →√
Z0 Z1 and R → Z1), the input impedance of the quarter-wave line is Zin = Z0,

which matches that of the cable. The output impedance matches that of the

antenna. Consequently, there is no reflection of the power sent down the cable

to the antenna. A quarter-wave line of the appropriate impedance can easily be

fabricated from a short length of co-axial cable of the appropriate b/a.
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8 Electromagnetic energy and momentum

8.1 Introduction

In this section, we shall demonstrate that Maxwell’s equations conserve both en-

ergy and momentum.

8.2 Energy conservation

We have seen that the energy density of an electric field is given by [see Eq. (5.20)]

UE =
ε0 E

2

2
, (8.1)

whereas the energy density of a magnetic field satisfies [see Eq. (7.55)]

UB =
B2

2µ0
. (8.2)

This suggests that the energy density of a general electromagnetic field is

U =
ε0 E

2

2
+
B2

2µ0
. (8.3)

We are now in a position to demonstrate that the classical theory of electromag-

netism conserves energy. We have already come across one conservation law in

electromagnetism:
∂ρ

∂t
+ ∇ · j = 0. (8.4)

This is the equation of charge conservation. Integrating over some volume V ,

bounded by a surface S, and making use of Gauss’ theorem, we obtain

−
∂

∂t

∫

V

ρdV =

∮

S

j · dS. (8.5)

In other words, the rate of decrease of the charge contained in volume V equals

the net flux of charge across surface S. This suggests that an energy conservation
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law for electromagnetism should have the form

−
∂

∂t

∫

V

UdV =

∮

S

u · dS. (8.6)

Here, U is the energy density of the electromagnetic field, and u is the flux of

electromagnetic energy (i.e., energy |u| per unit time, per unit cross-sectional

area, passes a given point in the direction of u). According to the above equation,

the rate of decrease of the electromagnetic energy in volume V equals the net flux

of electromagnetic energy across surface S.

However, Eq. (8.6) is incomplete, because electromagnetic fields can gain or

lose energy by interacting with matter. We need to factor this into our analysis.

We saw earlier (see Sect. 5.3) that the rate of heat dissipation per unit volume in

a conductor (the so-called ohmic heating rate) is E · j. This energy is extracted

from electromagnetic fields, so the rate of energy loss of the fields in volume V

due to interaction with matter is
∫
V

E · jdV . Thus, Eq. (8.6) generalizes to

−
∂

∂t

∫

V

UdV =

∮

S

u · dS +

∫

V

E · jdV. (8.7)

From Gauss’ theorem, the above equation is equivalent to

∂U

∂t
+ ∇ · u = −E · j. (8.8)

Let us now see if we can derive an expression of this form from Maxwell’s equa-

tions.

We start from the differential form of Ampère’s law (including the displace-

ment current):

∇× B = µ0 j + ε0µ0
∂E

∂t
. (8.9)

Dotting this equation with the electric field yields

− E · j = −
E · ∇ × B

µ0
+ ε0 E · ∂E

∂t
. (8.10)

This can be rewritten

− E · j = −
E · ∇ × B

µ0
+
∂

∂t





ε0 E
2

2



 . (8.11)
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Now, from vector field theory

∇ · (E × B) ≡ B · ∇ × E − E · ∇ × B, (8.12)

so

− E · j = ∇·
(

E × B

µ0

)

−
B · ∇ × E

µ0
+
∂

∂t





ε0 E
2

2



 . (8.13)

The differential form of Faraday’s law yields

∇× E = −
∂B

∂t
, (8.14)

so

− E · j = ∇·
(

E × B

µ0

)

+
1

µ0
B · ∂B

∂t
+
∂

∂t





ε0 E
2

2



 . (8.15)

This can be rewritten

− E · j = ∇·
(

E × B

µ0

)

+
∂

∂t





ε0 E
2

2
+
B2

2µ0



 . (8.16)

Thus, we obtain the desired conservation law,

∂U

∂t
+ ∇ · u = −E · j, (8.17)

where

U =
ε0 E

2

2
+
B2

2µ0
(8.18)

is the electromagnetic energy density, and

u =
E × B

µ0
(8.19)

is the electromagnetic energy flux. The latter quantity is usually called the Poynt-

ing flux, after its discoverer.

Let us see whether our expression for the electromagnetic energy flux makes

sense. We all know that if we stand in the sun we get hot (especially in Texas!).

This occurs because we absorb electromagnetic radiation emitted by the Sun.

So, radiation must transport energy. The electric and magnetic fields in electro-

magnetic radiation are mutually perpendicular, and are also perpendicular to the
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8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.2 Energy conservation

direction of propagation k̂ (this is a unit vector). Furthermore, B = E/c. Equation

(4.78) can easily be transformed into the following relation between the electric

and magnetic fields of an electromagnetic wave:

E × B =
E2

c
k̂. (8.20)

Thus, the Poynting flux for electromagnetic radiation is

u =
E2

µ0 c
k̂ = ε0 c E

2 k̂. (8.21)

This expression tells us that electromagnetic waves transport energy along their

direction of propagation, which seems to make sense.

The energy density of electromagnetic radiation is

U =
ε0 E

2

2
+
B2

2µ0
=
ε0 E

2

2
+

E2

2µ0 c2
= ε0 E

2, (8.22)

using B = E/c. Note that the electric and magnetic fields have equal energy

densities. Since electromagnetic waves travel at the speed of light, we would

expect the energy flux through one square meter in one second to equal the

energy contained in a volume of length c and unit cross-sectional area: i.e., c

times the energy density. Thus,

|u| = cU = ε0 c E
2, (8.23)

which is in accordance with Eq. (8.21).

In the presence of diamagnetic and magnetic media, starting from Eq. (6.58),

we can derive an energy conservation law of the form

∂U

∂t
+ ∇ · u = −E · jt, (8.24)

via analogous steps to those used to derive Eq. (8.17). Here, the electromagnetic

energy density is written

U =
1

2
E · D +

1

2
B · H, (8.25)
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L

E

x

E

Figure 54:

which is consistent with Eq. (8.18). The Poynting flux takes the form

u = E × H, (8.26)

which is consistent with Eq. (8.19). Of course, the above expressions are only

valid for linear dielectric and magnetic media.

8.3 Electromagnetic momentum

We have seen that electromagnetic waves carry energy. It turns out that they also

carry momentum. Consider the following argument, due to Einstein. Suppose

that we have a railroad car of mass M and length L which is free to move in one

dimension (see Fig. 54). Suppose that electromagnetic radiation of total energy

E is emitted from one end of the car, propagates along the length of the car, and is

then absorbed at the other end. The effective mass of this radiation is m = E/c2

(from Einstein’s famous relation E = mc2). At first sight, the process described

above appears to cause the centre of mass of the system to spontaneously shift.
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8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.3 Electromagnetic momentum

This violates the law of momentum conservation (assuming the railway car is

subject to no external forces). The only way in which the centre of mass of the

system can remain stationary is if the railway car moves in the opposite direction

to the direction of propagation of the radiation. In fact, if the car moves by a

distance x then the centre of mass of the system is the same before and after the

radiation pulse provided that

Mx = mL =
E

c2
L. (8.27)

It is assumed that m�M in this derivation.

But, what actually causes the car to move? If the radiation possesses mo-

mentum p then the car will recoil with the same momentum as the radiation is

emitted. When the radiation hits the other end of the car then the car acquires

momentum p in the opposite direction, which stops the motion. The time of flight

of the radiation is L/c. So, the distance traveled by a mass M with momentum p

in this time is

x = v t =
p

M

L

c
, (8.28)

giving

p = Mx
c

L
=
E

c
. (8.29)

Thus, the momentum carried by electromagnetic radiation equals its energy di-

vided by the speed of light. The same result can be obtained from the well-known

relativistic formula

E2 = p2c2 +m2c4 (8.30)

relating the energy E, momentum p, and mass m of a particle. According to

quantum theory, electromagnetic radiation is made up of massless particles called

photons. Thus,

p =
E

c
(8.31)

for individual photons, so the same must be true of electromagnetic radiation as

a whole. If follows from Eq. (8.29) that the momentum density g of electromag-

netic radiation equals its energy density over c, so

g =
U

c
=

|u|

c2
=
ε0 E

2

c
. (8.32)
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8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.3 Electromagnetic momentum

It is reasonable to suppose that the momentum points along the direction of the

energy flow (this is obviously the case for photons), so the vector momentum

density (which gives the direction, as well as the magnitude, of the momentum

per unit volume) of electromagnetic radiation is

g =
u

c2
. (8.33)

Thus, the momentum density equals the energy flux over c2.

Of course, the electric field associated with an electromagnetic wave oscillates

rapidly, which implies that the previous expressions for the energy density, en-

ergy flux, and momentum density of electromagnetic radiation are also rapidly

oscillating. It is convenient to average over many periods of the oscillation (this

average is denoted 〈 〉). Thus,

〈U〉 =
ε0 E

2
0

2
, (8.34)

〈u〉 =
c ε0 E

2
0

2
k̂ = c 〈U〉 k̂, (8.35)

〈g〉 =
ε0 E

2
0

2 c
k̂ =

〈U〉
c

k̂, (8.36)

where the factor 1/2 comes from averaging cos2(ωt). Here, E0 is the peak am-

plitude of the electric field associated with the wave.

Since electromagnetic radiation possesses momentum then it must exert a

force on bodies which absorb (or emit) radiation. Suppose that a body is placed

in a beam of perfectly collimated radiation, which it absorbs completely. The

amount of momentum absorbed per unit time, per unit cross-sectional area, is

simply the amount of momentum contained in a volume of length c and unit

cross-sectional area: i.e., c times the momentum density g. An absorbed momen-

tum per unit time, per unit area, is equivalent to a pressure. In other words, the

radiation exerts a pressure c g on the body. Thus, the radiation pressure is given

by

p =
ε0 E

2

2
= 〈U〉. (8.37)
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8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.3 Electromagnetic momentum

So, the pressure exerted by collimated electromagnetic radiation is equal to its

average energy density.

Consider a cavity filled with electromagnetic radiation. What is the radiation

pressure exerted on the walls? In this situation, the radiation propagates in all

directions with equal probability. Consider radiation propagating at an angle θ

to the local normal to the wall. The amount of such radiation hitting the wall

per unit time, per unit area, is proportional to cos θ. Moreover, the component of

momentum normal to the wall which the radiation carries is also proportional to

cos θ. Thus, the pressure exerted on the wall is the same as in Eq. (8.37), except

that it is weighted by the average of cos2 θ over all solid angles, in order to take

into account the fact that obliquely propagating radiation exerts a pressure which

is cos2 θ times that of normal radiation. The average of cos2 θ over all solid angles

is 1/3, so for isotropic radiation

p =
〈U〉
3
. (8.38)

Clearly, the pressure exerted by isotropic radiation is one third of its average

energy density.

The power incident on the surface of the Earth due to radiation emitted by the

Sun is about 1300 W m−2. So, what is the radiation pressure? Since,

〈|u|〉 = c 〈U〉 = 1300W m−2, (8.39)

then

p = 〈U〉 ' 4× 10−6 N m−2. (8.40)

Here, the radiation is assumed to be perfectly collimated. Thus, the radiation

pressure exerted on the Earth is minuscule (one atmosphere equals about 105

N m−2). Nevertheless, this small pressure due to radiation is important in outer

space, since it is responsible for continuously sweeping dust particles out of the

Solar System. It is quite common for comets to exhibit two separate tails. One

(called the gas tail) consists of ionized gas, and is swept along by the solar wind

(a stream of charged particles and magnetic field-lines emitted by the Sun). The

other (called the dust tail) consists of uncharged dust particles, and is swept radi-

ally outward from the Sun by radiation pressure. Two separate tails are observed
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8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.4 Momentum conservation

if the local direction of the solar wind is not radially outward from the Sun (which

is quite often the case).

The radiation pressure from sunlight is very weak. However, that produced by

laser beams can be enormous (far higher than any conventional pressure which

has ever been produced in a laboratory). For instance, the lasers used in Inertial

Confinement Fusion (e.g., the NOVA experiment in Lawrence Livermore National

Laboratory) typically have energy fluxes of 1018 W m−2. This translates to a radi-

ation pressure of about 104 atmospheres!

8.4 Momentum conservation

It follows from Eqs. (8.19) and (8.33) that the momentum density of electromag-

netic fields can be written

g = ε0 E × B. (8.41)

Now, a momentum conservation equation for electromagnetic fields should take

the integral form

−
∂

∂t

∫

V

gi dV =

∫

S

Gij dSj +

∫

V

[ρE + j × B]i dV. (8.42)

Here, i and j run from 1 to 3 (1 corresponds to the x-direction, 2 to the y-

direction, and 3 to the z-direction). Moreover, the Einstein summation conven-

tion is employed for repeated indices (e.g., aj aj ≡ a · a). Furthermore, the tensor

Gij represents the flux of the ith component of electromagnetic momentum in the

j-direction. This tensor (a tensor is a direct generalization of a vector with two

indices instead of one) is called the momentum flux density. Hence, the above

equation states that the rate of loss of electromagnetic momentum in some vol-

ume V is equal to the flux of electromagnetic momentum across the bounding

surface S plus the rate at which momentum is transferred to matter inside V . The

latter rate is, of course, just the net electromagnetic force acting on matter inside

V: i.e., the volume integral of the electromagnetic force density, ρE + j×B. Now,

a direct generalization of the divergence theorem states that
∫

S

Gij dSj ≡
∫

V

∂Gij

∂xj
dV, (8.43)
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8 ELECTROMAGNETIC ENERGY AND MOMENTUM 8.4 Momentum conservation

where x1 ≡ x, x2 ≡ y, etc. Hence, in differential form, our momentum conserva-

tion equation for electromagnetic fields is written

−
∂

∂t
[ε0 E × B]i =

∂Gij

∂xj
+ [ρE + j × B]i. (8.44)

Let us now attempt to derive an equation of this form from Maxwell’s equations.

Maxwell’s equations are written:

∇ · E =
ρ

ε0
, (8.45)

∇ · B = 0, (8.46)

∇× E = −
∂B

∂t
, (8.47)

∇× B = µ0 j + ε0µ0
∂E

∂t
. (8.48)

We can cross Eq. (8.48) divided by µ0 with B, and rearrange, to give

− ε0
∂E

∂t
× B =

B × (∇× B)

µ0
+ j × B. (8.49)

Next, let us cross E with Eq. (8.47) times ε0, rearrange, and add the result to the

above equation. We obtain

− ε0
∂E

∂t
× B − ε0 E × ∂B

∂t
= ε0 E × (∇× E) +

B × (∇× B)

µ0
+ j × B. (8.50)

Next, making use of Eqs. (8.45) and (8.46), we get

−
∂

∂t
[ε0 E × B] = ε0 E × (∇× E) +

B × (∇× B)

µ0

−ε0 (∇ · E) E −
1

µ0
(∇ · B) B + ρE + j × B. (8.51)

Now, from vector field theory,

∇(E2/2) ≡ E × (∇× E) + (E · ∇)E, (8.52)
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with a similar equation for B. Hence, Eq. (8.51) takes the form

−
∂

∂t
[ε0 E × B] = ε0

[

∇(E2/2) − (∇ · E) E − (E · ∇)E
]

+
1

µ0

[

∇(B2/2) − (∇ · B) B − (B · ∇)B
]

+ρE + j × B. (8.53)

Finally, when written in terms of components, the above equation becomes

−
∂

∂t
[ε0 E × B]i =

∂

∂xj

[

ε0 E
2 δij/2− ε0 Ei Ej + B

2 δij/2µ0 − Bi Bj/µ0
]

+ [ρE + j × B]i , (8.54)

since [(∇ · E) E]i = (∂Ej/∂xj)Ei, and [(E · ∇)E]i = Ej (∂Ei/∂xj). Here, δij is a

Kronecker delta symbol (i.e., δij = 1 if i = j, and δij = 0 otherwise). Comparing

the above equation with Eq. (8.44), we conclude that the momentum flux density

tensor of electromagnetic fields takes the form

Gij = ε0 (E2 δij/2− Ei Ej) + (B2 δij/2− Bi Bj)/µ0. (8.55)

The momentum conservation equation (8.44) is sometimes written

[ρE + j × B]i =
∂Tij

∂xj
−
∂

∂t
[ε0 E × B]i , (8.56)

where

Tij = −Gij = ε0 (Ei Ej − E
2 δij/2) + (Bi Bj − B

2 δij/2)/µ0 (8.57)

is called the Maxwell stress tensor.
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9 ELECTROMAGNETIC RADIATION

9 Electromagnetic radiation

9.1 Introduction

In this section, we shall use Maxwell’s equations to investigate electromagnetic

waves.

9.2 The Hertzian dipole

Consider two small spherical conductors connected by a wire. Suppose that elec-

tric charge flows periodically back and forth between the spheres. Let q(t) be the

instantaneous charge on one of the conductors. The system has zero net charge,

so the charge on the other conductor is −q(t). Let

q(t) = q0 sin (ωt). (9.1)

We expect the oscillating current flowing in the wire connecting the two spheres

to generate electromagnetic radiation (see Sect. 4.11). Let us consider the simple

case in which the length of the wire is small compared to the wave-length of

the emitted radiation. If this is the case, then the current I flowing between the

conductors has the same phase along the whole length of the wire. It follows that

I(t) =
dq

dt
= I0 cos(ωt), (9.2)

where I0 = ωq0. This type of antenna is called a Hertzian dipole, after the

German physicist Heinrich Hertz.

The magnetic vector potential generated by a current distribution j(r) is given

by the well-known formula (see Sect. 4.12)

A(r, t) =
µ0

4π

∫
[j]

|r − r ′|
d3r ′, (9.3)

where

[f] = f(r ′, t− |r − r ′|/c). (9.4)
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Suppose that the wire is aligned along the z-axis, and extends from z = −l/2 to

z = l/2. For a wire of negligible thickness, we can replace j(r ′, t − |r − r ′|/c)d3r ′

by I(r ′, t− |r − r ′|/c)dz ′ ẑ. Thus, A(r, t) = Az(r, t) ẑ, and

Az(r, t) =
µ0

4π

∫ l/2

−l/2

I(z ′, t− |r − z ′ ẑ|/c)

|r − z ′ ẑ|
dz ′. (9.5)

In the region r� l,

|r − z ′ ẑ| ' r, (9.6)

and

t− |r − z ′ ẑ|/c ' t− r/c. (9.7)

The maximum error in the latter approximation is ∆t ∼ l/c. This error (which is

a time) must be much less than a period of oscillation of the emitted radiation,

otherwise the phase of the radiation will be wrong. So

l

c
� 2π

ω
, (9.8)

which implies that l � λ, where λ = 2π c/ω is the wave-length of the emit-

ted radiation. However, we have already assumed that the length of the wire

l is much less than the wave-length of the radiation, so the above inequality is

automatically satisfied. Thus, in the far field region, r� λ, we can write

Az(r, t) '
µ0

4π

∫ l/2

−l/2

I(z ′, t− r/c)

r
dz ′. (9.9)

This integral is easy to perform, since the current is uniform along the length of

the wire. So,

Az(r, t) '
µ0 l

4π

I(t− r/c)

r
. (9.10)

The scalar potential is most conveniently evaluated using the Lorentz gauge

condition (see Sect. 4.12)

∇ · A = −ε0µ0
∂φ

∂t
. (9.11)

Now,

∇ · A =
∂Az

∂z
' µ0 l

4π

∂I(t− r/c)

∂t

(

−
z

r2 c

)

+O

(

1

r2

)

(9.12)
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to leading order in r−1. Thus,

φ(r, t) ' l

4π ε0 c

z

r

I(t− r/c)

r
. (9.13)

Given the vector and scalar potentials, Eqs. (9.10) and (9.13), respectively, we

can evaluate the associated electric and magnetic fields using (see Sect. 4.12)

E = −
∂A

∂t
− ∇φ, (9.14)

B = ∇× A. (9.15)

Note that we are only interested in radiation fields, which fall off like r−1 with

increasing distance from the source. It is easily demonstrated that

E ' −
ωl I0

4π ε0 c2
sin θ

sin[ω(t− r/c)]

r
θ̂, (9.16)

and

B ' −
ωl I0

4π ε0 c3
sin θ

sin[ω(t− r/c)]

r
ϕ̂. (9.17)

Here, (r, θ, ϕ) are standard spherical polar coordinates aligned along the z-axis.

The above expressions for the far field (i.e., r � λ) electromagnetic fields gen-

erated by a localized oscillating current are also easily derived from Eqs. (4.183)

and (4.184). Note that the fields are symmetric in the azimuthal angle ϕ. There

is no radiation along the axis of the oscillating dipole (i.e., θ = 0), and the maxi-

mum emission is in the plane perpendicular to this axis (i.e., θ = π/2).

The average power crossing a spherical surface S (whose radius is much greater

than λ) is

Prad =

∮

S

〈u〉 · dS, (9.18)

where the average is over a single period of oscillation of the wave, and the

Poynting flux is given by (see Sect. 8.2)

u =
E × B

µ0
=

ω2 l2 I 20
16π2 ε0 c3

sin2[ω(t− r/c)]
sin2 θ

r2
r̂. (9.19)
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It follows that

〈u〉 =
ω2 l2 I 20
32π2 ε0 c3

sin2 θ

r2
r̂. (9.20)

Note that the energy flux is radially outwards from the source. The total power

flux across S is given by

Prad =
ω2 l2 I 20
32π2 ε0 c3

∫ 2π

0

dφ

∫π

0

sin2 θ

r2
r2 sin θ dθ. (9.21)

Thus,

Prad =
ω2 l2 I 20
12π ε0 c3

. (9.22)

The total flux is independent of the radius of S, as is to be expected if energy is

conserved.

Recall that for a resistor of resistance R the average ohmic heating power is

Pheat = 〈I2R〉 =
1

2
I 20R, (9.23)

assuming that I = I0 cos(ωt). It is convenient to define the radiation resistance

of a Hertzian dipole antenna:

Rrad =
Prad

I 20 /2
, (9.24)

so that

Rrad =
2π

3 ε0 c

(

l

λ

)2

, (9.25)

where λ = 2π c/ω is the wave-length of the radiation. In fact,

Rrad = 789

(

l

λ

)2

ohms. (9.26)

In the theory of electrical circuits, an antenna is conventionally represented as

a resistor whose resistance is equal to the characteristic radiation resistance of

the antenna plus its real resistance. The power loss I 20Rrad/2 associated with

the radiation resistance is due to the emission of electromagnetic radiation. The

power loss I 20R/2 associated with the real resistance is due to ohmic heating of

the antenna.
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Note that the formula (9.26) is only valid for l� λ. This suggests that Rrad �
R for most Hertzian dipole antennas: i.e., the radiated power is swamped by

the ohmic losses. Thus, antennas whose lengths are much less than that of the

emitted radiation tend to be extremely inefficient. In fact, it is necessary to have

l ∼ λ in order to obtain an efficient antenna. The simplest practical antenna is the

half-wave antenna, for which l = λ/2. This can be analyzed as a series of Hertzian

dipole antennas stacked on top of one another, each slightly out of phase with its

neighbours. The characteristic radiation resistance of a half-wave antenna is

Rrad =
2.44

4π ε0 c
= 73 ohms. (9.27)

Antennas can also be used to receive electromagnetic radiation. The incoming

wave induces a voltage in the antenna, which can be detected in an electrical cir-

cuit connected to the antenna. In fact, this process is equivalent to the emission

of electromagnetic waves by the antenna viewed in reverse. It is easily demon-

strated that antennas most readily detect electromagnetic radiation incident from

those directions in which they preferentially emit radiation. Thus, a Hertzian

dipole antenna is unable to detect radiation incident along its axis, and most ef-

ficiently detects radiation incident in the plane perpendicular to this axis. In the

theory of electrical circuits, a receiving antenna is represented as a voltage source

in series with a resistor. The voltage source, V0 cos(ωt), represents the voltage

induced in the antenna by the incoming wave. The resistor, Rrad, represents the

power re-radiated by the antenna (here, the real resistance of the antenna is

neglected). Let us represent the detector circuit as a single load resistor Rload,

connected in series with the antenna. The question is: how can we choose Rload

so that the maximum power is extracted from the wave and transmitted to the

load resistor? According to Ohm’s law:

V0 cos(ωt) = I0 cos(ωt) (Rrad + Rload), (9.28)

where I = I0 cos(ωt) is the current induced in the circuit.

The power input to the circuit is

Pin = 〈VI〉 =
V 2
0

2 (Rrad + Rload)
. (9.29)
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The power transferred to the load is

Pload = 〈I2Rload〉 =
Rload V

2
0

2 (Rrad + Rload)2
. (9.30)

The power re-radiated by the antenna is

Prad = 〈I2Rrad〉 =
Rrad V

2
0

2 (Rrad + Rload)2
. (9.31)

Note that Pin = Pload + Prad. The maximum power transfer to the load occurs

when
∂Pload

∂Rload

=
V 2
0

2





Rrad − Rload

(Rrad + Rload)3



 = 0. (9.32)

Thus, the maximum transfer rate corresponds to

Rload = Rrad. (9.33)

In other words, the resistance of the load circuit must match the radiation resis-

tance of the antenna. For this optimum case,

Pload = Prad =
V 2
0

8 Rrad

=
Pin

2
. (9.34)

So, in the optimum case half of the power absorbed by the antenna is immediately

re-radiated. Clearly, an antenna which is receiving electromagnetic radiation is

also emitting it. This is how the BBC catch people who do not pay their television

license fee in England. They have vans which can detect the radiation emitted by

a TV aerial whilst it is in use (they can even tell which channel you are watching!).

For a Hertzian dipole antenna interacting with an incoming wave whose elec-

tric field has an amplitude E0, we expect

V0 = E0 l. (9.35)

Here, we have used the fact that the wave-length of the radiation is much longer

than the length of the antenna. We have also assumed that the antenna is prop-

erly aligned (i.e., the radiation is incident perpendicular to the axis of the an-

tenna). The Poynting flux of the incoming wave is [see Eq. (8.35)]

〈uin〉 =
ε0 c E

2
0

2
, (9.36)

258



9 ELECTROMAGNETIC RADIATION 9.3 Electric dipole radiation

whereas the power transferred to a properly matched detector circuit is

Pload =
E 20 l

2

8 Rrad

. (9.37)

Consider an idealized antenna in which all incoming radiation incident on some

area Aeff is absorbed, and then magically transferred to the detector circuit, with

no re-radiation. Suppose that the power absorbed from the idealized antenna

matches that absorbed from the real antenna. This implies that

Pload = 〈uin〉Aeff. (9.38)

The quantity Aeff is called the effective area of the antenna: it is the area of the

idealized antenna which absorbs as much net power from the incoming wave as

the actual antenna. Thus,

Pload =
E 20 l

2

8 Rrad

=
ε0 c E

2
0

2
Aeff, (9.39)

giving

Aeff =
l2

4 ε0 c Rrad

=
3

8π
λ2. (9.40)

It is clear that the effective area of a Hertzian dipole antenna is of order the

wave-length squared of the incoming radiation.

For a properly aligned half-wave antenna,

Aeff = 0.13 λ2. (9.41)

Thus, the antenna, which is essentially one-dimensional with length λ/2, acts as

if it is two-dimensional, with width 0.26 λ, as far as its absorption of incoming

electromagnetic radiation is concerned.

9.3 Electric dipole radiation

In the previous section, we examined the radiation emitted by a short electric

dipole of oscillating dipole moment

p(t) = p0 sin(ωt) ẑ, (9.42)
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where p0 = q0 l = I0 l/ω. We found that, in the far field, the mean electromag-

netic energy flux takes the form [see Eq. (9.20)]

〈u〉 =
ω4 p 20

32π2 ε0 c3
sin2 θ

r2
r̂, (9.43)

assuming that the dipole is centered on the origin of our spherical polar coor-

dinate system. The mean power radiated into the element of solid angle dΩ =

sin θdθdϕ, centered on the angular coordinates (θ, ϕ), is

dP = 〈u(r, θ,ϕ)〉· r̂ r2 dΩ. (9.44)

Hence, the differential power radiated into this element of solid angle is simply

dP

dΩ
=

ω4 p 20
32π2 ε0 c3

sin2 θ. (9.45)

This formula completely specifies the radiation pattern of an oscillating electric

dipole (provided that the dipole is much shorter in length than the wave-length

of the emitted radiation). Of course, the power radiated into a given element of

solid angle is independent of r, otherwise energy would not be conserved. Finally,

the total radiated power is the integral of dP/dΩ over all solid angles.

9.4 Thompson scattering

Consider a plane electromagnetic wave of angular frequency ω interacting with

a free electron of mass me and charge −e. Suppose that the wave is polarized

such that its associated electric field is parallel to the z-axis: i.e.,

E = E0 sin(ωt) ẑ. (9.46)

Recall, from Sect. 4.7, that as long as the electron remains non-relativistic, the

force exerted on it by the electromagnetic wave comes predominantly from the

associated electric field. Hence, the electron’s equation of motion can be written

me

d2z

dt2
= −e E0 sin(ωt), (9.47)

260



9 ELECTROMAGNETIC RADIATION 9.4 Thompson scattering

which can be solved to give

z =
e E0

meω2
sin(ωt). (9.48)

So, in response to the wave, the electron oscillates backward and forward in the

direction of the wave electric field. It follows that the electron can be thought of

as a sort of oscillating electric dipole, with dipole moment

p = −e z ẑ = −p0 sin(ωt) ẑ, (9.49)

where p0 = e2 E0/(meω
2). (For the moment, let us not worry about the positively

charged component of the dipole.) Now, we know that an oscillating electric

dipole emits electromagnetic radiation. Hence, it follows that a free electron

placed in the path of a plane electromagnetic wave will radiate. To be more

exact, the electron scatters electromagnetic radiation from the wave, since the

radiation emitted by the electron is not necessarily in the same direction as the

wave, and any energy radiated by the electron is ultimately extracted from the

wave. This type of scattering is called Thompson scattering.

It follows from Eq. (9.45) that the differential power scattered from a plane

electromagnetic wave by a free electron into solid angle dΩ takes the form

dP

dΩ
=

e4 E 20
32π2 ε0 c3m 2

e

sin2 θ. (9.50)

Now, the mean energy flux of the incident electromagnetic wave is written

|〈u〉| = c ε0 E
2
0

2
. (9.51)

It is helpful to introduce a quantity called the differential scattering cross-section.

This is defined
dσ

dΩ
=
dP/dΩ

|〈u〉| , (9.52)

and has units of area over solid angle. Somewhat figuratively, we can think of

the electron as offering a target of area dσ/dΩ to the incident wave. Any wave

energy which falls on this target is scattered into the solid angle dΩ. Likewise,

we can also define the total scattering cross-section,

σ =

∮
dσ

dΩ
dΩ, (9.53)
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which has units of area. Again, the electron effectively offers a target of area σ to

the incident wave. Any wave energy which falls on this target is scattered in some

direction or other. It follows from Eqs. (9.50) and (9.51) that the differential

scattering cross-section for Thompson scattering is

dσ

dΩ
= r 2e sin2 θ, (9.54)

where the characteristic length

re =
e2

4π ε0me c2
= 2.82× 10−15 m (9.55)

is called the classical electron radius. An electron effectively acts like it has a

spatial extent re as far as its iteration with electromagnetic radiation is concerned.

As is easily demonstrated, the total Thompson scattering cross-section is

σT =
8 π

3
r 2e = 6.65× 10−29 m2. (9.56)

Note that both the differential and the total Thompson scattering cross-sections

are completely independent of the frequency (or wave-length) of the incident ra-

diation.

A scattering cross-section of 10−29 m2 does not sound like much. Nevertheless,

Thompson scattering is one of the most important types of scattering in the Uni-

verse. Consider the Sun. It turns out that the mean mass density of the Sun is

similar to that of water: i.e., about 103 kg m−3. Hence, assuming that the Sun is

made up predomintely of ionized hydrogen, the mean number density of elec-

trons in the Sun (which, of course, is the same as the number density of protons)

is approximately ne ∼ 103/mp ∼ 1030 m−3, where mp ∼ 10−27 kg is the mass of a

proton. Let us consider how far, on average, a photon in the Sun travels before

being scattered by free electrons. If we think of an individual photon as sweeping

out a cylinder of cross-sectional area σT , then the photon will travel an average

length l, such that a cylinder of area σT and length l contains about one free

electron, before being scattered. Hence, σT l ne ∼ 1, or

l ∼
1

ne σT
∼ 1 cm. (9.57)
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Given that the radius of the Sun is approximately 109 m, it is clear that solar

photons are very strongly scattered by free electrons. In fact, it can easily be

demonstrated that it takes a photon emitted in the solar core many thousands of

years to fight its way to the surface because of Thompson scattering.

After the “Big Bang”, when the Universe was very hot, it consisted predomi-

nately of ionized hydrogen (and dark matter), and was consequently opaque to

electromagnetic radiation, due to Thompson scattering. However, as the Uni-

verse expanded, it also cooled, and eventually became sufficiently cold (when

the mean temperature was about 1000◦ C) for any free protons and electrons to

combine to form molecular hydrogen. It turns out that molecular hydrogen does

not scatter radiation anything like as effectively as free electrons (see the next

section). Hence, as soon as the Universe became filled with molecular hydrogen,

it effectively became transparent to radiation. Indeed, the so-called cosmic mi-

crowave background is the remnant of radiation which was last scattered when

the Universe was filled with ionized hydrogen (i.e., when it was about 1000◦ C).

Astronomers can gain a great deal of information about the conditions in the

early Universe by studying this radiation.

Incidentally, it is clear from Eqs. (9.55) and (9.56) that the scattering cross-

section of a free particle of charge q and mass m is proportional to q4/m2. It

follows that the scattering of electromagnetic radiation by free electrons is gen-

erally very much stronger than the scattering by free protons (assuming that the

number densities of both species are similar).

9.5 Rayleigh scattering

Let us now consider the scattering of electromagnetic radiation by neutral atoms.

For instance, consider a hydrogen atom. The atom consists of a light electron and

a massive proton. As we have seen, the electron scatters radiation much more

strongly than the proton, so let us concentrate on the response of the electron to

an incident electromagnetic wave. Suppose that the wave electric field is again

polarized in the z-direction, and is given by Eq (9.46). We can approximate the
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electron’s equation of motion as

me

d2z

dt2
= −meω

2
0 z− e E0 sin(ωt). (9.58)

Here, the second term on the right-hand side represents the perturbing force due

to the electromagnetic wave, whereas the first term represents the (linearized)

force of electrostatic attraction between the electron and the proton. Indeed, we

are very crudely modeling our hydrogen atom as a simple harmonic oscillator of

natural frequency ω0. We can think of ω0 as the typical frequency of electro-

magnetic radiation emitted by the atom after it is transiently disturbed. In other

words, in our model, ω0 should match the frequency of one of the spectral lines

of hydrogen. More generally, we can extend the above model to deal with just

about any type of atom, provided that we set ω0 to the frequency of a spectral

line.

We can easily solve Eq. (9.58) to give

z =
e E0

me (ω2 −ω 2
0 )

sin(ωt). (9.59)

Hence, the dipole moment of the electron takes the form p = −p0 sin(ωt) ẑ,

where

p0 =
e2 E0

me (ω2 −ω 2
0 )
. (9.60)

It follows, by analogy with the analysis in the previous section, that the differen-

tial and total scattering cross-sections of our model atom take the form

dσ

dΩ
=

ω4

(ω2 −ω 2
0 )
2
r 2e sin2 θ, (9.61)

and

σ =
ω4

(ω2 −ω 2
0 )
2
σT , (9.62)

respectively.

In the limit in which the frequency of the incident radiation is much greater

than the natural frequency of the atom, Eqs. (9.61) and (9.62) reduce to the pre-

viously obtained expressions for scattering by a free electron. In other words, an
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electron in an atom acts very much like a free electron as far as high frequency

radiation is concerned. In the opposite limit, in which the frequency of the inci-

dent radiation is much less than the natural frequency of the atom, Eqs. (9.61)

and (9.62) yield
dσ

dΩ
=

(

ω

ω0

)4

r 2e sin2 θ, (9.63)

and

σ =

(

ω

ω0

)4

σT , (9.64)

respectively. This type of scattering is called Rayleigh scattering. There are two

features of Rayleigh scattering which are worth noting. First of all, it is much

weaker than Thompson scattering (since ω � ω0). Secondly, unlike Thompson

scattering, it is highly frequency dependent. Indeed, it is clear, from the above

formulae, that high frequency (short wave-length) radiation is scattered far more

effectively than low frequency (long wave-length) radiation.

The most common example of Rayleigh scattering is the scattering of visible

radiation from the Sun by neutral atoms (mostly Nitrogen and Oxygen) in the up-

per atmosphere. The frequency of visible radiation is much less than the typical

emission frequencies of a Nitrogen or Oxygen atom (which lie in the ultra-violet

band), so it is certainly the case that ω� ω0. When the Sun is low in the sky, ra-

diation from it has to traverse a comparatively long path through the atmosphere

before reaching us. Under these circumstances, the scattering of direct solar light

by neutral atoms in the atmosphere becomes noticeable (it is not noticeable when

the Sun is high is the sky, and radiation from it consequently only has to traverse

a relatively short path through the atmosphere before reaching us). According

to Eq. (9.64), blue light is scattered slightly more strongly than red light (since

blue light has a slightly higher frequency than red light). Hence, when the Sun is

low in the sky, it appears less bright, due to atmospheric scattering. However, it

also appears redder than normal, because more blue light than red light is scat-

tered out of the solar light-rays, leaving an excess of red light. Likewise, when we

look up at the sky, it does not appear black (like the sky on the Moon) because

of light from solar radiation which grazes the atmosphere being scattered down-

ward towards the surface of the Earth. Again, since blue light is scattered more
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effectively than red light, there is an excess of blue light scattered downward,

and so the sky appears blue.

Light from the Sun is unpolarized. However, when it is scattered it becomes

polarized, because light is scattered preferentially in some directions rather than

others. Consider a light-ray from the Sun which grazes the Earth’s atmosphere.

The light-ray contains light which is polarized such that the electric field is vertical

to the ground, and light which is polarized such that the electric field is horizontal

to the ground (and perpendicular to the path of the light-ray), in equal amounts.

However, due to the sin2 θ factor in the dipole emission formula (9.45) (where,

in this case, θ is the angle between the direction of the wave electric field and the

direction of scattering), very little light is scattered downward from the vertically

polarized light compared to the horizontally polarized light. Moreover, the light

scattered from the horizontally polarization is such that its electric field is prefer-

entially perpendicular, rather than parallel, to the direction of propagation of the

solar light-ray (i.e., the direction to the Sun). Consequently, the blue light from

the sky is preferentially polarized in a direction perpendicular to the direction to

the Sun.

9.6 Propagation in a dielectric medium

Consider the propagation of an electromagnetic wave through a uniform dielec-

tric medium of dielectric constant ε. According to Eqs. (6.8) and (6.10), the

dipole moment per unit volume induced in the medium by the wave electric field

E is

P = ε0 (ε− 1) E. (9.65)

There are no free charges or free currents in the medium. There is also no bound

charge density (since the medium is uniform), and no magnetization current

density (since the medium is non-magnetic). However, there is a polarization

current due to the time-variation of the induced dipole moment per unit volume.

According to Eq. (6.57), this current is given by

j =
∂P

∂t
. (9.66)
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Hence, Maxwell’s equations take the form

∇·E = 0, (9.67)

∇·B = 0, (9.68)

∇× E = −
∂B

∂t
, (9.69)

∇× B = µ0 j + ε0 µ0
∂E

∂t
. (9.70)

According to Eqs. (9.65) and (9.66), the last of the above equations can be rewrit-

ten

∇× B = ε0 µ0 (ε− 1)
∂E

∂t
+ ε0 µ0

∂E

∂t
=
ε

c2
∂E

∂t
, (9.71)

since c = (ε0 µ0)
−1/2. Thus, Maxwell’s equations for the propagation of electro-

magnetic waves through a dielectric medium are the same as Maxwell’s equa-

tions for the propagation of waves through a vacuum (see Sect. 4.7), except that

c → c/n, where

n =
√
ε (9.72)

is called the refractive index of the medium in question. Hence, we conclude

that electromagnetic waves propagate through a dielectric medium slower than

through a vacuum by a factor n (assuming, of course, that n > 1). This conclu-

sion (which was reached long before Maxwell’s equations were invented) is the

basis of all geometric optics involving refraction.

9.7 Dielectric constant of a gaseous medium

In Sect. 9.5, we discussed a rather crude model of an atom interacting with an

electromagnetic wave. According to this model, the dipole moment p of the atom

induced by the wave electric field E is given by

p =
e2

me (ω 2
0 −ω2)

E, (9.73)

where ω0 is the natural frequency of the atom (i.e., the frequency of one of the

atom’s spectral lines), and ω the frequency of the incident radiation. Suppose
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that there are n atoms per unit volume. It follows that the induced dipole mo-

ment per unit volume of the assemblage of atoms takes the form

P =
ne2

me (ω 2
0 −ω2)

E. (9.74)

Finally, a comparison with Eq. (9.65) yields the following expression for the di-

electric constant of the collection of atoms,

ε = 1+
ne2

ε0me (ω 2
0 −ω2)

. (9.75)

The above formula works fairly well for dilute gases, although it is, of course,

necessary to sum over all species and all important spectral lines.

Note that, in general, the dielectric “constant” of a gaseous medium (as far

as electromagnetic radiation is concerned) is a function of the wave frequency,

ω. Since the effective wave speed through the medium is c/
√
ε, it follows that

waves of different frequencies traveling through a gaesous medium do so at differ-

ent speeds. This phenomenon is called dispersion, since it can be shown to cause

short wave-pulses to spread out as they propagate through the medium. At low

frequencies (ω � ω0), however, our expression for ε becomes frequency inde-

pendent, so there is no dispersion of low frequency waves by a gaseous medium.

9.8 Dielectric constant of a plasma

A plasma is very similar to a gaseous medium, expect that the electrons are free:

i.e., there is no restoring force due to nearby atomic nuclii. Hence, we can obtain

an expression for the dielectric constant of a plasma from Eq. (9.75) by setting

ω0 to zero, and n to the number density of electrons, ne. We obtain

ε = 1−
ω 2
p

ω2
, (9.76)

where the characteristic frequency

ωp =

√

√

√

√

ne e2

ε0me

(9.77)
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is called the plasma frequency. We can immediately see that formula (9.76) is

problematic. For frequencies above the plasma frequency, the dielectric constant

of a plasma is less than unity. Hence, the refractive index n =
√
ε is also less than

unity. This would seem to imply that high frequency electromagnetic waves can

propagate through a plasma with a velocity c/n which is greater than the velocity

of light in a vacuum. Does this violate the principles of relativity? On the other

hand, for frequencies below the plasma frequency, the dielectric constant is neg-

ative, which would seem to imply that the refractive index n =
√
ε is imaginary.

How should we interpret this?

Consider an infinite plane-wave, of frequency, ω, greater than the plasma fre-

quency, propagating through a plasma. Suppose that the wave electric field takes

the form

E = E0 e i (k x−ωt) ẑ, (9.78)

where it is understood that the physical electric field is the real part of the above

expression. A peak or trough of the above wave travels at the so-called phase

velocity, which is given by

vp =
ω

k
. (9.79)

Now, we have also seen that the phase velocity of electromagnetic waves in a

dielectric medium is vp = c/n = c/
√
ε, so

ω2 =
k2 c2

ε
. (9.80)

It follows from Eq. (9.76) that

ω2 = k2 c2 +ω 2
p (9.81)

in a plasma. The above type of expression, which effectively determines the wave

frequency, ω, as a function of the wave-number, k, for the medium in question,

is called a dispersion relation (since, amongst other things, it determines how fast

wave-pulses disperse in the medium). According to the above dispersion relation,

the phase velocity of high frequency waves propagating through a plasma is given

by

vp =
c

√

1−ω 2
p/ω

2
, (9.82)
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which is indeed greater than c. However, the theory of relativity does not forbid

this. What the theory of relativity says is that information cannot travel at a

velocity greater than c. And the peaks and troughs of an infinite plane-wave,

such as (9.78), do not carry any information.

We now need to consider how we could transmit information through a plasma

(or any other dielectric medium) by means of electromagnetic waves. The easiest

way would be to send a series of short discrete wave-pulses through the plasma,

so that we could encode information in a sort of Morse code. We can build up

a wave-pulse from a suitable superposition of infinite plane-waves of different

frequencies and wave-lengths: e.g.,

Ez(x, t) =

∫

F(k) e iφ(k) dk, (9.83)

where φ(k) = k x −ω(k) t, and ω(k) is determined from the dispersion relation

(9.81). Now, it turns out that a relatively short wave-pulse can only be built up

from a superposition of plane-waves with a relatively wide range of different k

values. Hence, for a short wave-pulse, the integrand in the above formula consists

of the product of a fairly slowly varying function, F(k), and a rapidly oscillating

function, exp[iφ(k)]. The latter function is rapidly oscillating because the phase

φ(k) varies very rapidly with k, relative to F(k). We expect the net result of inte-

grating the product of a slowly varying function and rapidly oscillating function

to be small, since the oscillations will generally average to zero. It follows that

the integral (9.83) is dominated by those regions of k-space for which φ(k) varies

least rapidly with k. Hence, the peak of the wave-pulse most likely corresponds

to a maximum or minimum of φ(k): i.e.,

dφ

dk
= x−

dω

dk
t = 0. (9.84)

Thus, we infer that the velocity of the wave-pulse (which corresponds to the

velocity of the peak) is given by

vg =
dω

dk
. (9.85)

This velocity is called the group velocity, and is different to the phase velocity

in dispersive media, for which ω is not directly proportional to k. (Of course,
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in a vacuum, ω = k c, and both the phase and group velocities are equal to c.)

The upshot of the above discussion is that information (i.e., an individual wave-

pulse) travels through a dispersive media at the group velocity, rather than the

phase velocity. Hence, relativity demands that the group velocity, rather than the

phase velocity, must always be less than c.

What is the group velocity for high frequency waves propagating through a

plasma? Well, differentiation of the dispersion relation (9.81) yields

ω

k

dω

dk
= vp vg = c2. (9.86)

Hence, it follows from Eq. (9.82) that

vg = c

√

√

√

√

1−
ω 2
p

ω2
, (9.87)

which is less than c. We thus conclude that the dispersion relation (9.81) is

indeed consistent with relativity.

Let us now consider the propagation of low frequency electromagnetic waves

through a plasma. We can see, from Eqs. (9.82) and (9.87), that when the wave

frequency, ω, falls below the plasma frequency, ωp, both the phase and group

velocities become imaginary. This indicates that the wave attenuates as it propa-

gates. Consider, for instance, a plane-wave of frequency ω < ωp. According to

the dispersion relation (9.81), the associated wave-number is given by

k = i
√

ω 2
p −ω2

/

c = i |k|. (9.88)

Hence, the wave electric field takes the form

Ez = E0 e i (i |k| x−ωt) = E0 e−|k| x e−iωt. (9.89)

Indeed, it can be seen that for ω < ωp electromagnetic waves in a plasma take

the form of decaying standing waves, rather than traveling waves. We conclude

that an electromagnetic wave, of frequency less than the plasma frequency, which

is incident on a plasma will not propagate through the plasma. Instead, it will be

totally reflected.
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We can be sure that the incident wave is reflected by the plasma, rather than

absorbed, by considering the energy flux of the wave in the plasma. It is easily

demonstrated that the energy flux of an electromagnetic wave can be written

u =
E × B

µ0
=

E2

µ0ω
k. (9.90)

For a wave with a real frequency and a complex k-vector, the above formula

generalizes to

u =
|E|2

µ0ω
Re(k). (9.91)

However, according to Eq. (9.88), the k-vector for a low frequency electromag-

netic wave in a plasma is purely imaginary. It follows that the associated energy

flux is zero. Hence, any low frequency wave which is incident on the plasma must

be totally reflected, since if there were any absorption of the wave energy then

there would be a net energy flux into the plasma.

The outermost layer of the Earth’s atmosphere consists of a partially ionized

zone known as the ionosphere. The plasma frequency in the ionosphere is about

1 MHz, which lies at the upper end of the medium-wave band of radio frequen-

cies. It follows that low frequency radio signals (i.e., all signals in the long-wave

band, and most in the medium-wave band) are reflected off the ionosphere. For

this reason, such signals can be detected over the horizon. Indeed, long-wave

radio signals reflect multiple times off the ionosphere, with very little loss (they

also reflect multiple times off the Earth, which is enough of a conductor to act as

a mirror for radio waves), and can consequently be detected all over the world.

On the other hand, high frequency radio signals (i.e., all signals in the FM band)

pass straight through the ionosphere. For this reason, such signals cannot be de-

tected over the horizon, which accounts for the relatively local coverage of FM

radio stations. Note, from Eq. (9.77), that the plasma frequency is proportional

to the square root of the number density of free electrons. Now, the level of ion-

ization in the ionosphere is maintained by ultra-violet light from the Sun (which

effectively knocks electrons out of neutral atoms). Of course, there is no such

light at night, and the number density of free electrons in the ionosphere con-

sequently drops as electrons and ions gradually recombine. It follows that the
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plasma frequency in the ionosphere also drops at night, giving rise to a marked

deterioration in the reception of distant medium-wave radio stations.

9.9 Faraday rotation

Consider a high frequency electromagnetic wave propagating, along the z-axis,

through a plasma with a longitudinal equilibrium magnetic field, B = B0 ẑ. The

equation of motion of an individual electron making up the plasma takes the form

me

dv

dt
= −e (E + B0 v × ẑ), (9.92)

where the first term on the right-hand side is due to the wave electric field, and

the second to the equilibrium magnetic field. (As usual, we can neglect the wave

magnetic field, provided that the electron motion remains non-relativistic.) Of

course, v = dr/dt, where r is the electron displacement from its equilibrium

position. Suppose that all perturbed quantities vary with time like exp(−iωt),

where ω is the wave frequency. It follows that

meω
2 x = e (Ex − iωB0 y), (9.93)

meω
2 y = e (Ey + iωB0 x). (9.94)

It is helpful to define

s± = x± iy, (9.95)

E± = Ex ± iEy. (9.96)

Using these new variables, Eqs. (9.93) and (9.94) can be rewritten

meω
2 s± = e (E± ∓ωB0 s±), (9.97)

which can be solved to give

s± =
e E±

meω (ω±Ω)
, (9.98)
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where Ω = eB0/me is the so-called cyclotron frequency (i.e., the characteris-

tic gyration frequency of free electrons in the equilibrium magnetic field—see

Sect. 3.7).

In terms of s±, the electron displacement can be written

r = s+ e i (k+ z−ωt) e+ + s− e i (k− z−ωt) e−, (9.99)

where

e± =
1

2
(x̂ ∓ i ŷ) . (9.100)

Likewise, in terms of E±, the wave electric field takes the form

E = E+ e i (k+ z−ωt) e+ + E− e i (k− z−ωt) e−. (9.101)

Obviously, the actual displacement and electric field are the real parts of the above

expressions. It follows from Eq. (9.101) that E+ corresponds to a constant am-

plitude electric field which rotates anti-clockwise in the x-y plane (looking down

the z-axis) as the wave propagates in the +z-direction, whereas E− corresponds

to a constant amplitude electric field which rotates clockwise. The former type of

wave is termed right-hand circularly polarized, whereas the latter is termed left-

hand circularly polarized. Note also that s+ and s− correspond to circular electron

motion in opposite senses. With these insights, we conclude that Eq. (9.98) indi-

cates that individual electrons in the plasma have a slightly different response to

right- and left-hand circularly polarized waves in the presence of a longitudinal

magnetic field.

Following the analysis of Sect. 9.7, we can deduce from Eq. (9.98) that the di-

electric constant of the plasma for right- and left-hand circularly polarized waves

is

ε± = 1−
ω 2
p

ω (ω±Ω)
, (9.102)

respectively. Hence, according to Eq. (9.80), the dispersion relation for right- and

left-hand circularly polarized waves becomes

k 2± c
2 = ω2



1−
ω 2
p

ω (ω±Ω)



 , (9.103)
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respectively. In the limit ω� ωp,Ω, we obtain

k± ' k± ∆k, (9.104)

where k = ω [1− (1/2)ω 2
p/ω

2]/c and ∆k = (1/2) (ω 2
p/ω

2)Ω/c. In other words,

in a magnetized plasma, right- and left-hand circularly polarized waves of the

same frequency have slightly different wave-numbers

Let us now consider the propagation of a linearly polarized electromagnetic

wave through the plasma. Such a wave can be constructed via a superposition of

right- and left-hand circularly polarized waves of equal amplitudes. So, the wave

electric field can be written

E = E0
[

e i (k+ z−ωt) e+ + e i (k− z−ωt) e−

]

. (9.105)

It can easily be seen that at z = 0 the wave electric field is aligned along the x-

axis. If right- and left-hand circularly polarized waves of the same frequency have

the same wave-number (i.e., if k+ = k−) then the wave electric field will continue

to be aligned along the x-axis as the wave propagates in the +z-direction: i.e.,

we will have a standard linearly polarized wave. However, we have just demon-

strated that, in the presence of a longitudinal magnetic field, the wave-numbers

k+ and k− are slightly different. What effect does this have on the polarization of

the wave?

Taking the real part of Eq. (9.105), and making use of Eq. (9.104), and some

standard trigonometrical identities, we obtain

E = E0 [cos(k z−ωt) cos(∆k z), cos(k z−ωt) sin(∆k z), 0] . (9.106)

The polarization angle of the wave (which is a convenient measure of its plane

of polarization) is given by

ϕ = tan−1(Ey/Ex) = ∆k z. (9.107)

Thus, we conclude that in the presence of a longitudinal magnetic field the polar-

ization angle rotates as as the wave propagates through the plasma. This effect is

known as Faraday rotation. It is clear, from the above expression, that the rate of

advance of the polarization angle with distance travelled by the wave is given by

dϕ

dz
= ∆k =

ω 2
pΩ

2ω2 c
=

e3

2 ε0m 2
e c

ne B0

ω2
. (9.108)
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Hence, a linearly polarized electromagnetic wave which propagates through a

plasma with a (slowly) varying electron number density, ne(z), and longitudinal

magnetic field, B0(z), has its plane of polarization rotated through a total angle

∆ϕ = ϕ−ϕ0 =
e3

2 ε0m 2
e c

1

ω2

∫

ne(z)B0(z)dz. (9.109)

Note the very strong inverse variation of ∆ϕ with ω.

Pulsars are rapidly rotating neutron stars which emit regular blips of highly

polarized radio waves. Hundreds of such objects have been found in our galaxy

since the first was discovered in 1967. By measuring the variation of the angle of

polarization, ϕ, of radio emission from a pulsar with frequency, ω, astronomers

can effectively determine the line integral of ne B0 along the straight-line joining

the pulsar to the Earth using formula (9.109). Here, ne is the number density of

free electrons in the interstellar medium, whereas B0 is the parallel component of

the galactic magnetic field. Obviously, in order to achieve this, astronomers must

make the reasonable assumption that the radiation was emitted by the pulsar

with a common angle of polarization, ϕ0, over a wide range of different frequen-

cies. By fitting Eq. (9.109) to the data, and then extrapolating to large ω, it is

then possible to determine ϕ0, and, hence, the amount, ∆ϕ(ω), through which

the polarization angle of the radiation has rotated, at a given frequency, during

its passage to Earth.

9.10 Propagation in a conductor

Consider the propagation of an electromagnetic wave through a conducting medium

which obeys Ohm’s law:

j = σE. (9.110)

Here, σ is the conductivity of the medium in question. Maxwell’s equations for

the wave take the form:

∇ · E = 0, (9.111)

∇ · B = 0, (9.112)
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∇× E = −
∂B

∂t
, (9.113)

∇× B = µ0 j + ε ε0µ0
∂E

∂t
, (9.114)

where ε is the dielectric constant of the medium. It follows, from the above

equations, that

∇×∇× E = −∇2E = −
∂∇× B

∂t
= −

∂

∂t

[

µ0 σE + ε ε0µ0
∂E

∂t

]

. (9.115)

Looking for a wave-like solution of the form

E = E0 e i (k z−ωt), (9.116)

we obtain the dispersion relation

k2 = µ0ω (ε ε0ω+ iσ). (9.117)

Consider a “poor” conductor for which σ� ε ε0ω. In this limit, the dispersion

relation (9.117) yields

k ' n ω
c

+ i
σ

2

√

√

√

√

µ0

ε ε0
, (9.118)

where n =
√
ε is the refractive index. Substitution into Eq. (9.116) gives

E = E0 e−z/d e i (kr z−ωt), (9.119)

where

d =
2

σ

√

√

√

√

ε ε0

µ0
, (9.120)

and kr = nω/c. Thus, we conclude that the amplitude of an electromagnetic

wave propagating through a conductor decays exponentially on some length-scale,

d, which is termed the skin-depth. Note, from Eq. (9.120), that the skin-depth

for a poor conductor is independent of the frequency of the wave. Note, also,

that kr d � 1 for a poor conductor, indicating that the wave penetrates many

wave-lengths into the conductor before decaying away.
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Consider a “good” conductor for which σ� ε ε0ω. In this limit, the dispersion

relation (9.117) yields

k '
√

iµ0 σω. (9.121)

Substitution into Eq. (9.116) again gives Eq. (9.119), with

d =
1

kr
=

√

√

√

√

2

µ0 σω
. (9.122)

It can be seen that the skin-depth for a good conductor decreases with increasing

wave frequency. The fact that kr d = 1 indicates that the wave only penetrates a

few wave-lengths into the conductor before decaying away.

Now the power per unit volume dissipated via ohmic heating in a conducting

medium takes the form

P = j · E = σE2. (9.123)

Consider an electromagnetic wave of the form (9.119). The mean power dissi-

pated per unit area in the region z > 0 is written

〈P〉 =
1

2

∫∞

0

σE 20 e
−2 z/d dz =

dσ

4
E 20 =

√

√

√

√

σ

8µ0ω
E 20 , (9.124)

for a good conductor. Now, according to Eq. (9.91), the mean electromagnetic

power flux into the region z > 0 takes the form

〈u〉 =

〈

E × B · ẑ

µ0

〉

z=0

=
1

2

E 20 kr

µ0ω
=

√

√

√

√

σ

8µ0ω
E 20 . (9.125)

It is clear, from a comparison of the previous two equations, that all of the wave

energy which flows into the region z > 0 is dissipated via ohmic heating. We thus

conclude that the attenuation of an electromagnetic wave propagating through a

conductor is a direct consequence of ohmic power losses.

Consider a typical metallic conductor such as copper, whose electrical conduc-

tivity at room temperature is about 6 × 107 (Ωm)−1. Copper, therefore, acts as a

good conductor for all electromagnetic waves of frequency below about 1018 Hz.

The skin-depth in copper for such waves is thus

d =

√

√

√

√

2

µ0 σω
' 6

√

ω(Hz)
cm. (9.126)
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It follows that the skin-depth is about 6 cm at 1 Hz, but only about 2 mm at 1 kHz.

This gives rise to the so-called skin-effect in copper wires, by which an oscillating

electromagnetic signal of increasing frequency, transmitted along such a wire, is

confined to an increasingly narrow layer (whose thickness is of order the skin-

depth) on the surface of the wire.

The conductivity of sea water is only about σ ' 5 (Ωm)−1. However, this is still

sufficiently high for sea water to act as a good conductor for all radio frequency

electromagnetic waves (i.e., ω < 109 Hz). The skin-depth at 1 MHz (λ ∼ 2 km) is

about 0.2m, whereas that at 1 kHz (λ ∼ 2000 km) is still only about 7 m. This ob-

viously poses quite severe restrictions for radio communication with submerged

submarines. Either the submarines have to come quite close to the surface to

communicate (which is dangerous), or the communication must be performed

with extremely low frequency (ELF) waves (i.e., f < 100Hz). Unfortunately, such

waves have very large wave-lengths (λ > 20, 000 km), which means that they can

only be efficiently generated by extremely large antennas.

9.11 Dielectric constant of a collisional plasma

We have now investigated electromagnetic wave propagation through two dif-

ferent media possessing free electrons: plasmas (see Sect. 9.8), and ohmic con-

ductors (see Sect. 9.10). In the first case, we obtained the dispersion relation

(9.81), whereas in the second we obtained the quite different dispersion relation

(9.117). This leads us, quite naturally, to ask what the essential distinction is be-

tween the response of free electrons in a plasma to an electromagnetic wave, and

that of free electrons in an ohmic conductor. It turns out that the main distinction

is the relative strength of electron-ion collisions.

In the presence of electron-ion collisions, we can model the equation of motion

of an individual electron in a plasma or a conductor as

me

dv

dt
+me ν v = −eE, (9.127)

where E is the wave electric field. The collision term (i.e., the second term on

the left-hand side) takes the form of a drag force proportional to −v. In the
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absence of the wave electric field, this force damps out any electron motion on

the typical time-scale ν−1. Since, in reality, an electron loses virtually all of its

directed momentum during a collision with a much more massive ion, we can

regard ν as the effective electron-ion collision frequency.

Assuming the usual exp(−iωt) time-dependence of perturbed quantities, we

can solve Eq. (9.127) to give

v = −iω r = −
iωeE

meω (ω+ iν)
. (9.128)

Hence, the perturbed current density can be written

j = −ene v =
ine e

2 E

me (ω+ iν)
, (9.129)

where ne is the number density of free electrons. It follows that the effective

conductivity of the medium takes the form

σ =
j

E
=

ine e
2

me (ω+ iν)
. (9.130)

Now, the mean rate of ohmic heating per unit volume in the medium is written

〈P〉 =
1

2
Re(σ)E 20 , (9.131)

where E0 is the amplitude of the wave electric field. Note that only the real

part of σ contributes to ohmic heating, because the perturbed current must be in

phase with the wave electric field in order for there to be a net heating effect. An

imaginary σ gives a perturbed current which is in phase quadrature with the wave

electric field. In this case, there is zero net transfer of power between the wave

and the plasma over a wave period. We can see from Eq. (9.130) that in the limit

in which the wave frequency is much larger than the collision frequency (i.e.,

ω� ν), the effective conductivity of the medium becomes purely imaginary:

σ ' ine e
2

meω
. (9.132)
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In this limit, there is no loss of wave energy due to ohmic heating, and the

medium acts like a conventional plasma. In the opposite limit, in which the wave

frequency is much less than the collision frequency (i.e., ω � ν), the effective

conductivity becomes purely real:

σ ' ne e
2

me ν
. (9.133)

In this limit, ohmic heating losses are significant, and the medium acts like a

conventional ohmic conductor.

Following the analysis of Sect. 9.7, we can derive the following dispersion

relation from Eq. (9.128):

k2 c2 = ω2 −
ω 2
pω

ω+ iν
. (9.134)

It can be seen that, in the limit ω � ν, the above dispersion relation reduces to

the dispersion relation (9.81) for a conventional (i.e., collisionless) plasma. In

the opposite limit, we obtain

k2 =
ω2

c2
+ i

ω 2
pω

νc2
= µ0ω (ε0ω+ iσ). (9.135)

where use has been made of Eq (9.133). Of course, the above dispersion relation

is identical to the dispersion relation (9.117) (with ε = 1) which we previously

derived for an ohmic conductor.

Our main conclusion from this subsection is that the dispersion relation (9.134)

can be used to describe electromagnetic wave propagation through both a col-

lisional plasma and an ohmic conductor. We can also deduce that in the low

frequency limit, ω � ν, a collisional plasma acts very much like an ohmic con-

ductor, whereas in the high frequency limit, ω � ν, an ohmic conductor acts

very much like a collisionless plasma.

9.12 Reflection at a dielectric boundary

An electromagnetic wave of real (positive) frequency ω can be written

E(r, t) = E0 e i (k·r−ωt), (9.136)
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z = 0
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Figure 55:

B(r, t) = B0 e i (k·r−ωt). (9.137)

The wave-vector, k, indicates the direction of propagation of the wave, and also

its phase-velocity, v, via

v =
ω

k
. (9.138)

Since the wave is transverse in nature, we must have E0 · k = B0 · k = 0. Finally,

the familiar Maxwell equation

∇× E = −
∂B

∂t
(9.139)

leads us to the following relation between the constant vectors E0 and B0:

B0 =
k̂ × E0

v
. (9.140)

Here, k̂ = k/k is a unit vector pointing in the direction of wave propagation.

Suppose that the plane z = 0 forms the boundary between two different di-

electric media. Let medium 1, of refractive index n1, occupy the region z < 0,

whilst medium 2, of refractive index n2, occupies the region z > 0. Let us inves-

tigate what happens when an electromagnetic wave is incident on this boundary

from medium 1.
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9 ELECTROMAGNETIC RADIATION 9.12 Reflection at a dielectric boundary

Consider, first of all, the simple case of incidence normal to the boundary (see

Fig. 55). In this case, k̂ = +ẑ for the incident and transmitted waves, and k̂ = −ẑ

for the reflected wave. Without loss of generality, we can assume that the incident

wave is polarized in the x-direction. Hence, using Eq. (9.140), the incident wave

can be written

E(z, t) = Ei e
i (k1 z−ωt) x̂, (9.141)

B(z, t) =
Ei

v1
e i (k1 z−ωt) ŷ, (9.142)

where v1 = c/n1 is the phase-velocity in medium 1, and k1 = ω/v1. Likewise, the

reflected wave takes the form

E(z, t) = Er e i (−k1 z−ωt) x̂, (9.143)

B(z, t) = −
Er

v1
e i (−k1 z−ωt) ŷ. (9.144)

Finally, the transmitted wave can be written

E(z, t) = Et e i (k2 z−ωt) x̂, (9.145)

B(z, t) =
Et

v2
e i (k2 z−ωt) ŷ, (9.146)

where v2 = c/n2 is the phase-velocity in medium 2, and k2 = ω/v2.

For the case of normal incidence, the electric and magnetic components of

all three waves are parallel to the boundary between the two dielectric media.

Hence, the appropriate boundary conditions to apply at z = 0 are

E‖ 1 = E‖ 2, (9.147)

B‖ 1 = B‖ 2. (9.148)

The latter condition derives from the general boundary condition H‖ 1 = H‖ 2, and

the fact that B = µ0H in both media (which are assumed to be non-magnetic).

Application of the boundary condition (9.147) yields

Ei + Er = Et. (9.149)
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Likewise, application of the boundary condition (9.148) gives

Ei − Er

v1
=
Et

v2
, (9.150)

or

Ei − Er =
v1

v2
Et =

n2

n1
Et, (9.151)

since v1/v2 = n2/n1. Equations (9.149) and (9.151) can be solved to give

Er =

(

n1 − n2

n1 + n2

)

Ei, (9.152)

Et =

(

2n1

n1 + n2

)

Et. (9.153)

Thus, we have determined the amplitudes of the reflected and transmitted waves

in terms of the amplitude of the incident wave.

It can be seen, first of all, that if n1 = n2 then Er = 0 and Et = Ei. In other

words, if the two media have the same indices of refraction then there is no re-

flection at the boundary between them, and the transmitted wave is consequently

equal in amplitude to the incident wave. On the other hand, if n1 6= n2 then there

is some reflection at the boundary. Indeed, the amplitude of the reflected wave

is roughly proportional to the difference between n1 and n2. This has important

practical consequences. We can only see a clean pane of glass in a window be-

cause some of the light incident at an air/glass boundary is reflected, due to the

different refractive indicies of air and glass. As is well-known, it is a lot more

difficult to see glass when it is submerged in water. This is because the refractive

indices of glass and water are quite similar, and so there is very little reflection of

light incident on a water/glass boundary.

According to Eq. (9.152), Er/Ei < 0 when n2 > n1. The negative sign indicates

a 180◦ phase-shift of the reflected wave, with respect to the incident wave. We

conclude that there is a 180◦ phase-shift of the reflected wave, relative to the

incident wave, on reflection from a boundary with a medium of greater refractive

index. Conversely, there is no phase-shift on reflection from a boundary with a

medium of lesser refractive index.
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The mean electromagnetic energy flux, or intensity, in the z-direction is simply

I =
〈E × B · ẑ〉

µ0
=
E0 B0

2µ0
=

E 20
2µ0 v

. (9.154)

The coefficient of reflection, R, is defined as the ratio of the intensities of the

reflected and incident waves:

R =
Ir

Ii
=

(

Er

Ei

)2

. (9.155)

Likewise, the coefficient of transmission, T , is the ratio of the intensities of the

transmitted and incident waves:

T =
It

Ii
=
v1

v2

(

Et

Ei

)2

=
n2

n1

(

Et

Ei

)2

. (9.156)

Equations (9.152), (9.153), (9.155), and (9.156) yield

R =

(

n1 − n2

n1 + n2

)2

, (9.157)

T =
n2

n1

(

2n1

n1 + n2

)2

. (9.158)

Note that R + T = 1. In other words, any wave energy which is not reflected at

the boundary is transmitted, and vice versa.

Let us now consider the case of incidence oblique to the boundary (see Fig. 56).

Suppose that the incident wave subtends an angle θi with the normal to the

boundary, whereas the reflected and transmitted waves subtend angles θr and θt,

respectively.

The incident wave can be written

E(r, t) = Ei e
i (ki·r−ωt), (9.159)

B(r, t) = Bi e
i (ki·r−ωt), (9.160)

with analogous expressions for the reflected and transmitted waves. Since, in

the case of oblique incidence, the electric and magnetic components of the wave
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fields are no longer necessarily parallel to the boundary, the boundary conditions

(9.147) and (9.148) at z = 0 must be supplemented by the additional boundary

conditions

ε1 E⊥ 1 = ε2 E⊥ 2, (9.161)

B⊥ 1 = B⊥ 2. (9.162)

Equation (9.161) derives from the general boundary condition D⊥ 1 = D⊥ 2.

It follows from Eqs. (9.148) and (9.162) that both components of the magnetic

field are continuous at the boundary. Hence, we can write

Bi e
i (ki·r−ωt) + Br e i (kr·r−ωt) = Bt e i (kt·r−ωt) (9.163)

at z = 0. Given that Bi, Br, and Bt are constant vectors, the only way in which

the above equation can be satisfied for all values of x and y is if

ki · r = kr · r = kt · r (9.164)

throughout the z = 0 plane. This, in turn, implies that

ki x = kr x = kt x (9.165)

and

ki y = kr y = kt y. (9.166)
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It immediately follows that if ki y = 0 then kr y = kt y = 0. In other words, if the

incident wave lies in the x-z plane then the reflected and transmitted waves also

lie in the x-z plane. Another way of putting this is that the incident, reflected,

and transmitted waves all lie in the same plane, know as the plane of incidence.

This, of course, is one of the laws of geometric optics. From now on, we shall

assume that the plane of incidence is the x-z plane.

Now, ki = kr = ω/v1 and kt = ω/v2. Moreover,

sin θi =
kx i

ki
, (9.167)

with similar expressions for θr and θt. Hence, according to Eq. (9.165),

sin θr = sin θi, (9.168)

which implies that θr = θi. Moreover,

sin θt

sin θi
=
v2

v1
=
n1

n2
. (9.169)

Of course, the above expressions correspond to the law of reflection and Snell’s

law of refraction, respectively.

For the case of oblique incidence, we need to consider two independent wave

polarizations separately. The first polarization has all the wave electric fields per-

pendicular to the plane of incidence, whilst the second has all the wave magnetic

fields perpendicular to the plane of incidence.

Let us consider the first wave polarization. We can write unit vectors in the

directions of propagation of the incident, reflected, and transmitted waves likso:

k̂i = (sin θi, 0, cos θi) , (9.170)

k̂r = (sin θi, 0, − cos θi) , (9.171)

k̂t = (sin θt, 0, cos θt) . (9.172)

The constant vectors associated with the incident wave are written

Ei = Ei ŷ, (9.173)

Bi =
Ei

v1
(− cos θi, 0, sin θi) , (9.174)
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where use has been made of Eq. (9.140). Likewise, the constant vectors associ-

ated with the reflected and transmitted waves are

Er = Er ŷ, (9.175)

Br =
Er

v1
(cos θi, 0, sin θi) , (9.176)

and

Et = Et ŷ, (9.177)

Bt =
Et

v2
(− cos θt, 0, sin θt) , (9.178)

respectively.

Now, the boundary condition (9.147) yields Ey 1 = Ey 2, or

Ei + Er = Et. (9.179)

Likewise, the boundary condition (9.162) gives Bz 1 = Bz 2, or

(Ei + Er)
sin θi

v1
= Et

sin θt

v2
. (9.180)

However, using Snell’s law, (9.169), the above expression reduces to Eq. (9.179).

Finally, the boundary condition (9.148) yields Bx 1 = Bx 2, or

(Ei − Er)
cos θi

v1
= Et

cos θt

v2
. (9.181)

It is convenient to define the parameters

α =
cos θt

cos θi
, (9.182)

and

β =
v1

v2
=
n2

n1
. (9.183)

Equations (9.179) and (9.181) can be solved in terms of these parameters to give

Er =

(

1− αβ

1+ αβ

)

Ei, (9.184)

Et =

(

2

1+ αβ

)

Ei. (9.185)
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These relations are known as Fresnel equations.

The wave intensity in the z-direction is given by

Iz =
〈E × B · ẑ〉

µ0
=
E0 B0 cos θ

2µ0
=
E 20 cos θ

2µ0 v
. (9.186)

Hence, the coefficient of reflection is written

R =

(

Er

Ei

)2

=

(

1− αβ

1+ αβ

)2

, (9.187)

whereas the coefficient of transmission takes the form

T =
cos θt

cos θi

v1

v2

(

Et

Ei

)2

= αβ

(

2

1+ αβ

)2

. (9.188)

Note that it is again the case that R+ T = 1.

Let us now consider the second wave polarization. In this case, the constant

vectors associated with the incident, reflected, and transmitted waves are written

Ei = Ei (cos θi, 0, − sin θi), (9.189)

Bi =
Ei

v1
ŷ, (9.190)

and

Er = Er (cos θi, 0, sin θi), (9.191)

Br = −
Er

v1
ŷ, (9.192)

and

Et = Et (cos θt, 0, − sin θt), (9.193)

Bt =
Et

v2
ŷ, (9.194)

respectively. The boundary condition (9.148) yields By 1 = By 2, or

Ei − Er

v1
=
Et

v2
. (9.195)
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Likewise, the boundary condition (9.147) gives Ex 1 = Ex 2, or

(Ei + Er) cos θi = Et cos θt. (9.196)

Finally, the boundary condition (9.161) yields ε1 Ez 1 = ε2 Ez 2, or

ε1 (Ei − Er) sin θi = ε2 Ei sin θt. (9.197)

Making use of Snell’s law, and the fact that ε = n2, the above expression reduces

to Eq. (9.195).

Solving Eqs. (9.165) and (9.196), we obtain

Er =

(

α− β

α+ β

)

Ei, (9.198)

Et =

(

2

α+ β

)

Ei. (9.199)

The associated coefficients of reflection and transmission take the form

R =

(

α− β

α+ β

)2

, (9.200)

T = αβ

(

2

α+ β

)2

, (9.201)

respectively. As usual, R+ T = 1.

Note that at oblique incidence the Fresnel equations, (9.184) and (9.185), for

the wave polarization in which the electric field is parallel to the boundary are

different to the Fresnel equations, (9.198) and (9.199), for the wave polarization

in which the magnetic field is parallel to the boundary. This implies that the

coefficients of reflection and transmission for these two wave polarizations are,

in general, different.

Figure 57 shows the coefficients of reflection (solid curves) and transmission

(dashed curves) for oblique incidence from air (n1 = 1.0) to glass (n2 = 1.5). The

left-hand panel shows the wave polarization for which the electric field is parallel

to the boundary, whereas the right-hand panel shows the wave polarization for

which the magnetic field is parallel to the boundary. In general, it can be seen
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9 ELECTROMAGNETIC RADIATION 9.12 Reflection at a dielectric boundary

Figure 57:

that the coefficient of reflection rises, and the coefficient of transmission falls,

as the angle of incidence increases. Note, however, that for the second wave

polarization there is a particular angle of incidence, know as the Brewster angle,

at which the reflected intensity is zero. There is no similar behaviour for the first

wave polarization.

It follows from Eq. (9.198) that the Brewster angle corresponds to the condi-

tion

α = β, (9.202)

or

β2 =
cos2 θt

cos2 θi
=
1− sin2 θt

1− sin2 θi
=
1− sin2 θi/β

2

1− sin2 θi
, (9.203)

where use has been made of Snell’s law. The above expression reduces to

sin θi =
β

√

1+ β2
, (9.204)

or tan θi = β = n2/n1. Hence, the Brewster angle satisfies

θB = tan−1

(

n2

n1

)

. (9.205)
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9 ELECTROMAGNETIC RADIATION 9.13 Wave-guides

If unpolarized light is incident on an air/glass (say) boundary at the Brewster

angle then the reflected beam is 100% plane polarized.

9.13 Wave-guides

A wave-guide is a hollow conducting pipe, of uniform cross-section, used to trans-

port high frequency electromagnetic waves (generally, in the microwave band)

from one point to another. The main advantage of wave-guides is their relatively

low level of radiation losses (since the electric and magnetic fields are completely

enclosed by a conducting wall) compared to transmission lines.

Consider a vacuum-filled wave-guide which runs parallel to the z-axis. An elec-

tromagnetic wave trapped inside the wave-guide satisfies Maxwell’s equations for

free space:

∇ · E = 0, (9.206)

∇ · B = 0, (9.207)

∇× E = −
∂B

∂t
, (9.208)

∇× B =
1

c2
∂E

∂t
. (9.209)

Let ∂/∂t ≡ −iω, and ∂/∂z ≡ i k, where ω is the wave frequency, and k the

wave-number parallel to the axis of the wave-guide. It follows that

∂Ex

∂x
+
∂Ey

∂y
+ i kEz = 0, (9.210)

∂Bx

∂x
+
∂By

∂y
+ i kBz = 0, (9.211)

iωBx =
∂Ez

∂y
− i kEy, (9.212)

iωBy = −
∂Ez

∂x
+ i kEx, (9.213)

iωBz =
∂Ey

∂x
−
∂Ex

∂y
, (9.214)
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i
ω

c2
Ex = −

∂Bz

∂y
+ i kBy, (9.215)

i
ω

c2
Ey =

∂Bz

∂x
− i kBx, (9.216)

i
ω

c2
Ez = −

∂By

∂x
+
∂Bx

∂y
. (9.217)

Equations (9.213) and (9.215) yield

Ex = i

(

ω
∂Bz

∂y
+ k

∂Ez

∂x

)





ω2

c2
− k2





−1

, (9.218)

and

By = i

(

ω

c2
∂Ez

∂x
+ k

∂Bz

∂y

)





ω2

c2
− k2





−1

. (9.219)

Likewise, Eqs. (9.212) and (9.216) yield

Ey = i

(

−ω
∂Bz

∂x
+ k

∂Ez

∂y

)





ω2

c2
− k2





−1

, (9.220)

and

Bx = i

(

−
ω

c2
∂Ez

∂y
+ k

∂Bz

∂x

)





ω2

c2
− k2





−1

. (9.221)

These equations can be combined to give

Et = i (ω∇Bz × ẑ + k∇Ez)




ω2

c2
− k2





−1

, (9.222)

Bt = i

(

−
ω

c2
∇Ez × ẑ + k∇Bz

)





ω2

c2
− k2





−1

. (9.223)

Here, Et and Bt are the transverse electric and magnetic fields: i.e., the electric

and magnetic fields in the x-y plane. It is clear, from Eqs. (9.222) and (9.223),

that the transverse fields are fully determined once the longitudinal fields, Ez and

Bz, are known.
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Substitution of Eqs. (9.222) and (9.223) into Eqs. (9.214) and (9.217) yields

the equations satisfied by the longitudinal fields:




∂2

∂x2
+
∂2

∂y2



Ez +





ω2

c2
− k2



Ez = 0, (9.224)





∂2

∂x2
+
∂2

∂y2



Bz +





ω2

c2
− k2



Bz = 0. (9.225)

The remaining equations, (9.210) and (9.211), are automatically satisfied pro-

vided Eqs. (9.222)–(9.225) are satisfied.

We expect E = B = 0 inside the walls of the wave-guide, assuming that

they are perfectly conducting. Hence, the appropriate boundary conditions at

the walls are

E‖ = 0, (9.226)

B⊥ = 0. (9.227)

It follows, by inspection of Eqs. (9.222) and (9.223), that these boundary condi-

tions are satisfied provided

Ez = 0, (9.228)

n̂ · ∇Bz = 0, (9.229)

at the walls. Here, n̂ is the normal vector to the walls. Hence, the electromag-

netic fields inside the wave-guide are fully specified by solving Eqs. (9.224) and

(9.225), subject to the boundary conditions (9.228) and (9.229), respectively.

Equations (9.224) and (9.225) support two independent types of solution. The

first type has Ez = 0, and is consequently called a transverse electric, or TE, mode.

Conversely, the second type has Bz = 0, and is called a transverse magnetic, or

TM, mode.

Consider the specific example of a rectangular wave-guide, with conducting

walls at x = 0, a, and y = 0, b. For a TE mode, the longitudinal magnetic field

can be written

Bz(x, y) = B0 cos(kx x) cos(ky y), (9.230)
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The boundary condition (9.229) requires that ∂Bz/∂x = 0 at x = 0, a, and

∂Bz/∂y = 0 at y = 0, b. It follows that

kx =
nπ

a
, (9.231)

ky =
mπ

b
, (9.232)

where n = 0, 1, 2, · · ·, and m = 0, 1, 2, · · ·. Clearly, there are many different kinds

of TE mode, corresponding to the many different choices of m and n. Let us

refer to a mode corresponding to a particular choice of m,n as a TEmn mode.

Note, however, that there is no TE00 mode, since Bz(x, y) is uniform in this case.

According to Eq. (9.225), the dispersion relation for the TEmn mode is given by

k2 c2 = ω2 −ω 2
mn, (9.233)

where

ωmn = c π

√

√

√

√

n2

a2
+
m2

b2
. (9.234)

According to the dispersion relation (9.233), k is imaginary for ω < ωmn. In

other words, for wave frequencies below ωmn, the TEmn mode fails to propagate

down the wave-guide, and is instead attenuated. Hence, ωmn is termed the cut-

off frequency for the TEmn mode. Assuming that a > b, the TE mode with the

lowest cut-off frequency is the TE10 mode, where

ω10 =
c π

a
. (9.235)

For frequencies above the cut-off frequency, the phase-velocity of the TEmn
mode is given by

vp =
ω

k
=

c
√

1−ω 2
mn/ω

2
, (9.236)

which is greater than c. However, the group-velocity takes the form

vg =
dω

dk
= c

√

1−ω 2
mn/ω

2, (9.237)

which is always less than c. Of course, energy is transmitted down the wave-guide

at the group-velocity, rather than the phase-velocity. Note that the group-velocity

goes to zero as the wave frequency approaches the cut-off frequency.
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For a TM mode, the longitudinal electric field can be written

Ez(x, y) = E0 sin(kx x) sin(ky y), (9.238)

The boundary condition (9.228) requires that Ez = 0 at x = 0, a, and y = 0, b. It

follows that

kx =
nπ

a
, (9.239)

ky =
mπ

b
, (9.240)

where n = 1, 2, · · ·, and m = 1, 2, · · ·. The dispersion relation for the TMmn mode

is also given by Eq. (9.233). Hence, Eqs. (9.236) and (9.237) also apply to TM

modes. However, the TM mode with the lowest cut-off frequency is the TM11

mode, where

ω11 = c π

√

√

√

√

1

a2
+
1

b2
> ω10. (9.241)

It follows that the mode with the lowest cut-off frequency is always a TE mode.

There is, in principle, a third type of mode which can propagate down a wave-

guide. This third mode type is characterized by Ez = Bz = 0, and is consequently

called a transverse electromagnetic, or TEM, mode. It is easily seen, from an in-

spection of Eqs. (9.212)–(9.217), that a TEM mode satisfies

ω2 = k2 c2, (9.242)

and

Et = −∇φ, (9.243)

Bt = c−1∇φ× ẑ, (9.244)

where φ(x, y) satisfies

∇2φ = 0. (9.245)

The boundary conditions (9.228) and (9.229) imply that

φ = constant (9.246)
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at the walls. However, there is no non-trivial solution of Eqs. (9.245) and (9.246)

for a conventional wave-guide. In other words, conventional wave-guides do not

support TEM modes. In fact, it turns out that only wave-guides with central con-

ductors support TEM modes. Consider, for instance, a co-axial wave-guide in

which the electric and magnetic fields are trapped between two parallel concen-

tric cylindrical conductors of radius a and b (with b > a). In this case, φ = φ(r),

and Eq. (9.245) reduces to
1

r

∂

∂r

(

r
∂φ

∂r

)

= 0, (9.247)

where r is a standard cylindrical polar coordinate. The boundary condition

(9.246) is automatically satisfied at r = a and r = b. The above equation has the

following non-trivial solution:

φ(r) = φb ln(r/b). (9.248)

Note, however, that the inner conductor must be present, otherwise φ → ∞
as r → 0, which is unphysical. According to the dispersion relation (9.242),

TEM modes have no cut-off frequency, and have the phase-velocity (and group-

velocity) c. Indeed, this type of mode is the same as that supported by a trans-

mission line (see Sect. 7.7).
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10 RELATIVITY AND ELECTROMAGNETISM

10 Relativity and electromagnetism

10.1 Introdunction

In this section, we shall discuss Maxwell’s equations in the light of Einstein’s

special theory of relativity.

10.2 The relativity principle

Physical phenomena are conventionally described relative to some frame of refer-

ence which allows us to define fundamental quantities such as position and time.

Of course, there are very many different ways of choosing a reference frame, but

it is generally convenient to restrict our choice to the set of rigid inertial frames.

A classical rigid reference frame is the imagined extension of a rigid body. For

instance, the Earth determines a rigid frame throughout all space, consisting of

all those points which remain rigidly at rest relative to the Earth, and to each

other. We can associate an orthogonal Cartesian coordinate system S with such

a frame, by choosing three mutually orthogonal planes within it, and measuring

x, y, and z as perpendicular distances from these planes. A time coordinate must

also be defined, in order that the system can be used to specify events. A rigid

frame, endowed with such properties, is called a Cartesian frame. The descrip-

tion given above presupposes that the underlying geometry of space is Euclidian,

which is reasonable provided that gravitational effects are negligible (we shall

assume that this is the case). An inertial frame is a Cartesian frame in which

free particles move without acceleration, in accordance with Newton’s first law

of motion. There are an infinite number of different inertial frames, moving with

some constant velocity with respect to one another.

The key to understanding special relativity is Einstein’s relativity principle,

which states that:

All inertial frames are totally equivalent for the performance of all physical

experiments.
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10 RELATIVITY AND ELECTROMAGNETISM 10.2 The relativity principle

In other words, it is impossible to perform a physical experiment which differen-

tiates in any fundamental sense between different inertial frames. By definition,

Newton’s laws of motion take the same form in all inertial frames. Einstein gen-

eralized this result in his special theory of relativity by asserting that all laws of

physics take the same form in all inertial frames.

Consider a wave-like disturbance. In general, such a disturbance propagates

at a fixed velocity with respect to the medium in which the disturbance takes

place. For instance, sound waves (at S.T.P.) propagate at 343 meters per second

with respect to air. So, in the inertial frame in which air is stationary, sound

waves appear to propagate at 343 meters per second. Sound waves appear to

propagate at a different velocity any inertial frame which is moving with respect

to the air. However, this does not violate the relativity principle, since if the air

were stationary in the second frame then sound waves would appear to propagate

at 343 meters per second in this frame as well. In other words, exactly the same

experiment (e.g., the determination of the speed of sound relative to stationary

air) performed in two different inertial frames of reference yields exactly the

same result, in accordance with the relativity principle.

Consider, now, a wave-like disturbance which is self-regenerating, and does

not require a medium through which to propagate. The most well-known exam-

ple of such a disturbance is a light wave. Another example is a gravity wave.

According to electromagnetic theory, the speed of propagation of a light wave

through a vacuum is

c =
1√
ε0 µ0

= 2.99729× 108 meters per second, (10.1)

where ε0 and µ0 are physical constants which can be evaluated by performing

two simple experiments which involve measuring the force of attraction between

two fixed changes and two fixed parallel current carrying wires. According to the

relativity principle, these experiments must yield the same values for ε0 and µ0 in

all inertial frames. Thus, the speed of light must be the same in all inertial frames.

In fact, any disturbance which does not require a medium to propagate through

must appear to travel at the same velocity in all inertial frames, otherwise we

could differentiate inertial frames using the apparent propagation speed of the

299
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disturbance, which would violate the relativity principle.

10.3 The Lorentz transformation

Consider two Cartesian frames S(x, y, z, t) and S ′(x ′, y ′, z ′, t ′) in the standard con-

figuration, in which S ′ moves in the x-direction of S with uniform velocity v, and

the corresponding axes of S and S ′ remain parallel throughout the motion, having

coincided at t = t ′ = 0. It is assumed that the same units of distance and time are

adopted in both frames. Suppose that an event (e.g., the flashing of a light-bulb,

or the collision of two point particles) has coordinates (x, y, z, t) relative to S,

and (x ′, y ′, z ′, t ′) relative to S ′. The “common sense” relationship between these

two sets of coordinates is given by the Galilean transformation:

x ′ = x− v t, (10.2)

y ′ = y, (10.3)

z ′ = z, (10.4)

t ′ = t. (10.5)

This transformation is tried and tested, and provides a very accurate description

of our everyday experience. Nevertheless, it must be wrong! Consider a light

wave which propagates along the x-axis in S with velocity c. According to the

Galilean transformation, the apparent speed of propagation in S ′ is c − v, which

violates the relativity principle. Can we construct a new transformation which

makes the velocity of light invariant between different inertial frames, in accor-

dance with the relativity principle, but reduces to the Galilean transformation at

low velocities, in accordance with our everyday experience?

Consider an event P, and a neighbouring event Q, whose coordinates differ by

dx, dy, dz, dt in S, and by dx ′, dy ′, dz ′, dt ′ in S ′. Suppose that at the event P

a flash of light is emitted, and that Q is an event in which some particle in space

is illuminated by the flash. In accordance with the laws of light-propagation,

and the invariance of the velocity of light between different inertial frames, an
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observer in S will find that

dx2 + dy2 + dz2 − c2 dt2 = 0 (10.6)

for dt > 0, and an observer in S ′ will find that

dx ′2 + dy ′2 + dz ′2 − c2 dt ′2 = 0 (10.7)

for dt ′ > 0. Any event near P whose coordinates satisfy either (10.6) or (10.7) is

illuminated by the flash from P, and, therefore, its coordinates must satisfy both

(10.6) and (10.7). Now, no matter what form the transformation between coor-

dinates in the two inertial frames takes, the transformation between differentials

at any fixed event P is linear and homogeneous. In other words, if

x ′ = F(x, y, z, t), (10.8)

where F is a general function, then

dx ′ =
∂F

∂x
dx+

∂F

∂y
dy+

∂F

∂z
dz+

∂F

∂t
dt. (10.9)

It follows that

dx ′2 + dy ′2 + dz ′2 − c2 dt ′2 = adx2 + bdy2 + c dz2 + ddt2 + gdxdt+ hdydt

+kdzdt+ l dydz+mdxdz+ ndxdy, (10.10)

where a, b, c, etc. are functions of x, y, z, and t. We know that the right-hand

side of the above expression vanishes for all real values of the differentials which

satisfy Eq. (10.6). It follows that the right-hand side is a multiple of the quadratic

in Eq. (10.6): i.e.,

dx ′2 + dy ′2 + dz ′2 − c2 dt ′2 = K (dx2 + dy2 + dz2 − c2 dt2), (10.11)

where K is a function of x, y, z, and t. [We can prove this by substituting into

Eq. (10.10) the following obvious zeros of the quadratic in Eq. (10.6): (±1, 0, 0, 1),
(0,±1, 0, 1), (0, 0,±1, 1), (0, 1/

√
2, 1/

√
2, 1), (1/

√
2, 0, 1/

√
2, 1), (1/

√
2, 1/

√
2, 0, 1):

and solving the resulting conditions on the coefficients.] Note that K at P is also

independent of the choice of standard coordinates in S and S ′. Since the frames

are Euclidian, the values of dx2 + dy2 + dz2 and dx ′2 + dy ′2 + dz ′2 relevant to P

301



10 RELATIVITY AND ELECTROMAGNETISM 10.3 The Lorentz transformation

and Q are independent of the choice of axes. Furthermore, the values of dt2 and

dt ′2 are independent of the choice of the origins of time. Thus, without affecting

the value of K at P, we can choose coordinates such that P = (0, 0, 0, 0) in both

S and S ′. Since the orientations of the axes in S and S ′ are, at present, arbitrary,

and since inertial frames are isotropic, the relation of S and S ′ relative to each

other, to the event P, and to the locus of possible events Q, is now completely

symmetric. Thus, we can write

dx2 + dy2 + dz2 − c2 dt2 = K (dx ′2 + dy ′2 + dz ′2 − c2 dt ′2), (10.12)

in addition to Eq. (10.11). It follows that K = ±1. K = −1 can be dismissed

immediately, since the intervals dx2 + dy2 + dz2 − c2 dt2 and dx ′2 + dy ′2 + dz ′2 −

c2 dt ′2 must coincide exactly when there is no motion of S ′ relative to S. Thus,

dx ′2 + dy ′2 + dz ′2 − c2 dt ′2 = dx2 + dy2 + dz2 − c2 dt2. (10.13)

Equation (10.13) implies that the transformation equations between primed and

unprimed coordinates must be linear. The proof of this statement is postponed

until Sect. 10.7.

The linearity of the transformation allows the coordinate axes in the two

frames to be orientated so as to give the standard configuration mentioned earlier.

Consider a fixed plane in S with the equation l x+my+nz+p = 0. In S ′, this be-

comes (say) l (a1 x
′+b1 y ′+c1 z ′+d1 t ′+e1)+m (a2 x

′+· · ·)+n (a3 x
′+· · ·)+p = 0,

which represents a moving plane unless l d1 + md2 + nd3 = 0. That is, un-

less the normal vector to the plane in S, (l,m, n), is perpendicular to the vector

(d1, d2, d3). All such planes intersect in lines which are fixed in both S and S ′,
and which are parallel to the vector (d1, d2, d3) in S. These lines must correspond

to the direction of relative motion of the frames. By symmetry, two such frames

which are orthogonal in S must also be orthogonal in S ′. This allows the choice

of two common coordinate planes.

Under a linear transformation, the finite coordinate differences satisfy the

same transformation equations as the differentials. It follows from Eq. (10.13),

assuming that the events (0, 0, 0, 0) coincide in both frames, that for any event

with coordinates (x, y, z, t) in S and (x ′, y ′, z ′, t ′) in S ′, the following relation

holds:

x2 + y2 + z2 − c2 t2 = x ′2 + y ′2 + z ′2 − c2 t ′2. (10.14)
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By hypothesis, the coordinate planes y = 0 and y ′ = 0 coincide permanently.

Thus, y = 0 must imply y ′ = 0, which suggests that

y ′ = Ay, (10.15)

where A is a constant. We can reverse the directions of the x- and z-axes in S and

S ′, which has the effect of interchanging the roles of these frames. This procedure

does not affect Eq. (10.15), but by symmetry we also have

y = Ay ′. (10.16)

It is clear that A = ±1. The negative sign can again be dismissed, since y = y ′

when there is no motion between S and S ′. The argument for z is similar. Thus,

we have

y ′ = y, (10.17)

z ′ = z, (10.18)

as in the Galilean transformation.

Equations (10.14), (10.17) and (10.18) yield

x2 − c2 t2 = x ′2 − c2 t ′2. (10.19)

Since, x ′ = 0 must imply x = v t, we can write

x ′ = B (x− v t), (10.20)

where B is a constant (possibly depending on v). It follows from the previous two

equations that

t ′ = Cx+Dt, (10.21)

whereC andD are constants (possibly depending on v). Substituting Eqs. (10.20)

and (10.21) into Eq. (10.19), and comparing the coefficients of x2, x t, and t2,

we obtain

B = D =
1

±(1− v2/c2)1/2
, (10.22)

C =
−v/c2

±(1− v2/c2)1/2
. (10.23)
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We must choose the positive sign in order to ensure that x ′ → x as v/c → 0.

Thus, collecting our results, the transformation between coordinates in S and S ′

is given by

x ′ =
x− v t

(1− v2/c2)1/2
, (10.24)

y ′ = y, (10.25)

z ′ = z, (10.26)

t ′ =
t− v x/c2

(1− v2/c2)1/2
. (10.27)

This is the famous Lorentz transformation. It ensures that the velocity of light is

invariant between different inertial frames, and also reduces to the more familiar

Galilean transform in the limit v � c. We can solve Eqs. (10.24)–(10.27) for x,

y, z, and t, to obtain the inverse Lorentz transformation:

x =
x ′ + v t ′

(1− v2/c2)1/2
, (10.28)

y = y ′, (10.29)

z = z ′, (10.30)

t =
t ′ + v x ′/c2

(1− v2/c2)1/2
. (10.31)

Not surprizingly, the inverse transformation is equivalent to a Lorentz transfor-

mation in which the velocity of the moving frame is −v along the x-axis, instead

of +v.

10.4 Transformation of velocities

Consider two frames, S and S ′, in the standard configuration. Let u be the velocity

of a particle in S. What is the particle’s velocity in S ′? The components of u are

u1 =
dx

dt
, (10.32)
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u2 =
dy

dt
, (10.33)

u3 =
dz

dt
. (10.34)

Similarly, the components of u ′ are

u ′
1 =

dx ′

dt ′
, (10.35)

u ′
2 =

dy ′

dt ′
, (10.36)

u ′
3 =

dz ′

dt ′
. (10.37)

Now we can write Eqs. (10.24)–(10.27) in the form dx ′ = γ (dx−v dt), dy ′ = dy,

dz ′ = dz, and dt ′ = γ (dt− v dx/c2), where

γ = (1− v2/c2)−1/2 (10.38)

is the well-known Lorentz factor. If we substitute these differentials into Eqs. (10.32)–

(10.34), and make use of Eqs. (10.35)–(10.37), we obtain the transformation

rules

u ′
1 =

u1 − v

1− u1 v/c2
, (10.39)

u ′
2 =

u2

γ (1− u1 v/c2)
, (10.40)

u ′
3 =

u3

γ (1− u1 v/c2)
. (10.41)

As in the transformation of coordinates, we can obtain the inverse transform by

interchanging primed and unprimed symbols, and replacing +v with −v. Thus,

u1 =
u ′
1 + v

1+ u ′
1 v/c

2
, (10.42)

u2 =
u ′
2

γ (1+ u ′
1 v/c

2)
, (10.43)

u3 =
u ′
3

γ (1+ u ′
1 v/c

2)
. (10.44)
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Equations (10.42)–(10.44) can be regarded as giving the resultant, u = (u1, u2, u3),

of two velocities, v = (v, 0, 0) and u ′ = (u ′
1, u

′
2, u

′
3), and are therefore usually

referred to as the relativistic velocity addition formulae. The following relation

between the magnitudes u = (u 2
1 + u 2

2 + u 2
3 )1/2 and u ′ = (u ′

1
2
+ u ′

2
2
+ u ′

3
2
)1/2 of

the velocities is easily demonstrated:

c2 − u2 =
c2 (c2 − u ′2) (c2 − v2)

(c2 + u ′
1 v)

2
. (10.45)

If u ′ < c and v < c then the right-hand side is positive, implying that u < c.

In other words, the resultant of two subluminal velocities is another subluminal

velocity. It is evident that a particle can never attain the velocity of light relative

to a given inertial frame, no matter how many subluminal velocity increments it

is given. It follows that no inertial frame can ever appear to propagate with a

superluminal velocity with respect to any other inertial frame (since we can track

a given inertial frame using a particle which remains at rest at the origin of that

frame).

According to Eq. (10.45), if u ′ = c then u = c, no matter what value v takes:

i.e., the velocity of light is invariant between different inertial frames. Note that

the Lorentz transform only allows one such invariant velocity [i.e., the velocity

c which appears in Eqs. (10.24)–(10.27)]. Einstein’s relativity principle tells us

that any disturbance which propagates through a vacuum must appear to prop-

agate at the same velocity in all inertial frames. It is now evident that all such

disturbances must propagate at the velocity c. It follows immediately that all

electromagnetic waves must propagate through the vacuum with this velocity,

irrespective of their wavelength. In other words, it is impossible for there to be

any dispersion of electromagnetic waves propagating through a vacuum. Fur-

thermore, gravity waves must also propagate with the velocity c.

The Lorentz transformation implies that the velocities of propagation of all

physical effects are limited by c in deterministic physics. Consider a general

process by which an event P causes an event Q at a velocity U > c in some frame

S. In other words, information about the event P appears to propagate to the

event Q with a superluminal velocity. Let us choose coordinates such that these

two events occur on the x-axis with (finite) time and distance separations ∆t > 0
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and ∆x > 0, respectively. The time separation in some other inertial frame S ′ is

given by [see Eq. (10.27)]

∆t ′ = γ (∆t− v∆x/c2) = γ∆t (1− vU/c2). (10.46)

Thus, for sufficiently large v < cwe obtain ∆t ′ < 0: i.e., there exist inertial frames

in which cause and effect appear to be reversed. Of course, this is impossible in

deterministic physics. It follows, therefore, that information can never appear to

propagate with a superluminal velocity in any inertial frame, otherwise causality

would be violated.

10.5 Tensors

It is now convenient to briefly review the mathematics of tensors. Tensors are

of primary importance in connection with coordinate transforms. They serve to

isolate intrinsic geometric and physical properties from those that merely depend

on coordinates.

A tensor of rank r in an n-dimensional space possesses nr components which

are, in general, functions of position in that space. A tensor of rank zero has one

component, A, and is called a scalar. A tensor of rank one has n components,

(A1, A2, · · · , An), and is called a vector. A tensor of rank two has n2 components,

which can be exhibited in matrix format. Unfortunately, there is no convenient

way of exhibiting a higher rank tensor. Consequently, tensors are usually repre-

sented by a typical component: e.g., the tensor Aijk (rank 3), or the tensor Aijkl
(rank 4), etc. The suffixes i, j, k, · · · are always understood to range from 1 to n.

For reasons which will become apparent later on, we shall represent tensor

components using both superscripts and subscripts. Thus, a typical tensor might

look like Aij (rank 2), or Bij (rank 2), etc. It is convenient to adopt the Einstein

summation convention. Namely, if any suffix appears twice in a given term, once

as a subscript and once as a superscript, a summation over that suffix (from 1 to

n) is implied.

To distinguish between various different coordinate systems, we shall use primed

and multiply primed suffixes. A first system of coordinates (x1, x2, · · · , xn) can
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then be denoted by xi, a second system (x1
′

, x2
′

, · · · , xn ′

) by xi
′

, etc. Similarly, the

general components of a tensor in various coordinate systems are distinguished

by their suffixes. Thus, the components of some third rank tensor are denoted

Aijk in the xi system, by Ai ′j ′k ′ in the xi
′

system, etc.

When making a coordinate transformation from one set of coordinates, xi,

to another, xi
′

, it is assumed that the transformation in non-singular. In other

words, the equations which express the xi
′

in terms of the xi can be inverted to

express the xi in terms of the xi
′

. It is also assumed that the functions specifying

a transformation are differentiable. It is convenient to write

∂xi
′

∂xi
= pi

′

i , (10.47)

∂xi

∂xi
′ = pii ′. (10.48)

Note that

pii ′ p
i ′

j = δij, (10.49)

by the chain rule, where δij (the Kronecker delta ) equals 1 or 0 when i = j or

i 6= j, respectively.

The formal definition of a tensor is as follows:

1. An entity having components Aij···k in the xi system and Ai ′j ′···k ′ in the xi
′

system is said to behave as a covariant tensor under the transformation xi →
xi

′

if

Ai ′j ′···k ′ = Aij···k p
i
i ′ p

j
j ′ · · ·pkk ′. (10.50)

2. Similarly, Aij···k is said to behave as a contravariant tensor under xi → xi
′

if

Ai
′j ′···k ′

= Aij···kpi
′

i p
j ′

j · · ·pk
′

k . (10.51)

3. Finally, Ai···jk···l is said to behave as a mixed tensor (contravariant in i · · · j and

covariant in k · · · l) under xi → xi
′

if

A
i ′···j ′
k ′···l ′ = A

i···j
k···l p

i ′

i · · ·pj
′

j p
k
k ′ · · ·pll ′. (10.52)
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When an entity is described as a tensor it is generally understood that it be-

haves as a tensor under all non-singular differentiable transformations of the

relevant coordinates. An entity which only behaves as a tensor under a cer-

tain subgroup of non-singular differentiable coordinate transformations is called

a qualified tensor, because its name is conventionally qualified by an adjective

recalling the subgroup in question. For instance, an entity which only exhibits

tensor behaviour under Lorentz transformations is called a Lorentz tensor, or,

more commonly, a 4-tensor.

When applied to a tensor of rank zero (a scalar), the above definitions imply

that A ′ = A. Thus, a scalar is a function of position only, and is independent of

the coordinate system. A scalar is often termed an invariant.

The main theorem of tensor calculus is as follows:

If two tensors of the same type are equal in one coordinate system, then they

are equal in all coordinate systems.

The simplest example of a contravariant vector (tensor of rank one) is provided

by the differentials of the coordinates, dxi, since

dxi
′

=
∂xi

′

∂xi
dxi = dxi pi

′

i . (10.53)

The coordinates themselves do not behave as tensors under all coordinate trans-

formations. However, since they transform like their differentials under linear

homogeneous coordinate transformations, they do behave as tensors under such

transformations.

The simplest example of a covariant vector is provided by the gradient of a

function of position φ = φ(x1, · · · , xn), since if we write

φi =
∂φ

∂xi
, (10.54)

then we have

φi ′ =
∂φ

∂xi
′ =

∂φ

∂xi
∂xi

∂xi
′ = φi p

i
i ′. (10.55)
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An important example of a mixed second-rank tensor is provided by the Kro-

necker delta introduced previously, since

δij p
i ′

i p
j
j ′ = pi

′

j p
j
j ′ = δi

′

j ′ . (10.56)

Tensors of the same type can be added or subtracted to form new tensors. Thus,

if Aij and Bij are tensors, then Cij = Aij ± Bij is a tensor of the same type. Note

that the sum of tensors at different points in space is not a tensor if the p’s are

position dependent. However, under linear coordinate transformations the p’s

are constant, so the sum of tensors at different points behaves as a tensor under

this particular type of coordinate transformation.

If Aij and Bijk are tensors, then Cijklm = AijBklm is a tensor of the type in-

dicated by the suffixes. The process illustrated by this example is called outer

multiplication of tensors.

Tensors can also be combined by inner multiplication, which implies at least

one dummy suffix link. Thus, Cjkl = AijBikl and Ck = AijBijk are tensors of the

type indicated by the suffixes.

Finally, tensors can be formed by contraction from tensors of higher rank. Thus,

if Aijklm is a tensor then Cjkl = A
ij
ikl and Ck = A

ij
kij are tensors of the type indicated

by the suffixes. The most important type of contraction occurs when no free

suffixes remain: the result is a scalar. Thus, Aii is a scalar provided that Aji is a

tensor.

Although we cannot usefully divide tensors, one by another, an entity like

Cij in the equation Aj = CijBi, where Ai and Bi are tensors, can be formally

regarded as the quotient of Ai and Bi. This gives the name to a particularly

useful rule for recognizing tensors, the quotient rule. This rule states that if a set

of components, when combined by a given type of multiplication with all tensors of

a given type yields a tensor, then the set is itself a tensor. In other words, if the

product Ai = CijBj transforms like a tensor for all tensors Bi then it follows that

Cij is a tensor.
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Let
∂A

i···j
k···l

∂xm
= A

i···j
k···l,m. (10.57)

Then if Ai···jk···l is a tensor, differentiation of the general tensor transformation

(10.52) yields

A
i ′···j ′
k ′···l ′,m ′ = A

i···j
k···l,m p

i ′

i · · ·pj
′

j p
k
k ′ · · ·pll ′ pmm ′ + P1 + P2 + · · · , (10.58)

where P1, P2, etc., are terms involving derivatives of the p’s. Clearly, Ai···jk···l is not

a tensor under a general coordinate transformation. However, under a linear

coordinate transformation (p’s constant) Ai
′···j ′
k ′···l ′,m ′ behaves as a tensor of the type

indicated by the suffixes, since the P1, P2, etc., all vanish. Similarly, all higher

partial derivatives,

A
i···j
k···l,mn =

∂A
i···j
k···l

∂xm∂xn
(10.59)

etc., also behave as tensors under linear transformations. Each partial differenti-

ation has the effect of adding a new covariant suffix.

So far, the space to which the coordinates xi refer has been without structure.

We can impose a structure on it by defining the distance between all pairs of

neighbouring points by means of a metric,

ds2 = gij dx
i dxj, (10.60)

where the gij are functions of position. We can assume that gij = gji without loss

of generality. The above metric is analogous to, but more general than, the metric

of Euclidian n-space, ds2 = (dx1)2+(dx2)2+· · ·+(dxn)2. A space whose structure

is determined by a metric of the type (10.60) is called Riemannian. Since ds2 is

invariant, it follows from a simple extension of the quotient rule that gij must be

a tensor. It is called the metric tensor.

The elements of the inverse of the matrix gij are denoted by gij. These ele-

ments are uniquely defined by the equations

gijgjk = δik. (10.61)

It is easily seen that the gij constitute the elements of a contravariant tensor. This

tensor is said to be conjugate to gij. The conjugate metric tensor is symmetric

(i.e., gij = gji) just like the metric tensor itself.
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The tensors gij and gij allow us to introduce the important operations of raising

and lowering suffixes. These operations consist of forming inner products of a

given tensor with gij or gij. For example, given a contravariant vector Ai, we

define its covariant components Ai by the equation

Ai = gijA
j. (10.62)

Conversely, given a covariant vector Bi, we can define its contravariant compo-

nents Bi by the equation

Bi = gijBj. (10.63)

More generally, we can raise or lower any or all of the free suffixes of any given

tensor. Thus, if Aij is a tensor we define Aij by the equation

Aij = gipApj. (10.64)

Note that once the operations of raising and lowering suffixes has been defined,

the order of raised suffixes relative to lowered suffixes becomes significant.

By analogy with Euclidian space, we define the squared magnitude (A)2 of a

vector Ai with respect to the metric gij dx
i dxj by the equation

(A)2 = gijA
iAj = AiA

i. (10.65)

A vector Ai termed a null vector if (A)2 = 0. Two vectors Ai and Bi are said to be

orthogonal if their inner product vanishes: i.e., if

gijA
i Bj = Ai B

i = Ai Bi = 0. (10.66)

Finally, let us consider differentiation with respect to an invariant distance, s.

The vector dxi/ds is a contravariant tensor, since

dxi
′

ds
=
∂xi

′

∂xi
dxi

ds
=
dxi

ds
pi

′

i . (10.67)

The derivative d(Ai···jk···l)/ds of some tensor with respect to s is not, in general,

a tensor, since
d(Ai···jk···l)

ds
= Ai···jk···l,m

dxm

ds
, (10.68)
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and, as we have seen, the first factor on the right-hand side is not generally a ten-

sor. However, under linear transformations it behaves as a tensor, so under linear

transformations the derivative of a tensor with respect to an invariant distance

behaves as a tensor of the same type.

10.6 The physical significance of tensors

In this course, we shall only concern ourselves with coordinate transformations

which transform an inertial frame into another inertial frame. This limits us to

four classes of transformations: displacements of the coordinate axes, rotations

of the coordinate axes, parity reversals (i.e., x, y, z → −x,−y,−z), and Lorentz

transformations.

One of the central tenets of physics is that experiments should be reproducible.

In other words, if somebody performs a physical experiment today, and obtains

a certain result, then somebody else performing the same experiment next week

ought to obtain the same result, within the experimental errors. Presumably, in

performing these hypothetical experiments, both experimentalists find it neces-

sary to set up a coordinate frame. Usually, these two frames do not coincide. After

all, the experiments are, in general, performed in different places and at differ-

ent times. Also, the two experimentalists are likely to orientate their coordinate

axes differently. Nevertheless, we still expect both experiments to yield the same

result. What exactly do we mean by this statement? We do not mean that both ex-

perimentalists will obtain the same numbers when they measure something. For

instance, the numbers used to denote the position of a point (i.e., the coordinates

of the point) are, in general, different in different coordinate frames. What we

do expect is that any physically significant interrelation between physical quanti-

ties (i.e., position, velocity, etc.) which appears to hold in the coordinate system

of the first experimentalist will also appear to hold in the coordinate system of

the second experimentalist. We usually refer to such interrelationships as laws of

physics. So, what we are really saying is that the laws of physics do not depend

on our choice of coordinate system. In particular, if a law of physics is true in one

coordinate system then it is automatically true in every other coordinate system,
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subject to the proviso that both coordinate systems are inertial.

Recall that tensors are geometric objects which possess the property that if

a certain interrelationship holds between various tensors in one particular co-

ordinate system, then the same interrelationship holds in any other coordinate

system which is related to the first system by a certain class of transformations.

It follows that the laws of physics are expressible as interrelationships between ten-

sors. In special relativity, the laws of physics are only required to exhibit tensor

behaviour under transformations between different inertial frames: i.e., transla-

tions, rotations, and Lorentz transformations. Parity inversion is a special type of

transformation, and will be dealt with later on. In general relativity, the laws of

physics are required to exhibit tensor behaviour under all non-singular coordinate

transformations.

10.7 Space-time

In special relativity, we are only allowed to use inertial frames to assign coordi-

nates to events. There are many different types of inertial frames. However, it

is convenient to adhere to those with standard coordinates. That is, spatial co-

ordinates which are right-handed rectilinear Cartesians based on a standard unit

of length, and time-scales based on a standard unit of time. We shall continue

to assume that we are employing standard coordinates. However, from now on,

we shall make no assumptions about the relative configuration of the two sets

of spatial axes, and the origins of time, when dealing with two inertial frames.

Thus, the most general transformation between two inertial frames consists of a

Lorentz transformation in the standard configuration plus a translation (this in-

cludes a translation in time) and a rotation of the coordinate axes. The resulting

transformation is called a general Lorentz transformation, as opposed to a Lorentz

transformation in the standard configuration, which will henceforth be termed a

standard Lorentz transformation.

In Sect. 10.3, we proved quite generally that corresponding differentials in two

inertial frames S and S ′ satisfy the relation

dx2 + dy2 + dz2 − c2 dt2 = dx ′
2
+ dy ′2 + dz ′

2
− c2 dt ′

2
. (10.69)
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Thus, we expect this relation to remain invariant under a general Lorentz trans-

formation. Since such a transformation is linear, it follows that

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − c2 (t2 − t1)

2 =

(x ′2 − x ′1)
2 + (y ′

2 − y ′
1)
2 + (z ′2 − z ′1)

2 − c2 (t ′2 − t ′1)
2, (10.70)

where (x1, y1, z1, t1) and (x2, y2, z2, t2) are the coordinates of any two events in

S, and the primed symbols denote the corresponding coordinates in S ′. It is

convenient to write

− dx2 − dy2 − dz2 + c2 dt2 = ds2, (10.71)

and

− (x2 − x1)
2 − (y2 − y1)

2 − (z2 − z1)
2 + c2(t2 − t1)

2 = s2. (10.72)

The differential ds, or the finite number s, defined by these equations is called

the interval between the corresponding events. Equations (10.71) and (10.72)

express the fact that the interval between two events is invariant, in the sense that

it has the same value in all inertial frames. In other words, the interval between

two events is invariant under a general Lorentz transformation.

Let us consider entities defined in terms of four variables,

x1 = x, x2 = y, x3 = z, x4 = c t, (10.73)

and which transform as tensors under a general Lorentz transformation. From now

on, such entities will be referred to as 4-tensors.

Tensor analysis cannot proceed very far without the introduction of a non-

singular tensor gij, the so-called fundamental tensor, which is used to define the

operations of raising and lowering suffixes. The fundamental tensor is usually

introduced using a metric ds2 = gij dx
i dxj, where ds2 is a differential invariant.

We have already come across such an invariant, namely

ds2 = −dx2 − dy2 − dz2 + c2 dt2

= −(dx1)2 − (dx2)2 − (dx3)2 + (dx4)2

= gµν dx
µ dxν, (10.74)
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where µ, ν run from 1 to 4. Note that the use of Greek suffixes is conventional

in 4-tensor theory. Roman suffixes are reserved for tensors in three-dimensional

Euclidian space, so-called 3-tensors. The 4-tensor gµν has the components g11 =

g22 = g33 = −1, g44 = 1, and gµν = 0 when µ 6= ν, in all permissible coordinate

frames. From now on, gµν, as defined above, is adopted as the fundamental

tensor for 4-tensors. gµν can be thought of as the metric tensor of the space

whose points are the events (x1, x2, x3, x4). This space is usually referred to as

space-time, for obvious reasons. Note that space-time cannot be regarded as a

straightforward generalization of Euclidian 3-space to four dimensions, with time

as the fourth dimension. The distribution of signs in the metric ensures that the

time coordinate x4 is not on the same footing as the three space coordinates.

Thus, space-time has a non-isotropic nature which is quite unlike Euclidian space,

with its positive definite metric. According to the relativity principle, all physical

laws are expressible as interrelationships between 4-tensors in space-time.

A tensor of rank one is called a 4-vector. We shall also have occasion to use

ordinary vectors in three-dimensional Euclidian space. Such vectors are called 3-

vectors, and are conventionally represented by boldface symbols. We shall use the

Latin suffixes i, j, k, etc., to denote the components of a 3-vector: these suffixes

are understood to range from 1 to 3. Thus, u = ui = dxi/dt denotes a velocity

vector. For 3-vectors, we shall use the notation ui = ui interchangeably: i.e., the

level of the suffix has no physical significance.

When tensor transformations from one frame to another actually have to be

computed, we shall usually find it possible to choose coordinates in the stan-

dard configuration, so that the standard Lorentz transform applies. Under such a

transformation, any contravariant 4-vector, T µ, transforms according to the same

scheme as the difference in coordinates xµ2−x
µ
1 between two points in space-time.

It follows that

T 1
′

= γ (T 1 − βT 4), (10.75)

T 2
′

= T 2, (10.76)

T 3
′

= T 3, (10.77)

T 4
′

= γ (T 4 − βT 1), (10.78)
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where β = v/c. Higher rank 4-tensors transform according to the rules (10.50)–

(10.52). The transformation coefficients take the form

pµ
′

µ =







































+γ 0 0 −γβ

0 1 0 0

0 0 1 0

−γβ 0 0 +γ







































, (10.79)

p
µ
µ ′ =







































+γ 0 0 +γβ

0 1 0 0

0 0 1 0

+γβ 0 0 +γ







































. (10.80)

Often the first three components of a 4-vector coincide with the components of

a 3-vector. For example, the x1, x2, x3 in Rµ = (x1, x2, x3, x4) are the components

of r, the position 3-vector of the point at which the event occurs. In such cases,

we adopt the notation exemplified by Rµ = (r, c t). The covariant form of such

a vector is simply Rµ = (−r, c t). The squared magnitude of the vector is (R)2 =

RµR
µ = −r2 + c2 t2. The inner product gµν R

µQν = RµQ
µ of Rµ with a similar

vector Qµ = (q, k) is given by RµQ
µ = −r·q + c t k. The vectors Rµ and Qµ are

said to be orthogonal if RµQ
µ = 0.

Since a general Lorentz transformation is a linear transformation, the partial

derivative of a 4-tensor is also a 4-tensor:

∂Aνσ

∂xµ
= Aνσ,µ. (10.81)

Clearly, a general 4-tensor acquires an extra covariant index after partial differ-

entiation with respect to the contravariant coordinate xµ. It is helpful to define a

covariant derivative operator

∂µ ≡
∂

∂xµ
=

(

∇, 1
c

∂

∂t

)

, (10.82)

where

∂µA
νσ ≡ Aνσ,µ. (10.83)
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There is a corresponding contravariant derivative operator

∂µ ≡ ∂

∂xµ
=

(

−∇, 1
c

∂

∂t

)

, (10.84)

where

∂µAνσ ≡ gµτAνσ,τ. (10.85)

The 4-divergence of a 4-vector, Aµ = (A, A0), is the invariant

∂µAµ = ∂µA
µ = ∇·A +

1

c

∂A0

∂t
. (10.86)

The four-dimensional Laplacian operator, or d’Alembertian, is equivalent to the

invariant contraction

2 ≡ ∂µ∂µ = −∇2 +
1

c2
∂2

∂t2
. (10.87)

Recall that we still need to prove (from Sect. 10.3) that the invariance of the

differential metric,

ds2 = dx ′
2
+ dy ′2 + dz ′

2
− c2 dt ′

2
= dx2 + dy2 + dz2 − c2 dt2, (10.88)

between two general inertial frames implies that the coordinate transformation

between such frames is necessarily linear. To put it another way, we need to

demonstrate that a transformation which transforms a metric gµν dx
µ dxν with

constant coefficients into a metric gµ ′ν ′ dxµ
′

dxν
′

with constant coefficients must

be linear. Now

gµν = gµ ′ν ′ pµ
′

µ p
ν ′

ν . (10.89)

Differentiating with respect to xσ, we get

gµ ′ν ′ pµ
′

µσ p
ν ′

ν + gµ ′ν ′ pµ
′

µ p
ν ′

νσ = 0, (10.90)

where

pµ
′

µσ =
∂pµ

′

µ

∂xσ
=

∂2xµ
′

∂xµ∂xσ
= pµ

′

σµ, (10.91)

etc. Interchanging the indices µ and σ yields

gµ ′ν ′ pµ
′

µσ p
ν ′

ν + gµ ′ν ′ pµ
′

σ p
ν ′

νµ = 0. (10.92)
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Interchanging the indices ν and σ gives

gµ ′ν ′ pµ
′

σ p
ν ′

νµ + gµ ′ν ′ pµ
′

µ p
ν ′

νσ = 0, (10.93)

where the indices µ ′ and ν ′ have been interchanged in the first term. It follows

from Eqs. (10.90), (10.92), and (10.93) that

gµ ′ν ′ pµ
′

µσp
ν ′

ν = 0. (10.94)

Multiplication by pνσ ′ yields

gµ ′ν ′ pµ
′

µσ p
ν ′

ν p
ν
σ ′ = gµ ′σ ′ pµ

′

µσ = 0. (10.95)

Finally, multiplication by gν
′σ ′

gives

gµ ′σ ′ gν
′σ ′

pµ
′

µσ = pν
′

µσ = 0. (10.96)

This proves that the coefficients pν
′

µ are constants, and, hence, that the transfor-

mation is linear.

10.8 Proper time

It is often helpful to write the invariant differential interval ds2 in the form

ds2 = c2 dτ2. (10.97)

The quantity dτ is called the proper time. It follows that

dτ2 = −
dx2 + dy2 + dz2

c2
+ dt2. (10.98)

Consider a series of events on the world-line of some material particle. If the

particle has speed u then

dτ2 = dt2


−
dx2 + dy2 + dz2

c2 dt2
+ 1



 = dt2


1−
u2

c2



 , (10.99)

implying that
dt

dτ
= γ(u). (10.100)
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It is clear that dt = dτ in the particle’s rest frame. Thus, dτ corresponds to the

time difference between two neighbouring events on the particle’s world-line,

as measured by a clock attached to the particle (hence, the name proper time).

According to Eq. (10.100), the particle’s clock appears to run slow, by a factor

γ(u), in an inertial frame in which the particle is moving with velocity u. This is

the celebrated time dilation effect.

Let us consider how a small 4-dimensional volume element in space-time

transforms under a general Lorentz transformation. We have

d4x ′ = J d4x, (10.101)

where

J =
∂(x1

′

, x2
′

, x3
′

, x4
′

)

∂(x1, x2, x3, x4)
(10.102)

is the Jacobian of the transformation: i.e., the determinant of the transformation

matrix pµ
′

µ . A general Lorentz transformation is made up of a standard Lorentz

transformation plus a displacement and a rotation. Thus, the transformation ma-

trix is the product of that for a standard Lorentz transformation, a translation,

and a rotation. It follows that the Jacobian of a general Lorentz transformation

is the product of that for a standard Lorentz transformation, a translation, and a

rotation. It is well-known that the Jacobian of the latter two transformations is

unity, since they are both volume preserving transformations which do not affect

time. Likewise, it is easily seen [e.g., by taking the determinant of the transfor-

mation matrix (10.79)] that the Jacobian of a standard Lorentz transformation is

also unity. It follows that

d4x ′ = d4x (10.103)

for a general Lorentz transformation. In other words, a general Lorentz transfor-

mation preserves the volume of space-time. Since time is dilated by a factor γ in

a moving frame, the volume of space-time can only be preserved if the volume of

ordinary 3-space is reduced by the same factor. As is well-known, this is achieved

by length contraction along the direction of motion by a factor γ.
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10.9 4-velocity and 4-acceleration

We have seen that the quantity dxµ/ds transforms as a 4-vector under a general

Lorentz transformation [see Eq. (10.67)]. Since ds ∝ dτ it follows that

Uµ =
dxµ

dτ
(10.104)

also transforms as a 4-vector. This quantity is known as the 4-velocity. Likewise,

the quantity

Aµ =
d2xµ

dτ2
=
dUµ

dτ
(10.105)

is a 4-vector, and is called the 4-acceleration.

For events along the world-line of a particle traveling with 3-velocity u, we

have

Uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
= γ(u) (u, c), (10.106)

where use has been made of Eq. (10.100). This gives the relationship between a

particle’s 3-velocity and its 4-velocity. The relationship between the 3-acceleration

and the 4-acceleration is less straightforward. We have

Aµ =
dUµ

dτ
= γ

dUµ

dt
= γ

d

dt
(γu, γ c) = γ

(

dγ

dt
u + γ a, c

dγ

dt

)

, (10.107)

where a = du/dt is the 3-acceleration. In the rest frame of the particle, Uµ =

(0, c) and Aµ = (a, 0). It follows that

UµA
µ = 0 (10.108)

(note that UµA
µ is an invariant quantity). In other words, the 4-acceleration of a

particle is always orthogonal to its 4-velocity.

10.10 The current density 4-vector

Let us now consider the laws of electromagnetism. We wish to demonstrate that

these laws are compatible with the relativity principle. In order to achieve this, it
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10 RELATIVITY AND ELECTROMAGNETISM 10.10 The current density 4-vector

is necessary for us to make an assumption about the transformation properties of

electric charge. The assumption we shall make, which is well substantiated ex-

perimentally, is that charge, unlike mass, is invariant. That is, the charge carried

by a given particle has the same measure in all inertial frames. In particular, the

charge carried by a particle does not vary with the particle’s velocity.

Let us suppose, following Lorentz, that all charge is made up of elementary

particles, each carrying the invariant amount e. Suppose that n is the number

density of such charges at some given point and time, moving with velocity u,

as observed in a frame S. Let n0 be the number density of charges in the frame

S0 in which the charges are momentarily at rest. As is well-known, a volume of

measure V in S has measure γ(u)V in S0 (because of length contraction). Since

observers in both frames must agree on how many particles are contained in the

volume, and, hence, on how much charge it contains, it follows that n = γ(u)n0.

If ρ = en and ρ0 = en0 are the charge densities in S and S0, respectively, then

ρ = γ(u) ρ0. (10.109)

The quantity ρ0 is called the proper density, and is obviously Lorentz invariant.

Suppose that xµ are the coordinates of the moving charge in S. The current

density 4-vector is constructed as follows:

Jµ = ρ0
dxµ

dτ
= ρ0U

µ. (10.110)

Thus,

Jµ = ρ0 γ(u) (u, c) = (j, ρ c), (10.111)

where j = ρu is the current density 3-vector. Clearly, charge density and cur-

rent density transform as the time-like and space-like components of the same

4-vector.

Consider the invariant 4-divergence of Jµ:

∂µJ
µ = ∇·j +

∂ρ

∂t
. (10.112)

We know that one of the caveats of Maxwell’s equations is the charge conserva-

tion law
∂ρ

∂t
+ ∇·j = 0. (10.113)
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It is clear that this expression can be rewritten in the manifestly Lorentz invariant

form

∂µJ
µ = 0. (10.114)

This equation tells us that there are no net sources or sinks of electric charge in

nature: i.e., electric charge is neither created nor destroyed.

10.11 The potential 4-vector

There are many ways of writing the laws of electromagnetism. However, the most

obviously Lorentz invariant way is to write them in terms of the vector and scalar

potentials (see Sect. 4.6). When written in this fashion, Maxwell’s equations

reduce to


−∇2 +
1

c2
∂2

∂t2



φ =
ρ

ε0
, (10.115)



−∇2 +
1

c2
∂2

∂t2



A = µ0 j, (10.116)

where φ is the scalar potential, and A the vector potential. Note that the differen-

tial operator appearing in these equations is the Lorentz invariant d’Alembertian,

defined in Eq. (10.87). Thus, the above pair of equations can be rewritten in the

form

2φ =
ρ c

c ε0
, (10.117)

2 cA =
j

c ε0
. (10.118)

Maxwell’s equations can be written in Lorentz invariant form provided that the

entity

Φµ = (cA, φ) (10.119)

transforms as a contravariant 4-vector. This entity is known as the potential 4-

vector. It follows from Eqs. (10.111), (10.115), and (10.116) that

2Φµ =
Jµ

c ε0
. (10.120)
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Thus, the field equations which govern classical electromagnetism can all be

summed up in a single 4-vector equation.

10.12 Gauge invariance

The electric and magnetic fields are obtained from the vector and scalar potentials

according to the prescription (see Sect. 4.3)

E = −∇φ−
∂A

∂t
, (10.121)

B = ∇× A. (10.122)

These fields are important, because they determine the electromagnetic forces

exerted on charged particles. Note that the above prescription does not uniquely

determine the two potentials. It is possible to make the following transforma-

tion, known as a gauge transformation, which leaves the fields unaltered (see

Sect. 4.4):

φ → φ+
∂ψ

∂t
, (10.123)

A → A − ∇ψ, (10.124)

where ψ(r, t) is a general scalar field. It is necessary to adopt some form of con-

vention, generally known as a gauge condition, to fully specify the two potentials.

In fact, there is only one gauge condition which is consistent with Eqs. (10.114).

This is the Lorentz gauge condition,

1

c2
∂φ

∂t
+ ∇·A = 0. (10.125)

Note that this condition can be written in the Lorentz invariant form

∂µΦ
µ = 0. (10.126)

This implies that if the Lorentz gauge holds in one particular inertial frame then

it automatically holds in all other inertial frames. A general gauge transformation

can be written

Φµ → Φµ + c ∂µψ. (10.127)
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Note that even after the Lorentz gauge has been adopted, the potentials are un-

determined to a gauge transformation using a scalar field, ψ, which satisfies the

sourceless wave equation

2ψ = 0. (10.128)

However, if we adopt sensible boundary conditions in both space and time then

the only solution to the above equation is ψ = 0.

10.13 Retarded potentials

We already know the solutions to Eqs. (10.117) and (10.118). They take the

form (see Sect. 4.9)

φ(r, t) =
1

4π ε0

∫
[ρ(r ′)]

|r − r ′|
dV ′, (10.129)

A(r, t) =
µ0

4π

∫
[j(r ′)]

|r − r ′|
dV ′. (10.130)

The above equations can be combined to form the solution of the 4-vector wave

equation (10.120),

Φµ =
1

4π ε0 c

∫
[Jµ]

r
dV. (10.131)

Here, the components of the 4-potential are evaluated at some event P in space-

time, r is the distance of the volume element dV from P, and the square brackets

indicate that the 4-current is to be evaluated at the retarded time: i.e., at a time

r/c before P.

But, does the right-hand side of Eq. (10.131) really transform as a contravari-

ant 4-vector? This is not a trivial question, since volume integrals in 3-space are

not, in general, Lorentz invariant due to the length contraction effect. However,

the integral in Eq. (10.131) is not a straightforward volume integral, because the

integrand is evaluated at the retarded time. In fact, the integral is best regarded

as an integral over events in space-time. The events which enter the integral

are those which intersect a spherical light wave launched from the event P and

evolved backwards in time. In other words, the events occur before the event P,
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and have zero interval with respect to P. It is clear that observers in all inertial

frames will, at least, agree on which events are to be included in the integral,

since both the interval between events, and the absolute order in which events

occur, are invariant under a general Lorentz transformation.

We shall now demonstrate that all observers obtain the same value of dV/r

for each elementary contribution to the integral. Suppose that S and S ′ are two

inertial frames in the standard configuration. Let unprimed and primed symbols

denote corresponding quantities in S and S ′, respectively. Let us assign coordi-

nates (0, 0, 0, 0) to P, and (x, y, z, c t) to the retarded event Q for which r and dV

are evaluated. Using the standard Lorentz transformation, (10.24)–(10.27), the

fact that the interval between events P and Q is zero, and the fact that both t and

t ′ are negative, we obtain

r ′ = −c t ′ = −c γ

(

t−
v x

c2

)

, (10.132)

where v is the relative velocity between frames S ′ and S, γ is the Lorentz factor,

and r =
√

x2 + y2 + z2, etc. It follows that

r ′ = r γ

(

−
c t

r
+
v x

c r

)

= r γ

(

1+
v

c
cos θ

)

, (10.133)

where θ is the angle (in 3-space) subtended between the line PQ and the x-axis.

We now know the transformation for r. What about the transformation for

dV? We might be tempted to set dV ′ = γdV , according to the usual length

contraction rule. However, this is incorrect. The contraction by a factor γ only

applies if the whole of the volume is measured at the same time, which is not

the case in the present problem. Now, the dimensions of dV along the y- and

z-axes are the same in both S and S ′, according to Eqs. (10.24)–(10.27). For the

x-dimension these equations give dx ′ = γ (dx − v dt). The extremities of dx are

measured at times differing by dt, where

dt = −
dr

c
= −

dx

c
cos θ. (10.134)

Thus,

dx ′ = γ

(

1+
v

c
cos θ

)

dx, (10.135)
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giving

dV ′ = γ

(

1+
v

c
cos θ

)

dV. (10.136)

It follows from Eqs. (10.133) and (10.136) that dV ′/r ′ = dV/r. This result will

clearly remain valid even when S and S ′ are not in the standard configuration.

Thus, dV/r is an invariant and, therefore, [Jµ]dV/r is a contravariant 4-vector.

For linear transformations, such as a general Lorentz transformation, the result

of adding 4-tensors evaluated at different 4-points is itself a 4-tensor. It follows

that the right-hand side of Eq. (10.131) is indeed a contravariant 4-vector. Thus,

this 4-vector equation can be properly regarded as the solution to the 4-vector

wave equation (10.120).

10.14 Tensors and pseudo-tensors

The totally antisymmetric fourth rank tensor is defined

εαβγδ =






+1 for α,β, γ, δ any even permutation of 1, 2, 3, 4

−1 for α,β, γ, δ any odd permutation of 1, 2, 3, 4

0 otherwise

(10.137)

The components of this tensor are invariant under a general Lorentz transforma-

tion, since

εαβγδ pα
′

α p
β ′

β p
γ ′

γ p
δ ′

δ = εα
′β ′γ ′δ ′ |pµ

′

µ | = εα
′β ′γ ′δ ′, (10.138)

where |pµ
′

µ | denotes the determinant of the transformation matrix, or the Jacobian

of the transformation, which we have already established is unity for a general

Lorentz transformation. We can also define a totally antisymmetric third rank

tensor εijk which stands in the same relation to 3-space as εαβγδ does to space-

time. It is easily demonstrated that the elements of εijk are invariant under a

general translation or rotation of the coordinate axes. The totally antisymmetric

third rank tensor is used to define the cross product of two 3-vectors,

(a × b)i = εijk aj bk, (10.139)
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and the curl of a 3-vector field,

(∇× A)i = εijk
∂Ak

∂xj
. (10.140)

The following two rules are often useful in deriving vector identities

εijk εiab = δja δ
k
b − δ

j
b δ

k
a, (10.141)

εijk εijb = 2 δkb. (10.142)

Up to now, we have restricted ourselves to three basic types of coordinate

transformation: namely, translations, rotations, and standard Lorentz transfor-

mations. An arbitrary combination of these three transformations constitutes

a general Lorentz transformation. Let us now extend our investigations to in-

clude a fourth type of transformation known as a parity inversion: i.e., x, y, z,→
−x,−y,−z. A reflection is a combination of a parity inversion and a rotation. As

is easily demonstrated, the Jacobian of a parity inversion is −1, unlike a transla-

tion, rotation, or standard Lorentz transformation, which all possess Jacobians of

+1.

The prototype of all 3-vectors is the difference in coordinates between two

points in space, r. Likewise, the prototype of all 4-vectors is the difference in

coordinates between two events in space-time, Rµ = (r, c t). It is not difficult to

appreciate that both of these objects are invariant under a parity transformation

(in the sense that they correspond to the same geometric object before and after

the transformation). It follows that any 3- or 4-tensor which is directly related to

r and Rµ, respectively, is also invariant under a parity inversion. Such tensors in-

clude the distance between two points in 3-space, the interval between two points

in space-time, 3-velocity, 3-acceleration, 4-velocity, 4-acceleration, and the met-

ric tensor. Tensors which exhibit tensor behaviour under translations, rotations,

special Lorentz transformations, and are invariant under parity inversions, are

termed proper tensors, or sometimes polar tensors. Since electric charge is clearly

invariant under such transformations (i.e., it is a proper scalar), it follows that

3-current and 4-current are proper vectors. It is also clear from Eq. (10.120) that

the scalar potential, the vector potential, and the potential 4-vector, are proper

tensors.
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It follows from Eq. (10.137) that εαβγδ → −εαβγδ under a parity inversion.

Tensors such as this, which exhibit tensor behaviour under translations, rotations,

and special Lorentz transformations, but are not invariant under parity inversions

(in the sense that they correspond to different geometric objects before and after

the transformation), are called pseudo-tensors, or sometimes axial tensors. Equa-

tions (10.139) and (10.140) imply that the cross product of two proper vectors

is a pseudo-vector, and the curl of a proper vector field is a pseudo-vector field.

One particularly simple way of performing a parity transformation is to ex-

change positive and negative numbers on the three Cartesian axes. A proper

vector is unaffected by such a procedure (i.e., its magnitude and direction are the

same before and after). On the other hand, a pseudo-vector ends up pointing in

the opposite direction after the axes are renumbered.

What is the fundamental difference between proper tensors and pseudo-tensors?

The answer is that all pseudo-tensors are defined according to a handedness con-

vention. For instance, the cross product between two vectors is conventionally

defined according to a right-hand rule. The only reason for this is that the major-

ity of human beings are right-handed. Presumably, if the opposite were true then

cross products etc. would be defined according to a left-hand rule, and would,

therefore, take minus their conventional values. The totally antisymmetric tensor

is the prototype pseudo-tensor, and is, of course, conventionally defined with re-

spect to a right-handed spatial coordinate system. A parity inversion converts left

into right, and vice versa, and, thereby, effectively swaps left- and right-handed

conventions.

The use of conventions in physics is perfectly acceptable provided that we rec-

ognize that they are conventions, and are consistent in our use of them. It follows

that laws of physics cannot contain mixtures of tensors and pseudo-tensors, oth-

erwise they would depend our choice of handedness convention.3

3Here, we are assuming that the laws of physics do not possess an intrinsic handedness. This is certainly the case
for mechanics and electromagnetism. However, the weak interaction does possess an intrinsic handedness: i.e., it is
fundamentally different in a parity inverted universe. So, the equations governing the weak interaction do actually
contain mixtures of tensors and pseudo-tensors.
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Let us now consider electric and magnetic fields. We know that

E = −∇φ−
∂A

∂t
, (10.143)

B = ∇× A. (10.144)

We have already seen that the scalar and the vector potential are proper scalars

and vectors, respectively. It follows that E is a proper vector, but that B is a

pseudo-vector (since it is the curl of a proper vector). In order to fully appreci-

ate the difference between electric and magnetic fields, let us consider a thought

experiment first proposed by Richard Feynman. Suppose that we are in radio con-

tact with a race of aliens, and are trying to explain to them our system of physics.

Suppose, further, that the aliens live sufficiently far away from us that there are

no common objects which we both can see. The question is this: could we unam-

biguously explain to these aliens our concepts of electric and magnetic fields? We

could certainly explain electric and magnetic lines of force. The former are the

paths of charged particles (assuming that the particles are subject only to electric

fields), and the latter can be mapped out using small test magnets. We could also

explain how we put arrows on electric lines of force to convert them into electric

field-lines: the arrows run from positive charges (i.e., charges with the same sign

as atomic nuclei) to negative charges. This explanation is unambiguous provided

that our aliens live in a matter (rather than an anti-matter) dominated part of the

Universe. But, could we explain how we put arrows on magnetic lines of force

in order to convert them into magnetic field-lines? The answer is, no. By defi-

nition, magnetic field-lines emerge from the North poles of permanent magnets

and converge on the corresponding South poles. The definition of the North pole

of a magnet is simply that it possesses the same magnetic polarity as the South

(geographic) pole of the Earth. This is obviously a convention. In fact, we could

redefine magnetic field-lines to run from the South poles to the North poles of

magnets without significantly altering our laws of physics (we would just have to

replace B by −B in all our equations). In a parity inverted Universe, a North pole

becomes a South pole, and vice versa, so it is hardly surprising that B → −B.
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10.15 The electromagnetic field tensor

Let us now investigate whether we can write the components of the electric and

magnetic fields as the components of some proper 4-tensor. There is an obvious

problem here. How can we identify the components of the magnetic field, which

is a pseudo-vector, with any of the components of a proper-4-tensor? The former

components transform differently under parity inversion than the latter compo-

nents. Consider a proper-3-tensor whose covariant components are written Bik,

and which is antisymmetric:

Bij = −Bji. (10.145)

This immediately implies that all of the diagonal components of the tensor are

zero. In fact, there are only three independent non-zero components of such a

tensor. Could we, perhaps, use these components to represent the components of

a pseudo-3-vector? Let us write

Bi =
1

2
εijkBjk. (10.146)

It is clear that Bi transforms as a contravariant pseudo-3-vector. It is easily seen

that

Bij = Bij =













0 Bz −By

−Bz 0 Bx

By −Bx 0













, (10.147)

where B1 = B1 ≡ Bx, etc. In this manner, we can actually write the components

of a pseudo-3-vector as the components of an antisymmetric proper-3-tensor. In

particular, we can write the components of the magnetic field B in terms of an

antisymmetric proper magnetic field 3-tensor which we shall denote Bij.

Let us now examine Eqs. (10.143) and (10.144) more carefully. Recall that

Φµ = (−cA, φ) and ∂µ = (∇, c−1∂/∂t). It follows that we can write Eq. (10.143)

in the form

Ei = −∂iΦ4 + ∂4Φi. (10.148)

Likewise, Eq. (10.144) can be written

cBi =
1

2
εijk cBjk = −εijk ∂jΦk. (10.149)
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Let us multiply this expression by εiab, making use of the identity

εiab ε
ijk = δja δ

k
b − δ

j
b δ

k
a. (10.150)

We obtain
c

2
(Bab − Bba) = −∂aΦb + ∂bΦa, (10.151)

or

cBij = −∂iΦj + ∂jΦi, (10.152)

since Bij = −Bji.

Let us define a proper-4-tensor whose covariant components are given by

Fµν = ∂µΦν − ∂νΦµ. (10.153)

It is clear that this tensor is antisymmetric:

Fµν = −Fνµ. (10.154)

This implies that the tensor only possesses six independent non-zero components.

Maybe it can be used to specify the components of E and B?

Equations (10.148) and (10.153) yield

F4i = ∂4Φi − ∂iΦ4 = Ei. (10.155)

Likewise, Eqs. (10.152) and (10.153) imply that

Fij = ∂iΦj − ∂jΦi = −cBij. (10.156)

Thus,

Fi4 = −F4i = −Ei, (10.157)

Fij = −Fji = −cBij. (10.158)

In other words, the completely space-like components of the tensor specify the

components of the magnetic field, whereas the hybrid space and time-like com-

ponents specify the components of the electric field. The covariant components
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of the tensor can be written

Fµν =













































0 −cBz +cBy −Ex

+cBz 0 −cBx −Ey

−cBy +cBx 0 −Ez

+Ex +Ey +Ez 0













































. (10.159)

Not surprisingly, Fµν is usually called the electromagnetic field tensor. The above

expression, which appears in all standard textbooks, is very misleading. Taken

at face value, it is simply wrong! We cannot form a proper-4-tensor from the

components of a proper-3-vector and a pseudo-3-vector. The expression only

makes sense if we interpret Bx (say) as representing the component B23 of the

proper magnetic field 3-tensor Bij

The contravariant components of the electromagnetic field tensor are given by

Fi4 = −F4i = +Ei, (10.160)

Fij = −Fji = −cBij, (10.161)

or

Fµν =













































0 −cBz +cBy +Ex

+cBz 0 −cBx +Ey

−cBy +cBx 0 +Ez

−Ex −Ey −Ez 0













































. (10.162)

Let us now consider two of Maxwell’s equations:

∇·E =
ρ

ε0
, (10.163)

∇× B = µ0

(

j + ε0
∂E

∂t

)

. (10.164)

Recall that the 4-current is defined Jµ = (j, ρ c). The first of these equations can

be written

∂iE
i = ∂iF

i4 + ∂4F
44 =

J4

c ε0
. (10.165)
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since F44 = 0. The second of these equations takes the form

εijk ∂j(cBk) − ∂4E
i = εijk ∂j(1/2 εkab cB

ab) + ∂4F
4i =

Ji

c ε0
. (10.166)

Making use of Eq. (10.150), the above expression reduces to

1

2
∂j(cB

ij − cBji) + ∂4F
4i = ∂jF

ji + ∂4F
4i =

Ji

c ε0
. (10.167)

Equations (10.165) and (10.167) can be combined to give

∂µF
µν =

Jν

c ε0
. (10.168)

This equation is consistent with the equation of charge continuity, ∂µJ
µ = 0,

because of the antisymmetry of the electromagnetic field tensor.

10.16 The dual electromagnetic field tensor

We have seen that it is possible to write the components of the electric and mag-

netic fields as the components of a proper-4-tensor. Is it also possible to write the

components of these fields as the components of some pseudo-4-tensor? It is obvi-

ous that we cannot identify the components of the proper-3-vector E with any of

the components of a pseudo-tensor. However, we can represent the components

of E in terms of those of an antisymmetric pseudo-3-tensor Eij by writing

Ei =
1

2
εijkEjk. (10.169)

It is easily demonstrated that

Eij = Eij =













0 Ez −Ey

−Ez 0 Ex

Ey −Ex 0













, (10.170)

in a right-handed coordinate system.
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Consider the dual electromagnetic field tensor, Gµν, which is defined

Gµν =
1

2
εµναβFαβ. (10.171)

This tensor is clearly an antisymmetric pseudo-4-tensor. We have

G4i =
1

2
ε4ijk Fjk = −

1

2
εijk4 Fjk =

1

2
εijk cBjk = cBi, (10.172)

plus

Gij =
1

2
(εijk4Fk4 + εij4kF4k) = εijkFk4, (10.173)

where use has been made of Fµν = −Fνµ. The above expression yields

Gij = −εijk Ek = −
1

2
εijkεkab E

ab = −Eij. (10.174)

It follows that

Gi4 = −G4i = −cBi, (10.175)

Gij = −Gji = −Eij, (10.176)

or

Gµν =













































0 −Ez +Ey −cBx

+Ez 0 −Ex −cBy

−Ey +Ex 0 −cBz

+cBx +cBy +cBz 0













































. (10.177)

The above expression is, again, slightly misleading, since Ex stands for the com-

ponent E23 of the pseudo-3-tensor Eij, and not for an element of the proper-3-

vector E. Of course, in this case, Bx really does represent the first element of the

pseudo-3-vector B. Note that the elements of Gµν are obtained from those of Fµν

by making the transformation cBij → Eij and Ei → −cBi.

The covariant elements of the dual electromagnetic field tensor are given by

Gi4 = −G4i = +cBi, (10.178)

Gij = −Gji = −Eij, (10.179)
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or

Gµν =













































0 −Ez +Ey +cBx

+Ez 0 −Ex +cBy

−Ey +Ex 0 +cBz

−cBx −cBy −cBz 0













































. (10.180)

The elements of Gµν are obtained from those of Fµν by making the transformation

cBij → Eij and Ei → −cBi.

Let us now consider the two Maxwell equations

∇·B = 0, (10.181)

∇× E = −
∂B

∂t
. (10.182)

The first of these equations can be written

− ∂i (cB
i) = ∂iG

i4 + ∂4G
44 = 0, (10.183)

since G44 = 0. The second equation takes the form

εijk∂jEk = εijk∂j(1/2 εkabE
ab) = ∂jE

ij = −∂4 (cBi), (10.184)

or

∂jG
ji + ∂4G

4i = 0. (10.185)

Equations (10.183) and (10.185) can be combined to give

∂µG
µν = 0. (10.186)

Thus, we conclude that Maxwell’s equations for the electromagnetic fields are

equivalent to the following pair of 4-tensor equations:

∂µF
µν =

Jν

c ε0
, (10.187)

∂µG
µν = 0. (10.188)

It is obvious from the form of these equations that the laws of electromagnetism

are invariant under translations, rotations, special Lorentz transformations, par-

ity inversions, or any combination of these transformations.
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10.17 Transformation of fields

The electromagnetic field tensor transforms according to the standard rule

Fµ
′ν ′

= Fµν pµ
′

µ p
ν ′

ν . (10.189)

This easily yields the celebrated rules for transforming electromagnetic fields:

E ′
‖ = E‖, (10.190)

B ′
‖ = B‖, (10.191)

E ′
⊥ = γ (E⊥ + v × B), (10.192)

B ′
⊥ = γ (B⊥ − v × E/c2), (10.193)

where v is the relative velocity between the primed and unprimed frames, and the

perpendicular and parallel directions are, respectively, perpendicular and parallel

to v.

At this stage, we may conveniently note two important invariants of the elec-

tromagnetic field. They are

1

2
FµνF

µν = c2 B2 − E2, (10.194)

and
1

4
GµνF

µν = cE·B. (10.195)

The first of these quantities is a proper-scalar, and the second a pseudo-scalar.

10.18 Potential due to a moving charge

Suppose that a particle carrying a charge emoves with uniform velocity u through

a frame S. Let us evaluate the vector potential, A, and the scalar potential, φ, due

to this charge at a given event P in S.

Let us choose coordinates in S so that P = (0, 0, 0, 0) and u = (u, 0, 0). Let S ′

be that frame in the standard configuration with respect to S in which the charge
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is (permanently) at rest at (say) the point (x ′, y ′, z ′). In S ′, the potential at P is

the usual potential due to a stationary charge,

A ′ = 0, (10.196)

φ ′ =
e

4π ε0 r ′
, (10.197)

where r ′ =
√

x
′2 + y

′2 + z
′2. Let us now transform these equations directly into

the frame S. Since Aµ = (cA, φ) is a contravariant 4-vector, its components

transform according to the standard rules (10.75)–(10.78). Thus,

cA1 = γ

(

cA ′
1 +

u

c
φ ′
)

=
γue

4πε0 c r ′
, (10.198)

cA2 = cA ′
2 = 0, (10.199)

cA3 = cA ′
3 = 0, (10.200)

φ = γ

(

φ ′ +
u

c
cA ′

1

)

=
γ e

4πε0 r ′
, (10.201)

since β = −u/c in this case. It remains to express the quantity r ′ in terms of

quantities measured in S. The most physically meaningful way of doing this is

to express r ′ in terms of retarded values in S. Consider the retarded event at the

charge for which, by definition, r ′ = −c t ′ and r = −c t. Using the standard

Lorentz transformation, (10.24)–(10.27), we find that

r ′ = −c t ′ = −c γ (t− ux/c2) = r γ (1+ ur/c), (10.202)

where ur = ux/r = r·u/r denotes the radial velocity of the change in S. We can

now rewrite Eqs. (10.198)–(10.201) in the form

A =
µ0 e

4π

[u]

[r+ r·u/c] , (10.203)

φ =
e

4π ε0

1

[r+ r·u/c] , (10.204)

where the square brackets, as usual, indicate that the enclosed quantities must

be retarded. For a uniformly moving charge, the retardation of u is, of course,

superfluous. However, since

Φµ =
1

4π ε0 c

∫
[Jµ]

r
dV, (10.205)
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it is clear that the potentials depend only on the (retarded) velocity of the charge,

and not on its acceleration. Consequently, the expressions (10.203) and (10.204)

give the correct potentials for an arbitrarily moving charge. They are known as

the Liénard-Wiechert potentials.

10.19 Fields due to a moving charge

Although the fields generated by a uniformly moving charge can be calculated

from the expressions (10.203) and (10.204) for the potentials, it is simpler to

calculate them from first principles.

Let a charge e, whose position vector at time t = 0 is r, move with uniform

velocity u in a frame S whose x-axis has been chosen in the direction of u. We

require to find the field strengths E and B at the event P = (0, 0, 0, 0). Let S ′ be

that frame in standard configuration with S in which the charge is permanently

at rest. In S ′, the field is given by

B ′ = 0, (10.206)

E ′ = −
e

4π ε0

r ′

r ′3
. (10.207)

This field must now be transformed into the frame S. The direct method, using

Eqs. (10.190)–(10.193), is somewhat simpler here, but we shall use a somewhat

indirect method because of its intrinsic interest.

In order to express Eq. (10.206) and (10.207) in tensor form, we need the

electromagnetic field tensor Fµν on the left-hand side, and the position 4-vector

Rµ = (r, c t) and the scalar e/(4π ε0 r
′3) on the right-hand side. (We regard r ′

as an invariant for all observers.) To get a vanishing magnetic field in S ′, we

multiply on the right by the 4-velocity Uµ = γ(u) (u, c), thus tentatively arriving

at the equation

Fµν =
e

4π ε0 c r ′
3
UµRν. (10.208)

Recall that F4i = −Ei and Fij = −cBij. However, this equation cannot be correct,

because the antisymmetric tensor Fµν can only be equated to another antisym-
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metric tensor. Consequently, let us try

Fµν =
e

4π ε0 c r ′
3
(UµRν −UνRµ). (10.209)

This is found to give the correct field at P in S ′, as long as Rµ refers to any

event whatsoever at the charge. It only remains to interpret (10.209) in S. It

is convenient to choose for Rµ that event at the charge at which t = 0 (not the

retarded event). Thus,

Fjk = −cBjk =
e

4π ε0 c r ′
3
γ(u) (uj rk − uk rj), (10.210)

giving

Bi =
1

2
εijkB

jk = −
µ0 e

4π r ′3
γ(u) εijk u

j rk, (10.211)

or

B = −
µ0 e γ

4π r ′3
u × r. (10.212)

Likewise,

F4i = −Ei =
e γ

4πε0 r ′
3
ri, (10.213)

or

E = −
e γ

4πε0 r ′
3

r. (10.214)

Lastly, we must find an expression for r ′3 in terms of quantities measured in S at

time t = 0. If t ′ is the corresponding time in S ′ at the charge, we have

r ′
2
= r2 + c2 t ′

2
= r2 +

γ2 u2 x2

c2
= r2



1+
γ2 u 2

r

c2



 . (10.215)

Thus,

E = −
e

4π ε0

γ

r3 (1+ u 2
r γ

2/c2)3/2
r, (10.216)

B = −
µ0 e

4π

γ

r3 (1+ u 2
r γ

2/c2)3/2
u × r =

1

c2
u × E. (10.217)

Note that E acts in line with the point which the charge occupies at the instant of

measurement, despite the fact that, owing to the finite speed of propagation of all
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physical effects, the behaviour of the charge during a finite period before that in-

stant can no longer affect the measurement. Note also that, unlike Eqs. (10.203)

and (10.204), the above expressions for the fields are not valid for an arbitrarily

moving charge, not can they be made valid by merely using retarded values. For

whereas acceleration does not affect the potentials, it does affect the fields, which

involve the derivatives of the potential.

For low velocities, u/c → 0, Eqs. (10.216) and (10.217) reduce to the well-

known Coulomb and Biot-Savart fields. However, at high velocities, γ(u) � 1,

the fields exhibit some interesting behaviour. The peak electric field, which occurs

at the point of closest approach of the charge to the observation point, becomes

equal to γ times its non-relativistic value. However, the duration of appreciable

field strength at the point P is decreased. A measure of the time interval over

which the field is appreciable is

∆t ∼
b

γ c
, (10.218)

where b is the distance of closest approach (assuming γ� 1). As γ increases, the

peak field increases in proportion, but its duration goes in the inverse proportion.

The time integral of the field is independent of γ. As γ → ∞, the observer at P

sees electric and magnetic fields which are indistinguishable from the fields of a

pulse of plane polarized radiation propagating in the x-direction. The direction

of polarization is along the radius vector pointing towards the particle’s actual

position at the time of observation.

10.20 Relativistic particle dynamics

Consider a particle which, in its instantaneous rest frame S0, has mass m0 and

constant acceleration in the x-direction a0. Let us transform to a frame S, in the

standard configuration with respect to S0, in which the particle’s instantaneous

velocity is u. What is the value of a, the particle’s instantaneous x-acceleration,

in S?

The easiest way in which to answer this question is to consider the acceleration
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4-vector [see Eq. (10.107)]

Aµ = γ

(

dγ

dt
u + γ a, c

dγ

dt

)

. (10.219)

Using the standard transformation, (10.75)–(10.78), for 4-vectors, we obtain

a0 = γ3 a, (10.220)

dγ

dt
=

ua0

c2
. (10.221)

Equation (10.220) can be written

f = m0 γ
3 du

dt
, (10.222)

where f = m0 a0 is the constant force (in the x-direction) acting on the particle

in S0.

Equation (10.222) is equivalent to

f =
d(mu)

dt
, (10.223)

where

m = γm0. (10.224)

Thus, we can account for the ever decreasing acceleration of a particle subject

to a constant force [see Eq. (10.220)] by supposing that the inertial mass of the

particle increases with its velocity according to the rule (10.224). Henceforth,

m0 is termed the rest mass, and m the inertial mass.

The rate of increase of the particle’s energy E satisfies

dE

dt
= f u = m0 γ

3 u
du

dt
. (10.225)

This equation can be written

dE

dt
=
d(mc2)

dt
, (10.226)
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which can be integrated to yield Einstein’s famous formula

E = mc2. (10.227)

The 3-momentum of a particle is defined

p = mu, (10.228)

where u is its 3-velocity. Thus, by analogy with Eq. (10.223), Newton’s law of

motion can be written

f =
dp

dt
, (10.229)

where f is the 3-force acting on the particle.

The 4-momentum of a particle is defined

Pµ = m0U
µ = γm0 (u, c) = (p, E/c), (10.230)

where Uµ is its 4-velocity. The 4-force acting on the particle obeys

Fµ =
dPµ

dτ
= m0A

µ, (10.231)

where Aµ is its 4-acceleration. It is easily demonstrated that

Fµ = γ

(

f, c
dm

dt

)

= γ



f,
f·u
c



 , (10.232)

since
dE

dt
= f·u. (10.233)

10.21 The force on a moving charge

The electromagnetic 3-force acting on a charge e moving with 3-velocity u is

given by the well-known formula

f = e (E + u × B). (10.234)
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When written in component form this expression becomes

fi = e (Ei + εijk u
jBk), (10.235)

or

fi = e (Ei + Bij u
j), (10.236)

where use has been made of Eq. (10.147).

Recall that the components of the E and B fields can be written in terms of an

antisymmetric electromagnetic field tensor Fµν via

Fi4 = −F4i = −Ei, (10.237)

Fij = −Fji = −cBij. (10.238)

Equation (10.236) can be written

fi = −
e

γ c
(Fi4U

4 + FijU
j), (10.239)

where Uµ = γ (u, c) is the particle’s 4-velocity. It is easily demonstrated that

f·u
c

=
e

c
E·u =

e

c
Ei u

i =
e

γ c
(F4iU

i + F44U
4). (10.240)

Thus, the 4-force acting on the particle,

Fµ = γ



−f,
f·u
c



 , (10.241)

can be written in the form

Fµ =
e

c
FµνU

ν. (10.242)

The skew symmetry of the electromagnetic field tensor ensures that

FµUµ =
e

c
FµνU

µUν = 0. (10.243)

This is an important result, since it ensures that electromagnetic fields do not

change the rest mass of charged particles. In order to appreciate this, let us

assume that the rest mass m0 is not a constant. Since

Fµ =
d(m0Uµ)

dτ
= m0Aµ +

dm0

dτ
Uµ, (10.244)
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we can use the standard results UµU
µ = c2 and AµU

µ = 0 to give

FµUµ = c2
dm0

dτ
. (10.245)

Thus, if rest mass is to remain an invariant, it is imperative that all laws of

physics predict 4-forces acting on particles which are orthogonal to the particles’

4-velocities. The laws of electromagnetism pass this test.

10.22 The electromagnetic energy tensor

Consider a continuous volume distribution of charged matter in the presence of

an electromagnetic field. Let there be n0 particles per unit proper volume (unit

volume determined in the local rest frame), each carrying a charge e. Consider

an inertial frame in which the 3-velocity field of the particles is u. The number

density of the particles in this frame is n = γ(u)n0. The charge density and

the 3-current due to the particles are ρ = en and j = enu, respectively. Multi-

plying Eq. (10.242) by the proper number density of particles, n0, we obtain an

expression

fµ = c−1 FµνJ
ν (10.246)

for the 4-force fµ acting on unit proper volume of the distribution due to the ambi-

ent electromagnetic fields. Here, we have made use of the definition Jµ = en0U
µ.

It is easily demonstrated, using some of the results obtained in the previous sec-

tion, that

fµ =

(

ρE + j × B,
E·j
c

)

. (10.247)

The above expression remains valid when there are many charge species (e.g.,

electrons and ions) possessing different number density and 3-velocity fields. The

4-vector fµ is usually called the Lorentz force density.

We know that Maxwell’s equations reduce to

∂µF
µν =

Jν

c ε0
, (10.248)

∂µG
µν = 0, (10.249)
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where Fµν is the electromagnetic field tensor, and Gµν is its dual. As is easily

verified, Eq. (10.249) can also be written in the form

∂µFνσ + ∂νFσµ + ∂σFµν = 0. (10.250)

Equations (10.246) and (10.248) can be combined to give

fν = ε0 Fνσ ∂µF
µσ. (10.251)

This expression can also be written

fν = ε0 [∂µ(F
µσFνσ) − Fµσ ∂µFνσ] . (10.252)

Now,

Fµσ ∂µFνσ =
1

2
Fµσ(∂µFνσ + ∂σFµν), (10.253)

where use has been made of the antisymmetry of the electromagnetic field tensor.

It follows from Eq. (10.250) that

Fµσ ∂µFνσ = −
1

2
Fµσ ∂νFσµ =

1

4
∂ν(F

µσFµσ). (10.254)

Thus,

fν = ε0

[

∂µ(F
µσFνσ) −

1

4
∂ν(F

µσFµσ)

]

. (10.255)

The above expression can also be written

fν = −∂µT
µ
ν, (10.256)

where

Tµν = ε0

[

FµσFσν +
1

4
δµν (FρσFρσ)

]

(10.257)

is called the electromagnetic energy tensor. Note that T µν is a proper-4-tensor. It

follows from Eqs. (10.159), (10.162), and (10.194) that

T ij = ε0 E
iEj +

BiBj

µ0
− δij

1

2



ε0 E
kEk +

BkBk

µ0



 , (10.258)

T i4 = −T 4i =
εijkEjBk

µ0 c
, (10.259)

T 44 =
1

2



ε0 E
kEk +

BkBk

µ0



 . (10.260)
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Equation (10.256) can also be written

fν = −∂µT
µν, (10.261)

where Tµν is a symmetric tensor whose elements are

T ij = −ε0 E
iEj −

BiBj

µ0
+ δij

1

2



ε0 E
2 +

B2

µ0



 , (10.262)

T i4 = T 4i =
(E × B)i

µ0 c
, (10.263)

T 44 =
1

2



ε0 E
2 +

B2

µ0



 . (10.264)

Consider the time-like component of Eq. (10.261). It follows from Eq. (10.247)

that
E·j
c

= −∂iT
i4 − ∂4T

44. (10.265)

This equation can be rearranged to give

∂U

∂t
+ ∇·u = −E·j, (10.266)

where U = T 44 and ui = cT i4, so that

U =
ε0 E

2

2
+
B2

2µ0
, (10.267)

and

u =
E × B

µ0
. (10.268)

The right-hand side of Eq. (10.266) represents the rate per unit volume at which

energy is transferred from the electromagnetic field to charged particles. It is

clear, therefore, that Eq. (10.266) is an energy conservation equation for the elec-

tromagnetic field (see Sect. 8.2). The proper-3-scalar U can be identified as the

energy density of the electromagnetic field, whereas the proper-3-vector u is the

energy flux due to the electromagnetic field: i.e., the Poynting flux.
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Consider the space-like components of Eq. (10.261). It is easily demonstrated

that these reduce to
∂g

∂t
+ ∇ ·G = −ρE − j × B, (10.269)

where Gij = T ij and gi = T 4i/c, or

Gij = −ε0 E
iEj −

BiBj

µ0
+ δij

1

2



ε0 E
2 +

B2

µ0



 , (10.270)

and

g =
u

c2
= ε0 E × B. (10.271)

Equation (10.269) is basically a momentum conservation equation for the elec-

tromagnetic field (see Sect. 8.4). The right-hand side represents the rate per

unit volume at which momentum is transferred from the electromagnetic field to

charged particles. The symmetric proper-3-tensor Gij specifies the flux of elec-

tromagnetic momentum parallel to the ith axis crossing a surface normal to the

jth axis. The proper-3-vector g represents the momentum density of the elec-

tromagnetic field. It is clear that the energy conservation law (10.266) and the

momentum conservation law (10.269) can be combined together to give the rel-

ativistically invariant energy-momentum conservation law (10.261).

10.23 Accelerated charges

Let us calculate the electric and magnetic fields observed at position xi and time

t due to a charge e whose retarded position and time are xi
′
and t ′, respectively.

From now on (xi, t) is termed the field point and (xi
′
, t ′) is termed the source

point. It is assumed that we are given the retarded position of the charge as a

function of its retarded time: i.e., xi
′
(t ′). The retarded velocity and acceleration

of the charge are

ui =
dxi

′

dt ′
, (10.272)

and

u̇i =
dui

dt ′
, (10.273)
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respectively. The radius vector r is defined to extend from the retarded position

of the charge to the field point, so that ri = xi− xi
′
. (Note that this is the opposite

convention to that adopted in Sects. 10.18 and 10.19). It follows that

dr

dt ′
= −u. (10.274)

The field and the source point variables are connected by the retardation condi-

tion

r(xi, xi
′
) =

[

(xi − xi
′
) (xi − xi

′)
]1/2

= c (t− t ′). (10.275)

The potentials generated by the charge are given by the Liénard-Wiechert for-

mulae

A(xi, t) =
µ0 e

4π

u

s
, (10.276)

φ(xi, t) =
e

4πε0

1

s
, (10.277)

where s = r − r ·u/c is a function both of the field point and the source point

variables. Recall that the Liénard-Wiechert potentials are valid for accelerating,

as well as uniformly moving, charges.

The fields E and B are derived from the potentials in the usual manner:

E = −∇φ−
∂A

∂t
, (10.278)

B = ∇× A. (10.279)

However, the components of the gradient operator ∇ are partial derivatives at

constant time, t, and not at constant time, t ′. Partial differentiation with re-

spect to the xi compares the potentials at neighbouring points at the same time,

but these potential signals originate from the charge at different retarded times.

Similarly, the partial derivative with respect to t implies constant xi, and, hence,

refers to the comparison of the potentials at a given field point over an interval

of time during which the retarded coordinates of the source have changed. Since

we only know the time variation of the particle’s retarded position with respect

to t ′ we must transform ∂/∂t|xi and ∂/∂xi|t to expressions involving ∂/∂t ′|xi and

∂/∂xi|t ′.
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Now, since xi
′
is assumed to be given as a function of t ′, we have

r(xi, xi
′
(t ′) ) ≡ r(xi, t ′) = c (t− t ′), (10.280)

which is a functional relationship between xi, t, and t ′. Note that
(

∂r

∂t ′

)

xi

= −
r·u
r
. (10.281)

It follows that
∂r

∂t
= c



1−
∂t ′

∂t



 =
∂r

∂t ′
∂t ′

∂t
= −

r·u
r

∂t ′

∂t
, (10.282)

where all differentiation is at constant xi. Thus,

∂t ′

∂t
=

1

1− r·u/r c =
r

s
, (10.283)

giving
∂

∂t
=
r

s

∂

∂t ′
. (10.284)

Similarly,

∇r = −c∇t ′ = ∇ ′r+
∂r

∂t ′
∇t ′ =

r

r
−

r·u
r

∇t ′, (10.285)

where ∇ ′ denotes differentiation with respect to xi at constant t ′. It follows that

∇t ′ = −
r

s c
, (10.286)

so that

∇ = ∇ ′ −
r

s c

∂

∂t ′
. (10.287)

Equation (10.278) yields

4π ε0

e
E =

∇s
s2

−
∂

∂t

u

s c2
, (10.288)

or
4π ε0

e
E =

∇ ′s

s2
−

r

s3 c

∂s

∂t ′
−

r

s2 c2
u̇ +

ru

s3 c2
∂s

∂t ′
. (10.289)
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However,

∇ ′s =
r

r
−

u

c
, (10.290)

and
∂s

∂t ′
=
∂r

∂t ′
−

r·u̇
c

+
u· u

c
= −

r· u

r
−

r·u̇
c

+
u2

c
. (10.291)

Thus,

4π ε0

e
E =

1

s2 r

(

r −
ru

c

)

+
1

s3 c

(

r −
ru

c

)





r·u
r

−
u2

c
+

r·u̇
c



 −
r

s2 c2
u̇, (10.292)

which reduces to

4π ε0

e
E =

1

s3

(

r −
ru

c

)



1−
u2

c2



 +
1

s3 c2

(

r ×
[(

r −
ru

c

)

× u̇

])

. (10.293)

Similarly,

4π

µ0 e
B = ∇× u

s
= −

∇ ′s× u

s2
−

r

s c
×
(

u̇

s
−

u

s2
∂s

∂t ′

)

, (10.294)

or
4π

µ0 e
B = −

r × u

s2 r
−

r

s c
×




u̇

s
+

u

s2





r·u
r

+
r·u̇
c

−
u2

c







 , (10.295)

which reduces to

4π

µ0 e
B =

u × r

s3



1−
u2

c2



 +
1

s3 c

r

r
×
(

r ×
[(

r −
ru

c

)

× u̇

])

. (10.296)

A comparison of Eqs. (10.293) and (10.296) yields

B =
r × E

r c
. (10.297)

Thus, the magnetic field is always perpendicular to E and the retarded radius

vector r. Note that all terms appearing in the above formulae are retarded.

The electric field is composed of two separate parts. The first term in Eq. (10.293)

varies as 1/r2 for large distances from the charge. We can think of ru = r − ru/c
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as the virtual present radius vector: i.e., the radius vector directed from the posi-

tion the charge would occupy at time t if it had continued with uniform velocity

from its retarded position to the field point. In terms of ru, the 1/r2 field is simply

Einduction =
e

4π ε0

1− u2/c2

s3
ru. (10.298)

We can rewrite the expression (10.216) for the electric field generated by a uni-

formly moving charge in the form

E =
e

4π ε0

1− u2/c2

r 30 (1− u2/c2 + u 2
r /c

2)3/2
r0, (10.299)

where r0 is the radius vector directed from the present position of the charge at

time t to the field point, and ur = u ·r0/r0. For the case of uniform motion, the

relationship between the retarded radius vector r and the actual radius vector r0
is simply

r0 = r −
r

c
u. (10.300)

It is straightforward to demonstrate that

s = r0
√

1− u2/c2 + u 2
r /c

2 (10.301)

in this case. Thus, the electric field generated by a uniformly moving charge can

be written

E =
e

4π ε0

1− u2/c2

s3
r0. (10.302)

Since ru = r0 for the case of a uniformly moving charge, it is clear that Eq. (10.298)

is equivalent to the electric field generated by a uniformly moving charge located

at the position the charge would occupy if it had continued with uniform velocity

from its retarded position.

The second term in Eq. (10.293),

Eradiation =
e

4π ε0 c2
r × (ru × u̇)

s3
, (10.303)

is of order 1/r, and, therefore, represents a radiation field. Similar considerations

hold for the two terms of Eq. (10.296).
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10.24 The Larmor formula

Let us transform to the inertial frame in which the charge is instantaneously at

rest at the origin at time t = 0. In this frame, u� c, so that ru ' r and s ' r for

events which are sufficiently close to the origin at t = 0 that the retarded charge

still appears to travel with a velocity which is small compared to that of light. It

follows from the previous section that

Erad ' e

4π ε0 c2
r × (r × u̇)

r3
, (10.304)

Brad ' e

4π ε0 c3
u̇ × r

r2
. (10.305)

Let us define spherical polar coordinates whose axis points along the direction of

instantaneous acceleration of the charge. It is easily demonstrated that

Eθ ' e

4π ε0 c2
sin θ

r
u̇, (10.306)

Bφ ' e

4π ε0 c3
sin θ

r
u̇. (10.307)

These fields are identical to those of a radiating dipole whose axis is aligned along

the direction of instantaneous acceleration (see Sect. 9.2). The Poynting flux is

given by

Eθ Bφ

µ0
=

e2

16π2 ε0 c3
sin2 θ

r2
u̇2. (10.308)

We can integrate this expression to obtain the instantaneous power radiated by

the charge

P =
e2

6π ε0 c3
u̇2. (10.309)

This is known as Larmor’s formula. Note that zero net momentum is carried off

by the fields (10.306) and (10.307).

In order to proceed further, it is necessary to prove two useful theorems. The

first theorem states that if a 4-vector field T µ satisfies

∂µT
µ = 0, (10.310)
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and if the components of Tµ are non-zero only in a finite spatial region, then the

integral over 3-space,

I =

∫

T 4 d3x, (10.311)

is an invariant. In order to prove this theorem, we need to use the 4-dimensional

analog of Gauss’s theorem, which states that
∫

V

∂µT
µ d4x =

∮

S

Tµ dSµ, (10.312)

where dSµ is an element of the 3-dimensional surface S bounding the 4-dimensional

volume V . The particular volume over which the integration is performed is indi-

cated in Fig. 58. The surfaces A and C are chosen so that the spatial components

of Tµ vanish on A and C. This is always possible because it is assumed that the

region over which the components of Tµ are non-zero is of finite extent. The sur-

face B is chosen normal to the x4-axis, whereas the surface D is chosen normal

to the x4
′

-axis. Here, the xµ and the xµ
′

are coordinates in two arbitrarily chosen

inertial frames. It follows from Eq. (10.312) that
∫

T 4 dS4 +

∫

T 4
′

dS4 ′ = 0. (10.313)

Here, we have made use of the fact that Tµ dSµ is a scalar and, therefore, has the

same value in all inertial frames. Since dS4 = −d3x and dS4 ′ = d3x ′ it follows

that I =
∫
T 4 d3x is an invariant under a Lorentz transformation. Incidentally, the

above argument also demonstrates that I is constant in time (just take the limit

in which the two inertial frames are identical).

The second theorem is an extension of the first. Suppose that a 4-tensor field

Qµν satisfies

∂µQ
µν = 0, (10.314)

and has components which are only non-zero in a finite spatial region. Let Aµ be

a 4-vector whose coefficients do not vary with position in space-time. It follows

that Tµ = AνQ
µν satisfies Eq. (10.310). Therefore,

I =

∫

AνQ
4ν d3x (10.315)
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dS4 /
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/

dS4

D

Figure 58:

is an invariant. However, we can write

I = Aµ B
µ, (10.316)

where

Bµ =

∫

Q4µ d3x. (10.317)

It follows from the quotient rule that if Aµ B
µ is an invariant for arbitrary Aµ then

Bµ must transform as a constant (in time) 4-vector.

These two theorems enable us to convert differential conservation laws into

integral conservation laws. For instance, in differential form, the conservation of

electrical charge is written

∂µJ
µ = 0. (10.318)

However, from Eq. (10.313) this immediately implies that

Q =
1

c

∫

J4 d3x =

∫

ρd3x (10.319)

is an invariant. In other words, the total electrical charge contained in space is

both constant in time, and the same in all inertial frames.
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Suppose that S is the instantaneous rest frame of the charge. Let us consider

the electromagnetic energy tensor Tµν associated with all of the radiation emitted

by the charge between times t = 0 and t = dt. According to Eq. (10.261), this

tensor field satisfies

∂µT
µν = 0, (10.320)

apart from a region of space of measure zero in the vicinity of the charge. Fur-

thermore, the region of space over which Tµν is non-zero is clearly finite, since we

are only considering the fields emitted by the charge in a small time interval, and

these fields propagate at a finite velocity. Thus, according to the second theorem

Pµ =
1

c

∫

T 4µ d3x (10.321)

is a 4-vector. It follows from Sect. 10.22 that we can write Pµ = (dp, dE/c), where

dp and dE are the total momentum and energy carried off by the radiation emit-

ted between times t = 0 and t = dt, respectively. As we have already mentioned,

dp = 0 in the instantaneous rest frame S. Transforming to an arbitrary inertial

frame S ′, in which the instantaneous velocity of the charge is u, we obtain

dE
′

= γ(u)
(

dE+ udp1
)

= γdE. (10.322)

However, the time interval over which the radiation is emitted in S ′ is dt ′ = γdt.

Thus, the instantaneous power radiated by the charge,

P ′ =
dE ′

dt ′
=
dE

dt
= P, (10.323)

is the same in all inertial frames.

We can make use of the fact that the power radiated by an accelerating charge

is Lorentz invariant to find a relativistic generalization of the Larmor formula,

(10.309), which is valid in all inertial frames. We expect the power emitted by

the charge to depend only on its 4-velocity and 4-acceleration. It follows that the

Larmor formula can be written in Lorentz invariant form as

P = −
e2

6π ε0 c3
AµA

µ, (10.324)
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since the 4-acceleration takes the form Aµ = (u̇, 0) in the instantaneous rest

frame. In a general inertial frame,

−AµA
µ = γ2

(

dγ

dt
u + γ u̇

)2

− γ2 c2
(

dγ

dt

)2

, (10.325)

where use has been made of Eq. (10.107). Furthermore, it is easily demonstrated

that
dγ

dt
= γ3

u· u̇

c2
. (10.326)

It follows, after a little algebra, that the relativistic generalization of Larmor’s

formula takes the form

P =
e2

6π ε0 c3
γ6



u̇2 −
(u × u̇)2

c2



 . (10.327)

10.25 Radiation losses

Radiation losses often determine the maximum achievable energy in a charged

particle accelerator. Let us investigate radiation losses in various different types

of accelerator device using the relativistic Larmor formula.

For a linear accelerator, the motion is one-dimensional. In this case, it is easily

demonstrated that
dp

dt
= m0 γ

3 u̇, (10.328)

where use has been made of Eq. (10.326), and p = γm0 u is the particle mo-

mentum in the direction of acceleration (the x-direction, say). Here, m0 is the

particle rest mass. Thus, Eq. (10.327) yields

P =
e2

6π ε0m
2
0 c

3

(

dp

dt

)2

. (10.329)

The rate of change of momentum is equal to the force exerted on the particle in

the x-direction, which, in turn, equals the change in the energy, E, of the particle

per unit distance. Consequently,

P =
e2

6π ε0m
2
0 c

3

(

dE

dx

)2

. (10.330)
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Thus, in a linear accelerator, the radiated power depends on the external force

acting on the particle, and not on the actual energy or momentum of the particle.

It is obvious, from the above formula, that light particles, such as electrons, are

going to radiate a lot more than heavier particles, such as protons. The ratio of

the power radiated to the power supplied by the external sources is

P

dE/dt
=

e2

6π ε0m
2
0 c

3

1

u

dE

dx
' e2

6π ε0m0 c2
1

m0 c2
dE

dx
, (10.331)

since u ' c for a highly relativistic particle. It is clear, from the above ex-

pression, that the radiation losses in an electron linear accelerator are negligi-

ble unless the gain in energy is of order me c
2 = 0.511 MeV in a distance of

e2/(6π ε0me c
2) = 1.28 × 10−15 meters. That is 3 × 1014 MeV/meter. Typical

energy gains are less that 10 MeV/meter. It follows, therefore, that radiation

losses are completely negligible in linear accelerators, whether for electrons, or

for other heavier particles.

The situation is quite different in circular accelerator devices, such as the syn-

chrotron and the betatron. In such machines, the momentum p changes rapidly

in direction as the particle rotates, but the change in energy per revolution is

small. Furthermore, the direction of acceleration is always perpendicular to the

direction of motion. It follows from Eq. (10.327) that

P =
e2

6π ε0 c3
γ4 u̇2 =

e2

6π ε0 c3
γ4 u4

ρ2
, (10.332)

where ρ is the orbit radius. Here, use has been made of the standard result

u̇ = u2/ρ for circular motion. The radiative energy loss per revolution is given by

δE =
2π ρ

u
P =

e2

3 ε0 c3
γ4 u3

ρ
. (10.333)

For highly relativistic (u ' c) electrons, this expression yields

δE(MeV) = 8.85× 10−2 [E(GeV)]4

ρ(meters)
. (10.334)

In the first electron synchrotrons, ρ ∼ 1 meter, Emax ∼ 0.3 GeV. Hence, δEmax ∼ 1

keV per revolution. This was less than, but not negligible compared to, the en-

ergy gain of a few keV per turn. For modern electron synchrotrons, the limitation
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on the available radio-frequency power needed to overcome radiation losses be-

comes a major consideration, as is clear from the E4 dependence of the radiated

power per turn.

10.26 Angular distribution of radiation

In order to calculate the angular distribution of the energy radiated by an acceler-

ated charge, we must think carefully about what is meant by the rate of radiation

of the charge. This quantity is actually the amount of energy lost by the charge

in a retarded time interval dt ′ during the emission of the signal. Thus,

P(t ′) = −
dE

dt ′
, (10.335)

where E is the energy of the charge. The Poynting vector

Erad × Brad

µ0
= ε0 c E

2
rad

r

r
, (10.336)

where use has been made of Brad = (r × Erad)/r c [see Eq. (10.297)], represents

the energy flux per unit actual time, t. Thus, the energy loss rate of the charge

into a given element of solid angle dΩ is

dP(t ′)

dΩ
dΩ = −

dE(θ,ϕ)

dt ′
dΩ =

dE(θ,ϕ)

dt

dt

dt ′
r2 dΩ = ε0 c E

2
rad

s

r
r2 dΩ, (10.337)

where use has been made of Eq. (10.283). Here, θ and ϕ are angular coordinates

used to locate the element of solid angle. It follows from Eq. (10.303) that

dP(t ′)

dΩ
=

e2 r

16π2 ε0 c3
[r × (ru × u̇)]2

s5
. (10.338)

Consider the special case in which the direction of acceleration coincides with

the direction of motion. Let us define spherical polar coordinates whose axis

points along this common direction. It is easily demonstrated that, in this case,

the above expression reduces to

dP(t ′)

dΩ
=

e2 u̇2

16π2 ε0 c3
sin2 θ

[1− (u/c) cos θ]5
. (10.339)
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In the non-relativistic limit, u/c → 0, the radiation pattern has the familiar sin2 θ

dependence of dipole radiation. In particular, the pattern is symmetric in the

forward (θ < π/2) and backward (θ > π/2) directions. However, as u/c → 1, the

radiation pattern becomes more and more concentrated in the forward direction.

The angle θmax for which the intensity is a maximum is

θmax = cos−1





1

3u/c
(
√

1+ 15u2/c2 − 1)



 . (10.340)

This expression yields θmax → π/2 as u/c → 0, and θmax → 1/(2 γ) as u/c → 1.

Thus, for a highly relativistic charge, the radiation is emitted in a narrow cone

whose axis is aligned along the direction of motion. In this case, the angular

distribution (10.339) reduces to

dP(t ′)

dΩ
' 2 e2 u̇2

π2 ε0c3
γ8

(γθ)2

[1+ (γθ)2]5
. (10.341)

The total power radiated by the charge is obtained by integrating Eq. (10.339)

over all solid angles. We obtain

P(t ′) =
e2 u̇2

8π ε0 c3

∫π

0

sin3 θdθ

[1− (u/c) cos θ]5
=

e2 u̇2

8π ε0 c3

∫+1

−1

(1− µ2)dµ

[1− (u/c)µ]5
. (10.342)

It is easily verified that
∫+1

−1

(1− µ2)dµ

[1− (u/c)µ]5
=
4

3
γ6. (10.343)

Hence,

P(t ′) =
e2

6π ε0 c3
γ6 u̇2, (10.344)

which agrees with Eq. (10.327), provided that u × u̇ = 0.

10.27 Synchrotron radiation

Synchrotron radiation (i.e., radiation emitted by a charged particle constrained

to follow a circular orbit by a magnetic field) is of particular importance in as-

trophysics, since much of the observed radio frequency emission from supernova

remnants and active galactic nuclei is thought to be of this type.
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Consider a charged particle moving in a circle of radius a with constant angu-

lar velocity ω0. Suppose that the orbit lies in the x-y plane. The radius vector

pointing from the centre of the orbit to the retarded position of the charge is

defined

ρ = a (cosφ, sinφ, 0), (10.345)

where φ = ω0 t
′ is the angle subtended between this vector and the x-axis. The

retarded velocity and acceleration of the charge take the form

u =
dρ

dt ′
= u (− sinφ, cosφ, 0), (10.346)

u̇ =
du

dt ′
= −u̇ (cosφ, sinφ, 0), (10.347)

where u = aω0 and u̇ = aω 2
0 . The observation point is chosen such that the ra-

dius vector r, pointing from the retarded position of the charge to the observation

point, is parallel to the y-z plane. Thus, we can write

r = r (0, sinα, cosα), (10.348)

where α is the angle subtended between this vector and the z-axis. As usual, we

define θ as the angle subtended between the retarded radius vector r and the

retarded direction of motion of the charge u. It follows that

cos θ =
u·r
u r

= sinα cosφ. (10.349)

It is easily seen that

u̇·r = −u̇ r sinα sinφ. (10.350)

A little vector algebra shows that

[r × (ru × u̇)]2 = −(r·u̇)2 r2 (1− u2/c2) + u̇2 r4 (1− r·u/r c)2, (10.351)

giving

[r × (ru × u̇)]2 = u̇2 r4




(

1−
u

c
cos θ

)2

−



1−
u2

c2



 tan2φ cos2 θ



 . (10.352)
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Making use of Eq. (10.337), we obtain

dP(t ′)

dΩ
=

e2 u̇2

16π2 ε0 c3
[1− (u/c) cos θ)]2 − (1− u2/c2) tan2φ cos2 θ

[1− (u/c) cos θ]5
. (10.353)

It is convenient to write this result in terms of the angles α and φ, instead of θ

and φ. After a little algebra we obtain

dP(t ′)

dΩ
=

e2 u̇2

16π2 ε0 c3
[1− (u2/c2)] cos2 α+ [(u/c) − sinα cosφ]2

[1− (u/c) sinα cosφ]5
. (10.354)

Let us consider the radiation pattern emitted in the plane of the orbit: i.e.,

α = π/2, with cosφ = cos θ . It is easily seen that

dP(t ′)

dΩ
=

e2 u̇2

16π2 ε0 c3
[(u/c) − cos θ]2

[1− (u/c) cos θ]5
. (10.355)

In the non-relativistic limit, the radiation pattern has a cos2 θ dependence. Thus,

the pattern is like that of dipole radiation where the axis is aligned along the

instantaneous direction of acceleration. As the charge becomes more relativistic,

the radiation lobe in the forward direction (i.e., 0 < θ < π/2) becomes more

more focused and more intense. Likewise, the radiation lobe in the backward

direction (i.e., π/2 < θ < π) becomes more diffuse. The radiation pattern has

zero intensity at the angles

θ0 = cos−1(u/c). (10.356)

These angles demark the boundaries between the two radiation lobes. In the

non-relativistic limit, θ0 = ±π/2, so the two lobes are of equal angular extents.

In the highly relativistic limit, θ0 → ±1/γ, so the forward lobe becomes highly

concentrated about the forward direction (θ = 0). In the latter limit, Eq. (10.355)

reduces to
dP(t ′)

dΩ
' e2 u̇2

2π2 ε0 c3
γ6

[1− (γθ)2]2

[1+ (γθ)2]5
. (10.357)

Thus, the radiation emitted by a highly relativistic charge is focused into an in-

tense beam, of angular extent 1/γ, pointing in the instantaneous direction of

motion. The maximum intensity of the beam scales like γ6.
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Integration of Eq. (10.354) over all solid angle (using dΩ = sinαdαdφ)

yields

P(t ′) =
e2

6π ε0 c3
γ4 u̇2, (10.358)

which agrees with Eq. (10.327), provided that u·u̇ = 0. This expression can also

be written
P

m0 c2
=
2

3

ω 2
0 r0

c
β2 γ4, (10.359)

where r0 = e2/(4π ε0m0 c
2) = 2.82 × 10−15 meters is the classical electron radius,

m0 is the rest mass of the charge, and β = u/c. If the circular motion takes place

in an orbit of radius a, perpendicular to a magnetic field B, then ω0 satisfies

ω0 = eB/m0 γ. Thus, the radiated power is

P

m0 c2
=
2

3

(

eB

m0

)2 r0

c
(βγ)2, (10.360)

and the radiated energy ∆E per revolution is

∆E

m0 c2
=
4π

3

r0

a
β3 γ4. (10.361)

Let us consider the frequency distribution of the emitted radiation in the highly

relativistic limit. Suppose, for the sake of simplicity, that the observation point lies

in the plane of the orbit (i.e., α = π/2). Since the radiation emitted by the charge

is beamed very strongly in the charge’s instantaneous direction of motion, a fixed

observer is only going to see radiation (at some later time) when this direction

points almost directly towards the point of observation. This occurs once every

rotation period, when φ ' 0, assuming that ω0 > 0. Note that the point of

observation is located many orbit radii away from the centre of the orbit along

the positive y-axis. Thus, our observer sees short periodic pulses of radiation

from the charge. The repetition frequency of the pulses (in radians per second) is

ω0. Let us calculate the duration of each pulse. Since the radiation emitted by the

charge is focused into a narrow beam of angular extent ∆θ ∼ 1/γ, our observer

only sees radiation from the charge when φ <
∼ ∆θ. Thus, the observed pulse is

emitted during a time interval ∆t ′ = ∆θ/ω0. However, the pulse is received in a
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somewhat shorter time interval

∆t =
∆θ

ω0

(

1−
u

c

)

, (10.362)

because the charge is slightly closer to the point of observation at the end of the

pulse than at the beginning. The above equation reduces to

∆t ' ∆θ

2ω0 γ2
∼

1

ω0 γ3
, (10.363)

since γ � 1 and ∆θ ∼ 1/γ. The width ∆ω of the pulse in frequency space obeys

∆ω∆t ∼ 1. Hence,

∆ω = γ3ω0. (10.364)

In other words, the emitted frequency spectrum contains harmonics up to γ3

times that of the cyclotron frequency, ω0.
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