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ABSTRACT

In this thesis I review the Symmetric Unitary One Matrix Models (UMM). In the
beginning, I discuss matrix models in general, with particular emphasis on their
relation to string theory and two dimensional quantum gravity. The crux of matrix
models lies in a single ordinary non-linear differential equation which, in a certain
limit known as the double scaling limit, embodies the entire dynamical content of
the continuum theory. This differential equation, called the string equation, may
be solved and analyzed, yielding much insight into string theory and related phys-
ical models. Integrable hierarchies arise naturally from the local operators of the
theory and describe the flows between multicritical points. The relevant hierarchy
for UMM is the modified-KdV hierarchy. The Sato Grassmannian description of
the flows is most appropriate for the computation of the space of solutions to the
string equation and I discuss its connection to the 7-function formalism of the
Japanese school and more conventional representations. The main results of this
thesis are the discovery of the operator formalism for UMM, the computation of
the space of solutions to the string equation and the derivation of the mKdV flows

from the continuum limit of the local scaling operators.
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CHAPTER 1

Introduction

The introduction of my thesis is a very brief review of the recent progress and
development of zero dimensional field theories of unitary and hermitian matri-
ces, called Matrix Models, and their contribution to understanding better string
theories and two dimensional Quantum Gravity.

One-matrix models are quantum mechanical systems whose partition function

is given by

Zu = [ dM exp (—%trV(M)) (1.1)

where M is a N X N matrix, usually chosen to be hermitian, unitary or orthog-
onal, the potential V(M) is a polynomial in the matrix M and X is called the
cosmological constant. The latter nomenclature derives from the relation of Her-
mitian Matrix Models to two dimensional quantum gravity. The hamiltonian and
the measure are invariant under the action of the unitary group U(N) defined
by M — VIMV with V € U(N). My thesis is on Unitary One-Matrix Models
(UMM) where the matrix M belongs to the unitary group.

The interest in matrix models was revived a few years ago from the point
of view of string theory and two dimensional quantum gravity and stimulated
great activity among string theorists. It was found that HMM are related to
a certain class of conformal field theories coupled to two dimensional quantum
gravity. In the case of Hermitian One-Matrix Models (HMM), when one takes
the limit N — oo and A is tuned to a critical value A. the models have a series
of multicritical points labeled by an integer k. The authors of [1-4] discovered
that when one takes those limits by keeping certain scaling variables fixed, the
continuum theory obtained is exactly solvable! The dynamical content of the
theory is all in a well known non-linear differential equation, called the string
equation. These equations possess asymptotic solutions in the weak coupling limit,
which are series in the “string” coupling x corresponding to the genus expansion

of string theory. The great excitement arose because of the discovery that every

1



term in this expansion agrees exactly with the low genus calculation ( A < 2)
of the continuum theory for models of (p,q) minimal conformal matter coupled
to two dimensional gravity. For one matrix models ¢ = 2 and p = 2k — 1,
where k is the order of the multicritical point considered. Later [5] it was found
that the general (p,q) model can be obtained in a similar way from models of
¢ — 1 hermitian matrices coupled linearly to each other (MHMM). It should be
stressed that the connection of HMM to string theory is established only via the
weak coupling expansion. Therefore all the non-perturbative information that is
coming from the matrix model has to be considered as a consistent definition of
string theory. Matrix models results, however, confirm the computations of low
genus string theory and two dimensional quantum gravity since the latter make
use of assumptions about the form of the measure of the path integral.

The connection of HMM to string theory and 2 — d gravity is most easily un-
derstood at the discrete level of the theory. The Feynman diagrams of the matrix
model perturbation theory can be viewed as being dual to a discrete dynamical
polygonation of a two dimensional Riemann surface. Then the perturbation series

can be summed in the form

Iy = iNXZMh (1.2)

h=0
where x = V — E + L is the Euler characteristic of the corresponding surface
and h is its genus given by x = 2 — 2h. Since the number of vertices V', edges
E and loops L of the Feynman graph correspond, respectively, to the number of
faces F', edges E and vertices V of the dual graph, the above series can be shown
to correspond to the discretized version the partition function of string theory

embedded in a zero dimensional target space

1 1
Zstr = exp(—,uBA—i— —X) : (1.3)
- Xh:; C(T) 4rGp

Every fixed h term in (1.3) is the discretized partition function of pure two di-

mensional quantum gravity on a background manifold of genus h. The precise
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relation between (1.2) and (1.3) is that Zg, is the free energy In Zy, of the matrix
model. This is because we need to consider only connected vacuum bubbles from
the matrix model perturbation theory in order to obtain quantum gravity. In
(1.3) A is the area of the surface, up and G p the bare cosmological and Newton’s
constant and C(T') is the symmetry factor of the polygonation corresponding to
dividing by the volume of the isometry group of the surface. The relation between
(1.2) and (1.3) is established by identifying A = e™#8 and N = e™5 . The action
in (1.3) is the discretized version of the action of a string theory embedded in zero

dimensional spacetime

Sytr = In mB/dzf\/ﬁR—i—uB/de\/ﬁ. (1.4)

Then (1.2) gives the genus perturbation expansion with kp = %, the bare string
coupling. The naive continuum theory is taken by letting N — oc. For a critical
value u. of up the increasing entropy of large surfaces compensates the Boltzmann
factor and the system undergoes a (third order) phase transition. In this case the
area A diverges and the polygonated surface is thought to approach a smooth
Riemann surface. If the critical point is approached after the large N limit is
taken, only the sphere Zpr¢ contributes to (1.2). The remarkable observation [1-
4] was that since the singular part of Zyrp, ~ (up — ,uc)X(Hﬁ) with &k a positive
integer, one can obtain contributions from all genera by simultaneously taking the
large N-limit and letting pp approach its critical value p. in a coordinated way.
The integer k labels a series of multicritical points reached by tuning k£ parameters
in the potential V(M). Introducing a cutoff ¢ in the theory, we define the string
coupling k¢ and renormalized cosmological constant ug to be

B —
Ko = N y /-‘LR:u

a?

(1.5)

The double scaling limit is defined by taking N — oo and up — u. while keeping

ko and pg fixed. Then the continuum limit of (1.2) becomes

00
Lstr = Z K'XZha (1'6)
h=0
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with k£ = The series (1.6) is horribly divergent. It is non-Borel summable

h)_o.
BR
since every term increases as (2h)!. This reflects our ignorance in summing the
perturbation series of string theory although the fixed genus partition function Z3
can be calculated and is well defined. Happily, the theory is exactly solvable at
the multicritical points and its dynamical content is given by a single differential
equation, the string equation. The string equation is a differential equation, in
the variable z, satisfied by the matrix model specific heat —0% In Z;;, with 2 =
¢=@+%) and 9 = 0/0x. It possesses solutions that in the weak coupling limit
k — 0 are asymptotic to (1.6) and we say that the double scaling limit provides a
non-perturbative definition of Z,. Indeed comparison with calculations directly
from the continuum theory indicates that Zg, corresponds to two dimensional
gravity coupled to (2k — 1,2) minimal conformal matter. Even more interesting

is the discovery that the double scaling limit of (¢ — 1) or 2 MHMM gives two

dimensional gravity coupled to (p,q) minimal conformal matter [5,6,7).

Unitary One Matrix Models (UMM) form another interesting class of matrix
models. These are defined by (1.1) with M being a unitary matrix U. The interest
in those models arose a long time ago when Gross and Witten [8] showed that the
partition function of two dimensional U(N) QCD on a lattice is given by Zgcp =
(Zy) +% and that the theory undergoes a third order phase transition in the large N
limit (V is the volume of the two dimensional world and a is the lattice cutoff). The
theory was also shown to possess a double scaling limit N — co and A — A, with
t=(1—B)NT and y = (1— &) N7 held fixed [9,10]. The string equation is a
2kt order differential equation of the function v in the variable z = t+y, with v? =
—8%In Z. Tt has solutions that are asymptotic to (1.6) in the limit 2 — oo with
k2 = z~+%). The identifications of those solutions with conformal field theories
coupled to two dimensional gravity or other interesting systems is still, however,
an interesting open problem. Some interesting suggestions have been made in [11]
. These are discussed in chapter 6. Moreover, the surface interpretation of UMM
is not as clear as in the case of HMM. In [12] Neuberger views the unitary matrix
as U = "™ where M is hermitian and introduces N x N hermitian fermionic

matrices 1) and 1) to exponentiate the Haar measure dU — dM det(g—ﬂ). The
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resulting surfaces contain an infinite number of types of bosonic vertices forming
bosonic “webs” and fermionic loops forming their boundaries that might allow a
stringy interpretation of the UMM. For another interesting suggestion see [13] .
It is also interesting to note that UMM belong to the same universality class as
the HMM in a different class of multicritical points, the double-cut HMM [11,14].
This is expected since the critical behaviour is governed by the scaling of the
density of the eigenvalues at the edge of its support [15] and the eigenvalues of the
two models models scale identically there. The surface interpretation for HMM
described above does not hold for the double-cut HMM, because the multicritical
potentials lead to complex values of the cosmological constant up.

The continuum theory obtained in the double scaling limit has a very rich
mathematical structure. Well known integrable hierarchies are found to describe
flows between multicritical points [5,16]. For example, the Korteweg-de Vries

(KdV) hierachy
ou

Otor+1
describes the flow of the scaling function w giving the specific heat of HMM and

the modified-KdV (mKdV) hierachy

= ORFKV [y) (1.7)

G = ORIV [ (18)
describes the flow of the scaling function v giving the square root of the specific
heat of UMM. The right hand sides of (1.7) and (1.8) are polynomials of the
scaling functions v and v and their derivatives. Their precise definition can be
found in chapters 3 and 6 respectively. From the point of view of string theory,
the flows of HMM describe flows between different string backgrounds. These
are well defined only for flows between odd multicritical points, since only these
flows evolve physically acceptable solutions of a multicritical point to physically
acceptable solutions of another multicritical point. The flows arise when one
considers the operators o; obtained by coupling the 1** multicritical potential
Vi(M) to the critical potential Vj(M) of the k' multicritical point. In this

way one defines a set of non-critical (massive) models which interpolate between
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the multicritical models. The integrable hierarchies (1.7) and (1.8) are obtained
by considering the dependence of the scaling functions 4 and v on the sources
(“times”) t9;41 that couple to the operators oy.

An alternative description of the hierarchies (1.7) and (1.8) is given by the
corresponding 7-functions. These are related to v and v by v = —20?In7 and
v=20In :—f The KdV and mKdV r-functions are solutions to the Hirota bilin-
ear equations, which are equivalent to (1.7) and (1.8). The 7-functions can be
associated to points of the Universal Sato Grassmannian, which is an appropriate
infinite dimensional generalization of finite dimensional grassmannians. This is
accomplished by mapping the points of the Universal Grassmannian, which are
infinite dimensional vector spaces V, to states of a two dimensional fermionic free
field theory. The 7-functions, considered as formal power series in the times £9; 1,
represent states of a two dimensional bosonic free field theory. The connection is
established by the well known equivalence of the two dimensional fermionic and
bosonic theories. The partition functions of HMM and UMM are found to be given
by the corresponding 7-functions [17-19]. The 7-functions that solve the string
equation must be annihilated by constraints which for the one-matrix model obey
the centerless Virasoro algebra and are called the Virasoro constraints [17-20]. All
of those results have counterparts in the discrete theory. The integrable flows are
now with respect to the couplings in the potential V(M). For the UMM these are
given by Toda flows on the half line [21] and the partition function is given by the
product of two Toda-chain 7-functions. The Virasoro constraints L,, have the sim-
ple interpretation of corresponding to invariance of the partition function under

specific transformations, which for the UMM are given by U = ¢, (U™ —U~7).

An interesting observation is that the string equation can be written in the
form [P,@] = 1 where P and @ are differential operators for the HMM [5] and
2 x 2 matrices of differential operators for the UMM [22] . They correspond to the
continuum limits of operators acting on the space of orthonormal functions used to
solve the model. One can use this form of the string equation to determine easily
the points in the Universal Grassmannian that solve the string equation [23]. For

the UMM [24] these are found to correspond to a pair of points Vi and V3 in
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the (big cell of the) Sato Grassmannian satisfying certain invariance conditions.
It is very important that the mKdV evolution of V; and Vs gives new solutions
to the string equation. The 7-functions that correspond to Vi and V5, are shown
to satisfy the Virasoro constraints in this formalism [24] since the constraints are
derived from the same invariance conditions that solutions to the string equation
satisfy [25-28].

The organization of this thesis is as follows.

In chapter 2 I review some results of bosonic string theory. For a fixed genus
surface this is two dimensional quantum gravity coupled to conformal matter,
where the two dimensional world-sheet of string theory is viewed as a two di-
mensional (Euclidean) space-time and the embedding coordinates as the matter
fields. This is done in the path integral approach which reduces the theory to the
study of quantum Liouville theory. The Liouville field is the conformal factor ¢
of the metric g, = e? §op. The quantization of the Liouville field results in the
“dressing” of the operators of the conformal field theory and a change in their
scaling properties. The scaling of these operators can be computed and compared
to the matrix model results. For MHMM they agree for (p, ¢) minimal conformal
matter fields coupled to gravity.

In chapter 3 I review the results obtained from HMM. MHMM are also briefly
discussed. I discuss the double scaling limit and how it can be solved by using the
orthogonal polynomial method. The solutions to the string equation give local
or “microscopic”’ scaling operators that in the weak coupling limit have scaling
properties that can be compared to the string theory calculations. Another class of
operators, the loop or “macroscopic” operators can be computed in the spherical
limit and found to agree with the corresponding operators of Liouville theory in
the minisuperspace approximation. The flows between multicritical points are
described by the KdV integrable hierarchy. I discuss the implications of this
result as well as the operator formalism representation of the string equation
and the flows. I discuss very briefly the Sato Grassmannian description of the
string equation and the flows and how it leads to the computation of the space of

solutions to the string equation.



In Chapter 4 I discuss the large-N or spherical limit of UMM and the moti-
vation that leads to the study of these models. The connection of the simplest
of these models to 2-d pure QCD is discussed, as well as the possibilities for a
world-sheet interpretation of the model. The existence of multicritical potentials
is already revealed in this limit and they are not affected by taking the double
scaling limit. The critical behaviour is understood by studying the scaling of the
density of eigenvalues at the edge of its support. This governs the scaling of the
operators in the double scaling limit as well.

In chapter 5 I discuss the method of orthogonal polynomials for UMM. This
method makes possible the solution of the model even before taking the double
scaling limit. The integrability of the model is revealed at this level as well, where
the solutions are given by the modified Voltera hierarchy or the Toda chain on
the half line. There are two convenient choices for orthogonal polynomials which
I present, the Periwal-Shevitz (PS) basis and the trigonometric basis.

In chapter 6 I discuss the double scaling limit of UMM. I discuss how to
obtain the string equation and study its “physical” solutions, which have a genus
expansion in the weak coupling limit. The scaling operators can be computed
exactly and the mKdV flows revealed. There is an operator formalism for the
string equation and the mKdV flows similar to the one for HMM. I also give a
very brief review of the double cut HMM and its relation to UMM.

In chapter 7 the main topic is the computation of the space of solutions to the
string equation. This is most conveniently done by studying the solutions in the
Sato Grassmannian. For this reason I review the 7-function representation of
the mKdV ( and the more general mKP) hierarchies and discuss its connection to
the Sato Grassmannian formalism and the formalism presented in chapter 6. This
is done by mapping the points of the Grassmannian to fermionic states of a two
dimensional free field theory of fermions. This is called the Pliicker embedding.
The 7-functions are states that belong to the GL(o00) orbit of filled fermionic states
and can be mapped to polynomials of the times #; of the KP or mKP hierarchies
by using the bosonization of the fermionic theory. In this way the hierarchy has

a differential operator representation that derives from pseudo-differential ( ¥DO
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) operators. This way the solutions to the string equation can be easily obtained
by solving the conditions that the spaces V; and V5 must satisfy. The Virasoro
constraints are a simple corrolary of these conditions and the compatibility of the
string equation with the mKdV flows is easily understood.

My research, in collaboration with my advisor Mark Bowick, Nobiyuki
Ishibashi and Albert Schwarz, contributed to the discovery of the operator for-
malism [24] for UMM, the formulation of the string equation as conditions on
points of the Sato Grassmannian and the computation of solutions to the string
equation. The general proof that UMM lead to the mKdV hierarchies has never
been presented in the literature before - it was obtained by studying the double

cut HMM - although the result was known before.



CHAPTER 2

A Glance at 2-d Quantum Gravity and Liouville Theory

In this chapter I make a quick tour of string theory, 2-d gravity and Liouville
theory. I describe how one obtains the conformal anomaly in the path integral
approach of string theory, which makes the effective quantum theory equivalent
to the study of quantum Liouville theory. I review how one obtains the string
susceptibility, or the anomalous dimension of the scaling of the fixed area partition
function with the area of the world sheet, and the anomalous dimensions of the
primary field (local) operators. In the canonical approach, one can solve the
minisuperspace Wheeler-deWitt equation and obtain loop operators 1o (l) which
is important for comparing the theory with matrix models results. The purpose of
this chapter is to establish a connection of the Liouville theory results and matrix
models computations. No attempt for rigor is made and the interested reader is
referred to an excellent review by Ginsparg and Moore [29,30] and the references

therein. Most of the ideas for this exposition were taken from there.
2.1. 2-d Quantum Gravity Coupled to Conformal Matter with ¢ < 1.

In (bosonic, closed) string theory one wishes to study the path integral

0 DgDX g
Z — E - e str
P Vol(Dif f(25))

0
= (2.1.1)
= Z K}XZh y
h=0
with
Syr =1Ink /d2§ \/§R+,u3/d2§\/§+ Sitatter - (2.1.2)

k is the string coupling constant and up the bare cosmological constant. Spsatter

is chosen to be the conformally invariant action

Sttatter = [ 46 /59™ 0 X X" G (X) (2.1.3)
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Here p,v = 1,2,..., D where D is the dimension of spacetime with Euclidean
signature metric G, (X), a,b = 1,2 are the world sheet indices whose metric is
gap(§) and X#(€) are the embedding coordinates of the world sheet ¥p into the
spacetime. The path integral is performed over all admissible Riemannian metrics
on the world sheet 3;, whose genus is h. The summation is over all two dimensional
topologies and the division by the volume of the diffeomorphism group Dif f(2})
is made because the measure and the action are diffeomorphism invariant.

Each term in (2.1.1) is a theory of Euclidean two dimensional quantum gravity
on the background manifold 3 coupled to D conformal scalar fields. In string
perturbation theory we are interested in analyzing such a theory separately and
in the end to study the sum (2.1.1). It has been proven a formidable and unsolved
problem to analyze the theory in detail for large h. Even if someone could, the
series is known to be very badly behaved (it is non Borel-summable) and no one
would know how to define the sum (2.1.1). The problem of a non-perturbative
definition of string theory -maybe through a second quantized string field theory-
in physical dimensions is still outstanding. Lately, a consistent closed string field
theory has been defined ( for a review see [31]). We will see that matrix models
shed some light in these problems in some simple, unphysical cases by providing
a sensible non-perturbative definition of (2.1.1).

Following, I give an outline of how to calculate Z;. Most of the technical
details can be found in many string textbooks and papers, such as [32-34]. The
measures DX and Dg are defined from the following metrics in the space of metrics

and embeddings:

69|12 = / d%¢ /g (9%g* + cg™g°N)dgapdged

and
162 = [ d¢ ygoxrsx,

where dg and 6X are tangent vectors in the space of metrics and embeddings
respectively. Both measures are invariant under the group of diffeomorphisms

Dif f(25), but although the classical action Sprqster is invariant under the action
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of Weyl transformations g — e¥g, the measures Dg and DX are not. This is the
origin of the so called conformal anomaly.

The integral can be analyzed conveniently in the conformal gauge [35]. The
space of metrics modulo diffeomorphisms and Weyl rescalings is called the moduli
space My, which is finite dimensional and compact for a two dimensional manifold
3p. For genus 0 it is 0-dimensional, for genus 1 it is 2-dimensional and for higher
genus h it has 6h — 6 real dimensions. For every point 7 € M} we choose a

representative metric g,5(7) and then every metric can be written in the form

f*g=e"g(r) (2.1.4)

with f: ¥ — 33 a diffeomorphism.

Integration over diffeomorphism equivalent metrics introduces an infinite fac-
tor which is absorbed by dividing by the volume of Dif f(3;). Restricting the
integration to a gauge slice introduces ghosts. Under the infinitesimal action of a

diffeomorphism generated by a vector field v* the metric changes by
09ab = LyGap =2 v(a Up) -

Then the integration over the measure Dg splits to an integration over the moduli
[dT], the conformal factor Dy and the diffeomorphisms Dv. In complex coordi-
nates (z = &1 + 1&g, 2 = &1 — i€2) 09, = V, v, and dgz; = Vi vy and integrating

over v gives the determinants

det V, det Vo = / DHDEDcDeeSon, (2.1.5)
where

Sop = [ P5 (bax Vac* + b5V, ). (2.1.6)
The conformal anomaly arises when we try to express the measures D, (ghost) =
DybDybDycDye, DygX and Dyyg in terms of the reference metric g of (2.1.4). The
celebrated results of Polyakov [35] are

Dyos X = e S0P X | (2.1.7)
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and

Doy (ghost) = e_%SL(‘P’A)Dg(ghost) , (2.1.8)
where
~ 2 ~ 1Aab D %)
Sc(e,9) = /d E\/E(Eg BapOyp + Rip + pie?) (2.1.9)

is the well known Liouville action. At D = 26 we are led to the decoupling
of the Liouville mode and critical string theory. The measure Dgyp, however,
does not have an obvious simple dependence on Dgp. the reason is that the
metric ||6¢]|2 = [ d*¢ \/g 6pdyp that defines the measure, depends on ¢ itself! The
authors of [36,37] assume that

Zy, = /[dT]Dg(ghost)DgXDggo e~ SMatter ~Sghost

R (2.1.10)
x exp{ [ d¢/ (g™ 0up0hp + bRep + )}
The constants a, b and ¢ can be determined by using the simple fact that Zj is
invariant under the simultaneous transformation:
g —ge’

o oo (2.1.11)

that leaves g = e¥g invariant. Using the known conformal anomalies for X and the
ghosts, observing that (2.1.11) is independent of ¢ (i.e.Deogp = eﬁSL("@Dggo)

and taking into account the renormalization of the e®? term, we obtain

D=26+1 B (90— CAG) — i1 — e \eeper(lme—tg) —
( pro b)R — (2a —b)(Azo — Agp) —pu(l —¢ 167ra)e e Tera) = ().
(2.1.12)
Then .
a=§b
D—2
b= 487T5 (2.1.13)
1
czﬁ(25—D—\/(D—25)(D—1))
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where the choice of cut of the square root is such that we obtain the classical limit
as D — —oo and the effective coupling (25 — d)~! goes to zero. We renormalize

¢ = /5225 and we obtain the Liouville action as

S1(¢,9) / €\/3 (G 0,000 + QR + pe'?) (2.1.14)
where
v=——(v25—D —+/1— D)
f2 (2.1.15)
25—-D 2
5

Then the energy momentum tensor 7'(z) = —%agoago + %a% (0 = 0,) gives an
operator product expansion (OPE) T(2)T(w) ~ Jcr/(z — w)* + ... with ¢f =
1 + 3Q2. Happily, the total central charge

CMatter + Cghost + CL = D —26+ (26 - D) =0

and the conformal anomaly vanishes! Moreover, the conformal weights A and A

of the operator €% defined by T'(2)e7?(®) ~ (eW’();

equalto A = A = —%'y('y—Q) = 1. This means that the operator % behaves like
a (1,1) conformal field which is consistent with the requirement that [ d2£,/GeY¥

+ ... and similarly for A are

gives the total area of the surface.

Note that for D < 1, both v and @ are real and the Liouville theory is well
defined. At D = 25 @@ = 0 and one might interpret ¢ as a Euclidean time coor-
dinate. This is most easily recognized by Wick rotating ¢ — —ip and obtaining
an extra timelike coordinate from the Liouville field. Therefore for strings naively
embedded in 25 Euclidean dimensions, the Liouville mode provides an extra 26t
timelike dimension, dynamically realizing a 26 dimensional Minkowski spacetime.
For D > 25 the kinetic term of the Liouville field changes sign and we have a
ghost field of negative norm. For 1 < D < 25, v is complex and @) imaginary. It
is not known of how to make sense of Liouville theory in this (most interesting)

regime and it is still an outstanding problem in string theory and two dimensional

quantum gravity.
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A very important critical exponent is the string susceptibility I's,. It was the
agreement of this exponent with the one obtained from matrix model calculations
that originally confirmed the assumptions made by both methods. I'g, is defined
from the scaling of the fixed area partition function Zj(A) with the area A as

A — oo. Zp(A) is given by

Zn(w) = [ dA e Z,(4)

(2.1.16)
Zp(A) = / DyDX5( / d%, /g — A)e=S
and for large A it behaves like
Zn(A) ~ ATstr=23-1 (2.1.17)

[str is determined by a simple scaling argument. First write
Zn(A) = / [d7)D;(ghost) DDy X e~ SMatter=SehDgD X §( / d%[ger? — A)e5t

and consider the change ¢ — ¢+ s where p is a constant. The measure terms are

invariant and the only change in Z,(A) comes from Sy, and the é-function:

%/d%\/émo %%/d%\/ﬁfiaﬁ %/dzf\/ﬁ

Q ~ Q
:g/dzf\/;Rgo + 5P (2.1.18)

5( / d2¢,/geT ) — A) e 5 / 2¢\[ge? — A)
so that
Zn(A) = e~ X1 7, (6P A) .
Setting e = A we obtain

Zn(4) = A5 7(1) = ATDE-17(1)
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so that

rstr=2—%= 11—2(D—1—\/(D—25)(D—1)). (2.1.19)
Notice that for D > 1 'y, is complex, indicating that the above considerations
break down for D > 1.

There is a certain class of conformal field theories (CFT) with a finite number
of primary fields (for a review see e.g. [38] and references therein) called “minimal
CFT”. They are characterized by a pair of relatively prime integers (p,q) and
have central charge
6(p—q)®

pq
The unitary subseries are given by (p,q) = (k+ 1,k) . The string susceptibility

of these models coupled to gravity is
Ty = - (2.1.20)
(p+g-1)
In the double scaling limit (which is discussed in the next chapter), HMM admit
exact solutions for a series of multicritical points labeled by an integer k. For
these solutions I'sy = —1/k which is the string susceptibility obtained from the
(2k — 1,2) minimal CFT.
In order to determine the scaling of the operators of a CF'T coupled to gravity,
we apply the previous simple arguments. For example, the one point function of

the operator ®( for fixed area is calculated by the integral

{ / ?€\/5 6% ®y) 4 =% / DeDXe 56( / &¢\[Ger — A) / d2¢\[5e** D
A

(2.1.21)
where the last line is the definition of the exponent A. Therefore we see that the
coupling of &y to gravity is effectively described by the dressing of the operator
®( such that & = e*?®Py. The constant « is fixed by the requirement that &
has dimension (1,1) so that the integral [ d2£/Ge®¥®, does not break conformal
invariance. Since the weight of €*¥ is —1a(a — @) and that of ®g is Ag, we have
that

Ay — %a(a—Q) =1
16



or

1 1
=—Q — /=02 —-2+2A
«@ 2Q \/4@ + 2Ag

, (2.1.22)
=——(v25— D —/1— D +24A).
\/ﬁ( \/ 0)
Rescaling ¢ — ¢ + s with e = A we obtain
—IX_14a
A2y ¥
([ e\fGeean)s =" [ defGerao),
Vs > A" H ([ e ) (2.1.23)

=A%</ *6,/g e do)1

or A =1-— % The additional e#®/7 comes from the integral [ d2£\/ge®?®;.

Substituting o and v we obtain

_ VI-D+24A)-1-D
- V% -D-V1-D

(2.1.24)

For the (p,q) series, the operators q>((]r,s)

are labelled by the integers r,s with
— r=g9)’~(=9)* g,

0<r<gq 0<s<p,p>qand the conformal weights Ag 7

2
these operators (D =c=1— %)

@ _pta-lpr—gs| (2.1.25)
v 2q

(2.1.25) is in agreement with the (p,q) MHMM calculations as we will see in
chapter 3.

Comparison with the matrix models results can also be done in the canonical
quantization of Euclidean two dimensional gravity. The wave functions ¥ are func-
tions of the only diffeomorphism invariant quantity that can be constructed from
¢(0) on a spatial slice, namely the length of the universe /. The wavefunctions cor-
responding to physical states must be annihilated by the hamiltonian constraint
i.e. satisfy the Wheeler-deWitt (WdW) equation. In the minisuperspace approxi-
mation, where p(a,t) = ¢(t), the WdW equation (Lo + Lg — 2)¥ () = 0 takes the
form [39]

(—l(%)2 +4ul? + () =0, v=4+"(a—=Q), (2.1.26)
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with (non-normalizable) solutions decaying at large lengths

To(l) o K, (2/l) . (2.1.27)

Semiclassically these correspond to metrics

e’ (dt* + do?) = é#(dt2 +do?) t<0,
i sinh” (vt)

which correspond to “funnel” like Universes. We may interpret ¥y (l) as a local
operator inserted at the tip of the funnel at ¢ — —oo [39]. The result -with these
boundary conditions-, although obtained in the minisuperspace approximation
agrees exactly with the matrix models results! Uy () will be found to correspond
to correlators (g;W(1)). In the language of two dimensional gravity, W (l) is the
operator that creates a universe of size [ and &; the one that inserts a local operator
at ¢ — —oc.

I close this section with a last remark. In a string theory given by a product of
D gaussian models (G, = 0,y in (2.1.3)) for which cprgtter = D, we identify each
boson with a space-time dimension. Therefore we identify an arbitrary CFT with
central charge ¢ with a non-critical string theory embedded in an (abstract) target
space of dimension D = cpsqster- In that case the Liouville mode is responsible for
the cancellation of the conformal anomaly. A different point of view is to consider
the Liouville mode as a dynamically realized space-time direction. In that case we
are talking about a critical string theory embedded in d = D + 1 dimensions. For
the cases of interest of this thesis, i.e. for zero dimensional HMM (or MHMM), the
central charge ¢ < 1 and corresponds to minimal CF'T. Therefore we are describing
non-critical strings living in D < 1 dimensions, or critical strings living in d < 2
dimensions. Another class of interesting solvable matrix models, a model of large
N matrix quantum mechanics (one dimensional matrix models), deals with the
case c=1or D =1 and d = 2. For the moment there is no known matrix model

surpassing the ¢ = 1 barrier and it remains a very interesting open problem.
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CHAPTER 3

On Hermitian Matrix Models and their Relation to ¢ < 1 strings.

As T mentioned in the introduction, HMM provide a naturally regularized
non-perturbative definition of non-critical string theories with target spaces of
dimension D < 1. In this chapter I will review the progress made in the field
during the last four years. I will describe the results that show the relation of
the models to string theory. I will also try to establish a connection to UMM
by discussing the rich mathematical structure that arises in the continuum limit
that is so similar for the two models. This is the appearance of KdV flows,
which physically describe the flows between multicritical points. I will briefly
mention matrix chains (MHMM) that are related to the general (p,q) minimal
CF'T coupled to gravity. Because of lack of space, I will skip most of the technical
details since these are similar to the UMM and will be discussed in later chapters.
I will emphasize results that relate the models to two dimensional quantum gravity
and the interested reader should consult the excellent reviews by Ginsparg and

Moore [29,30,40] and the references therein.
3.1. One Hermitian Matriz Models (HMM) and string theory

The models I will describe are zero dimensional field theories of N x N her-

mitian matrices ® with a partition function
N
Zg = /d@ exp (~ -tV (@), (3.1.1)

where

%V(@) =Y gAsINOF

k>2
and ¢go = % In perturbation theory the free energy In Zg of this model is given
by the sum of all one point irreducible Feynman diagrams. The main motivation
in [41,42] was to use (3.1.1) to enumerate such graphs. Since this is a theory of
hermitian matrices these graphs are double lined diagrams, each line connecting

two indices and having a preferred direction. The ribbon like structure of these
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diagrams permits to assign to them a two dimensional orientable compact surface
of given genus. This is the minimum genus, orientable surface one can draw
without self crossings of the lines. The dual graphs of these diagrams provide a
triangulation (more accurately “polygonation”) of such a surface. The direction
of lines of the Feynman diagrams are compatible with the choice of orientation on
such a surface. By organizing the terms in (3.1.1) in powers of N, we observe that
each term gets contributions from graphs of the same genus. This is because of
the normalization chosen in (3.1.1). The propagator is of order N7!, a k-vertex
of order A\5—1N , and every loop of order N since we have to sum over all matrix
indices. Therefore the contribution of each graph G with V' = 3753V} vertices,

E propagators and L loops is proportional to

G ~ LTV L NE

E
k>3 N

_NV-E+L\ Y -V, (3.1.2)

=NX)A

where Y = V — E + L = 2 — 2h is the Euler character of the surface and A =
23 k(k — 2)Vi. The Euler character is obtained because the number of loops,
propagators and vertices of the Feynman diagram is equal to the number of nodes,
edges and faces of the discretized surface. Therefore the expression for In Zg can

be organized perturbatively in a large N topological expansion of the form

nZs =33 Nz (3.1.3)
h G

where Zé,G) is given by the products of vertex weights and is divided by the order
of the symmetry group C(G) of the graph G.

In order to relate (3.1.1) to quantum gravity we consider the triangulated
by the dual graph G* 2-d surface and we define a Riemannian metric on it by
fixing the lengths of each equilateral triangle to be % Then A = % Yr(k—2)Vy is
equal to the area of the surface since the number of k-vertices of the dual graph

corresponds to a k-polygon of the triangulation that splits into & — 2 equilateral
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1
triangles of area % By defining N = e*"“s and A = e”#B we obtain the disretized
version of the partition function of string theory embedded in a zero dimensional

target space:

1

Zstr = Z Z
The sum over all trlangulatlons simulates the sum over all metrics, where the dis-
tance between metrics defined by triangulations G and G’ is given by d?(G,G') =
3 L (Cy ZJ) where C;; and Cj; are the adjacency matrices of the correspond-
ing triangulations. C(G) is the symmetry factor corresponding to dividing by the
volume of the isometry group of each surface. Note that in this way, the terms in
(3.1.4) sum over only diffeomorphically inequivalent metrics and the division by
the volume of the diffeomorphism group is already taken into account. As I men-
tioned in the introduction each fixed genus term behaves as (A — Ao)X(1¥1/%) when
A = .. By taking the limit N — oo and A — A, such that ¢ = (1 — &)1
and y = (1 — %C)N 4T are held fixed, (so that the string coupling & of (1.5) and
(1.6) is held fixed), every term in (3.1.4) diverges and (3.1.4) gets contributions

from triangulations of arbitrary genus. In this double scaling limit the mean area

0 1
< > BB N Zigty A — A

diverges, and the sum is dominated by configurations with an infinite number of
simplices. For a fixed area partition function one must take the cuttoff to zero

and this way a continuum limit of the theory can be defined.
3.2. The Method of Orthogonal Polynomials and the Double Scaling Limit

In order to solve (3.1.1) we first integrate the angular degrees of freedom
i.e. the unitary group U(N) [41,42]. By writing ® = UTAU where A =
diag(é1,. .., ¢nN) the measure splits in

d® = 1‘[d«1>zz II d(Re®yy,)d(Im®y,,)

l<m

—qusz 1 dKin (@, (6, K))

l<m
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where U = X and Qi ~ ¢i0i5 + i(d; — ¢;)Kij. The jacobian

O(Pi;, Byj)
J(®, (6, K)) =2t ")
(®, (¢, K)) 3, Koy)
= [1(¢: — ¢;) = A%(9)
i<j
is related to the Vandermonde determinant A(¢). Integrating out the unitary

group we obtain

N
Zg = [I]] doi A%(g) e V00 (3.2.5)

i=1
We define real orthogonal polynomials [42] Py (@) = ¢" + ttpn—1¢™ 1 + ... with

respect to the measure dy = d¢ e~ V() from the relation

| A1(6) Pal®) Pr(#) = hudum. (3.2.6)

By adding linear combinations of columns in A(¢) we can prove that

A(¢) = det [¢p, '] = det [Pr_1(ém))]

and that
N-1 N-1 _
Ze =N ] hi=N'AY" I RY, (3.2.7)
=0 i=1

where Ry, = hy/hp—1.

For even potentials, the orthogonal polynomials satisfy the recursion relation

¢Pp(¢) = Pry1(d) + RuPr—1(9) . (3.2.8)

The dynamical information of the theory is contained in the “string equation”

_An

= m (3.2.9)

/ dpPr—1($)V'(6) Pu(9)

which is obtained by integrating by parts the trivial relation [duP._,P, = 0.
The left hand side of this equation can be calculated using (3.2.8) and it is a
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function of the R,’s and the couplings N, A and ¢;. As we take the limit N — oo
the model becomes critical for A — A.. The potentials in the neighbourhood of
the critical potentials constrain the eigenvalues of ® to be in the closed interval

[— e, pc]. In the large N limit the density of eigenvalues p(¢) = d(%N) scale for

¢ — ¢, as
p(¢) ~ P(¢)y/#2 — 42, (3.2.10)

where P(¢) is a polynomial in ¢. We can tune k coefficients in the potential so

that as

Pr(8) ~ (P — $)F72 . (3.2.11)

Then a non trivial multicritical scaling behaviour is observed as A — A, near the
edge of the support of p(¢). It is this region that contributes to the scaling part
of the operators of the theory [15].

If we take the large N double scaling limit, A — A. by keeping ¢t = (1 —

n 2k A 2k 3
¥)NZT and y = (1 — £) N2+ fixed, we can prove that R,’s scale as
_ 2
R, = R, + N~ 2T y(x) (3.2.12)

with © = ¢ + y. The constant R, # 0 comes from the naive large N (spherical)
limit. Then the limit of (3.2.9) gives a differential equation of order 2k — 2 [1-4]

T = @k%k'l)”Rk[u] : (3.2.13)

The Ry[u], called the Gelfand-Dikii potentials [43], are polynomials of u and its z-
derivatives up to u(**=2), The general term is of the form (u)% (u/)% . .. (u(2k=2))225-2
such that ag + %al + ...+ kagg_s = k. They are defined from the asymptotic
expansion of the diagonal of the resolvent R(z,y; £) of the operator £ — @) where
Q=0*>—uand 0 =0,

o0
R,
R(z,z;€) = l[li] , (3.2.14)
=0 ¢+3
and they are given by the recursion relations
1.3
ORj+1[u] =(18 — %(au + ud))Rg[u], Rolu] = % (3.2.15)

=M%V Ry[u].
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We may obtain the weak coupling expansion x2 = z=@+1/k) 5 0 by observing
that
u~ g * (1 =3 Zstm) (3.2.16)
m

is an asymptotic solution to (3.2.13). Then the string susceptibility defined by
Z ~ (A — 1)@ Tar)¥ jg
1

Patr = = - (3.2.17)

According to (2.1.20), this is consistent with a minimal (non-unitary for £ > 2)
CFT with (p,q) = (2k — 1,2).

The coefficients Zp, in (3.2.16) grow as (2m)! making the series non-Borel
summable [44]. This means that there is an ambiguity in defining u non-
perturbatively from (3.2.16). Every function that has an asymptotic expansion
(3.2.16) will differ from another by exponentially small terms. Therefore the
double scaling limit is a non-perturbative definition of the sum over genera of
(2k — 1,2) minimal CFT. The (2m)! growth is typical to string theory [45] as
opposed to the m! growth in field theory.

If the k¥ multicritical point is obtained form the multicritical potential
Vi(A, g), the scaling operators oy, of the theory are obtained by introducing sources
tor+1 and perturbing Vi to Vi —> 19111 VIN % This defines the massive model

and the solutions are given by the massive string equation
>t (20 + DR[u] =z, (3.2.18)
l

which give the k*® multicritical point when log+1 = (2]{:2Tk'1)” and all other #9741 are
zero. This gives the partition function Zg(¢1,t3,...) as a function of the “masses”

or “times” 19741 and we define

0
Otog+1

<0'k> = anq> . (3.2.19)

In the spherical limit z — oo, (3.2.18) reduces to

z=uf =3ty (3.2.20)
l
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which gives (see [4] for an elegant derivation)

0 0
Ol ---01,) = anq>t
< ! p> Oto, +1 at21p+1 g (3.2.21)
o p(SH1=(=2)k) /k
where > = ); l;. For the operator o; we obtain
(o) ~z (3.2.22)

From the point of view of (2k — 1,2) minimal CFT coupled to gravity via
Liouville theory, x is coupled to the lowest dimensional operator of the theory,
which in the notation of (2.1.23) and (2.1.25) scales with the area as ag/y = k/2.
(3.2.20) gives the scaling of the gravitational operators with respect to the lowest
dimensional operator to be a/ag = % The scaling with respect to the area is
given by % = O%O%Q = % with 1 =0,1,...,k— 1 which coincides with (2.1.25) for
(p,q) = (2k — 1,2). The same scaling can be obtained from (3.2.22) by dividing
by the scaling of the quantum gravity partition function which scales as ~ 22+ E.
This normalization has to be taken into account since (3.2.22) gives disconnected
quantum gravity correlation functions (but connected matriz model correlation
functions since In Zg = Z4,. Notethat [ =0,1,...,k—1 are the relevant operators
of the theory.

The agreement of the matrix model results with Liouville theory can be further
established by calculating loop operators. An operator of the form tr®? inserts a
loop of p lattice lengths on the surface. We may obtain a loop of finite length L
in the continuum limit -a macroscopic loop- by carefully taking the limit p — oo
while keeping L = %chaz/k fixed. R, is given in (3.2.12) and a = N—F/(2k+1)
is the lattice cutoff. In this limit we can prove that tr®” tends to a macroscopic

loop operator [16] w(L) whose correlator is given by

(w(L)) = /;d:v < zelQz > . (3.2.23)
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The states |z > are the limits in the continuum of the discrete orthonormal states

In >=

h e"2xV P,. The operator @ is (minus) the Schrédinger operator

n

Q=0%—u. (3.2.24)
The two loop corelation function is given by
o0 !
(w(L)w(L")) = / dzds' < z|elR)z’ >< 2’|l Uz > . (3.2.25)
VE
The operator w(L) can be expanded in terms of o; as

1
w(l) =Y [}t
>0

RO (3.2.26)
=2) (21 1 70
l; ’ N |

The operators o; and o; are related by an upper triangular operator whose co-
efficients are analytic functions of u. Since we are interested only in the non-
analytical behaviour of the operators, there is really no distinction between them
in the physics of the continuum. In the spherical limit it is easy to calculate
(3.2.25) and obtain the correlator (G;w(L)) in the limit L' — 0. The result is [16]

@w(L) = VA K,y (VAL) (3.2.27)

and we see that it agrees with (2.1.27)! This is remarkable because (2.1.27) results
from a minisuperspace approximation. It is not clear why this should be so.

I close this section hoping that I gave to the reader a flavor of some of the
successes of matrix models in confirming perturbative results of Liouville theory
and providing a sensible definition of non-perturbative non-critical string theory
in dimensions less than one. Despite this success, however, we still cannot get any
lessons on important problems of Quantum Gravity, such as the quantum nature

of singularities, loss of information in black holes etc. We got some important
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lessons, like for example the (2h)! growth of the perturbative terms of string theory,
the importance of singular geometries with non-normalizable wave functions in
quantum gravity and string theory and the beautiful mathematical structure that
arises in the continuum that will be the subject of the next section. There are
still many interesting open problems in the field, such as the solution of quantum
Liouville theory, the better understanding of the backgrounds that arise in matrix
models and, most important for string theory, the passage of the ¢ = 1 barrier
that will lead to the understanding of physics in realistic dimensions.

The results that we discussed in this section were confined to one hermitian
matrix models (HMM). The more general model of a chain of matrices (MHMM)
will be discussed in the last section of this chapter. These will lead to the solution
of general (p,q) CFT.

3.8. Hermatian Matriz Models and KdV Flows

The integrable nature of HMM in the double scaling limit arises most naturally
in the operator formalism [5]. The KdV hierarchies describe the flows between
multicritical points [5,16] which are induced by perturbing away from the mul-
ticritical points using the operators o;. The “times” #1917 of the flows are the
sources of these operators. The flows are compatible with the string equation,
i.e. solutions to the string equation flow to other solutions of the string equation.
The restriction put by the string equation into the space of solutions to the KdV
hierarchy is described by a set of constraints that these solutions must satisfy.
Those constraints act on the square root of the partition function and satisfy the
centerless Virasoro algebra.

At the discrete level we choose an orthonormal basis

In >=mn(9)

1 5V P.() (3.3.28)

n

which satisfy
< nlm >= /d¢7rn(¢)7rm(¢) = bpm -
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The operator of multiplication by ¢ and the derivative operator act on this space

of states by
O T =QumTm

(3.3.29)
=/ Bn+17n+1 + \V Rymn—1
and
L (3.3.30)
d(ﬁﬂ-n = I'nmTm - -9.

For the k' multicritical point we take the minimal degree multicritical potential,
which is of order 2k. Then, because of (3.3.29), P, has only 2k —1 non-vanishing
lines off the diagonal. Therefore we can tune @)y, and P, to a second and

(2k — 1)t order differential operator, respectively, that take the form

Qnm —Q = 2 —u
2k—1 3.3.31
Pam =P =Y oy(2)d" . ( )
=0
The string equation is obtained from the obvious relation [%, ¢] = 1 that in the

continuum limit becomes

P,Q]=1. (3.3.32)

This equation is highly nontrivial. The left hand side is a differential operator
of order 2k — 1 and gives 2k equations that the 2k — 1 functions ¢oq(x) and u(x)
must satisfy (we chose a basis so that a1 = 1). These equations determine the
functions oq(x) in terms of u(z) and its derivatives and give the string equation

for u(x). The result is
1

Ll
P =Q ? (3.3.33)
T =2Rk [u] .

1 .
The unique operator Q2 = 0 + >2 ¢;(x)0~" is a pseudo-differential operator (
UDO ). A ¥DO is a formal laurent series of the 0 symbol with coefficients
functions of z (which will be considered formal series of z). The negative powers

of 3 are defined by analytically continuing the Leibnitz rule

0 f(z) = f; (—=1)k R (g)g~1k

k=0
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We define by W, and W_ the part of the YDO ¥ = ¥, . ¥;(x)0° with positive

and negative powers of J respectively. We also define by Res ¥ to be the function
1

t_1. Then (3.3.33) derives from the simple relation [Qﬁ__%,Q] = —[Qﬁ_E,Q] =
Res Qk_% and from the result of [43] that Res Qk_% = 2Ry [u].

We may perturb away from the multicritical point using the operators o;.
Then Vi, — Vi + > ytoir1V; and P, — P = Py + > ;to;+1 . By normalizing

appropriately we obtain the string equation of the massive model

Juy

I—
P= Zt21+1Q+ 2
l

> tyrRyu] = 2.
I>1

(3.3.34)

(3.3.34) gives u = u(t) and consequently Z = Z(t). The t evolution of u is given
by the KdV integrable flows [16]

ou
Otak+1

= ORy[u]. (3.3.35)

This is proven by taking the continuum limits of the operators g; as I will explain
in chapter 6 for the UMM.

A very important question that someone can ask at this point is whether we
can start from a given background described by the k*'multicritical point and use
the flow equation to reach a different multicritical point. This is in principle true,
since (3.3.34) and (3.3.35) are compatible with each other. A physical solution,
however, must obey certain boundary conditions. In the case of string theory
the solutions should be asymptotic to the weak coupling asymptotic expansion
(3.2.16). They should also be real and free or real poles. Reality is imposed by the
requirement of reality of the partition function. A generic solution of (3.3.34) will
be functions with second order poles on the real axis [1-4]. These correspond to
zeroes of the partition function. The position of the pole is a free parameter of the
theory and the solution cannot be specified by the genus expansion requirement.
Moreover, [46] found that solutions with poles on the real axis are incompatible

with the loop equations - the Schwinger-Dyson equations of the matrix model.
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For k odd there exist well defined, unique physical solutions specified by the
weak coupling expansion [47). For k£ even there exist no real, pole free solution
satisfying (3.2.16). This reflects the fact that a minimal even order multicritical
potential is unbounded from below - the coefficient of the highest power term
is negative- , making the path integral ill defined. Then one must use the path
integral as the definition of perturbation theory and the differential equation as
the definition of the non-perturbative, continuum theory. By using analytic con-
tinuation, we obtain complez boundary conditions (~ z'/¥) for + — —oo. In that
case the solutions are pole free on the real axis but they are complex. The imag-
inary part indicates a non-perturbative instability that is exponentially small for
x — +4o00. If one defines the matrix model at an even order multicritical point
by using a higher order potential bounded from below, the real solutions will nec-
essarily have poles on the real axis and they will be incompatible with the loop
equations.

From the discussion above, we expect that the flows from odd order multicrit-
ical point physical solutions to even order ones will be impossible. If one tries to
flow from the £ = 3 points - the Yang-Lee edge singularity [48] - to the k = 2 -
pure gravity - using (3.3.35), an instability forms and the & = 3 background never
decouples from the k£ = 2 operator [49]. This was proven numerically in [49] and
analytically in [50].

In the following I will mostly ignore physical questions of this nature and focus
on the mathematical structure of the solutions to the string equation (3.3.32). I
will discuss formal solutions to (3.3.32) without referring to any specific boundary
condition. We can get a geometrical picture and compute the space of solutions
to the string equation by introducing the Sato Grassmannian.

Consider the space of formal Laurent series
H={>) anz", a,=0 for n>>0}
n

and its decomposition

H=H,.®H_,
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where Hy = { Y. a2, ap, =0 for n > 0}. Then the big cell of the Sato
n>0

Grassmannian Gr(© consists of all subspaces V' C H comparable to H,, in the
sense that the natural projection 74 : V — H_, is an isomorphism.

Consider the space ¥ of pseudodifferential operators W = % w; ()0
where the functions w;(z) are taken to be formal power series (i.e.zg?w,-(:v) =
S wikz®, wir =0, k> 0). W is then a pseudodifferential operator of order k.
If‘cz ?s called monic if wg(z) = 1 and normalized if wy_1(z) = 0. The space ¥ forms
an algebra. The space of monic, zeroth-order pseudodifferential operators forms
a group G.

There is a natural action of ¥ on H defined by

20" H— H
¢ = (=)™ (2)" 6.
Then it is well known [51] that every point V € G0 can be uniquely represented
in the form V = SH, with S € G.

Then, given the operator Q = 6% — u, we may associate to it uniquely a point
V € Gr® by demanding that

Q= S"18%S. (3.3.36)

Then the string equation (3.3.32) gives a unique operator Ay, such that [23]

P=5"14,58, (3.3.37)
where
.Ak=;%5+—§:(nz, oz =3 (3.3.38)

I=-2
lodd
Since a differential operator leaves H. invariant, the conditions () Hy C H4+ and

PH+ C H_|_ give
QH, CH,=QS'vcslv

=02V CV (3.3.39)
=22V CV
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and similarly [23,25,26,27]
AV CV. (3.3.40)

It follows that the solutions to the string equation (3.3.32) are given by points
V € Gr0 that satisfy (3.3.39) and (3.3.40). The KdV evolution of those solutions

are given by spaces V() = V(¢1,1s,...) that evolve according to the equations

V() =227V (1) (3.3.41)

which imply V(t) = exp(X; ta1122 )V = 4(t,2) V.

Then solutions to the string equation flow to solutions of the string equation

since
2yV CcyV =2V([E) C V()
(3.3.42)
YARY YV CaV =S4 V() CV(L),
where
2k—1
Ay (t) = ’)/Ak’y_l = Ay — 3 Z (l + 2)tl+2zl . (3.3.43)

1=-2
lodd

By formulating the string equation in terms of conditions on points in Gr{®, A.
Schwarz [23] computed the space of solutions to the string equation (3.3.32). If
Mj_1 2 is the space of 2 x 2 matrices P = (P;;) with polynomial entries satisfying
2k — 1 = max;j=12(j — i + 2deg P;j) for every i, and T3 is the group of invertible
2 x 2 upper triangular matrices T' = (T3;) acting on Mgg_19 by P — TPT 1,
then the space of solutions is given by Mog_12/72.

The solutions to the string equation can be given in terms of the 7-function
u=—-20%Int.

The KdV 7-function obey the bilinear Hirota equations and will be discussed in
detail in chapter 7. The matrix model partition function for models with even
potentials is given by

Z =12, (3.3.44)
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There is a 1 — 1 relation between the points V € Gr(® and the 7-functions
via the Pliicker embedding and the two dimensional equivalence between bosons

and fermions. Then the relation
A0DAV Vo n> -1 (3.3.45)
implies a set of constraints for the 7-function associated with V:
Lor=0 n>-1. (3.3.46)

The L, satisfy the centerless Virasoro algebra [Ly, Ly) = (n — m)Lptm. The

action of Ly’s on 7 is given by

L—i(k—i—l)t 9 li o + L0+ 126
n—k=0 9 2k+lat2(k+n)+ 2 = t2k 161&2(" ka1 16 7,0 3 19n,—1

(3.3.47)
Note that the Virasoro constraints on the 7-function are the necessary conditions
for the compatibility of the string equation and the KdV flows. The authors of
[17,18] derive the Virasoro constraints as a consequence of the loop equations that
the macroscopic loop operators should satisfy. I will discuss the connection of the
Virasoro constraints in the context of the fermion-boson formalism in chapter 7.
In this formalism the 7-function corresponds to a state |2 >; in the bosonic Fock
space. The Virasoro operators (3.3.47) can be considered as the negative order

Laurent expansion coefficients of the stress energy tensor [18]

of a free twisted bosonic field p(z) = —p(27iz). Acting on the states |Q >4
the positive modes of the field dyp(z) creates a loop operator w(z) where w(z) =

J dLe~L%y(L) is the Laplace transform of the loop operator w(L)

< 0[8p(2)|2 > _

} 3.3.48
< 0] >4 w(z) >¢ ( )
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The negative modes of the field d¢(z) are similarly annihilating a loop w(z). The
authors of [18] speculate that ¢(z) plays the role of a second quantized string field

in a possible formulation of string field theory.
3.4. Matriz Models of Hermitian Chains of Matrices.

A matrix model of a chain of ¢ — 1 N X N hermitian matrices (MHMM) ®(¢)

linearly coupled to each other, is defined by the partition function

g—1 N g—1 q—2
Z, = / [T] d®(t)] exp{—~—(> trVi(®(t)) + 3 cstr®(B)B(t + 1))} . (3.4.49)
t=1 A t=1 t=1

The interpretation in terms of discrete random surfaces is that (3.4.49) describes
the perturbation theory of a statistical system of (¢ — 1)-valued spins lying on the
nodes of a discretized Riemann surface. Mehta [52,53] explained how to integrate
the angular degrees of freedom and reduce the integral (3.4.49) to an integral over

the eigenvalues ¢;(¢) of the matrices ®(¢). The result is

N
Z, = [[[dgi()] AG()AB( — 1)) exp{—~ S(V($i(0) + cudi(t)ilt + 1)}
it it
(3.4.50)
with A(¢(2)) = TTi;(4:(t) — 8;(2))-
In this form the matrix model can be solved with the aid of orthogonal poly-

nomials as described in the previous section. The operators P and () discussed
for HMM are defined similarly

¢n (B, 1) =Qnm ()7 (4, 1) -
There is a recursion relation [5] relating P(¢) and Q(t) to P(t — 1) and Q(¢ — 1).
Therefore all the operators P(t) and Q(t) are determined from P = P(1) and

(3.4.51)

@ = Q(1). The double scaling limit at the p*® multicritical point is reached by
taking the limit N — oo and A — A.. In this limit

P= éai(aﬁ)ai
% | (3.4.52)
Q= ;)ui(:v)az
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where o = 1, ug = 1, uq—1 = 0 and u4_9 = u gives the scaling part of the specific

heat. The string equation is given by (3.3.32) with solution
P=qr1. (3.4.53)

The operators P and @ act on Gr(0 via the operators [23]

P =5"1AS
Q =5"19153,
with Ap 4 = dd? + Zﬁ;_q i, a_g = —q;—l and o, = 0 for m = Omodg. The

string equation has solutions given by the points V € Gr® satisfying [23,25,26,27]

AV CcV

(3.4.54)
22V V.

The evolution of the solutions V' and the operator A with the couplings ¢ is given

by
d r
& V="V

At) =v(t, 2)Av™1 (¢, 2)

(3.4.55)

with y(2, 2) = exp(Xr2£0 modq tx2*). The first of these equations are the g-reduced
KP hierarchy, alternatively given by
dQ

Fri [ :_/q, ], r# 0modq. (3.4.56)
r

The 7-function associated with V' is now annihilated by the Virasoro constraints
Lk 7T=0 , k Z -1

with
¢ -1

1 1
Ly = - Z Jaqu—a + ngq/z + Tﬂlék’o

q 2a<kq
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which is a consequence of the relation 22 AV C V. Here the currents J, = d/0t,
for a > 0 and J, = —at—_, for a < 0. There are additional constraints on the

T-function that obey the W-algebra. They are given by the relation
WV =24V cv. (3.4.57)

These are extra non-trivial constraints only when ¢ > 2. For ¢ = 2 they reduce
to the Virasoro constraints [54].

The space of solutions to (3.3.32) is now given by the quotient My, 4/74, where
My 4 is the space of polynomial ¢ x ¢ matrices with entries P;;(z) satisfying
p = maxi<j<q(j — i + gdeg P;;) and 7y is the group of ¢ X ¢ upper triangular
matrices.

MHMM are very important because they are related to the (p,q) minimal
CFT coupled to gravity. The weak coupling expansion of the specific heat u,_»
gives the string susceptibility exponent ['gy, = —#.

Q'fr_qsv @=1) and scale with the area with

The scaling operators
are given by perturbations P — P + ¢
exponent % = 1?211%7 exactly as in these theories. There is also a more economical
way to obtain the (p, ¢) minimal CFT models by simply considering a two MHMM
[6,7]. By choosing potentials V1 (®(1)) and V2(®(2)) of order p and ¢ respectively,
one can reach a series of multicritical points labeled by (p,q) such that in the
double scaling limit the operators P and () are differential operators of order p
and q respectively. One finds the same set of operators with the correct scaling
behaviour, giving the same string equation and the generalized KdV hierarchy as

the one obtained from the (¢ — 1) MHMM.
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CHAPTER 4

The Large-N Limit of Unitary Matrix Models

From this chapter on I discuss Unitary One Matrix Models (UMM). In this
chapter I discuss the definition of the model, the motivation that led to the study
of the problem and the multicritical behaviour of UMM in the naive large N (“pla-
nar” or “spherical”) limit. The latter is better understood in the Coulomb gas
like behaviour of the eigenvalues of the unitary matrix on the unit circle. I restrict
the discussion to a certain class of potentials which are real, polynomial and sym-
metric under reflection on the z axis of the complex z-plane where the eigenvalues
lie. This is called the symmetric UMM or simply UMM. For a brief discussion of
more general potentials leading to a more general multicritical behaviour see the

last section of chapter 6.
4.1. Definitions and Motivation

The partition function of UMM is given by the integral
N f
Zy = /dU exp{— V(U + UM}, (4.1.1)

where U is a 2N x 2N (or (2N + 1) X (2N + 1)) unitary matrix,

VU +UN) =Y g(U+ U
E>1

E>1

(4.1.2)

and dU is the Haar measure of the unitary group U(2N).

These models were studied by Gross and Witten [8] and Wadia [55] in 1980 in
the context of two dimensional pure QCD. Pure 2-d U(2N) gauge theory on the
lattice is defined by the Wilson action

SW) =Y ~tn([JU + hee), (4.1.3)
p p
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where [[, U = Uy ioUn+ig,iy Un+ig+ir,—ioUn-+iy,—i, 18 the product over each plaque-
tte of the parallel transport matrices Upy;, from the lattice site n to the lattice
site n + 15 and ¢g and ¢; are the unit vectors on the square lattice in the time and

space direction respectively. The partition function is

Zgep = / DU exp{—S(U)}. (4.1.4)

DU =1l AUy, where dUp,; is the Haar measure of the unitary group U(2N) on
the link (n, 7). dU is invariant under U — VU or U — UV with V € U(2N). The
theory is gauge invariant under U,; — VnUnyz-V,:r +i- If we fix the gauge Ag = 0

(Un,+i, = 1) and change variables Upt44, = WnUp s, we obtain

Zgep = /[H dWh,] exp —% 3 tr(We, + W)}

v
2

=(Zw)aZ .

(4.1.5)

V is the volume of the 2-d world and a is the cutoff. The evaluation of (4.1.5) in
the large N limit using the techniques described in the following chapter, reveals a
third order phase transition as A = g2 N — 1 from the weak to the strong coupling
phase. Important lessons for real QCD can be learned for the validity or not of
the interchangeability of the strong and weak coupling limits with the large N
limit, the area law and stringy behaviour of QCD and the possibility of a large
N third order phase transition for real QCD separating the weak from the strong
coupling phase.

For more general potentials, UMM have a similar multicritical structure as
HMM with multicritical points labelled by an integer k. After the discovery of
the double scaling limit for HMM, Periwal and Shevitz [9,10] discovered a similar
double scaling limit for the UMM. This is reached in a quite similar way by
taking N — oo and A — A, and keeping t = (1 — %)N% andy = (1— %)N%
fixed. In this limit there exists a genus expansion of the free energy in the weak

2—

coupling limit in terms of the “string” coupling x% = z~ F.It is tempting to

try to relate the theory to a known CFT coupled to gravity. Comparison of the
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string susceptibility and the scaling part of microscopic and microscopic loops
[11] point to (4k,2) superminimal CFT or O(—2) models. Careful examination
of the solutions to the string equation [56] rules out the latter and the lack of
sufficient continuum results make the former inconclusive. Other possibilities
could be a topological phase of quantum gravity or an open-closed string theory
interpretation [57] but the correct interpretation, if any, is far from being well
understood.

One difficulty with interpreting UMM as a statistical model coupled to gravity
is the lack of a clear random surface description similar to the one found for HMM.
Neuberger e.g. attempts to obtain such an interpretation by considering (4.1.1)
written in terms of a hermitian matrix ® such that U = ¢*®. In the case of the
simplest potential V(U + Ut) = U 4 U, he introduced fermionic (grassmannian)
2N x 2N hermitian matrices 1 and 1/ in order to exponentiate the Haar measure
dU. The result is

Z —/d@dz/zda exp{—tr(®% + Py + 2§j (1) (i)’ ilj i@’%@”—w
U= P Z21+1'N k(20 — k)!

(%) ERAY/
+2l=21 (2(z+1)2)!(%)@2m)}'

This describes a surface with an infinite number of types of bosonic vertices. The
bosonic parts of the surfaces have fermionic double lined boundaries. It is not clear
however what types of surfaces are “creamed out” by the double scaling limit. In
that respect the result of [14,11], that show that HMM have multicritical potentials
that lead to a double scaling limit which is the same as the one obtained from
UMM, is very interesting. This class of potentials look like a double well potential
as opposed to the ones described in the previous section that look like a single
well potential. The density of eigenvalues has support on two segments (cuts) of
the real line and criticality is reached when the two ends of the segments meet
with each other. In the potentials described in the previous section, criticality is
reached when the potential is such that the eigenvalues reach the tip of the well

and are just about to “spill out” on the whole (or half) real axis. The former
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case resembles the multicritical points of UMM discussed here. The eigenvalues
of UMM in the weak coupling phase are distributed over part of the unit circle
and multicriticality is observed when the eigenvalues are just covering the whole
circle. The scaling of the eigenvalue distribution in the large N limit near the
edge of its support is responsible for the scaling of the operators of the continuum
theory and is similar for the two models. Therefore we expect the same universal
behaviour from the two models and this is indeed the case.

Integrable hierarchies arise naturally in the continuum theory of UMM describ-
ing the -well defined- flows between multicritical points. The hierarchy related to
UMM is the mKdV hierarchy. In the double cut HMM the relevant hierarchy is
the NLS hierarchy [11] which reduces to the mKdV hierarchy when we consider
only odd order perturbations. Most likely the same hierarchy arises from UMM
by considering more general potentials -see discussion in section 6.4. These sim-
ilarities with HMM are remarkable and give further motivation to search for a

world sheet interpretation of UMM.
4.2. Critical Behaviour of UMM wn the large N limit

The integral (4.1.1) can be reduced to an integral over the eigenvalues z; = /%
of U by integrating out the angular components of U. We define U = V12V with
V € U(2N) and z = diag(z;j). Then U = z + i[2, K] where V = e'X. By

computing the Jacobian as in the case of HMM we obtain

dU = [ dUs [ dReUsj dImU;; = dK de: A(e)A(c) (4.2.6)
) 1<j

where |A(2)|? = |A(0)]? = H 2k — 2|2 = 42N TT sin? (%522) is the Vander-
k<j
monde determinant. Then we can integrate dK out and obtain [8]

70 = [ ) 1A ep(=3 SV e+0)

27rzz
(4.2.7)

= [ (T doy} 1A (0) Pexp{~ 3" V(2cosai)}
¥ 1
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The large N limit is dominated by the saddle points determined by

IN 2N —
TV'(2 cos i) siney + Y cot Y% _y. (4.2.8)
e
At these points the free energy of the model is
1 1 N 2N 2N i — O
im — = lim —{—— 2 ; In | sin —2 - 4.2.
A}gnooNzanU A}E}nooNz{ )\;V( cosaz)—i-; n|sin 5 1} (4.2.9)
ij

where the o are solutions to (4.2.8).
In the limit N — oo we may reach a continuum limit of the above equations

by replacing i = a(5k) = a(z) where i = 1,...,2N,z € [0,1] and 5% > —
i#j

P f(jl dzx ﬁ > = f(j[ dz. We introduce the density of eigenvalues
i

2r—a
p(a) = —=— >0 such that / dap(a) = 1. (4.2.10)

Qe
Condition (4.2.8) and the free energy (4.2.9) in the continuum limit are given by

271'—040 o — /B

%V’(2 cos a(z)) sin a(z) = —P/ dg p(B) cot (4.2.11)
and
InZy = —% /Oiw—ac da p(e) cos a + P/dadﬂ p(a)p(B)1In | sin @ ; ﬁ| + const. .
(4.2.12)

Therefore the dynamics of the model are described by a one dimensional gas of
like electric charges living on the unit circle. The first term in (4.2.12) describes
their interaction with an external electric field and the second one the mutual
Coulomb repulsion. For example if A > 0 and V(z + 2*) = 2z + 2*, the gas
is subject to an external homogeneous electric field in the —z direction. When
A — 400 (the strong coupling limit), the electric field is weak compared to the

Coulomb interaction and the eigenvalues tend to distribute homogeneously on
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the unit circle. As A — 0 ( weak coupling limit) the electric field pushes all
eigenvalues close to o = m. Therefore at an intermediate value A = A., p(«) thins
out around « = 0 and develops a cut. For A < A. p(«) has support only on the
interval [o, 27 — o). I denote this part of the unit circle S' by Séc. As A — A,
a. — 0 and the scaling of p(«) near the edge of its support leads to the scaling
of all thermodynamic quantities and to a third order phase transition. For more
complicated potentials there can be multiple cuts created with the passage of a
phase of nj cuts to a phase with ng cuts. These transitions were studied by [58].
He found multicritical behaviour from transitions from the one cut phase to the
no cut phase with I'y, = —1/k with k£ = 1,2,.... For the case were we have a
transition from the one gap phase to the n gap phase, he found only transitions
characterized by I'gs, = —1 and multicritical behaviour is not known to exist. No
critical behaviour is observed from the no gap phase to the n gap phase.

In order to solve (4.2.11) for p(c) we study the function

271'—049 2 — /B

F(z) = / 4B p(B) cot = (4.2.13)
Qe

The function (4.2.13) has the following properties

(i) It is periodic F(z) = F(z + 27).

(ii) It is analytic for e* ¢ S} .

(iii) It is real for e* ¢ S} and as S} is approached we have

1
F(a+ie) = —XV'(cos @) sina F 2mip(a) . (4.2.14)
(iv)
F(z) > Fi as z— 21 £icc. (4.2.15)
In order to prove (iii) we use the well known identity w'—zluq:z'e = P(+-)+

§(w' — w). Since cot(z — 3/2) ~ ﬁ as z — [ we have that cot(a — f Fe€) =

P(cot oz_;,(_i) + 2imé(a — B). Using (4.2.10) and (4.2.11) we easily obtain (4.2.14).
For the proof of (iv) use (4.2.13) and the normalization (4.2.10).
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Solutions to the above conditions are given by

1
F(z) = _XVI(COS %) sin z — P(sin? g) sin g(cosz g _ cos2 %)

D=

(4.2.16)

The polynomial P(z) is a polynomial of degree one less than V' (z). We can solve for

its coefficients and cos %¢ as a function of the couplings using (4.2.15). One way to

do this is by setting Z = sin £. Thencos £ = —v1— 22 = —z'Z-i—%-i—S%-l—. .. (the

Z=e'2—e"2and 2cos 5 =e'2+e7'2

2
as z — 21 + i00) and we can expand (4.2.16) in terms of Z for large Z. Then

sign choice is made for Rez > 0 so that 2¢sin

(4.2.15) gives a set of linear equations determining the coefficients in the potential
and «. as a function of the couplings g and A (there are k couplings g in the
potential and A and k coefficients in P(z) and «). Note that g; turn out to be
real, resulting in real potentials, which is not a priori true.

From (4.2.14) and (4.2.16) we obtain the density of eigenvalues

1
pla) = %P(sin2 g) sin |%|(c0s2 % — cos? g)

D=

(4.2.17)

The k" multicritical point is reached by tuning the couplings in the potential so
that P(z) = ag2"~! and cos % — 1. In this case the critical density of eigenvalues
is given by

pr(c) oc sin?* g : (4.2.18)
which for « close to its critical value o, = 0 gives

pr(a) ~ o2 (4.2.19)

We always normalize the critical potential so that A\, = 1. In this case the kt"

multicritical potential is given by

2k—1 %

—Vi(2cos z) sin z + ¢ sin E(cos - 1)% ~ —i.

Since the potential is a polynomial, it is fully determined by its large Z = cos §

asymptotics. We find

1 _ 1.1
Vi(4Z% - 2) = Sok(1— ZHkE1(1 - Z)t (4.2.20)
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In the last equation we expand the right hand side in powers of Z and keep
only positive powers coefficients. By equating equal powers of Z? we obtain the
couplings gi. In chapter 6 we will see that the above potentials result in a third
order phase transition such that In Zy ~ (A, — A)2+%.

The scaling operators of the theory o; are those that perturb the multicritical
potentials Vi, — Vi + to141V] so that they modify the scaling behaviour of p(c)

near the edge of its support

pr(c) = pr() + pi(a) .

The normalization condition for p(a) is preserved if [27~*° pj(a)da = 0. The

perturbations p;(«) scale as

(@) o sin? % ~ o™ (4.2.21)

giving relevant operators for [ < k, marginal for m = k and irrelevant for m > k.
For [ < k the operators are relevant because they modify the leading scaling

behaviour of pi(«). The solutions satisfying the normalization condition are given
1

by pm(a) % sin®™ (1 — cos? )% and correspond to multicritical potentials

P (1- 21— 2)

~ (4.2.22)

+M|>—A

The operators o; are further discussed in chapter 6. Their scaling in the large
N limit is found to be [10,4]

(Omy - - Omy) ~ al=TI= =Rk (4.2.23)

where ¥ =3 ;m; and ¢ =1 — %c Note that (4.2.23) is identical to (3.2.21) and

HMM and UMM have the same universal behaviour in the spherical limit!
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CHAPTER 5

The Method of Orthogonal Polynomials for UMM

In this chapter I present the method of orthogonal polynomials that has been
used successfully for solving the HMM [42] and UMM [9,10] at the discrete level.
For UMM this method was first used by Periwal and Shevitz. They defined a basis
of orthogonal polynomials { P,(z)} (I call it the PS basis) that enabled them to
solve UMM in the double scaling limit. UMM in this basis is discussed in section
5.1. A more convenient basis was defined by Myers and Periwal [59] and was
used to solve UMM by the authors of [21]. This is called the trigonometric basis
{c(2)} and is discussed in section 5.2. In this basis the similarities between HMM
and UMM are more obvious and it is easy to develop the operator formalism for
UMM. The transformation between the two bases is used in order to obtain the

double scaling limit in the trigonometric basis.
5.1. The Periwal-Shevitz (PS) Basis { Pn(z)}.

The PS basis is defined by orthogonal polynomials

n—1
Pp(z) = 2"+ Sp—1 + Z anykzk, apgk >0, Sn—1>0
k=1
such that
< P, P >= /d,u Pa(1/2)Pra(2) = hnbpm . (5.1.1)

Recall that z = €' so that P,(1/2) = P}(z). The measure

/d,u — 7{ 2?_‘_% e—%V(z-pz*) _ 621_: e-%V@cosa) ) (512)

The main property of the polynomials P,(z) used for solving the model is

Pri1(2) = 2Py (2) + SpPr(1/2), (5.1.3)
where
fne1 _ 4 _ S2. (5.1.4)
hn
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Proof: Define the operator M,, and the polynomials Q,(z) by

My P (2) =2"Pp(1/2)

(5.1.5)
Qn(2) =My Pp(2) = 2"Pp(1/2) .
Use the fact that 2" = Pn(2) + X020 cnx Pr(2) to prove that
P 1 i1
< 25| —Qn >=/d,uz —Qn(z) = 00 k<n. (5.1.6)
hn hn ’
Then
1 ml 1
< P +—Qn >= (< 2™|+8p_1 < 2|+ > ami < D —Qn >= Sp_1 m<n,
ha = ha
so that
1 LA | 1
—Qn(2) = Z —Pp(2) < Pp| —Qp >
b, 0 Pim b,
(5.1.7)
= Sm—l
= Z Pr(2)
m=o h/m
Then
1 1 Sn—1
— — —Qp— = P, . 5.1.8
Q) — - Quesl) = SR 5.9
Apply M, on both sides and get
hn
Pu(z) = z lan_l(z) + SpQn(z). (5.1.9)
n—
From (5.1.8), Qn(2) = Sp—1Pa(2) + hZ—flzn_an_l(l/z) so that
2 hn hn n—1
(1—=S;_1)Pa(z) = 2Pp_1(2) + Sn—12"""Pp_1(1/2) . (5.1.10)
hn—l hn—l

Equating powers of 2" we obtain (5.1.4) and substituting back to (5.1.10) we
obtain (5.1.3).

46



The partition function (4.2.7) is given in terms of the norms h,, of the orthog-

onal polynomials. By writing the Vandermonde determinant as

1<jJ
=det (zF)
=det (Py(zi))

= Z ekl...ligNPkl (Z]_) "t PkQN (Z2N) 7
k

we obtain
Zy = Z /[H d:u‘(zj)]eh---H2Nel1--->\2NPI:1 (21) - P]:;QN (ZZN)Ph (21) - Py (z2n)
k,l 7

= Z €ky...kan €l Aan Uy Ok, NRER Py, 6k2Nyl2N

o oN 2N .
=@M hi = @)L = Son—i)’
i=0 =0

(5.1.11)
Therefore by constructing the orthogonal polynomials - e.g. by the Gram-Schmidt
method - we can compute the partition function. All the dynamical information
is contained in the coefficients S,. Alternatively one may solve directly for the
coefficients S, by solving a recursion relation called, the string equation. This is
obtained by considering the trivial relation

/ dpt Pa(1/2)8, Pass(2) = — / 118, Pa(1/2) Pas1(2)+ / du Pn(l/z)(é-i—%an)PnH(z) .

Using the fact that 9,Py41(2) = (n+1) Po(2) + X" Ynm P (2), that 1P.(1/2) =
Pot1(1/2) 4 Snz""Py(z) and that 8,V (z+ 1) = (1 — )V'(2+ 1) we obtain the
string equation

2+ D82 = [ duPa(1/2)(1 - IVt DPa(z). (5.112)

Using the recursion relation (5.1.3), (5.1.12) becomes a non linear functional re-
lation for S,. For example, when V(z + %) =z+ % we obtain
A 2 2
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It is instructive to study the action of the operators z, 2+ = z+1/z and 20, = z%
on the polynomials P,(z).
Using (5.1.3) and (5.1.7) we derive

n

ziPn(z) =Pp1 (Z) + Sn_lpl(l/z) + Z (Z:I:)nkPk(z)

F=0 (5.1.14)

n—1

20, Py (z) =nPy(z) + kz: (20,) i Pr(2)
=1

where, for example,

hn

h2
(24 )k = — b SnSk—1F —
k

thn_l, l<k<n-1

k
N /

(s = = 3 [ AuPe(1/2)2-V"(4)Pal2).

Similarly we can obtain the action of the operators z* and 1/z* [10].

The lesson we get from this little exercise is that because z has an upper
triangular action of z, the action of operators like z1 and 20, do not give short
term relation as in the case of HMM. This makes the operators non local when we
take the continuum limit and the operator formalism is quite complicated. These
problems are surpassed if we use the trigonometric basis {c(2)}.

The integrability of UMM makes itself manifest already from the discrete level.
We may easily get

A Olnhy, 1
N s / duPa(1/2) 74 Pa(2)
which gives using (5.1.4)
A0S
Na—gil = —(1—52)(Sns+1 — Sn_1)- (5.1.15)
Similarly
A0Sy _ 2 2 2 2 2
NG —(1=8;){Sn+2(1=S;541) —Sn(Spy1—S5-1) —Sn—2(1—S;_1)} (5.1.16)
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This system of equations possesses an R-matrix structure and form an integrable
hierarchy. This was studied in [60]. It was called the modified Voltera hierarchy

and it was shown in [21] that its continuum limit is the mKdV hierarchy.
5.2. The Trigonometric Basis {cE(z)}.

By taking appropriate linear combinations of P,(z) and P,(1/z) which pre-

serve the measure factor |A(z)|2 we may construct an alternative basis of orthog-

onal polynomials of the form [59]

imaw
+ n -n + n—i —n+i
c(z)=z"+2 "+ o . (2 "+ =z
=ty (271,
where for U2N +1) nis a non—negative integer and imee = n and for U(2N) n is
a positive half-integer and imaz = n — 5 . The polynomials c¢;-(z) are orthogonal

with respect to the inner product

dz
27mz
= e¢n 5n,m )

exp{~ V(= + 2} e () ch(2)

(5.2.18)
(e ) = efn On,m »

n
(cnscm) = 0.

The importance of this basis lies in the fact that the Vandermonde determinant

det(c (z')> ‘2 , (5.2.19)

¢ (%)
where j = 1,...,2N, i = 1,3, ... N -1 for U(2N) and j = 1,...,2N + 1,
i =0,1,...,N for U@2N + 1) (where the line ¢;(2) = 0 is understood to be

1s

A=) [?

omitted). This can be proved by induction. Similarly to (5.1.11) it can be shown
that [21]
=[e# et =7 (5.2.20)
n
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The transformation from the PS to the trigonometric basis can be computed
recursively. Although it is not known in closed form because of its complexity, the
authors of [21] used symbolic manipulation programs to recursively compute the
relation between the norms of the polynomials in the two bases. The consistency
of the results confirms their computation. The result is that the norms P are

related to the norms h,, of the P,(z) polynomials by
¢:|:
e = 2(1 + SZn—l) h2n—1 . (5.2.21)
Observe that
1
21ch(2) =( + k()
=zpy1 2D 4 Z(aff,ﬁ_l + affk_l)(z" + 27"
n
() + Y ()b ()
k=0

Using the condition (5.2.18) and the hermiticity properties (5.2.17) we derive two

important recursion relations

24 ¢E(2) =Crﬂf+1(z) —rycr(2) + Ry Crﬂz:—l(z (5.2.99)
2 (2) =711 (2) — @5 ¢ (2) — Qi ¢i_1(2)

All the coefficients in (5.2.22) can be computed as a function of the norms
97 and, using (5.2.21), as function of the Sp’s of the PS basis. It is trivial
to compute R and QF using the relation [du(ct(2))*zeci_1(2) = en and

n—1
[du(cE(2))*2=ct_1(2) = e7 . The result is

n—1

+ +
Riy =%~ %n-1) = (1 F Spn1)(1 — S3_a) (1 £ San—3)

o (5.2.23)
QF = =%n-1) = (1 F Syn_1)(1 — SZ,_5) (1 F Son_3).
The coefficients 7= can be computed from
- _ 0y
" 0g
L9 5.2.24
—e Pn —[2(1 F Szn—l)h2n—1] ( )

g1
=+ Son(l £ Son—1) F S2n—2(1 F Son-1),
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where in the third line we used (5.1.15) ( g1 = §1 ). The coefficients g can be
computed using the relation [21,2_] = 0. One of the relations obtained this way
is [22]

no rE—r¥ (5.2.25)
= F(1 F San-1)(S2n + S2n—2) -
The integrable flows analogous to the modified Volterra hierarchy are now those

of the Toda chain on the half line [21]

= ( 7:|1,:+1 —QZE)“‘(RZEH — RY)

2 1+
i, ¢2n _ It _ b (5.2.26)
dg1

The partition function (5.2.20) is therefore given by the product of two Toda
7-functions 7.7
The dynamics, contained in the potential V(2 ) are given by the action of the

operator z0, on the polynomials ¢t (2). It is easy to show that

N k
zazc;f =nck + 5 Z('Y;t)n,n—r s (5.2.27)
r=1
where
_4F
(V) nmr = €~ Pnr / dp (T ) (20,V (24)) &, (5.2.28)

and k is the highest power of 2z, in the potential. For £ = 1, for example, the

above relation becomes

N
20,65 =ncf — XQ,j;c;F_l : (5.2.29)

The operator 20, acting on ¢ is not hermitian and is not appropriate for taking

the continuum limit. We need to compute the action of 20, on a basis of functions

7 orthonormal with respect to the “fat” measure 2‘;%. Therefore, we define

TE(z) = e_ﬁ/ze_%v(”)c,ﬂf(z) (5.2.30)
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and find that

+ dz +

(i (2), T (2)) = § 5 (m (2))" (min(2)) = i - (5.2.31)

The recursion relations (5.2.22) become

2+ Wrﬂf(z) =y Ri+17frﬂf+1(z) - Trﬂf”rﬂf(z) Ty Rrﬂz:ﬂ-r:i:—l(z) )

Q(+ JE=== :I:( )
(5.2.32)
QT
2Ty (2) =\ Qi () — d RiWqE(Z) n Tr—1(2)
Q JE=== :I:( )
The action of the operator 20, on the 7(z) basis is found to be
N & Qf N
B7(?) == g3 DO nmsr () + {4 B = 5103 an [ (2
N k (5.2.33)
+ﬁZ( )nn rTn—r(2)
PTG,
where
dz .
@B = § oo (0, () BV () 7). (5.234)
The k£ = 1 case now becomes
N
e (2) = = o\ @am () + (0 + 3108y TamE (o)
2\ 2ATON By (5.2.35)

N
— V@A)

It is easy to check that the above operator is hermitian. The string equation is
derived from the relation [20,, 2+] = zx or [P, QF|nm = —Q7F,, [59,61].
I close this section by briefly mentioning some results of [21]. The partition

function is annihilated by a set of constraints L,, for n > 1 that form a centerless
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Virasoro algebra [Ly, L] = (n — m)Lyym. This is due to the requirement that
the transformations

o U =™ U™ n>1,
which leave the UMM potential invariant, are also a symmetry of the quantum
theory. Invariance of the partition function under the action of the above trans-

formations implies that the partition function is annihilated by the Virasoro con-

straints )
0 1 0
+5 >

agk+n 1<k<n agkagn—k .

o0
L= kg (5.2.36)
k=0

In [21] it was argued that the string equation can be viewed as a consistency
condition of the integrable hierarchy and the Virasoro constraints. By taking
an appropriate continuum limit of these constraints we can get the continuum
Virasoro constraints obtained in the double scaling limit. These are discussed in

chapter 7.
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CHAPTER 6

The Double Scaling Limit

Inspired by the success in finding non perturbative solutions for HMM and
the similarities between UMM and HMM, Periwal and Shevitz [9,10] solved UMM
in the double scaling limit. The solutions have many similarities. To mention a
few they have similar multicritical structure and scaling of operators in the planar
limit. The double scaling limit is obtained in a quite similar way, and the solutions
at the multicritical points are obtained from a single differential equation, the
string equation. The solutions to the string equation are asymptotic to a weak
coupling “genus” expansion. The flows between multicritical points are described
by the mKdV hierarchy. This is less mysterious in the light of the discovery [11]
that the double cut HMM has the same universal behaviour as the UMM. Despite
these successes, a clear world sheet interpretation of the double scaling limit of
UMM is still an open challenging problem. This becomes more difficult due to the
lack of intuition that could have been provided by a random surface interpretation
of the discrete UMM.

In this chapter I discuss the double scaling limit in the PS basis and use the
transformation (5.2.21) to show that the string equation can be obtained in the
operator formalism in the trigonometric basis in a similar way as in the HMM. I
derive the mKdV flows between multicritical points in section 6.3 and discuss the
double cut (CDM) HMM and its relation to UMM in the last section.

6.1. The Double Scaling Limit in the PS Basis.

Consider the string equation (5.1.13) for the V(24) = z4+ potential. In the
large N limit S, — S = S(A) = Son and (5.1.13) becomes

A§? = §%(1 - 5?). (6.1.1)

At A\, = 1 the roots of (6.1.1) become degenerate and S = 0. Therefore we look

for scaling solutions of the form
1
Sov = S(N) = = 5(2N) o ((2N) (A = X)) (6.1.2)
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The square of the function v is proportional to the scaling part of the specific
heat. To see this use (5.1.11) and ‘(?fT% ~ Zﬂ‘ézgé\]_l = hi];f =1- 83y ~v2 1
will derive this more rigorously in section 6.3. Substituting Son1r, = S(AZFE) =
S(A) + (E)S'(N) + 1(2£)25"(A) + ... we see that by choosing p = 1/3 and

= 2/3 we obtain a non trivial equation for v if we scale %c =1—yN=2/3 and

14
1 =1-—tN~%/3 The equation in the variable z = ¢+ y is

%v"(z) — v(:v)?’ = —4duv(z)x, (6.1.3)

which is the Painlevé II equation. It admits an asymptotic solution for z — oo

3
v NIE%(l — @x_?’)
) o (6.1.4)
=z2(1+ ) frs)
h=1

2 = 273 which is the “genus expansion” for

in terms of the “string coupling”
the first multicritical point of the UMM. The generic real solution of (6.1.3) has
movable first order poles on the real axis, which makes the specific heat singular
at these values of z. Then the genus expansion is insufficient for determining the
solution past the poles and introduces non perturbative parameters (the positions
of the poles) in the theory as was the case for HMM. It was shown in [20], in the
spirit of [46], that solutions with poles on the real axis are incompatible with the
loop equations. The loop equations are the Schwinger-Dyson equations and have
to be satisfied non perturbatively. They are a direct consequence of the Virasoro
constraints discussed in section 5.2.

Physical solutions have to be real and pole-free on the real axis. The double
scaling limit should approach smoothly the spherical limit [47]. In this limit

1/2. When we approach the

(A < Ac and z — +00) the scaling function v ~ z
critical point from the strong A coupling limit (A > A, and x — —o0) we don’t
have scaling of the eigenvalue density and the scaling part of the specific heat
should vanish. In [20,62] it was shown that there exist a unigue real and finite

on the real axis solution that for £ — +o0c behaves like v ~ z!/2 and vanishes
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exponentially for t — —oo. This result holds for the higher multicritical points as
well. Therefore there exist physically acceptable solutions for every multicritical
point, making the flows between them possible.
For potentials of order £ the string equation (5.1.12) in the large NV limit gives
10]
252 = S*W(5?), (6.1.5)

where W (S?) is a polynomial is S2. By tuning the couplings in the potential we
can arrange W(S?) so that [10]

W(s?) =1-S%*,. (6.1.6)

Then the solutions to (6.1.5) degenerate to S = 0 when A — 1. Periwal and
Shevitz [10] found that the potentials that result in this multicritical behaviour

are given by Lt
Di(z) = —/0 Zla-na -k, (6.1.7)

where Vi (z4) = Vi(2) + Vi(1/2). The multicritical potentials Vj(z) are the same
as the one computed in section 4.2 up to an irrelevant z independent (infinite)
constant. By taking the double scaling limit N — oo and A — A., with ¢ =
(1-— %)N%, y=(1- %)N% held fixed the ansatz

1 1
Son = —50(@)N T (6.1.8)
where £ =t + y, yields the string equation
1
P2z = 071 Df{gla(iv" — %) (6.1.9)

where Dpg — 19? — 202 — 20'071v, 8 = 0/0z and

k B(k+1,k+1)
=902k +1)Y (-1)" 1%k ’ .
G =202k + )l;( L Ty
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This equation is closely related the the mKdV hierarchy defined by

ov
Otok+1

= — pMmEdV gmKdV ) (6.1.10)

where M™KV = 153 (v20+0v%)+20'07 10 and  RPEY [v] = MmEV RV ),

R7TEV ] = v, Since Dpg = M™EWV =1 we can write (6.1.9) as
k=20, vz = RPEV[y]. (6.1.11)

The mKdV hierarchy is related to the KdV hierarchy we found in HMM. I will
elaborate on this point in the following chapter. It is because of this relation,

however, that
RIEAV [y] = 2672(5 + 20)Ry[u] = 2F"2DRy[u] (6.1.12)

where

u=1v—1v (6.1.13)

D = 0+ 2v and Ry[u] are the Gelfand-Dikii potentials of the KdV hierarchy
defined in (3.2.15). The function u flows according to the KdV hierarchy (3.3.35).
(6.1.13) is called the Miura transformation. Using (6.1.12) we can write the string
equation as

DRy[u] = axvz, u=1v*-v. (6.1.14)

The resulting equation is a differential equation of order 2k. The genus expansion

in terms of the string coupling x2 = z=+%) is

. - —h(2+7%)
v~z (L4 ) vps /)
=l (6.1.15)
1
=23 (1+ Y vpk®™).
h=1
As mentioned before, there is a unique real, pole free on the real axis solution

that matches (6.1.15) at = 400 and vanishes exponentially as x — —oc. In the
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1/2k

spherical limit v ~ z'/°* as we can easily check from (6.1.11). In this limit we can

ignore the derivatives of v and

RIEAV o 2R +L (6.1.16)
The coefficients vy grow as (2h)!. This makes the series (6.1.15) non Borel
summable [44]. Therefore there are many functions that are asymptotic to (6.1.15)
at x = oo that differ from each other by exponentially small terms. Such non
perturbative corrections to (6.1.15) can be studied by linearizing (6.1.14) by sub-
stituting v ~ 22 + ¢(z) and keeping only linear terms. The ansatz € ~ %1
gives as the leading contribution to v [10]

2 exp(— o f
v~ T exp 2k+1x .

(6.1.17)
The local operators o; of the theory are defined by perturbing away from the &t

multicritical point
0 ~
Vi = Vi + Z télllvm'ﬂ .
l

Then the functions W (S?) in (6.1.5) change to Wy(S2) + ¥ tgl)llﬁfl(Sz). Since
Wi(S?) scale as N “35T and the Wi (S?) scale as N™1, we renormalize the cou-
plings to

_ (0) 2k—21

212k
Similarly A\, = 1+37; tgl]ll)\cm = 1+>;to;+1 N 2+1 . For relevant operators m < k
and A = 1. For marginal operators there is only a shift in the value of A.. For
irrelevant operators we must set 9.1 = 0 for finite A..
Then the correlation functions are defined by
0 0

Opy -0 ) = In Zg7|t]|:=0 - 6.1.18
() = g g 2ol (6.1.18)

In particular the specific heat is given by

(o000) = 8% 1In Zy = v?2. (6.1.19)
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Then
0 0

ton+1  tapp+1

(o1, . ..01,0000) = v2 4= . (6.1.20)

The string equation describing the perturbed, massive model is

3 (20 + 1)tg41 DRy [u] = —va (6.1.21)
>1

and gives v = v(z,t). The k" multicritical point is given by top1 = m
and all other ¢’s set to zero.

In order to calculate the scaling of the correlation functions of the operators o;
in the spherical limit, we consider the spherical limit of (6.1.21) which is reached

by neglecting the derivatives of the function v. We obtain

z =0 + 3 g 107™. (6.1.22)
l

In order to solve for v? as a function of z and ¢ we employ a method used in [4]
(see appendix A of this reference). The result that we obtain is
0 . p—3 Etl-k
p—3 = =F
(o1, ...00,) N(%) z F

S+1—(p—2)k
~T k ,

(6.1.23)

where ¥ = >, [/;. In the following section I discuss in detail how to calculate
some two and three point functions exactly in the double scaling limit. It is also
straightforward, but tedious, to calculate corrections to (6.1.23) from surfaces of
genus one, as well as the leading non perturbative corrections. This is done in
detail in [10] and I refer the reader to this paper.

I close this section by discussing the possibility of an operator formalism in
the PS basis similar to the one found for UMM [12]. As I already mentioned, it is
not possible to obtain the continuum limit of the action of the operators z, z+, 20,
etc. on the PS basis as the action of differential operators. The reason is that the

number of non zero off diagonal lines of the matrices representing those operators
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is infinite in the large N limit. Neuberger considered a different set of operators
having a finite number of non zero off diagonal lines. The formalism is more
complicated than in the case of HMM and the solutions for generic multicritical
points are not known. In the next section I discuss a simpler formulation of the
problem in the next section that will lead us to these solutions. In the following

I omit most of the details, referring the reader to [12].

Consider the orthonormal polynomials Py(z) = \/}L_Pn(z) From (5.1.3) we

have

> hat1 = Sn =~
P = P - Po(2). 1.
SR A 1(2)) \/Z nt1(2) S w(2) (6.1.24)

z i ApmPr(z) = i BumPr(2) . (6.1.25)
m=0 m=0

Then only A;;, Ajj+1 Bjj and Bjjy1 are non zero. Consider the space spanned

by the vectors
w —~
Ve (2) = Z TmPm(2), Tm € C,
m=0

such that [ dutp,(1/2)1y(2) = Xy T Ym, and consider the operator
Wty (2) = 21he(2). (6.1.26)
Then W = A™1B and W is unitary. Consider the derivative operator
L : y(2) = e7®)20,6"%) y,(2) (6.1.27)

where ¥V (z4) = v(2) + v(1/z). The operator L is hermitian and has only & non
vanishing subdiagonals, i.e. Ly, = 0 for [n — m| > k + 1, for a potential of order
k. Therefore we expect that L gives a well defined differential operator in the

continuum limit. The string equation becomes

—ALA" + BLB' = AA" = BBT. (6.1.28)
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In the continuum limit reached at the k™ multicritical point with the double

scaling limit, A — Ag and B — Ay where
Ag = N1 (92 — o/ J0). (6.1.29)
-1 /
If e = N 2000 (92 — 9 — v?) then the string equation (6.1.28) becomes
e[L, Al] + [Ag, L]et + [eA}, L] = Al Aq . (6.1.30)
For the first multicritical point the solution to (6.1.30) is
L=1+NY35%+uw), (6.1.31)

where w(z) = z — 2v%(z), and v satisfies the Painlevé II equation. The solutions

for higher multicritical points are not known.
6.2. The Operator Formalism

Taking the double scaling limit in the trigonometric basis has certain advan-
tages. Because of the recursion relation (5.2.22), the formulation of the model in
this basis resembles that of the HMM. In particular it is possible to construct an
operator formalism by considering the continuum limits of (5.2.32) and (5.2.33).
These relations result in two continuum operators P and ©_ which are 2 x 2
matrices of differential operators [22]. The string equation in this formalism takes
the form [P, Q_] = 1, which is similar to (3.3.32). The mKdV flows between
multicritical points is also easier to compute in the trigonometric basis.

In this section I discuss the continuum limit of the operators z+ and z0,
as defined in (5.2.32) and (5.2.33). At the discrete level, the above-mentioned
operators act on an infinite dimensional inner product space of complex functions
on the unit circle, spanned by the functions 7 defined in (5.2.30). Taking the
continuum limit means letting N — oo. But N appears only as the limit of

the product (5.2.20) . In the continuum limit, therefore, only the indices n in

61



a small neighbourhood of N contribute to the singular part of Zy. For the ktt

multicritical point the relevant index space is described by the scaling variable

n 2k
t=(1— =)N2+1 . 6.2.32
(1- %) (62.32)
Therefore in the continuum limit, the space of functions on which the operators act
is spanned by the functions 7*(¢,y, z) which are the continuum limits of 7 (z).
n

2k
Only the index range ;- ~ 1 — t{N~ 2%+1 participates in this limit. The double

scaling limit ansatz entails taking A — A; according to the scaling relation

y=(1- %)N% , (6.2.33)

Cc

and scaling the recursion coefficients S, as
1 __1
Son — —Ev(t, y)N™ T (6.2.34)

where v2(0, y) is the specific heat of the unitary matrix model. Then the elements
of the space spanned by the functions 7= and all quantities defined in the previous
chapter become functions of ¢ and y. The operators (5.2.32)—(5.2.33) have nonzero
matrix elements Q%%ﬂzi and P,:,Effl, only for j/m —n| < 1 and |m —n| < 2k

respectively. Therefore in the continuum limit they become finite order differential

operators. Using the scaling of equations (6.2.32)—(6.2.34), the Taylor expansions

—2S5n_m — NI y(t + %N%,y) — N™ZFy(t + %N‘%lﬁ,y) =

N™ZFTy(t, y) + %N‘ﬁv’(t, y)+...

+(%)T%N_%U(”(t,y)+--- :
7!
(6.2.35)
and
N‘ﬁwf_m(z’) —rE(t,y,2) + mN_ﬁ(Wi(t,yy 2) +...
(6.2.36)

r
+ TN (1,9,2)0
T.
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and equations (5.2.21) and (5.2.23)—(5.2.25), we find that

QE(t,y) = 1 £ N"%y(t,y) £ N™ o010/ (1, y) + O(N %)

1
RE(t,y) = 1= SN™5 (02(t,) =0/ (1,)) + O(N~7%57)

1
rE(ty) = 5N (Rt y) /() + O(NT)

1
G (6,9) = EN T, g) + o N (W6 9) F 0 (0,9) + O(V7)
(6.2.37)
Substituting in Eq.(5.2.32) and keeping terms of order N ~ 55T and N~ 5T te-

spectively we obtain
QEE Lo NTwmTQ,, QU)EE 5 —oNTmH Q| (6.2.38)

where Q. are given by

_ ((0+v)(0—v) 0
0. = (1) (@-v)(@+v))
(6.2.39)
_ 0 0+v
Q- = (3 —v 0 ) '
In the above formula z = ¢t + 2, 0 = 9/0x and z+ act on the column vector
(f_r g’ig) In the continuum limit the operator 28, becomes
1
Pam — NTFT Py, . (6.2.40)
The matrix operator P, has the form
0 Py
Pr, = (Pzt 0 ) : (6.2.41)
with
P = a; 0% + prop—10F L+ —ar(t +2)] . (6.2.42)
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The coefficient aj may be calculated from the action of 20, given in Eq.(5.2.33)
and the k-multicritical potentials found in (6.1.7). The result is

k
Bk+1,k+1)
=2(2k +1) A ’ 6.2.43
@’ i l; T(k—l+ D)0k +1+1) (6.2.43)
The computation of Py is straightforward, but becomes quite tedious for high
values of k. For k£ = 1, for example, a1 = —2 and V(z4) = 24 and the explicit
form of 20, is
20, = N3 Py | (6.2.44)
where P; is given by
0 Py
with
1 1
P, = —5[62 +vd + 5(u’ —v?) 4+ 2(t + 2)] . (6.2.46)
The calculation is done by substituting Eqgs.(6.2.35)-(6.2.37) in Eq.(5.2.35).
The string equation is computed from [20,,2+] = 2z, or [P,Q®]Er =
— %Trzii. As expected, we find that v obeys
1
iv"(x) —ov(z)? = —4v(z)z, (6.2.47)

which is the Painlevé II equation.

I will discuss now the form of the operator Py of Egs.(6.2.44) and (6.2.45) and
of the string equation (6.2.47) for general k. I will show that [24] Py, is given as
the positive part of a pseudo-differential operator as in the case of HMM and that
the string equation is closely related to the mKdV hierarchy as in [10].

The string equation [20,, z+] = zz in terms of the operators Py, Q4 is given

by
[P, QWEE = Q) = [P, 04] =20 =

(6.2.48)
Py(0 —v)(0+v) — (0+v)(0— v)Pr =2(0+v)

and
P,QUEE = QM) = [P, 0 |=1=

P(0—v) — (0 +v)P} =1 (6.2.49)
Pl(0+v)— (0—v)Pr=1.
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It is convenient to write the above equations in terms of
P=P+X (6.2.50)

where 5
5_(0 Px 0 =z
P <~;rc 0 > X = (x 0) : (6.2.51)

Then equations (6.2.48) and (6.2.49) become
P10 — v)(0 +v) — (0 +v)(8 — v)Py, = 2(vz)’ (6.2.52)

and N -
Pr(0—v)—(0+ v)P,JrC = —2uz

6.2.53
15,1(3 +v) = (8 —v)Py = 2uz ( )

Eliminating ﬁ,t(f’k) yields Eq.(6.2.52) and its hermitian conjugate respectively.
The LHS of Egs.(6.2.53) are differential operators of order 2k. We get, therefore,
a total of 4k 4+ 2 equations, which is an overdetermined system of differential
equations for the 2k + 1 functions py, ; and v. By checking the first few values of &
we find that, remarkably, only 2k + 1 of them are independent. It seems that this
is true for all k, although we have no general proof. If this is the case, Eq.(6.2.53)
uniquely determines the operator Py and the string equation.

It is instructive to examine the k¥ = 1 case in this formalism. First note that
in this case Eqgs.(6.2.46) and (6.2.50) give

—2P; = 9% +vd + %(v' —v?)
— {0+ v)Ai}s,

(6.2.54)

where A1 = [(8 — v)(0 + v)]'/?, and as usual {...}; denotes the differential part
of the pseudo-differential operator in the brackets. An obvious generalization of

eq.(6.2.54) for the k** multicritical point is [22]

ak1~3k = {(8 + U)Ak}+ (6.2.55)
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where

Ay = (0= )@ +0)} 72 =

(6.2.56)
=921 4 gkyzk_za%_z +... .+ gkot fk,la_l + fkyza_z T

P}, is then a differential operator of order 2k as in eq.(6.2.42). Then, eq.(6.2.56)
determines the coefficients py, ; and eq.(6.2.53) gives two copies of the string equa-

tion for the function v. The latter is found to be
(Res Ag)" + 2(Res Ag) v = 2axvx (6.2.57)

where Res Ay = fi1. Note that because Res A1 = %(v’ — %), eq.(6.2.57) trivially
gives eq. (6.2.47).
For the derivation of Eq.(6.2.57), we observe that the trivial equations

(0 +v)Ap(0 —v) — (0 +v)AR(0 —v) =0

and
O0=0,+0_

for any pseudo-differential operator O give
P(0—v) — (0+v)P] = —{(8+v) A3} _(0—v) + (0 +v) {40 —0v)}- . (6.2.58)

Since the only overlap of the pseudo-differential operators on each side of
Eq.(6.2.58) is the constant part this establishes that the LHS of Eq.(6.2.58) is
a purely multiplicative operator in the ring of pseudo-differential operators. Com-
puting the RHS of Eq.(6.2.58) and equating it to the RHS of Eq.(6.2.53) we obtain
the string equation (6.2.57).

Observe that

B—0)O+v) =P+ —0v?) =% —u (6.2.59)
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where u is related to v by the Miura transformation (6.1.13) u = v — ¢'. Tt is a

standard result that

Ak — (32 k 1/2 Z {622 17322 1} —
i=—o0 (6.2.60)

— 521 _ 2]iT_l{u,a?’f—?’} + . {Ryu], 07+

Therefore
Res Ay, = 2 Ry[u] . (6.2.61)

Equation (6.2.57) and (6.2.61) gives the string equation (6.1.14). Substituting

back in (6.2.55) we obtain another useful form of the operator Py,
axPr = (0 +)(0% — )% 4 2Ry [u). (6.2.62)

By inserting the operators o, we perturb the potential Vj, —» — > tgl)ll‘/} and

the derivative operator now becomes

P=-Y (2 + 1)ty P -z, (6.2.63)
>1

which obeys the string equation
[P, Q-]=1. (6.2.64)
The differential equation that is obtained from (6.2.64) is

3 (20 + V)tor1DRy[u] = —va . (6.2.65)
>1

I close this section by mentioning that the string equation can be derived from an

action principle similar to the one that exists for HMM [63]. Using the relation

O [ drRyafu] = ~(k + )Rl (6.2:66)
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we find that by minimizing the action
1
I= /d:v {Res A4z + a(k + 5oz}, (6.2.67)

we obtain the string equation (6.2.57). Indeed using (6.1.13), (6.2.61),(6.2.66) we

get
0l =—(2k+1 /d:v [u]du — agvzdv) =
—(2k+1 /d:v [u] (2vév — 60') — apvadv) = (6.2.68)
—(2k+1 /d:v (2uRg[u] + D Rg[u] — agvz)dv =

=0.
6.3. The relation of UMM to the mKdV Hierarchy

The mKdV hierarchy is a system of differential equations for the function
v(z,t) defined by (6.1.10)

v = — MmKdV gmKdV
Otak+1
— _ aR;cn_EdV[ ] (6.3.69)
=- aDRk [Uz] ’

where M™MEdV — %33 — (V20 +0vt) +20'07 1, ug = u =02 —v' and t; = z. The
!

mKdV hierarchy is closely related to the KdV hierarchy. The functions u; = v?>+v
and uy = v? — o' satisfy the KdV hierarchy

aui
= — ORg[u;
Otor+1 klui] (6.3.70)

=— MEVR; [ug],

where ME4V = 153 — (4;0+0u;). The integrability of (6.3.69) and (6.3.70) has its
heart in the existence of two compatible hamiltonian structures {, }; and {, }2
[43] and an infinite set of conserved (mutually commuting) hamiltonians H*¢4V

and H,f{dv respectively. Then

ov

KdVv KdVv
) :{H;cn 71)}1 { IZ—LH ) }
thTl (6.3.71)
L ={HEY wih = {HEY Jui}s,
Otagt1
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and {Hy, H;} = 0. The Poisson brackets are given by

{u(z),u(y)}2 =04(z — y)

6.3.72
{u(:v), u(y)}l :MKdV(S(x - y) ) ( )
for the KAV hierarchy and by
{v(z),0(y)}2 =0°6(z — y)
(6.3.73)

{v(@), vy} =M™V 5(z —y),

for the mKdV hierarchy. In (6.3.73) the operator M™X4V is understood as being
equal to M™E = 1535(z — y) — (v20 + 0v?)d(z — y) + 20'e(x — y)v'. Then the

Gelfand-Dikii potentials for the two hierarchies are given by

)

kaKdV [v] =— H}rﬁanV
ov 5 (6.3.74)
RdeV[ui] ERk[ui] = 5_ ]f{dV_
v
The relation between the two hierarchies is summarized in the relation
HIEW (4] = HEV [u,) (6.3.75)

The difference between HE4[ui] and HE?[uy] is only the integral of a to-
tal derivative and vanishes. Then, since R7'X4V[v] = %Hgf{dv = %H,f{dv =
%%Hgf{dv and ‘55% =20 —8 =D and ‘55% =20+ 8 = D, we can easily prove
that

R%n_ﬁdv[v] = ﬁTRk[ul] = 'ZSR]C [UZ] . (6.3.76)

We can also show that if v satisfies (6.3.69) then u; satisfy (6.3.70)using 2 (v? +
v') = (2v £ 8)%¥. Two useful identities are

D(—0)Dt =KV
Dt (—8)D =amKdV (6.3.77)

69



A consequence of (6.3.76) and (6.3.77) is that

ORy [ul] + ORy [uz] IMKdVRk [ul] + MKdVRk [uz]
= — vdDRy[u1] (6.3.78)
= — v0DRy[ug]

In order to proceed with the calculation of one and two point (connected)

correlation functions we need the following formulas [4]

(trFy(U)) =Tr[F} (2)y]

~ ~ (6.3.79)
<tI‘F1(U)tI‘F2(U)> ITI[HNFl(E)(l — HN)Fz(E)]

for a 2N x 2N or a (2N + 1) x (2N + 1) UMM. The F;(U) are real functions of
the matrix U and N
My= 3 |nk>< +n] (6.3.80)
n=0,%=

is the projection operator on the subspace spanned by the functions [n+ >= 7 (2)
forn =0,1,..., N. tr is the matrix trace and Tr is the trace over all the states
In+ >. The F(%) are operators, functions of the operator Z acting on the states
Int >.

In order to prove this formula consider the generating function G(t1,t2) of the

above connected correlation functions where

G(t1,12) = (e 1ty (U)+t2trF2(U)>

and compute

1 N
exp{G(t1,t2)} =—/dU exp{——trV}eZatatrFa(U)

2 —_—
Z/ 27rzz 2)|* exp{ trV—l—ZtatrF (U)}

G(t1,

=dety < £nleCtt)|mt >

N
=exp Y In < +nfeftr®)|nt >
n,x=
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where det is over only the first NV states [n4 >. In the last line I used the identity
det A = et"8 4 Expand G (t1,t2) for small ¢; and ¢2 and find after some algebra
that

G(t1,12) ZtaTr TN+

Ztatﬂ (Tx[Fo(2) Fp(2)T] — Tr[Fa(2)IIn Fp(2)IIN]) + O(£%) .
o,

2
Then (trFo(U)) = z2-G(t1,t2)|i=0 and (trFo(U)trFa(U)) = &i—%G(tl,tz)h:o
which gives (6.3.79).
Using these formulas we can derive the correlation functions of the operators

l (o0) =Tr{Ti(z) I}

_§ Vk(z+)Tr{ 1Q(+ N} (6:381)

2miz4
Similarly the two point function (o}01) = a(ok) is given by

<0‘k0'0> = TI‘{HN‘?]C(E_F)(l - HN)2+}

dz. ~
= —7{ At Vi (z4) Te{Tl 5
2mizy

ﬁ(l ~I) (s - Q)

]{ sz+(1—Z 1—_ {\/ N+1( Q(+ )N V41

- 1 —
+ RN+1(m)NN+1}-

In the third line above I used the expression for the operator z; given in (5.2.32).

In the double scaling limit zy = 2cos @ — 2—a? where . = N ~mry, Q)
2+ N"TTQ, \JRE | — 1+ IN"7 (30 — ) and [N+ >— N7 g4 >
and (6.3.82) becomes [64]

dv_ ok+3 1 1
" < >4 < — —>
(ok00) o€ § 5 V(< ] —5— et >+ < el e )
v opi3,~— Rifui] Ry[us]
i (XI: L2+l "'XI: ,,21+1)
o Rg[u1] + Ri[us].
(6.3.83)
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In the second line I used the famous result (3.2.14) of Gelfand and Dikii on the

asymptotic expansion in v of the resolvent of the operator —92+(u—v?). Therefore

(oxo000) o ORg[u1] + ORk[uz] = —vDRy[ua] .

Then using
{ok0000) 0 < ogog >=2 o
£k0000) = 000 >= 2v

Otok+1 Otbok+1
we obtain

ov A

= —0DR[us] (6.3.84)
Otagt1

which are the mKdV flows. Note that (6.3.83) implies that
(0g00) o u1 + ug o V2. (6.3.85)

This proves the earlier assertion that the specific heat of UMM is given by the
square of the scaling function v. This result can be calculated by using directly
the relation {(ogog) = Tr[lInZ4 (1 — [IN)Z4] as well.

The relation between the string equation and the mKdV flows is further ex-
plored in chapter 7. An important result for the consistency of UMM of the
analysis presented there, is the compatibility of the string equation with the flows
mentioned before. This is directly related to the Virasoro constraints annihilating
the partition function and it is discussed in chapter 7 using the Grassmannian
formulation of the string equation and the flows. Hollowood et al [19] discuss this

question in the formalism presented here.
6.4. The Double Cut HMM.

It is possible to obtain the same multicritical behaviour and double scaling
limit as the ones I discussed in the previous section for the UMM by a certain
class of multicritical potentials V3 (®) of a HMM [14,11]. These potentials have the
shape of a double well as opposed to the multicritical potentials of HMM discussed

in chapter 3 which have the shape of an inverted double well. In one phase the
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eigenvalue distribution has support in the two wells only and we have a two cut
distribution of eigenvalues. As we lower the local maximum of these potentials,
the eigenvalues tend to spread over the whole well. Multicritical behaviour is
observed exactly when the two cuts merge into one. This is similar to the case
of UMM where the two ends of the support of the eigenvalue distribution meet
at the point z = 1. The similarity is stronger, since the scaling of the eigenvalue
density near the edge of its support for the two models is identical.

The multicritical potentials resulting in the critical two cut distribution for
the HMM are

11
Vai(p) oc g1 - 2l (6.4.86)

where the index + means that we keep the polynomial part in an expansion of
the square root around oo in the complex ¢ plane. These potentials result in an

eigenvalue distribution that behaves like

=0 o] > 1
p2r+1(p) § ~ ©—=0 (6.4.87)
~+V1Fgp p— £1F.

The perturbations giving the local operators o; are defined by the multicritical
potentials

Vm = 0™ (0" = 1)3]4, (6.4.88)
which perturb the density of eigenvalues by pog+1(p) — par+1(p) + pm(p) where
Pm(p) scales when ¢ — 0 as

m—1

Pm(p) ~ @™, m=12,... (6.4.89)

and the same as pog1(¢) when ¢ — +17F.

Note that the sign of the ¢? term in (6.4.86) is negative. This makes the
random surface interpretation of chapter 3 problematic since the regularized 2-d
gravity partition function would have complex cosmological constant (N = —e™H).
The multicritical scaling (6.4.87) of por+1(¢) is the same as the multicritical be-
haviour of py(c) of the UMM. Therefore we expect a correspondence between the

scaling operators of the two theories

UMM oy GHMM (6.4.90)
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This is indeed the case. What about the odd order operators ol ¥ ? Are there

any real UMM potentials that result in an eigenvalue distribution as (6.4.89) as
a — 07 The answer is yes and it is discussed briefly at the end of this section.
In the orthogonal polynomial method, the coefficients R,, and S,, of the re-

cursion relation

¢ Pp(¢) = \/Rug1 Pag1(9) — SnPale) + V RnPr_1(p) (6.4.91)
have a double scaling limit

1
Ry =rc+ (—1)"N"+ f(z) +...
e (PN .
Sn =S¢+ (—1)"N" 2615 g(z) +... .

The orthonormal polynomials tend to two scaling functions

1
(=1)"Pop(p) =N G p, (z, )

1
(=1)"Pon+y1(p) =N 2CHDp_(z,¢).

1
The limit of (6.4.91) is represented by the action of an operator @ = NZ+Ty on

v=ion (37) = (5.)
Q¥ =4(0 + f(x) N +ig(z)T2) Ts¥

=4(9 + ¢(2)) J3Y

where Jq = %03, Jo = %01 and J3 = %02 are generators of the algebra [J;, J;] =

the vector

which is

(6.4.93)

€ijk Jx and o; are the Pauli matrices. The resolvent

1
@O+q) T3 — %

has an asymptotic expansion [65]

x0
JsR =Y grad Hp1197*
k=0
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where grad ﬁk+1 = -Gy —i1JoFy + J3Hy, and satisfies the relation

J30R = [T5R,q — ¢J3].
The last relation gives
Fyt1 =G, + gHy,
Gr+1 IFIQ + fHy (6.4.94)
Hy, =9Gy — fFy,
with G_1 = F_1 =0 and H_;.

The string equation is

Z ktGr_1 =0

k21 (6.4.95)
Z ktpFyp_1 =0.

k>1

Correlation functions in the double scaling limit can be obtained in a similar

way to the one described in the previous section. Then
L 9 2
(o000) = (9" = f7) (6.4.96)
is the scaling part of the specific heat and
1
{omog) = EHm' (6.4.97)

The flow equations derive from the relations (o,,0000) = %(omcrg) = {0, 00)-
They are
dg of
- —f— =0H,,. 6.4.98
SOt Otm m (6.4.98)

These equations are closely related to the NLS (Non Linear Schrédinger) hierarchy
[19]
dy

of B
5= Fm 51 = Gm- (6.4.99)

We obtain the mKdV hierarchy by setting ¢ = 0. Then we have non trivial flows
only for Fyp, 1. Using (6.4.94) with ¢ = 0 we can show that

F2k+1 :2(M’mKdVa—l)F2k—l
1
:2(532 _ 2f2 _ 2f’3_1f)F2k_1
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which proves that
P41 = — OR™E[f]

= — ODR[f* - f].
Substituting back into (6.4.98) we obtain the mKdV flows for the function f.
Similarly (6.4.95) becomes the UMM string equation

> tor+1DRi[f% — f] =0.
k>0

Therefore the multicritical points of the UMM considered in the previous
section correspond to the odd order multicritical points of the full double cut
HMM. This is not a mystery since by simply transforming the UMM operator Q_

using the matrix
L /1 1
s=50 1)

o =s571o_s

we can put it in the form

=(0 + vo1)03 .

This is the same operator as in (6.4.93) acting on the vectors ¥ = S (;*‘) when

g = 0. The question that naturally arises is whether one can obtain the even
operators too from the UMM by considering more general real potentials than
the ones of the symmetric UMM studied so far. The answer is no for polynomial
potentials in U and UT. If one considers
Vi(z) =V (zy) + V) (—iz)
=V (2cosa) + VI (25sina) (6.4.100)
=Y g (2cos ) + 3 gi (2sin ),
the saddle point equation gives imaginary g, for even k. One has to consider
potentials of the form
V(z) =V(Z) + VO (—iz)
=V (2cos g) + V) (2sin g) (6.4.101)
=Y "t (2cos g)k + > ¢ (2sin g)k :
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where Zy = z% :l:z_%. Then (4.2.14) and (4.2.15) give perturbations to the density
of eigenvalues that scale as (6.4.89) for & — 0. The operator V(+)(z,) results in
the familiar odd order multicritical points and V(=) (—iz_) gives the even order
operators. The details of the construction of the double scaling limit are presently
under investigation.

Finally the authors of [11] calculate the loop operators in the WKB (planar)

approximation:

—

7 —f—g)
-9 -0 |z >

bt
=—7r/t1 du h? Jy(Ih?),

(w(l)) =/t1 dz <:E|tre_l(

where hy = —H; = %(f2 — ¢2) and the operators

m

1
omw(l)y = hZ Jn(lh?), m=2k+1,
1 1

and (opw(l)) = 0 for m even. If we interpret these correlators as the wave func-
tions 9., (1) of a minisuperspace formulation of 2-d gravity in the sense discussed

in chapter 3, the Wheeler-deWitt equation for vy, (l) is a Bessel equation of the

form )
Ovo Bp 8 _
[(la) Fl ?(§ +A=1)Ym(l)=0,
where 8 1
—c

1

2

=—(13—c—4/(1 —¢c)(25—¢)).

7 = V=025 -0))

Under this assumption, we obtain a series of matter theories coupled to gravity

with
6m?2
m+1’

and ¢, (I) = 0 being the wavefunctions of operators with scaling dimensions

m=2k+1

c=1-—

n? —m?
4m+1)
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The series obtained can be associated to (4k, 2) superminimal models coupled
to supergravity [11]. Unfortunately the evidence is inconclusive since we don’t
have correlators in the Ramond (odd) sector even at the tree level and the agree-
ment is only with tree level correlators in the Neveu-Schwarz sector. Moreover the
one dimensional two-cut model is the same as the one cut model and this is not
expected for ¢ = 1 superminimal matter coupled to supergravity. The authors of
[11] attempt to associate the double cut HMM with an O(—2) model but this has
been ruled out by [56].
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CHAPTER 7

The Space of Solutions the String Equation

In this chapter I discuss how one can compute the space of solutions to the
string equation. The latter was written in a simple form [P, Q_] = 1 in the opera-
tor formalism in chapter 6 [22]. The operators P and Q_ at the E*® multicritical
point are 2 X 2 matrices of differential operators of order 2k and 1 respectively.
The form of the string equation makes the formulation of the problem in a Grass-
mannian representation simple and instructive. In this formalism it is possible to
compute the space of solutions to the string equation and understand the emer-
gence of the Virasoro constraints and their relation to the compatibility of the
mKdV flows and the string equation [24].

In order to understand the connection between the Grassmannian formalism
with the formalism presented in chapter 6, it is necessary to understand the 7-
function formalism of the mKdV hierarchy. The mKdV equations are given in this
formalism by the Hirota bilinear equations that the 7-functions must satisfy. The
relation between Grassmannians and 7-functions is understood via the Pliicker
embedding of the Grassmannian in a free fermion Fock space. The 7-functions are
viewed as bosonic states and the connection is established by the fermion boson
equivalence in two dimensions. The big contribution of the Japanese school ( see
[66] and references therein for a review) is the discovery that the solutions to the
mKdV hierarchy (more generally to the mKP hierarchy from which the mKdV
is derived by reduction) are 7-functions that belong to the GL(00) orbit of the
vacuum, where GL(00) acts on the states of the bosonic or fermionic Fock space.
In the following two sections I give a brief introduction to these concepts ( for a

review see also [67] ).
7.1. The T-function Formalism and the Sato Grassmannian

In this section I discuss the 7-function formalism and its relation to the (big
cell of the) Sato Grassmannian Gr(0) defined in chapter 3. First I discuss the

mapping of the points V € Gr(® to states |lv > in a fermionic Fock space F of
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a free fermion theory. For simplicity the concepts are discussed originally in the
case of finite Grassmannians Gr(k, N). There is a natural action of the group
GL(N) on F and the states |v > belong to the GL(NN) orbit of fermion filled
states. Using the boson fermion mapping one can associate to |v > a bosonic
state 7 which is called a 7-function. This establishes a one to one correspondence
between 7-functions and points V' € Gr(k, N).

The same results hold in the infinite dimensional case. The solutions to the

mKdV equations correspond to two 7-functions 71 and 7o such that

u; = —20%In7, i=1,2 and v=0mn2,
T1
v is the mKdV function (6.3.69) and u; = v? £ v/. To these 7-functions we
associate two points V; and Vs in Gr(® restricted by simple conditions whose
evolution with the times #9511 are given by the mKdV flows.

Since the Sato Grassmannian is an infinite dimensional generalization of finite
dimensional Grassmannians, we start by reviewing the relevant concepts in the
finite dimensional case. For a nice review along these lines see [68]. The Grass-
mannian Gr(k, N) consists of all k-dimensional linear subspaces of CV. A point
V € Gr(k,N) is described by a basis {v;} with ¢ = 1,...,k and a basis of the
orthogonal complement of V' {w;} with ¢ = k +1,..., N. Then the pair (v, w)

specifies a point in Gr(k, N). A pair (v/,w’), however, gives the same point if
PN A B
(’U,’LU)—(’U,’LU)(O C)

Then

with P = {(6‘ g)}

The relation between Gr(k, N) and fermions is established by considering the

Gr(k,N) ~ GL(N)/P

GL(N) representation on a fermionic Fock space F defined by the vacua

|k >=e1 A... Neg <k|=riep ...l <ilk>=0, (7.1.1)
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where {e;} is a basis of CV and i, (e;) = d;; is the inner product operator. The

fermionic operators are defined by

¥l =einlx> Vi = e, |X >, (7.1.2)

and satisfy canonical anticommutation relations

The vacua |k > carry charge k£ and 1/};r (¢;) create a charge +1(—1). Then

Wllk>=0 i=1,...,k ilk>=0 i=k+1,...,N

(7.1.4)
<klpl=0 i=k+1,...,N  <klgg=0 i=1,...,k,

The Pliicker embedding is defined by assigning to every point V € Gr(k,N) a
state

lv>=cuvi A...Avgp with v =) wijej, (7.1.5)

where {v;} is a basis of V and c is an arbitrary constant. A change of basis
v; — a;5v; corresponds to ¢ — (deta) ¢ and the state |v > is well defined. The

condition
Yivdlv >=0 Vi, (7.1.6)

with ¢f[v;] = Z’Uz'j’(/J;-l- defines equivalently the state |v > up to the constant c.
Then a € gl(N) acts on F by

alx >= Zlb;raijd}ﬂx > Ix > F, (7.1.7)

and on the space of operators on F by
od = P aave, (2 @, 4] = Zz/zkakz (7.1.8)
The action of g € GL(N) is defined by exponentiation of (7.1.7). For example

oL vl . iy 0 >= 1)y (WT9)iy . (9¥)iy (99)iy ... 10> (7.1.9)
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with (ytg); = 1/1;[gjz- and (gv); = ¢i54j. Then a gl(N) operator a acting on V' €
Gr(k,N) by av = Y (a;jv;)e; corresponds to a fermionic operator @ = . 1/1;raij1/1j.

Then if @; < a1 and @ < a2, equations (7.1.8) give
[a1,d2] ¢ [a1,a2]. (7.1.10)
Moreover note that if
alv >= const.|v > aV C V. (7.1.11)

The state |[v > belongs to the GL(N) orbit of the state |k >. Since for
|lv >= v1 A ... A every vector v; can be written in the form v; = ge; for some
fixed g € GL(N), we have that |[v >= §|k > as defined in (7.1.9). Therefore the
image of Gr(k, N) under the Pliicker embedding can be identified with the orbit
GL(N)|k >.

The 7-functions are given by fermion correlators
0 =< O >y=<k|OJv >, (7.1.12)

with O a zero charge operator. Since the topology of Gr(k, N) is non-trivial, we
divide it into cells (U, a € IT). A point V' € U, is represented by a basis {vz(a)} and
the state |v >(®= v§a) AR v,(ca). Then if V' € U, N U, we have v,(ca) = a,(;b) vz(b)

and

7"(/9 @) _ get gla®) 7"(/9 ®)

Therefore the 7-functions are really sections of a determinant line bundle over
Gr(k, N) whose transition functions are given by det a(eb).

Most of the results carry over almost unchanged to the infinite dimensional
case. For the infinite dimensional vector space we consider the space of formal

Laurent series

Hz{Zanz", an=0 for n>0}
n
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and its decomposition
H=H,®H_,

where Hy = { Y. a2, ap, =0 for n > 0}. Then the big cell of the Sato
n>0

Grassmannian Gr(® consists of all subspaces V C H comparable to Hy, in the
sense that the natural projection 74 : V — H, is an isomorphism. Then V
admits a basis of the form {#;(z)}i>0 where ¢;(z) = 2* + lower order terms. The

Pliicker embedding (7.1.5) is defined by the semi-infinite wedge product
v >=co1(2) ANpa(z) A ... (7.1.13)

Care has to be taken so that a GL(co) change of basis ¢;(2) — a;j¢;(z) does not
introduce infinities, since det a can be infinite. We choose a set of admissible bases
for V € Gr to be those whose matrix relating {m1(¢;(2))}iz0 to {z'}i>0 differs
from the identity by an operator of trace class. Then the fermionic representation

is defined on the Fock space built on the vacuum state of zero charge
0>=1A2A22A..., (7.1.14)
by fermions 1/};r and ; defined as in (7.1.2). The states (m > 0)
im>=h . 0>, | —m>=t_me1... 000> (7.1.15)
are the filled states with charge m and —m respectively. The generalization of

gl(N) is given by gl(oco) and is represented on F by its central extension gl*(co)
with

a=3:¢la; - (7.1.16)
Y]
where T
Dby == <y > { _1/};1/};[ <0 (7.1.17)

is the normal ordering. The reason for introducing normal ordering is that the

naive operator 37; ; 1/12fr a;j; maps an admissible basis to a non-admissible one.
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Then the fermionic representation of the algebra gl(oco) is defined by
rr(a)lx >=_: 1/1;raij1/1j tlx > a€glloo) |[x>€F (7.1.18)
]

and of the group GL(c0) by

Re(g) (vl ¥l . ity ... )| —m >=

7.1.19
(W@l (g0 (g0 )|~ > (71.19)

for m > 0 such that (yfg)_; = dﬂ_j for 5 > m. In (7.1.19), ¢ € GL(o0) and
(1/1Tg)z- = 1/1;[gjz- and (g4v); = ¢;j%;. The above representation conserves the charge

and therefore preserves the decomposition
F= GEmEZF(m)

where F(™) is the space of states with charge m.
The connection of the fermion representation of Gr(® and the KP and mKP
hierarchies is made explicit by making use of the boson-fermion equivalence in

two dimensions. The fermionic currents

Jn=3 4 i nez (7.1.20)
T€Z

satisfy the bosonic commutation relations

[y Jn] = M8y .- (7.1.21)
By representing the bosonic Fock space by B = C[t1, ts,...,; 2,27 1], the space of
polynomials in t1,%2,...,; 2,271, % and —nt_, (with n > 0) act as creation and

annihilation operators on B satisfying the algebra (7.1.21).

The operators J, are mapped to % for n > 0 and to —nt_, for n < 0.
The filled state of charge m |m > is mapped to z™. Therefore we define an
isomorphism

c:F—B
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by

o(lm>)=2", oJyol=

9 (>0

= oJpol = —nt_, (n<0). (7.1.22)
Otn,

The Fock space B = C[t1,t2,...,;u,u"}] can be decomposed into (fixed charge
m) subspaces B(™) 2 ;™C[t1, 1y, ...,] such that
B = OpezB™

and the map o = @mezo(m) into charge preserving maps
o™ . Fm _ Bm)

The inner product in the fermion space F(™) carries over to the bosonic space
B(™) and is given by the formula

e gy 2 R R

| oFagks

The r-function 7,(¢) associated to the state |x > is given by the boson fermion
equivalence:

Tx (t) = 69mGZ'T;Em) (t) )

where
Xt 2,27 ) = Y 2™ < m|ezp21t”‘]”|x >= Y 2"rX(). (7.1.23)
meZ meZ
In order to prove this relation use the identities e2p>1tpp Jn = %ezpzlt”‘]p for
n > 0 and ezpzl t”J”Jn = Jnezpzlt”‘]” —nt_, forn < 0.

The fermion operators

t.,—n
nZ

P(z) =3 tpz™  and  Pi(z) = Y@
nez nez
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act on the 7-functions by

(o™ Dy(2) (0™) 1™ (1) =X (2, 7™ (t) = 2" I ()T (2)7™ () € B™H

(6™ Dyt (2) (o) 1™ (1) =XT (2, )™ (1) = 2 LN DT ()™ (E) € B
(7.1.24)
where )
F+ _eXp{ Z n at
=t " (7.1.25)

I'_(z) =exp{ 2_:1 2"} .

These are called the vertex operators. In order to prove (7.1.24) note that
X(z,t) = 2™HT_(2)T1(2) and XT(z,t) = 2~™I'Z}(2)T'7(2) are the unique op-
erators preserving the commutation relations [Ji,, ¥(2)] = —2z7™¢(z) for n > 0
and [Jp,, 91 (2)] = 2T (2) i.e. for example [6? , XT(2,8)] = 2™ X1(2,t) for n > 0
and [tp,, XT(2,1)] = (2,t) for n < 0.

The important contribution of the Japanese school (see [66,69-71] and refer-
ences therein) is that they found that the *® modified KP (mKP) hierarchy is

equivalent to the simple relations

2 term of  YT(2)|g >m @Y(2)|g >0=0 =

> 1/1;[|9 >m @Yjlg >0=0,
j€Z

(7.1.26)

for all m = 0,1,...,k — 1. The vector |g >n= g|m >¢& GL(c0) belongs to the
GL(o0) orbit of the filled state |m >. (7.1.26) is trivially true for ¢ = 1 since
either v; or 1/1;[ annihilate |m > or |0 >. By acting with the Lie algebra element
a € gl(oo), where the action is given by (7.1.8) we obtain

S (@, ¢fllm > @yl0 > + 3 ¢llm > ®y;,a]0 >=0.

jEZ jez
By exponentiating the action of @ we obtain (7.1.26). The importance of this
result lies in the fact that the converse is also true [69-71]. In particular for £ =0
we obtain the KP hierarchy and for £ = 1 the second mKP hierarchy which is
related to the UMM. I refer to the latter simply as the mKP hierarchy.
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The relevant 7-functions of the mKP hierarchy are

Ti(t) =<i—1lexp{D_tpJptgli—1> (1=1,2). (7.1.27)
p=1

The conditions (7.1.26) on the 7-functions 7;(¢) are lead to the so called Hirota

equations. These are bilinear identities derived from (7.1.24)

§ XU, D (,2) @ X (¢, 2)r (t z)dzz 0, m=01
9

= 7{ exp{ 3" 2 () — )} exp{— Z at, = g Yt (', 2)z"ds =0
n>1 n>1

= fep( X 22"} exp{= X 2 (N rmia(t 49,2t — v, )2z = 0
n>1 n>1 " Un

5
= pn(2Y)Pnr1+m(— By —)Tmt1(t —y,2)11(t+y,2) =0.

n>0
(7.1.28)

The polynomials p,(z) are the elementary Schur polynomials defined by

> o)y =exp Y {Z 'y} (7.1.29)
keZ keZ
I use the standard notation § = (yi, %yz, %yg, ...) and 6% = (6%1, %6%27 %%, cd)
By Taylor expanding the last line we obtain the Hirota equations
—_— (o0} D
S pi(20)pjerer (~D)er= ¥ Prr 1y (7 (1) = 0. (7.1.30)
n>0
D, is the Hirota derivative
0
P(Dyp) f(t)g(t) = P(ay ) f(E+y)g(t —y)ly=0- (7.1.31)
p
(7.1.30) is understood as a generating series, with y1,ys, ... as free parameters.
For example the simplest Hirota equation obtained for £ = 0 from p3(y) = [(yl

Ay1ys + 3y3) — 6(yyz + ya)] is

(Dil —4D1D3 +3D9) 1 =0, i=1,2.
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Putting ¢ = t1, y = t and z = t3, as well as u; = —20% InT;, the last equation

gives the Kadomtsev-Petviashvilli equation for u:

3 3 1

One can go further and observe that the Kac-Moody algebra of sl (thought
of as sly(n, Clu,u™1])) when embedded in gl(co) has irreducible highest weight
n—1 B{M) where B%) = C[t;|j # 0modn] C

representations on the space B,y = @, (n)

B(™). Therefore one can reduce the mKP(resp. KP) hierarchies and obtain the
so called n-reduced mKP(resp. KP) hierarchies. Then one can show [70,71] that
the 7-function 7,y = @Z';é’]’k belongs to the ST, orbit of the sum of the highest
weight vectors @"mjolm. We are mainly interested in the second reduced mKP
hierarchies.

The equation for the second reduced mKP hierarchy are simply given by
(7.1.30) by deleting the dependence on even times. In particular the second re-
duced KP hierarchy is the KdV hierarchy and the second reduced mKP hierarchy

is the mKdV hierarchy. In the latter case the simplest Hirota equations give

(D} —4D1D3) 1y =0, i=1,2
D2 ryrs 0. (7.1.32)

Upon substituting

u; = —20% In7; and v=0Iln_2 (7.1.33)
1

we obtain the classical KAV equation
3 1
Oyu; = —iuzaxuz + Zaguz ,

where © = t1, t = t3 and u; = v2 £ v'. Therefore v satisfies the first equations of
the mKdV hierarchy, ¢.e. the classical mKdV equation. As we will see in the next

section, the rest of the Hirota equations give the full hierarchy.
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Note that (7.1.33) implies that
2= —62 In(1172) (7.1.34)

so that the partition function of the UMM is given by the product of the two
mKdV 7-functions [19]:
Z=7'17'2. (7135)

Therefore every solution 7 (¢) and 72(¢) of the mKdV hierarchy corresponds to
points V3 (t) and Va(t) in Gr(0) given by the states |v;(t) >= exp{ 3 t,Jp}gli—1 >.
p21

Then the time dependence of V;(¢) is given by

|Uz'(t) >= J2k+1|vi(t) > and J2k|vz~(t) >=0, (7.1.36)
Otog+1

or by using the correspondence (7.1.10)

0

——Vi(t) = 2 TLVi(t) and 22 Vi(t) C Vi(t). (7.1.37)
Otog+1
Then
Vi(t) = exp{_ top+ 122 T1IV; = (8, 2) Vi (7.1.38)
k

7.2. More on the mKP and KP hierarchies

In this section I give a brief description of the relation between the 7-function
formalism of the previous section and the formalism for the KdV and mKdV
hierarchies of chapters 3 and 6. For an excellent review see [66].

The KdV and mKdV hierarchies admit a representation in terms of differential
operators derived from pseudo-differential operators WDO . For example for the

simple KdV hierarchies (3.3.35) consider the operators

(7.2.39)



_1 _1 _1
These obey [Qi 2.Q] = —[Qli 2.Q] = —aRis Qﬁ_ 2 = —20Rg[u]. The first

equation follows from the trivial relation [Qk_f,Q] = 0 and the second one by

Juy

k__
noting that [@, 2,Q] must be a differential operator so that only the differen-
1
k__
tial part of [Q_ 2, Q] can be non-zero. The third one comes from the relation
1
k-5 . . . . o _ o
Res Q"2 = 2Ry[u] discussed in section 6.2. Obviously m@ = _W:H’ and
the KdV hierarchy can be written in the form
0 k-2
Q=1Q%,q). (7.2.40)
Otagt1
The general KAV hierarchy is defined by (3.4.56) [72]
P P
5 @ =QLQ,  p#Omodg (7.2.41)
D

where (3.4.52) @ = 87+ u4—287"2 + .... Note that Q% =0+ > f:0" so that
p .
Pp = Qq =P + Z—oo<i<p aiaz.
A similar equation for the mKdV hierarchy follows from the analysis of section

6.2:
0

Olog+1
with Q_ and Py, given by (6.2.39) and (6.2.50) respectively. It is also possible to

Q_ =[Py, Q-], (7.2.42)

put these equations in first order form in terms of a Lax pair. This is discussed
in detail in [72]

The KdV equation (7.2.41) is the g-reduced KP hierarchy. The KP system
can be derived from a system of linear differential equations for w(%, z):

L(t,0) w(t, z) =z w(t, z)

a (7.2.43)
51 w(t:2) =Ba(t, ) w(t, ),

where L = 0 + Y >1 Lyp07!, Bu(t,0) = 0™ + >0<k<n B,0F is a differential
operator, t = ({1,t2,...) and @ = §/0t1. The compatibility conditions for (7.2.43)

OL
% _[BTHL]
0By 0B,
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are satisfied by B, = L so that the first of the above conditions becomes

0

—L=[L" . 244
sl =L, 1] (7244

This gives the KP hierarchy as a deformation equation of the DO operator L.
The general KdV hierarchy (7.2.41) follows in the case where L? is a differential
operator. Then the solutions are independent of the times #z, and Q@ = L%. In
particular the ordinary KdV hierarchy follows when Q = L? = 8% — u and the
solutions depend on the odd times only.
We define the monic, normalized ¥DO S =1+ Y5> sp0% € G by

LS=80=L"=58S""1. (7.2.45)
Th
en 9
—S=—-1I"8
Otn (7.2.46)
=—(So"s~1)_s.

The function w(t, z) is the Baker wavefunction. Is is easy to see that

w(t, z) =SeXktre"
=(1+ Y s(i)z)eln 2" (7.2.47)
i
—(t, z)e2k ="
is a solution to (7.2.43). The adjoint wavefunction w*(¢, z) is defined by
w*(t, z) =(St) " LeXntrz"
=1+ s};(t)z_i)eZktkzk (7.2.48)
i

— @ (t, 2)e 2k th?"

where ST = (1 + 3;(—1)?07%s3(¢)) is the formal adjoint of S.

The wavefunctions w(t, z) and w*(¢, z) satisfy the “bilinear identity”

fw(t, 2w*(t',2) =0 (7.2.49)

Cc
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for every ¢t and ¢. The contour is taken around co. The converse is also true. If
the functions w(t, z) and w*(¢, z) are of the form (7.2.47) and (7.2.48) and satisfy
the bilinear identity, then w(t,z) is the wavefunction of the KP hierarchy and
w*(t, z) its adjoint and L is defined by (7.2.45).

The 7-functions of the KP hierarchy are defined by

1
w(t,z) :T(tl_;7t2 2z27t3 3z37"')ezktkzk
() (7.2.50)
T(t1+ 2 + 2z2’t3+3z3"")e—zktkzk_

w*(t,2) = pres

The 7-function is associated with the existence of a closed one form

0
w(t,dt) =Y dt;R —1—3———1 0
z; iReS,—o0 2* Jg:lz o az) w(t, 2)

where dw = 0. The closeness of w is equivalent to the bilinear identity (7.2.49)

(for a proof see [66]). Then at least locally
w(t,dt) = dInT(t),

and

0 . 0 0
— InT = _ M 1= 7 _ T dN\nd
o, n7T = ReS,—o 2 (jEle o azdz) n(t, z),

which is (7.2.50).
It is easy to check that for the second reduced KP or KdV system

u=—20%Inrt. (7.2.51)

To see this, simply expand (7.2.50) and from (7.2.47) get s; = —dIn7. Then
(7.2.46) gives %31 = —L}, where L™ = 0" + Y, LEOF. Since Q = 8% —u =
L? = [2 = 0% + L1 we obtain (7.2.51).
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The bilinear identity (7.2.49) is just the Hirota equations for the 7-functions
defined in (7.2.50).

1 1 1 , 01, 1, 1 .
OZ/T(tl—;,tz—ﬁ,%—@7---)7@1+;,t2+g,t3+@w--)ez’“ PR de

_/ ( 1 1 1 )
= T\T1 U1 z,:El U1 22:2,:51 U1 32:37.”

1 1 1 k
XT@1+yp+ 21+ n+ oo +tnt —3,---)6_2Zkykz dz
z 2z 3z

PR
- /e2 Zuwe™ Lnxt o (¢ 4y, 2) 7(t — y, 2) 2 dz,

which is (7.1.28). This establishes the connection between the 7-function for-
malism described in the previous section and the definition I gave originally to
the KdV hierarchy in chapter 3. A similar connection can be established for the
mKdV hierarchy as well. This is to be expected since the 7-functions of the mKdV
hierarchy are two separate KdV 7-functions related by the Miura transform. For
a more complete discussion on the mKdV hierarchies and their generalizations see
[70-71,72].

7.8. The String FEquation and the Sato Grassmannian

As T discussed in chapter 6, the string equation of UMM in the operator

formalism is written in the form
[P,O-]1=1, (7.3.52)

where P and Q_ are 2x2 matrices of differential operators of the form (6.2.39) and
(6.2.50). The solutions to this equation were shown to flow between multicritical
points according to the mKdV hierarchy. To this hierarchy correspond two 7-
functions 71 and 75 which obey the bilinear Hirota equations. Using the Pliicker
embedding discussed in section 7.1 we can associate to each 7-function a point

in the big cell of the Sato Grassmannian Gr© satisfying

0
Otok+1

Vi=224y 2AVic Vi, i=1,2. (7.3.53)
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The two 7-function are related by the Miura transform (7.1.32) and we will see

that this imposes an extra condition on the spaces V;, namely that
Vi C Wy and Vo C V. (7.3.54)

Therefore the solutions to the mKdV hierarchy are given by a pair of points V1
and V5 in Gr(0 that satisfy (7.3.53) and (7.3.54). The string equation imposes an
extra condition on them that picks out a unique pair of points from this subspace
of Gr® x Gr(0. 1t is possible to solve these conditions for the spaces Vi and Vs
satisfying these conditions and obtain all the solutions to the string equation.

Given an operator Q_ we can associate to it unique points Vi and Va in Gr(©0),
This is based on the fact that the spaces V; can be written in terms of a unique
UDO operator S; € G as V; = S; Hy. I remind to the reader that the S; are of
the form

Si=1+ 3 sPo*. (7.3.55)
k>1

We will see that the S; correspond to the Baker wavefunctions of the KdV hier-
archy (7.2.47) discussed in the previous section.

Indeed, consider S7 and S2 € G such that

SQ_St=0_ (7.3.56)
where
& S1 0 = 0 0
S:(Ol Sz),Q_z(a 0). (7.3.57)
Then
S1(0+v)S; =9,
(7.3.58)
Sy(8—v)S;t =0,
which imply that
51(32 — ul)Sl_l =02 ul = v? + UI,
(7.3.59)

S9(0% —u2)Syt =8 ug =02 0.
The existence of S; € G follows from the general fact [73] that for every monic

normalized pseudodifferential operator £ of order n there exists an S such that
SLS~1 =om
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Given S1, one can determine Sy from
51(8 -+ U) = 09s.

By taking formal adjoints of (7.3.58) and (7.3.59), it is easy to show that S;

and Sz can be made simultaneously unitary. Indeed, from (7.3.59) we obtain
(STHI@ —w)s] = 8" =

SlST —1p? SlST =9’ = (7.3.60)
1 1
5151 = f(az) )

where f is arbitrary. Similarly SzS;r = ¢(8?%). But since (7.3.56) implies
aah-1(0 0\ aa 0 9
(55h 1(3 0)(55U::(3 0), (7.3.61)
then
2
3ah = (f (8 0 )
gives
dg = f0,
of =99,

or, f = g. Therefore S; and S2 can be simultaneously chosen to be unitary, i.e
$187 =1 and $»8) =1.

Since V € Gr® is given uniquely by V = SH,, the operator Q_ determines
two spaces V1 = S1Hi and Vo = SoH,. Conversely given spaces Vi and Va
determine Q_ uniquely. The operator Q_, however, is a differential operator and
V1, V5 cannot be arbitrary. Indeed, since every differential operator leaves H.

invariant, we obtain

(04+v)H. C Hy &S710S, H. c Hy
S0V C V) (7.3.62)
SV C W
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Similarly, z Vo C V4.
The string equation imposes further conditions on V; and V5. After transfor-

mation with the operator S equation (7.3.52) becomes
[Py, O] =1 (7.3.63)

where ﬁ(k) = §P(k)§_1. The solution to (7.3.63) is

5 0 —z + fx(9) 3
Pa (—x+fk(a) 0 ) (7:3.64)

which gives Py = S7H(—z + F1(8))Ss and PJ(rk) = S5 (— 2+ fx(8))S1. Consis-
tency requires therefore that —z + f;(8) must be self adjoint f;,(9) = f;(8%). For
the k" multicritical point P () is a differential operator of order 2k. Therefore
fx(0%) = 8% + .. .. By using the freedom to redefine S; by a monic, zeroth-order,
pseudodifferential operator R = 1+ gl ;07 with constant coefficients r;, it is easy
to show that all negative powers inz_fk(az) may be eliminated. The proof shows
that all powers below 0~! can be eliminated by R, and a 87! term is forbidden

by self-adjointness. Therefore

(@) =0+ > fr 02 (7.3.65)
1<i<k

By Fourier transforming, the action of P on H is represented by
B (0 A e A b N2 o
() (Ak 0 ) , where k= +§)azz and o; = fr; =const.
(7.3.66)
Given the constants ;, we can calculate the operator P(y). Since S3(8—v)(0+
v)Sy ! = 62 implies 52[(a—v)(a+v)]i—%52—1 = 9%~ then using S1(8+v)S; 1 =0
we obtain
S1(8 + v)[(8 — v)(d +v)]" 285t = 9% . (7.3.67)
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Transforming back to H we obtain

k .
P(k) = Sl_l(—IE + Z aiazz)SZ
=0

k .
= Sl_l(—:E + ag)Sa + Z Ozisl_lazzSz (7.3.68)
=1
k 1
= Sl_l(—:v +ap)S2 + > (8 +v)[(0—v)(+v)]' 2

i=1

Comparing with (6.2.55) and since S7 125> = z+ 3 ¢;(2)0~¢, we conclude that at
i>1
the k*® multicritical point, a3 = 1 and oz = 0 for i < k. Moreover, by perturbing

away from the multicritical points we see that
Oéi(t) = —(2i + 1)t2i+1 . (7.3.69)

The requirement that P be a differential operator is equivalent to the condi-
tions A V1 C Vp and Ag Vo C V1. The space of solutions to the string equation
is the space of operators Q_ such that there exists P with [P), Q-] = 1. We
conclude that this space is isomorphic to the set of elements Vi, Va C Gr(® that

satisfy the conditions [24]:

zVicVy 2zVoCWy

(7.3.70)
AxVicVa AV Vi

d k 27
for some Ay = 7~ + 3 ;2™
i=0
It is now easy to show that the string equation is compatible with the mKdV

flows. Since the mKdV flows are given by the equation

0
Otok+1

V=2 (i=1,2), (7.3.71)
Vi(t) = exp{X top4122¥T1}Vi = (¢, 2)V; and (7.3.70) imply
k

29(2,6)V1 C (t,2)Va = 2 Vi(t) C Va(t)

(7.3.72)
Ap(®) (2, VA C (2, 2)Va = AR(D) Vi(t) € Va(t)
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where

Ay, (t) = ’YAk’Y_l = A — Z(2k + 1)t2k+1252k (7373)
k

and analogous equations with V7 and V5 interchanged. This is clearly consistent
with (7.3.69).

In order to understand better the connection of (7.3.71) with the mKdV hi-
erarchy, note that (7.3.71) implies that

G,
Otoks1 ATV Vi
+
1 08 _
(S;t Py S0 H1S)H, cH, =
(57 atiii-l - 87 19%HLS) - =0 =,

which is the equation (7.2.46) for the Baker function of the mKdV hierarchy

oS
Otagt1

— (Si—laZk-H.)_Si ]

The conditions (7.3.54), (7.3.62) are the Miura transform (7.3.59). In order to
prove this, note that (7.3.62) imply that the coefficients sgi) are related to u; by

u; = —20s%) . (7.3.74)
Then compute

S90S, =0+ (s§2)s§1)) + (31(2) + sgz) + 39)39) + (sy))2 — s§2))a—1 ... (7.3.75)

(2) (1)

and set v = s — 81  or v/ = L(u; — uz). We only need to show that v2 =

%(ul + u2). But
zVoa C V1 :51‘1652 H,CH,

=(S7198)_ =0
The 07! coefficient of the equation (S710S;)_ + (S;18S81)- = 0 gives v? =
T(u1 + ug).
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The string equation can be expressed as a set of constraints on the 7-functions
71 and 79 that obey the Virasoro algebra. The idea is to transform the bosonic
Virasoro generators into fermionic operators using the boson-fermion equivalence
(7.1.24). Then using the correspondence between states in the GL(00)-orbits of
the vacuum and Gr(®, annihilation of the 7-function by the Virasoro constraints
L,, is shown to be equivalent to the invariance of V; € Gr(® under the action of
operators z2"t1A.

Consider the fermionic operators obeying the centerless Virasoro algebra

1 2n—1

1
Ln =3 > Jpdon—p+ gm0 n20 (7.3.76)

p=—00

acting on the 7-functions associated with the states |g >;

Ti(t) =<i— 1 exp{>_tpJptlg>i i=1,2. (7.3.77)
j2d!
Then shift the times to;41 — 9,01 + ﬁ—l for 7 < k, where the ¢; are defined in
(7.3.66). Then

7i(t) = () =< i — 1| exp{>_ (tp + t{0) T }|g >,
p>1

k k
op op
Z 2p+1 J2p+1 - Z 2p+1 J2p+1

Ly, — L, = e Lpe #=0 (7.3.78)
k

=Ln+ > tplotnrp)+1-
p=0

In [25,26] it was shown that the fermion operators L!, correspond via (7.1.10) to

the operators

k
Lontiy_ Loy (@ 3 a2 | (7.3.79)
2 2 dz =

Then, because of (7.1.11), invariance of V4 5 under 2?"*1A (see (7.3.70) ) implies

that the 7-functions 7; are annihilated by the L,’s for n > 1 and

L()Ti = UT; . (7.3.80)
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Note that the Virasoro constraints arise as a result of the consistency of the mKdV
flows with the UMM. The above derivation also shows that if L,, annihilates the
T-function, all L,,, will annihilate it too.

The constant p is an arbitrary parameter. Such a parameter does not appear
for Lp(n > 1) by closure of the Virasoro algebra. As pointed out in [19] it is the
same for the two 7-functions and it cannot be determined by the closure of the
algebra since, contrary to the HMM, L_; is absent. If one includes boundary con-
ditions then there exists a one parameter family of solutions to the string equation
with the correct scaling behaviour at infinity [20,62]. It has been suggested in [19]
that the parameter of such a particular solution is related to u. The Virasoro
constraints are then those of a highest weight state of conformal dimension u.
Although L_; is absent one should bear in mind the additional constraints arising
from the interrelation of 71 and 72 determined by equation (7.3.70). The authors
of [57] give in open closed string theory interpretation of UMM. In this picture
the L_1 constraint is not absent. In order to appear one has to introduce a new
“time” that corresponds to the boundary cosmological constant of the open space

time. This effectively annihilates L_;.
7.4. Algebraic Description of the Moduli Space

In this section I attempt to give a complete description of the moduli space
of the string equation (7.3.52). As already mentioned, the space of solutions to
(7.3.52) is isomorphic to the set of points Vi and Vi of Gr(® that satisfy the
conditions (7.3.70) [24]. Therefore I start by describing the spaces V7 and V5.

First choose vectors ¢1(z), ¢2(z) € Vi, such that

#1(z) = 1 4 lower order terms, ¢2(z) = z + lower order terms

Then the condition 22V; C V4 and 74 (V1) & H. shows that we can choose a

basis for V1

b1, B2, 21, 22, . ..
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Since z Vi C Vo and 74 (Vo) =& H, we can choose a basis for V3 to be

W, 201, 262, 21, 2, . ..

where 1(2z) = 1 4 lower order terms. Using 2z Vo C Vi we have z¢) = a¢1 + Goa.
Choose ¢1, ¢2 such that zi) = ¢2. Then we obtain the following basis for V1, V5

(¢ = ¢1):
Vit @20, 220, 2%, ...

Va i 1, 26,2°0,2°6, ...
Then it is clear that ¢, ¢ specify the spaces V7, Vo. Using the conditions AV, C Vo
and AVs C V7 we obtain

(7.4.81)

& 1226 = Poo(2)é + Pou(2)

( Z
Cclz (7.4.82)

(@ + fre(Z)Y = Pig(2)¢ + Pr1(2)9 .

The polynomials Pyg(z) and Py1(2) are odd whereas Py (2), Pig(2) are even. Com-
paring both sides of (7.4.82) we find that because deg(fx) = 2k, deg(Pp1(2)) =
deg(Pig(z)) = 2k and deg(P11(z2)), deg(Poo(2)) < 2k and that the coefficients of
the leading terms of Py;(z) and Pg(z) are equal to ay.

Equations (7.4.82) can be rewritten in the form
Dx = Boy(2)x (7.4.83)

where xy = (i),

_(& © - (P = 12 Pul?)
D= (% %) ,  Boy(z) = ( 00 Pl()(z)k P11(Z)01— fk(z2)> . (7.4.84)

The requirement that ¢, 1 be solutions of the form 1+ (lower order terms), rather
than exponential, puts further constraints on the matrix Bag(z). It requires that

the eigenvalues A(z) of B must vanish up to O(272),i.e A(2) = X Ajz~¢ L. Indeed
i>1
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then x ~ exp [* A(2/)dz’ ~ exp{—2L} ~ 1 — A;271 + ..., as desired. But then
detBoy(z) is of O(27%) and

For(#2) = %(Poo(z) + Pu(2) = \/ i(Pgo(z) FPL(2)2 = A+ O (7.485)

where A(2) = Pyo(2)P11(2) — Po1(2)Pio(2). Since f(22) is an even function of 2,
the odd parity of Pyy(z) and Py1(2) determine that Pyg(z) + P11(2) = 0.

Conversely, given a 2x 2 matrix (P,J(z)) with Py1(2), Pio(2) even polynomials
of degree 2k and Pyy(z), P11(2) odd polynomials of degree < 2k such that Pyo(z)+
Pi1(z) = 0, we will show that we obtain exactly two solutions to the string
equation (7.3.63). The eigenvalues A(1?)(2) of (P,J(z)) are given by

A1 (2) = £4/-A(2) (7.4.86)

and XD(z) = > AP2% (i =0,1). Then the matrix By, of (7.4.84) with

j=—o0

k

i ' ' ' 0 m >0
sz)(zz) = 2 agl)zzm aﬁ,’L) B )‘%) - {75 0 at least for 0 > m (7.4.87)

m=—0o0

has determinant at most of @(2~%). Then the system (7.4.82) has solutions ¢(2)
and 1(z) of the form ¢(z), ¥(z) = const. + lower order terms. We can set the
constant to one by requiring that the leading terms of the polynomials Py;(z)
and Pio(z) are equal. Since we know from the discussion at the end of section 3
that the m < 0 terms of the operator A can be gauged away, we see that each
eigenvalue A(V)(2) specifies a unique solution to the string equation (7.3.63).

Hence the space of solutions to the string equation (7.3.52) is the two fold
covering of the space of matrices (sz(z)) with polynomial entries in z such that
Po1(z) and Pig(z) are even polynomials having equal degree and leading terms and
Poo(2) and P11(z) are odd polynomials satisfying the conditions Py(2) + P11(2) =
0 and degPyo(z) < degPo1(z).

The space of solutions to the string equation was also studied by Moore [74]

where the moduli space was described in terms of the Stokes parameters of the
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corresponding isomonodromic deformation problem [50]. This description arises
when the string equation is written as flatness conditions on meromorphic gauge
fields and then it may be viewed as consistency conditions for isomonodromic
deformation of an equation with an irregular singularity. The Stokes parameters
of the isomonodromy problem determine the flat connection up to meromorphic
gauge transformations. Therefore they are the moduli of these fields under the or-
bits of the gauge transformations and the space of solutions to the string equation
can be described in terms of them. Guha and Maias [75] discuss the connection

between the algebraic description given here and that of [74].
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