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In an extension of earlier work we investigate the behavior of two-dimensi@mal Lorentzian quantum
gravity under coupling to a conformal field theory withk>1. This is done by analyzing numerically a system
of eight Ising modelgcorresponding te=4) coupled to dynamically triangulated Lorentzian geometries. It is
known that a single Ising model couples weakly to Lorentzian quantum gravity, in the sense that the Hausdorff
dimension of the ensemble of two-geometries is ta® in pure Lorentzian quantum gravitgnd the matter
behavior is governed by the Onsager exponents. By increasing the amount of matter to eight Ising models, we
find that the geometry of the combined system has undergone a phase transition. The new phase is character-
ized by an anomalous scaling of spatial length relative to proper time at large distances, and as a consequence
the Hausdorff dimension is now three. In spite of this qualitative change in the geometric sector, and a very
strong interaction between matter and geometry, the critical exponents of the Ising model retain their Onsager
values. This provides evidence for the conjecture that the KPZ values of the critical exponents in 2D Euclidean
guantum gravity are entirely due to the presence of baby universes. Lastly, we summarize the lessons learned
so far from 2D Lorentzian quantum gravity.

PACS numbes): 04.60.Gw, 04.20.Gz, 04.60.Kz, 04.60.Nc

I. INTRODUCTION gravity-matter system degenerates? We address these and re-
lated issues below, by studying numerically eight Ising mod-
It may come as a surprise to practitioners of two-els(corresponding to a=4 conformal field theorycoupled
dimensional2D) gravity that there is more than one way of to Lorentzian quantum gravity.
constructing a viable quantum theory by path-integral meth- In order to set the stage for our present investigation, let
ods, and that there is indeed “life beyond Liouville gravity.” us recall some salient features of the Lorentzian gravity
The new, alternative theory of 2D quantum gravity in ques-model [1,4]. One idea behind the formulation of such a
tion was first constructed as the continuum limit of an ex-model is to take the Lorentzian structure seriously within a
actly soluble model of dynamically triangulated two- path-integral approach and in this way bridge the gap be-
geometrieg 1], which could be interpreted as representingtween the canonical quantization and tficlidean path-
Lorentziangeometries with a causal structure and a preferredhtegral formulation of gravity. The Lorentzian aspects of the
time direction. It has recently been shown that there is anodel are two-fold: compared with the Euclidean case, the
whole universality class of such Lorentzian models, some o§tate sum is taken over a restricted class of triangulated two-
which are obtained by adding a curvature term to the gravityyeometries, namely, those which are generated by evolving a
action or by using building blocks different from triangles in one-dimensional spatial slice and allow for the introduction
the construction of geometri¢g]. of a causal structure. Secondly, the Lorentzian propagator is
An investigation of Lorentzian gravity coupled to Ising obtained by a suitable analytic continuation in the coupling
spins led to the conclusion that in spite of strong fluctuationgonstant. During time evolution, we do not permit the spatial
of the underlying geometries, the critical matter behavior inslice to split into several componertise., change its topol-
the coupled system is governed by the Onsager expof#&nts ogy), because the resulting space-time geometry would not
(which one also finds for the Ising model on a fixed, regularbe compatible with our discrete notion of causalitin a
lattice). This immediately raises the following questions: If continuum picture, the local lightcone structure associated
we continue to add matter to the system, do we eventuallwith a Lorentzian metric must necessarily become degener-
observe a qualitative change in the behavior of geometrate at such branching pointsThis is exactly the situation
and/or matter? Is there an analogue of twel barrier of  described by usual canonic@uantum gravity.
Liouville quantum gravity beyond which the combined In the pure gravity model, the loop-loop correlator and
various geometric properties can be calculated exactly and
compared to Euclidean 2D quantum gravity, as given by

*Email address: ambjorn@nbi.dk Liouville gravity or 2D quantum gravity defined by dynami-
"Email address: konstant@physics.uch.gr cal triangulations or matrix models. The two models turn out
*Email address: loll@aei-potsdam.mpg.de to be inequivalent. For example, the Hausdorff dimension of
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the Lorentzian quantum geometry @,=2, indicating a quantum gravity and conformal matter is directly caused by
much smoother behavior than that of the Euclidean casthe presence of baby universes. Various qualitative argu-
wheredy=4. The difference between the fractal structuresments have been put forward in the past to support this idea,
of Lorentzian and Euclidean quantum gravity can be tracegvhich is of course not new. However, one never had a model
to the absence or presence of so-called baby universes. Theghich prohibited the creation of baby universes, and which
are outgrowths of the geometry taking the form of could be used to verify explicitly that the coupling between

branchings-over-branchings, which are known to dominatgeometry and matter in this case is weak. The observed
the typical geometry contributing to the Euclidean state sumweak-coupling behavior in the Lorentzian model opens up
Such branchings and associated topology changes with rese intriguing possibility that one might be able to cross the
spect to the preferred spatial slicing are absent from the hiss=1 barrier in Lorentzian 2D quantum gravity coupled to

tories contributing to the Lorentzian state sum. matter. This is the issue we will study numerically in the

Baby universes, i.e., discrete evolution moves resulting iremainder of this article, by coupling eight Ising models to
spatial topology changes may be reintroduced by hand in theorentzian quantum gravity, corresponding at the critical
Lorentzian formulation(if one is willing to give up causal- point of the combined system to @4 conformal field
ity). This corresponds to “switching on” an additional term theory.
in the differential equation for the propagator, in such a way
that the scaling limit must be modified in order to produce | ~oUPLING GRAVITY TO MULTIPLE ISING SPINS
well-defined continuum physics.

A further difference between 2D Lorentzian and Euclid- In our previous work 1] we have defined the two-loop
ean gravity is revealed by coupling them to conformal matfunction of Lorentzian 2D gravity as the state sum
ter. In the Euclidean case this is governed by the famous
KPZ (Knizhnik-Polyakov-Zamolodchikgvscaling relations. GO\ )= E o~ ANy 1)
They describe how the critical exponents of a conformal field ! Ter, !
theory change when it is coupled to Euclidean quantum grav-
ity, and how the entropy exponent,, for two-geometries where the summation is over all triangulatiohsf cylindri-

(the so-called string susceptibilitghanges due to their cou- cal topology witht time-slices,N; counts the number of
pling to the conformal matter fields. triangles in the triangulatiofi, and\ is the bare cosmologi-

In 2D Lorentzian gravity, the continuum limit of the cal constant. Since we are primarily interested in the bulk
quantum geometry was found to bechangedunder cou-  behavior of the gravity-Ising system, we use periodic bound-
pling to ac=3 conformal field theory, in the form of an ary conditions by identifying the top and bottom spatial
Ising model at its critical point. The Hausdorff dimension slices of the cylindrical histories contributing to the state sum
remains equal to two, and an appropriately rescaled distribud). Clearly this is not going to affect the local properties of
tion of spatial volumes coincides with the distribution found the model. A geometry characterized by a toroidal triangula-
in pure Lorentzian gravity. In addition, the values of thetion T of volumeN; containsN+ time-like links,N+/2 space-
critical exponents of the Ising model agree with those of theike links, N1/2 vertices and Bl{/2 nearest-neighbor pairs.
Ising model on a regular lattice. In other words, coupling the The partition function ofn Ising models coupled to 2D
Ising model to Lorentzian gravity does not affect the naturel_orentzian quantum gravity is given by
of its (second-orderphase transition. Summarizing, one may
say that the coupling betwees 3 conformal matter and ANeon
geometry in Lorentzian quantum gravity is weak. G()\vtvﬁ):TgT e "TZy(pB), )

To avoid a frequent misunderstanding, we must empha- ‘

size that this isot a trivial consequence of the fact théf  \yhereT is now a triangulation with toroidal topology. The
=2 in Lorentzian quantum gravity. Although a flat space-partition function for a single Ising model on the triangula-
time impliesdy=2 for the Hausdorff dimension, the con- tion T is denoted byZ+(3), where the spins are located at

verse is by no means true. In fact, the geomelwgsfluctu-  the vertices off andg is the inverse temperature of the Ising
ate strongly in Lorentzian gravity, as was demonstrated ifiggel.

[1,3]. There are other examples to illustrate that the Haus- on a fixed lattice there are no interactions amongrthe
dorff dimension is only a very rough measure of geometrysing spin copies if the partition function is simply taken as
Consider 2DEucIideanquantgm gravity coupled to confor- the n-fold product ofZ(B3) for a single Ising model. In the
mal field theories withc>1: in these models the geometry presence of gravity, given by the definiti¢®), the situation
fluctuates so wildly that the two-dimensional surfaces ar€g gifferent. Although the spin partition functicgf}(g) still
torn apart and degenerate into so-called branched polymerg, iorizes for any giver, this is no longer the case after the
which again havel, =2, the same as for smooth surfaces! ,m gverT has been performed. The different spin copies are
An important conclusion one can draw from the resultseffectively interacting via the triangulation®r in a con-
obtained in3] is that the strong coupling between Euclideanyjn,um language: via the geomeirghe weight of each tri-
angulation is a function of all the Ising models.
It is straightforward to perform computer simulations of
The critical point of the Ising model we refer to is the critical the combined gravity-matter system given 2y (see[3] for
point of the combined Ising-gravity system. See R&ffor details.  detailg. The only nontrivial aspect of the Monte Carlo simu-
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TABLE I. System sizes in terms of the numbiErof vertices
used in simulations at=t?/N=1,2,3,4.

=1 T=2 7=3 =4
1024 1058 1200 1156
2025 2048 2352 2116
4096 4232 4800 4624
8100 8192 9408 8464
16384 19200

32400 36963

lation is the updating of geometry, and for this the procedure
used in[3] can readily be generalized to the extended spin

system of(2). All results discussed in the following have
been obtained at the critical coupling of the combined
gravity-matter systern?), with n=_8, i.e., with central charge
c=4. Our motivation for choosing=4 comes from our

PHYSICAL REVIEW D61 044010

we investigate finite-size scaling of the system x{,(8;).
The statistics vary, for example, we performed Xa®f
sweeps for theN=19200 system and 0:610° sweeps for
the N=36963 system. The data are binned for errors.

We apply finite-size scaling to a variety of observables, in
order to extract universal properties which characterize both
the quantum geometry and the matter interacting with it. The
first of them involves a measurement of the distribution
S\MI) of spatial volumedcf. [3]), that is, the length$ of
slices at constant time For sufficiently large lengthsand
space-time volumell, one expects a finite-size scaling rela-
tion of the form
SWa(1)=Fs(I/N7™), )
for some functionFg. If such a relation holds, it defines a
relative dimensionality of spadeharacterized by the aver-
age lengtkI)] and (prope) time since from

experience with Euclidean quantum gravity coupled to mat-

ter fields. In that case the phase transitiogatl is not very
clearly visible in simulations. Only fot=4 can the changes
in geometry be detected easily. We have therefore chosen
work with eight Ising spins in Lorentzian quantum gravity,
to have bottr sufficiently large to detect potential effects on

Np~t-()=t~N3 Y (1y~Nn, (4)
By relating the geodesic distanten time direction to the
total volume, we can define a global or cosmological Haus-

dorff dimensiondy, of space-time through

the geometry, but still small enough to make computer simu-

lations feasible within a limited amount of time.

Ill. NUMERICAL RESULTS

We have performed our simulations on dynamically trian-

gulated surfaces of torus topology willh: triangles(corre-
sponding toN= N+/2 vertices andt time slices. For reasons

that will become apparent in the following we have used

geometric configurations with different ratios of temporal
length t versus average spatial extent, satisfyiNgt%/r
with =1, 2, 3, and 4. The choice=1, previously used in
[3], corresponds to a square lattizeith opposite sides iden-
tified), while for 7>1 one obtains tori elongated in the
direction. The system sizé¢used in the simulations at vari-
ous values ofrare listed in Table I. The geometry is updated
using the move described 8], and for each geometry up-
date(corresponding to approximately accepted moveshe

dy=
= H—m.

1dy

t~NJ

®)

This definition is motivated by a similar notion in Euclidean
quantum gravity. In that case there is no distinction between
spatial and time directions, and one can extract the global
Hausdorff dimension by measuring the volumes of spherical
shells at geodesic distance(the analogue of the geodesic
time t above from a given point(Note that a “shell” need

not be a connected curyeln a discretized context this
amounts to counting the numbey(r) of vertices at geode-
sic (link) distancer. For this quantity one expects a scaling
behavior[5,6] of the type

(6

— /d r
n(n) =Ny MF1(0, x=
T

Ising spins are updated with the Swendsen-Wang algorithm.

The focus of our attention is on the multiple Ising model

with c=4, although for comparison some data for0,3
will also be reported.

which has been verified for the case of 2D Euclidean quan-
tum gravity. Equatior{6) is a typical example of a finite-size
scaling relation. It tells us how a radial or proper time coor-

termining the critical values\.,B;) of the cosmological

a nontrivial continuum limit N—oo, r—). In this sense

and the matter coupling constants. For the pure gravitfln describes long-range properties of the system, which is

model (c=0), the cosmological constant.=In2 is known
exactly [1]. For a single Ising modelc=3%), we know
from our previous simulations that \{,8c)
=(0.7425),0.2521(1) [3], where the normalization fax

is such that\.=In2 at B=0o0. For the case of eight Ising
models, using finite-size scaling as [i8], for system sizes
N=1K-8K and 7=1,3 we have obtained \(,B:)
=(1.0815),0.2480(4). As expected, this result is insensi-
tive to the value ofr. Having established the critical values,

our rationale for calling it thecosmologicalHausdorff di-
mension. It does not necessarily tell us about the short-
distance behavior of space-time, for example, how the vol-

. - 1
ume of a spherical shell behaves at small radlsfs\IT/d”

(but still with r much larger than the lattice spacing, to avoid

lattice artifact$. At such distances one expects the shell vol-

ume to grow with a power law
nn(r)~ro=t,

)
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whered,, is now a “short-distance” fractal dimensigj¥].
There is noa priori reason fordy, to coincide with the cos-
mological Hausdorff dimension. However, in models of sim-
plicial Euclidean quantum gravity we have always observed
d,=d, such that(6) was valid for allr (much larger than
the lattice spacing This points to a unique fractal structure
of space-time, withF;(x)=x%"1 for x<1. Nevertheless,
there also exist related models wilh+ dy, [8]. We will see
below that Lorentzian gravity coupled to a sufficiently large
amount of matter provides another example of this kind.

For illustrative purposes we have generated 3D visualiza-
tions of the two-dimensional dynamically triangulated geom-
etries produced during the simulations. Harentziange-
ometries this can easily be done: as a consequence of the
causality requirement each 2D history consists of an ordered
sequence of 1D spatial slices of constant time. Each such
slice is embedded isometrically in three-dimensional flat
space and then the vertices of neighboring slices are con-
nected. Different colors indicate clusters of spin-up and spin-
down states. For the case of multiple Ising models, one of
them is chosen arbitrarily to determine the surface coloring.
We have cut open the toroidal geometries along one of their
spatial slices, so that in the pictures they appear as cylinders
(with top and bottom slices to be identifled’he visualiza-
tions are well suited for comparing the qualitative behavior
of the geometric and spin degrees of freedom as well as their
interaction, for different values of the conformal chamge
Animations of some of the simulations can be found9h

A. Lorentzian quantum gravity with c<1/2 ) ) ) )
. FIG. 1. Typical configurations forc=0, with volumes N
To put our current results into context, let us recall the—gj00 (r=1) andN=9408 (r=3). The spin configurations are

situation for pure Lorentzian gravitycE 0) and for Lorent-  those of a8=0 system.
zian gravity coupled to one critical Ising modai=3). In
that case, independent measurementSg{(l) and ny(t) B. Properties of the quantum geometry forc=4
both yield 6,=dy=2, corroborating the existence of a uni-
versal fractal dimensiord=2, which moreover coincides
with the naively expected continuum value. In addition, we
have found the Onsager exponents for the case of a single In the same manner as discussed above, we can extract
Ising model coupled to Lorentzian gravity. The fact that bothsome large-scale characteristics of the quantum geometry of
the fractal dimensions and the critical matter exponents rethe c=4 system coupled to Lorentzian gravity by studying
tain their “canonical” values is in sharp contrast with the the scaling properties of the distributio®Vy(l) of one-
situation in 2D dynamically triangulate@uclideanquantum  dimensional spatial slices of volunielt turns out that for
gravity. c=4 one has to simulate systems witt=3 to observe a

For later comparison with the case of eight Ising modelsclear scaling behavior. As illustrated by Fig. 3, the system
coupled to Lorentzian gravity, we show in Fig. 1 two typical exhibits a tendency for developing a large number of very
configurations of the pure-gravity system fdr=8100, 7  short spatial slices, with length of the order of the cutoff. The
=1, and forN=9408, r=3, generated during the Monte length distributionSVy(l) has a peak at small whose
Carlo simulations. Apart from an overall rescaling, the height increases withl, but whose position has a very weak
=1 geometry looks qualitatively similar to its=3 counter- dependence on the system size. Since the volume is kept
part. This observation can be made into a quantitative statdixed, there are strong finite-size effects which artificially
ment by showing that the distributid®\Vy(l) is independent prohibit the system from forming such a peak wheneNer
of 7, as indeed we have done. From the point of view of theand r are simultaneously small. This is obvious from the data
space-time geometry, the situation is similar for 3 taken for ther=1 system(Fig. 3). In that case the peak
coupled to Lorentzian gravity. We illustrate this by two typi- appears clearly only for a system with more than 8100 ver-
cal configurations, depicted in Fig. 2. Also in this case wetices. Such finite-size effects are absent for tke3 system.
have checked that the distributi®@\y(l) is independent of These properties are well illustrated by Figs. 4 and 5,
the relative temporal extensianof space-time. which show some typical geometriescat 4. They should be

1. The length distribution S\{(l) and the dimension
of proper time
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FIG. 2. Typical configurations forc:%, with volumes N _TG' :’; fThe_afp:earancg oizpeglelltsllces of very short length for
~8100 (r=1) andN=9408 (r=3). ¢=4, and for7=1 (top) and7=3 (bottom).

Let us now quantify the scenario just outlined by a study
compared to our previous Figs. 1 and 2 és£1/2. Figure 4  of the scaling properties @Vy (). As expected, the length
contains space-time configurationsat 1, for three differ-  distributionsSVy(l) show no sign of scaling for small For
ent volumesN. Their tendency to separate into two distinct largel, however, a scaling relation of tyg8) is well satis-
regions increases withl (remember that the time direction fied, as illustrated by the plots in Fig. 6.
has been chosen periodi@his is a typical finiteN behavior The optimal values foby, are contained in Table Il. There
associated with a phase transition, in this case, of the geonis a clear tendency foé,— 3/2 ast becomes large. From
etry. Likewise, for increasing (and constant volumét be- ~ Fig. 6 we can read off at which value of the parameter
comes easier to form long and thin “necks,” along which =I/N$h the scaling sets in. This happens foec, wherec

the spatial volumes$ stay close to the cut-off sizésee Fig. ~0.5, or(settingd,=3/2) for lengths
5). Note in particular the space-time history with the largest -
volume (N=36963), where the separation of space-time into I=cNr™. ®

two different phases is very pronounced, underscoring at th . . .
same time the effect of increasing This figure also illus- Rs mentioned above, the neck region does not contribute

trates the fact that in the limit 88—, the neck region will significantly to the volume for largdl. We have mgasured
. . that the volumeV,,, of the extended phad@ow defined as
carry a vanishing space-time volume.

. the scaling region o8\(1) ] is asymptotically proportional to
It happens only rarely that the extended region shows e total v%lu%e\/(ENi))g)f theysurpface. L)étzxt dpenote the

tendency to break up into smaller parts. Generally speakinq mporal extension of this extended region ggthe typi-
the fluctuations in its shape constitute the slowest modes qf length of a spatial slice in that regigsuch thatt.,- I o
ex exi

the simulation. Occasionally we observe(rauch) smaller =V,,=N). If we assume for the sake of definiteness that
extended region splitting off from the main one. However,indeed5h:3/2 it follows from (5) and (4) that
our statistics was insufficient to establish whether for large

there is an underlying pattern governing the size and fre- ) 3 .

guency of these events. For our present purposes, this effect dim Vextzid'”” ext: ©)
can be safely ignored, since the number and size of such

secondary space-time regions was small. From this we immediately deduce the relations
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FIG. 4. Typical configurations foc=4, r=1 and volumesN
=1024, 8100 and 32400.

dlm lext: 2 dlm text! (10)
dim V=3dim t, (11)

and that the cosmological Hausdorff dimension is given by
dy=3. FIG. 5. Typical configurations forc=4, with volumes N

Our main conclusion is that the coupling of eight Ising =8192 (r=2), N=36963 (r=3), andN=8464 (r=4).
models to Lorentzian gravity produces a phase transition in
which some universal properties of the geometry ar&yhere in models of two-dimensional graviiy,6,9. (That a
changed. At large distances, proper time and spatial lengtfiversal behavior at all length scales is unlikely is already
develop anomalous dimensions relative to each other and {f) strated by the separation of typical configurations into a
the space-time volume, as expressed by Et3.and(11).  thin and an extended region apparent in Fig A discussed

. , _ at the beginning of this section, this is no reason for concern;
2. The shell volume g (r) and the short-distance dimension,d it simply ?eflectg the fact that the underlying quantum geom-

Next we discuss the measurement of the one-dimensionairy is more complex. We will identify several well-defined
volumesny(r) of spherical shells at distance It turns out  scaling regions and encounter the more general situation
that forc=4 Lorentzian gravity plus matter, these functions where the short-distance and the cosmological Hausdorff di-
do not exhibit the universal scaling properties found elsemensions are different.
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5[ - ; ' 1024 ] T/}\BLE| II.f The optimal values of the exponeny, for best scal-
2025 ing of S\V() fitting (3).

i - g (1) fitting (3)

8100 -

16384

0 % X

=1 T=2 7=3 =4
1.7013) 1.655) 1.543) 1.503)

log(SV(1))

As can be seen in Fig. 7, the short-distance behavior of
ny(r) is independent oN and can be fitted nicely toy(r)
~r%~1 with d,~2 (which coincides with the value found
. . . . . for c=3 and also happens to be the “canonical”’ dimension
5 -4 -3 2 -1 0 1 expected from classical consideratinn§he best fit gives

log(I/N"/3n) dy=2.1(2).
Going out to length scales of the order N3, we see a
5t ' ' ' " 1058 —— | different scaling behavior. Herg) is valid with a cosmo-
logical Hausdorff dimensionl,=3, in accordance with the
value extracted from the measurements of the length distri-
bution SV(l). Finite-size scaling in this region, computed
from the scaling of the peaks afy(r) (Fig. 8), yields dy
=3.079).

Finally, at very large near the tail of the distribution, we
found that the value ohy(r) is almost independent df,
indicating a dominance of configurations with;=1. Re-

% calling the typical shape of configurations@t 4 (Fig. 5),
. : . . e this suggests the following interpretation. Each measurement
-5 -4 -3 -2 -1 0 1 of ny(r) involves the choice of a reference point, from
log (VN ") which the geodesic distancesare measured. Since almost
. . . . . . no space-time volume is contained in the thin necks, the
51 1200 —— randomly chosen reference point will typically be located
4800 e somewhere in the extended region. However, moving out-
e | wards from such a bulk point in spherical shells will for large
r eventually bring us back to the neck region, which in the
largeN limit has a length proportional ta/N (simply be-
causeNx=t?). Once the spherical shells have reached the
neck region, the volume functiomy(r) will just measure a
one-dimensional structure.

log(SV(1))

C. Matter behavior in the extended phase

6 5 .'4 3 2 1 0 1 We have seen above how a Lorentzian geometry separates
log(I/N'/3r) into two distinct regions under the coupling to eight Ising
models. Since the thin, stalklike region is effectively one-

L 88 xE RO 3 ONS EDEEN SGgas

log(SV(l))

dlog(ny(x)) / d log(x)

-6 -5 -4 -3 2 -1 0 1
115 ' ' ' ' ' ' '
log(I/N ") -5 45 -4 35 -3 25 -2 15 -1

log(x)

FIG. 6. The distributionS\(l) for thec=4, =1, 2, 3, and 4 FIG. 7. Small-distance scaling of the correlation functigyfr)
systems. for thec=4 system.
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1000 T TABLE lIl. Matter exponents for the= 3, 7=3 model.
: Observable Exponent
: X kd 0841
- Diojr 1 0.5525)
D2 1 0.5504)
1000 10000 100000 vy
N

FIG. 8. Scaling of the peaks of the correlation functioy(r) necting two of them. The constarts and 8, are determined
forthec=4 system. from the scaling regions of the length distributio®¥y(1),

. . - . &vith c,~0.5, as discussed in connection with E§). De-
dimensional, a nontrivial matter behavior can be expecte Aote the numbers of such vertices and linksNlyand N/
only in the remaining, spatially extended space-time region, L

The computation of the matter exponents in this phase i¥/€ then compute the averages '/E/NL and[n=M/N , and
subtle and requires some care. At the critical matter couplingn€asure the expectation valu@s’) and(Ny).
B. we have measured the same set of observables as in our LOOking at the Monte Carlo time histories, we observe

previous simulation§3]. Together with their expected finite- that wheneveN'+0, e andm fluctuate stably around their
size scaling behavior they are mean valuegeven when the vertex numbil' is close to 0,

whereass andM vary slowly but considerably together with
x=N((m?—(|m[)2)~N»"%  (susceptibility, (120  N’. We can thus safely ignore tieelatively few configu-
rations withN’=0. We have also computed the volurdé
dInjm| =V, contributing to the scaling region &\(1) and per-
dg )’ formed finite-size scaling of the observables computed from
(13) the modified energy and magnetization averagesnd m.
The results of this final analysis are summarized in Table IV.
(en?) Und dInm? We have used a variety of different definitions of the system
(e)— (m?) ~NTH | Dy mZET ' size, to demonstrate that the critical matter exponents ex-
(14) tracted from finite-size scaling do not depend on them. We
conclude that the critical matter behavior of our model of
wherey andv are the critical exponents of the susceptibility eight Ising spins, on the part of space-time that possesses a
and of the divergent spin-spin correlation length. nontrivial spatial extension, is governed by the Onsager ex-
Initially we checked that for the case of a single Ising ponents, and therefore lies in the same universality class as
model, extending the geometries in the temporal directionhe model containing only a single copy of Ising spins.
(i.e., taking 7>1) does not affect the Onsager exponents
found in[3]. The results are tabulated in Table Ill, and do
not differ significantly from our previous results.

~ If one repeats this analysis naively for-4, without tak- |5 order to provide an interpretation for some of our re-
ing into account geometric properties, no consistent scalingits on 2D Lorentzian gravity coupled to multiple Ising
behavior is found. For example, we find Onsager exponentspins, we first need to recall some characteristic geometric
for =1, but these change wheris increased. Although the

spins in the “thin” phase cannot be critical, and contribute  1ag| g |v. Critical matter exponents for the=4, r=3 model.

little to the space-time volume, the “transition” region, \ye compare scalings with respect to different definitions of system
where the spatial lengthchanges from cut-off length tés  gjze.

satisfying(8), apparently spoils the measurements, and there
are considerable finite-size effects. The situation does not Onsager V' (N") (N})

improve when the volum&/, is used instead of the total Observable Exponent value scaling scaling scaling
volume in the finite-size scaling.

Dinjm = N(<e>— %) ~ N (Dmlm'E

Dinmz=N

IV. DISCUSSION

It seems that the only way to study the critical matter X k2 0.875  0.8%1) 0.8&1) 0.831)
behavior for the case of eight Ising models is to isolate ex- vdy
plicitly the contributions from the spins on the extended part D iojm 1 05 0.5205) 0.5202) 0.481)

of the Lorentzian geometry. For this we adopt the following —

procedure: for each configuration we measure the engrgy vy
and magnetizatiotM on all vertices belonging to spatial ~ Pnm? 1 0.5 05115 0.5124) 0.441)
slices whose length is greater than a cut-df(N) vdy

=c,N¥n and on all links contained in such slices or con-
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features of 2D Euclidean gravity. Consider the one-lt should be emphasized again that EG®) and (20) seem
dimensional spherical “shell” consisting of all points sepa-to be universally true for 2D Euclidean quantum gravity
rated from a given reference pdirity a geodesic distanage  theories withc<1 and require no cut-off in the continuum
This curve will in general be multiply connected. Latl,r) limit. To our knowledge they are the only nontrivial relations
denote the number of connected shell components of ldngthin 2D Euclidean quantum gravity independent of the central
at distancer. It is a remarkable and universal result in 2D chargec.

Euclidean quantum gravity that and | have a relative For Lorentzian gravity coupled to@=4 conformal field
anomalous scaling of the form theory we saw above that the geometry had undergone a
phase transition compared ¢e=0 andc= 3. In those cases,
locr?, (15 a continuum limit could only be obtained if time and space

. ] ] . had identical scaling dimensions, dirrdim t. Under the
For pure 2D Euclidean quantum gravity this was first provechatyral identification of Lorentzian proper tintewith the

analytically in[10], where in the limit of infinite space-time geodesic distanceof the Euclidean formulas, this should be

volume p was found to be contrasted with dimi=2 dimr, which follows immediately
1 from relation(15). The analogue of relatiof21) for Lorent-
p(l,r)o r—z(clz*5’2+ ciz Y+ cyzt?e 2, z=1/r2, zian gravity withc=0,3 is given by
(16 (IM =N d =2 n>0. (22)

It was later checked numericall,11] for various values
<1 of the central charge that in the infinite-volume limit the
length distributiorr?p(l,r) is only a function of the variable
z=1/r2. In addition, forz>1 the functional dependence on
turns out to be rather weak. For a finite space-time voltine
it was found thar?p(l,r) can be approximated well by

More precisely, Eq(22) can be computed exactly far=0
and is deduced foc=3% by numerical comparison of the
length distributions. However, the scaling relation we ob-
served forc=4 was not(22), but (21) (for n>0). The sur-
prising conclusion is that with increasing central chacglee
geometry undergoes a transition from a state characterized
by (22), to one satisfying21), which is a generic property of
Euclideanquantum gravity withc<<1.
; ; : What causes this transition as more and more matter is
ue;N oef icr?tr;guesrept:\;iezli?(:ﬁet?e%z;jl%uIate the expectation Valadded to the model? As discussed[i2,13, matter has a
tendency to “squeeze off” parts of space-time. In 2D Eu-
N large clidean quantum gravity this.pinchin.g can take place any-
(m, NEE "o(l,r) N2VAHE (r/NYH), n>1, where and results in an ever-increasing number of baby uni-
' [ verses. Eventually, forc>1, the fractal geometry
(18 degenerates into branched polymers, which can simply be
viewed as a conglomerate of baby universes of the size of the

r2p(l,r)yocf(z,1/N?H). (17)

where the function§ , behave like[8] cutoff.
o In the Lorentzian case by construction no baby universes
Fn(x)~x=" for x<1. (19 can be formed. The only possible way for matter to squeeze
1 ) the geometry is to pinch constant-time slices to their minimal
For smallr <N™+ we thus obtain allowed spatial length= 1. This effect is very obvious in the

Monte Carlo simulations and becomes more pronounced as
the central charge is increased. In going to4 the influence
of the matter has become so strong that a genuine phase
transition has taken place. Onty® of the t spatial slices
(which typically occur together in a single extended region
have an extension beyond the cut-off scale. On the other
hand their average spatial extension behaves e The
remaining spatial slices have been pinched to the cut-off
scale. On the fraction of slices with a macroscopic extension,
“When talking about “reference points,” we always have in mind one can then define a scaling limit, which at large distances
averages, calculated in the statistical ensemble of 2D Euclideapy characterized by a Hausdorff dimensidg= 3. Likewise
geometl’ies, with each geometl’y We|ghted by the exponential of |t$he relatlve dlmens|ons Of Space and tlme are changed from

(M, n~r?" for n>1, (20)

which is in accordance with relatidi5), whereas for “cos-
mological” distanceg ~ N one finds

(M, n~N2VaH for n>1. (22)

classical action. their naive canonical values dibs=dimr, derived from
SForn=1 Eq.(18) is not valid and one obtains instead (22), to dim1=2 dimr, dictated by(21).
(Iyoer % IH(r/NYH), - H(0)>0, From our experience with Euclidean quantum gravity, this

where the Hausdorff dimensiod, is a function of the central be€havior may seem unexpected. In that case, a large influ-
chargec of the conformal matter theory coupled to 2D Euclidean €nce of the matter on the geometry is always accompanied
quantum gravity. This contribution comes entirely from small loop by a large back reaction of the geometry on the matter, in the
lengthsl<r?, and is suppressed in the higher moments. of sense that the critical matter and gravity exponents always

044010-9



J. AMBJZRN, K. ANAGNOSTOPOULOS, AND R. LOLL PHYSICAL REVIEW [®1 044010

change simultaneouslyAn exception to this is the relation fined, a regularization is necessary, and we used the method
(21), which is valid forall c<1 and therefore contains no of dynamical triangulationgéwhere geometric manifolds are
information about the conformal field theory and its couplingrepresented as gluings adfdimensional simplices which

to geometry} The Lorentzian gravity model behaves differ- had previously been employed successfully in a Euclidean
ently: the matter strongly affects the geometghanging context. An ideal testing ground for such a proposal is grav-
bulk properties like the Hausdorff dimension and the relativeity in dimensiond= 2, whose Euclidean sect¢tLiouville
scaling between time and spatial directiprizit these appar- gravity”) has been studied extensively by a variety of meth-
ently drastic changes are still not sufficient to alter any of thg;ys. e performed the Lorentzian state sum exactly, over a
universal matter properties. Even when eight Ising modelge of dynamically triangulated 2-geometries satisfying a
are coupled to Lorgntman gravity, the critical matter eXpO-(discrete analogyeof causality, and taking a continuum
nents still retain their Onsager values. limit.

This sitqation prov?des further support for' t.he viewpoint Maybe surprisingly, the resulting continuum theory
advanced in our previous woﬂ1,3] that the cr|t|gal gravity  tymed out to be a newhona fidetheory of 2D quantum
and matter behavior of the Euchdean_models is gntlrely degravity fundamentally different fronfEuclidean Liouville
termined by the presence of baby universes. In light of OU_Eravity. As already mentioned in the Introduction, it de-
new results, the argument may be put as follows. So far i§¢ripes an ensemble of strongly fluctuating geometries, with
has been unclear whether the change in the critical exponenjsca| curvature degrees of freedom. Nevertheless, the geom-
of conformal field theories when coupled to Euclidean quangyyy js |ess fractal than its Euclidean counterpart, and there-
tum gravity was due to the strong back reaction of the gefgre closer to our intuitive, classical notions of smooth ge-
ometry on the matter or to the baby universes that Wergmetry.
presenta priori. Lorentzian gravity with eight Ising spins  Tne existence of at least two different quantum gravities
provides an example where undeniably the interaction of th@onstructed by rigorous path-integral methods in 2D raises
matter and gravity sectors is strong. Nevertheless the criticaj,o question of “which one is theght theory?” There is no
Ising exponents remain unchanged. This strongly sugges{§imate answer to this, since two-dimensional gravitgver
that in the Euclidean case it is really the baby universegying its signaturedoes not describe any phenomena of the
which are responsible for the observed changes in the unjag| world. Aficionados of Liouville gravity might object by

versal properties of the matter. _ saying that the Lorentzian version of quantum geometry was
While we have not undertaken a systematic search for th@urely the less interesting, with not enough “happening”

exact value ot where the phase transition in geometry takesgompared with the Euclidean case where, for example, the
place, it is tempting to conjecture that it occursegh=1.  Haysdorff dimensiord,, changes with the matter content.
Independent of the exact value af;;, we have identified @  However, even if this were the case, it would not disqualify
weak analogue of the=1 barrier also in Lorentzian gravity. | grentzian gravity from being a good candidate for a quan-
From the point_ of yiew of matter, nothing dramatic _happenstum gravity theory, since we do not know what the geometry
when the barrier is crossed. However, the behavior of they “real” quantum gravity looks like at the Planck scale. So
quantum geometry undergoes a qualitative change and evegy there is little evidence to suggest nonsmoothness of the
shares some features with the nonsingular part of the quarRpace-time geometry up to the grand unified scale, which
tum geometries described by 2D Euclidean gravity couplegsef after all is only a few orders of magnitude removed
to matter withc<<1. This highlights the universal nature of om the Planck scale.
the relationl «<r? and motivates the search for a simple un- At any rate, our present investigation shows that also in
of dy=2 for Brownian motions. There is a strong interaction if one couples a sufficient
amount of matter to Lorentzian geometry, affecting the uni-
versal properties of the combined system. In fact, one can
argue that the resulting structure of quantum geometry is
In closing, let us step back to examine the potential largericher than that of the corresponding Euclidean model with
implications of all we have learned so far about two- matter, since its fractal structuteeasured by the Hausdorff
dimensional Lorentzian quantum gravity. Our original aimdimension acquires a scale dependence. Moreover, the in-
was to find a nonperturbative path-integral formulation forteraction in Lorentzian gravity is strong, but—unlike in Eu-
quantum gravity. Previous attempts in this direction hadclidean gravity—not too strong in the sense of leading to a
largely been confined to the sector Bficlideanspace-time complete degeneration of the carrier geometry.
metrics. Since for general metrics there is no straightforward In a similar vein, evidence is accumulating that the struc-
analogue of the Wick rotation, a path integral over Lorentz-ture of Euclidean quantum gravity with and without matter is
ian geometries is likely to require a more radical modifica-governed entirely by the presence of baby univetbesnch-
tion (compared with the Euclidean thegrpan a mere ana- ing configurations not present in the Lorentzian version be-
lytic continuation of the action. cause of their incompatibility with causaljtyThere is noth-
We chose to make the path integral Lorentzian by requiring wrong with this: statistical mechanical models of
ing each individualspace-time geometry contributing to the Euclidean gravity provide examples of generally covariant
state sum to carry a causal structure associated with a Lorergystems which are highly interesting in their own right. What
zian geometry. In order to make the construction well dethey might teach us about quantum gravity proper is much

V. OUTLOOK
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less clear, since relatg@dnd from a classical point of view covariant quantum field theory. Our research has highlighted
highly degenerae branched-polymer configurations and the importance of imposing causalitgnd thereby suppress-
their associated fractal structure play a central role in Eucliding spatial topology changgs the path integral over geom-
ean gravity in higher dimensions too. There they seem tetries. It remains to be seen which effect an analogous pre-
affect the theory in an undesirable way, making it difficult to scription has for quantum gravity theories in higher
obtain an interesting continuum limit of the statistical modelsdimensions.
of Euclidean quantum gravity in dimensial® 2.

There is ther} a _conclu5|on to b_e drawn for our evc_antl_JaI ACKNOWLEDGMENTS
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