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Abstract: In recent years the complex Langevin method (CLM) has proven a power-

ful method in studying statistical systems which suffer from the sign problem. Here we

show that it can also be applied to an important problem concerning why we live in four-

dimensional spacetime. Our target system is the type IIB matrix model, which is conjec-

tured to be a nonperturbative definition of type IIB superstring theory in ten dimensions.

The fermion determinant of the model becomes complex upon Euclideanization, which

causes a severe sign problem in its Monte Carlo studies. It is speculated that the phase

of the fermion determinant actually induces the spontaneous breaking of the SO(10) rota-

tional symmetry, which has direct consequences on the aforementioned question. In this

paper, we apply the CLM to the 6D version of the type IIB matrix model and show clear

evidence that the SO(6) symmetry is broken down to SO(3). Our results are consistent

with those obtained previously by the Gaussian expansion method.
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1 Introduction

Monte Carlo methods have been playing a crucial role in nonperturbative studies of quan-

tum field theories and statistical systems relevant to particle, nuclear and condensed matter

physics. However, in many interesting cases, it happens that such methods cannot be ap-

plied straightforwardly because the effective “Boltzmann weight” can become negative or

even complex. A brute-force method would be to use the absolute value of the weight in

generating configurations and to take into account the sign or the phase in calculating the

expectation values. This reweighting method indeed works for small systems, but the com-

putational cost grows exponentially with the system size due to huge cancellations among

configurations, which is commonly referred to as the sign problem. This problem occurs, for

instance, in studying finite density systems, including that of QCD, the real time dynamics

of quantum systems, supersymmetric theories and strongly correlated electron systems.

In recent years there has been major progress in evading the sign problem by complex-

ifying the dynamical variables, which are supposed to be real in the original system. One

such approach is the generalized Lefschetz-thimble method [1–4], which amounts to deform-

ing the integration contour in such a way that the sign problem becomes mild enough to be

handled by the reweighting method. Another approach is the complex Langevin method

(CLM) [5, 6], which attempts to define a stochastic process for the complexified variables

so that the expectation values with respect to this process are equal to the expectation

values defined in the original system extending the idea of stochastic quantization [7]. In

both approaches, holomorphy plays a crucial role. The advantage of the CLM as compared
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with the other is that it is computationally less costly, which enables its application to

much larger system size. The disadvantage, on the other hand, is that the equivalence to

the original system does not always hold. This has been a serious issue for a long time

because one can obtain explicit numerical results which are simply wrong without even

noticing it. The progress in this direction was made by clarifying the conditions for the

equivalence [8–13] and by inventing new techniques that made it possible to meet these

conditions for a larger space of parameters [14–20].

Here we aim at applying the CLM to the so-called type IIB matrix model [21], which is

conjectured to provide a nonperturbative definition of superstring theory. In its Euclidean

version, this model suffers from a severe sign problem due to the complex Pfaffian, which

appears after integrating out the fermionic matrices. The phase of the Pfaffian fluctuates

less violently for configurations with lower dimensionality [22], and this effect is speculated

to cause the spontaneous breaking of the SO(10) rotational symmetry for ten bosonic ma-

trices that represent the spacetime [23, 24]. While the original expectation was that the

SO(10) symmetry is spontaneously broken to SO(4) in order to account for the appear-

ance of four-dimensional spacetime [25, 26], explicit calculations based on the Gaussian

expansion method (GEM) suggested that it is broken down to SO(3) instead [27]. In order

to address this issue by first principle calculations, we clearly need to overcome the sign

problem, which plays a crucial role in the phenomenon itself.

A first step in that direction has been taken by two of the authors (Y. I. and J. N.)

in ref. [18], where a toy model [28] in which SO(4) symmetry is expected to break sponta-

neously due to the complex fermion determinant has been studied by the CLM. In partic-

ular, a new technique has been proposed to avoid the so-called singular-drift problem [10]

caused by the eigenvalues of the Dirac operator close to zero [29]. The idea is to avoid

this problem by deforming the Dirac operator with a kind of mass term. This makes it

possible to satisfy the condition for justifying the method as one can confirm by probing

the histogram of the drift term appearing in the complex Langevin equation [11]. After

extrapolating the deformation parameter to zero, the CLM was able to reproduce the re-

sults of the GEM [30] including the pattern of the spontaneous symmetry breaking (SSB),

which was not possible [31, 32] by a Monte Carlo method [24] based on reweighting.

In this paper, we extend this work to the 6D version of the type IIB matrix model,

which can be obtained by dimensionally reducing 6D super Yang-Mills theory to a point

in the same way as one obtains the type IIB matrix model by dimensionally reducing

10D super Yang-Mills theory. The 6D version also suffers from the sign problem due to

a complex determinant, which appears after integrating out the fermionic matrices, and

its phase is speculated to cause the SSB of SO(6) rotational symmetry to SO(3) according

to the GEM [33]. We show that the CLM indeed enables us to address this issue from

first principles with the aid of the deformation technique, and our results turn out to

be consistent with those of the GEM. Here again, the success of the CLM is remarkable

compared with the marginally successful results of the reweighting-based method [34]. This

gives us a big hope that the original type IIB matrix model can also be studied by the

CLM, and that one can determine the pattern of the SSB, which seemed to be extremely

hard in the reweighting-based method [35].
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The rest of this paper is organized as follows. In section 2 we briefly review the known

results for dimensionally reduced super Yang-Mills models. In section 3 we discuss how we

apply the CLM to the 6D version of the type IIB matrix model and present the results in

section 4. Section 5 is devoted to a summary and discussions. In appendix A we provide

some details of our complex Langevin simulation.

2 Brief review of dimensionally reduced super Yang-Mills models

As is well known, one can define N = 1 pure super SU(N) Yang-Mills theories in D =

3, 4, 6, 10 dimensions.1 By dimensionally reducing these theories to a point, one obtains

matrix models with D bosonic matrices Aµ and their superpartners ψα, which are called

dimensionally reduced super Yang-Mills models in the literature. In particular, the D =

10 case corresponds to the type IIB matrix model [21], which has been proposed as a

nonperturbative definition of superstring theory in the same sense as the lattice formulation

provides a nonperturbative definition of quantum field theories. Of particular interest is

the fact that the spacetime is represented by the eigenvalue distribution of the bosonic

matrices Aµ in this model [25], and hence even the spacetime dimensionality should be

determined dynamically.

In what follows, we consider the Euclidean version of the dimensionally reduced mod-

els, in which the spacetime indices are contracted using the Kronecker delta instead of the

Minkowski metric.2 The D = 3 model is ill-defined since the partition function is diver-

gent [40, 41]. The D = 4 model has a real nonnegative fermion determinant, and Monte

Carlo simulation suggested that the SO(4) rotational symmetry is not spontaneously bro-

ken [42]. The D = 6 and 10 models have a complex fermion determinant/Pfaffian, whose

phase is expected to play a crucial role in the SSB of SO(D) [22–24, 34, 35].

In this paper we therefore focus on the D = 6 model defined by the partition function

Z =

∫
dAdψdψ̄ e−(Sb+Sf) (2.1)

as a simplified model of the type IIB matrix model. The bosonic part Sb and the fermionic

part Sf of the action are given, respectively, as

Sb = −1

4
N tr[Aµ, Aν ]2 , (2.2)

Sf = N tr
(
ψ̄α(Γµ)αβ [Aµ, ψβ ]

)
. (2.3)

The bosonic matrices Aµ (µ = 1, · · · , 6) are traceless Hermitian N × N matrices, while

the fermionic matrices ψα (α = 1, · · · , 4) are traceless N × N matrices with Grassmann

entries. The action is invariant under SO(6) transformations, under which Aµ transforms

1In the D = 6 and D = 10 cases, the super Yang-Mills theories have gauge anomaly, and hence one can

consider them only at the classical level. This fact does not cause any problem in defining the corresponding

dimensionally reduced models.
2The Lorentzian version of the dimensionally reduced models is also found to have interesting dynamical

properties [36–39]. The relationship between the two versions is not clear, though.
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as a vector, while ψα transforms as a Weyl spinor. The 4× 4 gamma matrices Γµ obtained

after the Weyl projection are given, for instance, as

Γ1 = iσ1 ⊗ σ2 , Γ2 = iσ2 ⊗ σ2 , Γ3 = iσ3 ⊗ σ2 ,

Γ4 = i1⊗ σ1 , Γ5 = i1⊗ σ3 , Γ6 = 1⊗ 1 (2.4)

in terms of the Pauli matrices σi (i = 1, 2, 3).

Integrating out the fermionic matrices ψα, we obtain∫
dψdψ̄ e−Sf = detM , (2.5)

where M is a 4(N2 − 1)× 4(N2 − 1) matrix, which represents a linear transformation

Ψα 7→ (MΨ)α ≡ (Γµ)αβ [Aµ,Ψβ ] (2.6)

acting on the linear space of traceless complex N × N matrices Ψα. The determinant

detM takes complex values in general, and we define its phase Γ by detM = | detM| eiΓ.

If one omits the phase Γ, Monte Carlo studies become straightforward, and it is found that

the SSB of SO(6) does not occur [34]. (Similar results are obtained in the 10D case as

well [35].)

Let us here define “d-dimensional configurations” by those configurations which can

be transformed into a configuration with Ad+1 = · · · = A6 = 0 by an appropriate SO(6)

transformation. One can then prove the following properties of the determinant [22]. For

d = 5 configurations, detM is real. For d = 4 or d = 3 configurations, we obtain

∂kΓ

∂Aµ1 · · · ∂Aµk
= 0 for k = 1, · · · , 5− d , (2.7)

which implies that the phase Γ becomes more stationary for d = 3 than for d = 4. For

d = 2 configurations, we have detM = 0 and the phase Γ becomes ill-defined. While these

properties suggest that the SO(6) symmetry may be broken spontaneously down to SO(3),

identifying the actual pattern of the SSB is a nontrivial issue, which should be addressed

by taking into account the competition between the effect of the phase Γ discussed above

and the entropic effect that favors configurations with higher dimensionality.

In order to address this issue, the free energy of the SO(d) symmetric vacuum (d =

2, 3, 4, 5) was obtained by the GEM up to the fifth order, and it was found that the SO(3)

vacuum has the lowest free energy [33]. This implies that the SO(6) symmetry is sponta-

neously broken to SO(3). In the SO(d) vacuum, the extent of spacetime λµ = 1
N tr(Aµ)2

in each direction has d large values and (6 − d) small values, which implies that the dy-

namically generated spacetime has d extended directions and (6 − d) shrunken directions.

This quantity λµ was calculated up to the fifth order in the GEM as well, and the result

for d = 3 turned out to be

〈λµ〉 '

{
1.7 for the three extended directions,

0.2 for the three shrunken directions.
(2.8)
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Let us also mention that the free energy for the SO(2) vacuum turned out to be substantially

higher than that for the vacua with higher dimensionality [33]. This is consistent with the

fact that d = 2 configurations are suppressed by the fermion determinant. (See also ref. [27]

for similar results in the 10D case.)

3 Applying the CLM to the 6D type IIB matrix model

In this section, we apply the CLM to the 6D version of the type IIB matrix model following

an analogous study on a simplified model [18]. In particular, we discuss how we probe the

SSB of SO(6) symmetry and explain the important techniques such as the gauge cooling

and the deformation, which are crucial in making the CLM work.

3.1 Complex Langevin equation

Substituting (2.5) in (2.1), we obtain

Z =

∫
dA e−Sb detM =

∫
dA e−S , (3.1)

where the effective action S = Sb − log detM for the bosonic matrices is complex in

general due to the complex fermion determinant. In the CLM, one considers a fictitious

time evolution of the bosonic matrices defined by the complex Langevin equation [5, 6]

d(Aµ)ij
dt

= − ∂S

∂(Aµ)ji
+ (ηµ)ij(t) , (3.2)

where ηµ(t) are traceless Hermitian matrices whose elements are random variables obeying

the Gaussian distribution ∝ exp
(
−1

4

∫
tr {ηµ(t)}2dt

)
. The first term on the right-hand side

of eq. (3.2) is called the drift term, which is given explicitly as

∂S

∂(Aµ)ji
=

∂Sb

∂(Aµ)ji
− Tr

(
∂M

∂(Aµ)ji
M−1

)
, (3.3)

where Tr represents the trace for a 4(N2 − 1) × 4(N2 − 1) matrix. The second term

in (3.3) is not Hermitian as a result of the fact that the fermion determinant is complex.

Therefore, when we consider the fictitious time evolution based on the complex Langevin

equation (3.2), we need to allow the bosonic matrices Aµ to evolve into general traceless

matrices. The expectation values of an observable O[A] with respect to the original path

integral (3.1) can then be calculated as

〈O[A]〉 =
1

T

∫ t0+T

t0

O[A(t)] dt , (3.4)

where t0 is the time required for thermalization, and T should be large enough to achieve

good statistics. Let us recall here that the observable O[A] and the drift term (3.3) are

originally defined for Hermitian Aµ. In the above procedure, their definitions need to be

extended to complexified Aµ(t) by analytic continuation, which plays a crucial role in the

argument for justification [8, 9, 11].
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When we solve the complex Langevin equation (3.2) numerically, we have to discretize

the fictitious time t. The discretized version of (3.2) reads

(Aµ)ij(t+ ∆t) = (Aµ)ij(t)−∆t
∂S

∂(Aµ)ji(t)
+
√

∆t (ηµ)ij(t) , (3.5)

where the probability distribution of ηµ(t) is given by exp
(
−1

4

∑
t tr {ηµ(t)}2

)
. The step-

size ∆t is chosen adaptively at each step depending on the magnitude of the drift term [45]

as described in appendix A, where we provide some details of our simulation.

3.2 How to probe the SSB

As is commonly done in probing the SSB, we introduce a term

∆Sb =
1

2
Nε

6∑
µ=1

mµtr(Aµ)2 (3.6)

in the action with the order 0 < m1 ≤ · · · ≤ m6, which breaks the SO(6) symmetry

explicitly. After taking the thermodynamic limit, which amounts to taking the large-N

limit in our case, we send the coefficient ε in (3.6) to zero.

As an order parameter for the SSB, we consider3

λµ =
1

N
tr(Aµ)2 for µ = 1, · · · , 6 , (3.7)

where no sum over µ is taken. Note that λµ calculated for a configuration Aµ generated

by the CLM is not necessary real because Aµ is no longer Hermitian. However, it becomes

real after taking an ensemble average due to the symmetry property of the drift term (3.3)

under Ai 7→ (Ai)
† (i = 1, · · · , 5) and A6 7→ −(A6)†. For this reason, we take the real

part of λµ when we define the expectation values 〈λµ〉. Due to the chosen ordering of mµ,

we have an inequality 〈λ1〉 ≥ · · · ≥ 〈λ6〉 for positive ε. When we take the large-N limit

followed by the ε→ 0 limit, it can happen that the expectation values 〈λµ〉 are not equal.

In that case we conclude that the SO(6) symmetry is spontaneously broken.

Throughout this paper, we use

mµ = (0.5, 0.5, 1, 2, 4, 8) , (3.8)

which retains SO(2) ⊂ SO(6) instead of breaking the SO(6) symmetry completely. The

reason for making this compromise is that having m1 6= m2 necessarily results in a wider

spectrum of mµ, which makes the ε→ 0 extrapolation more subtle. This is expected not to

harm anything since it is unlikely that the SO(6) symmetry is broken completely according

to the discussion below (2.7).

3Unlike the previous studies [34, 35] using a method based on reweighting, we cannot use the eigenvalues

of the tensor Tµν = 1
N

tr(AµAν) as an order parameter since they are not single-valued with respect to

complexified Aµ and hence the relationship (3.4) does not hold.

– 6 –



J
H
E
P
0
2
(
2
0
1
8
)
1
5
1

3.3 Gauge cooling for the excursion problem

In order to justify the CLM, the probability distribution of the magnitude of the drift term

u =

√√√√ 1

6N3

6∑
µ=1

N∑
i,j=1

∣∣∣∣ ∂S

∂(Aµ)ji

∣∣∣∣2 (3.9)

should fall off exponentially or faster [11]. There are two sources for the violation of this

property. One is the “excursion problem”, which occurs when Aµ develops a large anti-

Hermitian part. The other is the “singular-drift problem”, which occurs because of the

appearance of M−1 in (3.3) when some eigenvalues of M come close to zero frequently.

In order to avoid the excursion problem, we use a technique called gauge cooling [14],

which keeps Aµ as close to Hermitian matrices as possible. This amounts to minimizing

the “Hermiticity norm” defined by

NH = − 1

6N

6∑
µ=1

tr{(Aµ −A†µ)2} (3.10)

by performing an SL(N,C) transformation Aµ → gAµg
−1, where

g = e−αG , G =
1

N

6∑
µ=1

[Aµ, A
†
µ] , (3.11)

after each step of solving the discretized Langevin equation (3.5). Here, G is the gradient

of NH with respect to the SL(N,C) transformation, which is derived in ref. [18]. We choose

the real positive parameter α in such a way that the Hermiticity norm NH is minimized.

In refs. [11, 15], it was proven that adding the gauge cooling procedure in the CLM does

not affect the argument for its justification.

3.4 Deformation for the singular-drift problem

In order to avoid the singular-drift problem, we deform the fermionic action by adding

∆Sf = Nmf tr(ψ̄α(Γ6)αβψβ) , (3.12)

where mf is the deformation parameter. This technique was proposed originally in ref. [18],

where the singular-drift problem was indeed overcome in an SO(4) symmetric matrix model

with a complex fermion determinant. The fermionic mass term (3.12) modifies the linear

transformation M in (2.6) to M̃ given by

Ψα 7→ (M̃Ψ)α ≡ (Γµ)αβ [Aµ,Ψβ ] +mfΨα (3.13)

using Γ6 = 1⊗1, which implies that the eigenvalue distribution of the matrix M is shifted

in the direction of the real axis for the same Aµ. We will see that this effect enables us to

avoid the eigenvalues coming close to zero.

Note that we cannot construct an SO(6) symmetric mass term for ψα since ψα trans-

forms as a Weyl spinor under an SO(6) transformation. The term (3.12) we have chosen
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Figure 1. The probability distribution p(u) of the magnitude of the drift term u defined by eq. (3.9)

is plotted for N = 24 with mf = 0.65 (Top-Left), mf = 0.80 (Top-Right) and mf = 0.90 (Bottom).

is a kind of mass term, which breaks the SO(6) symmetry minimally to SO(5). We first

investigate whether this SO(5) symmetry of the deformed model is spontaneously broken

for various values of mf , and then discuss what happens as mf is decreased.

Let us also note that the mf → ∞ limit of the deformed model is nothing but the

SO(6) symmetric bosonic model since fermionic matrices ψα obviously decouple in that

limit. Thus, the deformation (3.12) may be regarded as an interpolation between the

dimensionally reduced super Yang-Mills model and its bosonic counterpart, in which the

fermionic matrices are omitted. It is known that the SO(D) symmetry of the D-dimensional

version of the bosonic type IIB matrix model is not spontaneously broken [43]. We use this

fact to test the validity of our method.

As the deformation paramter mf is decreased, the effects of fermionic matrices are

gradually turned on. From the trend for decreasing mf, we try to draw some conclusions

on the undeformed model, assuming that nothing dramatic occurs in the vicinity of mf = 0.

This strategy has been quite successful in the simplified model [18], where the spontaneous

breaking of SO(4) symmetry to SO(2) was confirmed as predicted by the GEM [30].

To summarize, the model we investigate by the CLM is defined by the partition func-

tion (3.1), where Sb and M are replaced with S̃b = Sb + ∆Sb and M̃, respectively. The

drift term (3.3) in the complex Langevin equation (3.2) should be modified accordingly.
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Figure 2. The scatter plot of the eigenvalues of the 4(N2−1)×4(N2−1) matrix M̃ obtained with

a thermalized configuration for N = 24 and mf = 0.65 with ε = 0.1 (Left) and ε = 0.25 (Right).

While the singular-drift problem is cured for large enough mf , the problem occurs for

moderate mf with ε smaller than some value depending on mf . Therefore, when we make

an ε → 0 extrapolation, we have to choose carefully the data points that do not suffer

from this problem. For that purpose, we probe the probability distribution p(u) of the

magnitude of the drift term u defined by eq. (3.9). In figure 1 we show the log-log plot

of p(u) for N = 24 with mf = 0.65, 0.8, 0.9. We find at mf = 0.65 that p(u) falls off

exponentially or faster for ε ≥ 0.15, while a clear power-law tail develops for ε ≤ 0.125.

Therefore, we can trust only the results for ε ≥ 0.15 according to the criterion of ref. [11].

Similarly, at mf = 0.80, we find that p(u) falls off exponentially or faster for ε ≥ 0.05. At

mf = 0.90, we observe such a behavior for all values of ε investigated.

In order to understand how the singular-drift problem is avoided by the deforma-

tion (3.12), we show in figure 2 the scatter plot of the eigenvalues of the 4(N2−1)×4(N2−1)

matrix M̃ obtained with a thermalized configuration for N = 24 andmf = 0.65 with ε = 0.1

(Left) and ε = 0.25 (Right). Note that the eigenvalue distribution is shifted in the direction

of the real axis compared with that for mf = 0 as one can deduce from (3.13). From this

figure, we find that eigenvalues close to zero appear for ε = 0.1, but not for ε = 0.25.

4 Results

In this section we present our results obtained in the way described in the previous section.

Let us recall that the deformation breaks the SO(6) symmetry to SO(5). In order to probe

the SSB of SO(5) that remains for mf 6= 0, we need to take the N → ∞ limit first, and

then the ε→ 0 limit. Finally, in order to obtain results for the undeformed model, we need

to extrapolate mf to zero.

First we discuss how we take the N → ∞ limit. In figure 3 we plot the expectation

values 〈λµ〉 for ε = 0.25 and mf = 0.65 with N = 24, 32, 40, 48 against 1/N . For 〈λ1〉
and 〈λ2〉, we plot the average to increase the statistics since we know theoretically that

they should be equal due to the chosen parameters (3.8) for the symmetry breaking term.

We find that our data can be fitted nicely to straight lines, which implies that our data

follow the large-N asymptotic behavior a+ b/N . Similar behaviors were observed for other
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Figure 3. The expectation values 〈λµ〉 are plotted against 1/N for ε = 0.25 and mf = 0.65 with

N = 24, 32, 40, 48. For 〈λ1〉 and 〈λ2〉, we plot their average to increase the statistics. The straight

lines represent fits to a+ b/N , which enable us to make reliable extrapolations to N =∞.

(ε,mf) as well. Thus we can make extrapolations to N = ∞ reliably. Let us denote the

extrapolated values obtained for each (ε,mf) as 〈λµ〉ε,mf
.

Next we make an extrapolation to ε = 0. For that purpose, it is convenient to consider

the ratio [18]

ρµ(ε,mf) =
〈λµ〉ε,mf∑6
ν=1〈λν〉ε,mf

, (4.1)

in which a large part of the ε dependence cancels between the numerator and the denomi-

nator thereby making the ε→ 0 extrapolation more reliable. In figure 4, we plot ρµ(ε,mf)

against ε for mf = 0.65, 1.0, 1.4 and 1000. Here we plot only the data that do not suffer

from the singular-drift problem based on the criterion explained in section 3.4. We make an

ε→ 0 extrapolation by fitting our data to the quadratic form4 a+ bε+ cε2 with the fitting

range 0.15 ≤ ε ≤ 0.475 for mf = 0.65, 0.025 ≤ ε ≤ 0.175 for mf = 1.0, 0.025 ≤ ε ≤ 0.2

for mf = 1.4 and 0.01 ≤ ε ≤ 0.15 for mf = 1000. At mf = 0.65, the fitting curves for

(ρ1 + ρ2)/2 and ρ3 are seen to merge at ε = 0, which implies that the SO(5) symmetry of

the deformed model is spontaneously broken to SO(3). Similarly, at mf = 1.0 we observe

an SSB from SO(5) to SO(4), whereas at mf = 1.4, we find that the SO(5) symmetry of

the deformed model is not broken spontaneously.

Let us recall that in the large-mf limit, the deformed model reduces to the SO(6)

symmetric bosonic model, in which the SSB of SO(6) is known not to occur [43]. Indeed

our results for mf = 1000 in figure 4 (Bottom-Right) show that the fitting curves for

(ρ1 + ρ2)/2 and ρµ (µ = 3, · · · , 6) all merge at ε = 0 as expected. This confirms that

the SSB observed for smaller mf is a physical effect, which cannot be attributed to some

artifacts in the ε→ 0 extrapolations.

In figure 5 (Left), we plot the ε → 0 extrapolated values of ρµ(ε,mf) against mf
2 for

mf = 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4. We find that an SO(3) vacuum is

4We have also tried including a higher order term ∝ ε3 in the fitting function, but the extrapolated

values were unaffected within the fitting error.
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Figure 4. The ratios ρµ(ε,mf) defined by (4.1) are plotted against ε for the deformed model with

mf = 0.65 (Top-Left), mf = 1.0 (Top-Right), mf = 1.4 (Bottom-Left) and mf = 1000 (Bottom-

Right). An average is taken for ρ1 and ρ2 according to the treatment in figure 3. The lines represent

fits to the quadratic form a+ bε+ cε2.

realized for mf . 0.9, while an SO(4) vacuum is realized for 1.0 . mf . 1.3. Judging from

the pattern of the SSB with decreasing mf , it is reasonable to consider that the symmetry

that survives for mf < 0.65 is at most SO(3). Note also that an SO(2) vacuum is suppressed

by the fermion determinant as we discussed below (2.7). Combining this argument with

our results, we conclude that the SO(6) rotational symmetry is spontaneously broken to

SO(3) in the undeformed model corresponding to mf = 0, which agrees with the prediction

from the GEM.

Note that the results (2.8) obtained by the GEM [33] can be rephrased in terms of the

ratios ρµ as

ρ1 = ρ2 = ρ3 '
1.7

5.7
' 0.3 , ρ4 ' ρ5 ' ρ6 '

0.2

5.7
' 0.035 . (4.2)

These values are represented by the filled squares at mf = 0 in figure 5. As mf decreases,

the data points for (ρ1 + ρ2)/2 and ρ3 are coming closer to 0.3, whereas the data points

for ρ4, ρ5 and ρ6 are coming closer to 0.035. For the sake of clearer comparison, we

plot in figure 5 (Right), the averages (ρ1 + ρ2 + ρ3)/3 and (ρ4 + ρ5 + ρ6)/3 for mf ≤ 0.9

corresponding to the SO(3) symmetric phase. The asymptotic behavior of these quantities

for mf → 0 is expected to be a power series with respect to mf
2 due to the symmetry under
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Figure 5. (Left) The ε→ 0 extrapolated values of the ratios ρµ(ε,mf) defined by (4.1) are plotted

against mf
2. The filled squares at mf = 0 represent the GEM prediction (4.2) for (ρ1, ρ2, ρ3) and

(ρ4, ρ5, ρ6), respectively. (Right) The averages (ρ1 + ρ1 + ρ3)/3 and (ρ4 + ρ5 + ρ6)/3 of the ratios

are plotted against mf
2. The solid lines represent fits to a+ bmf

2 + cmf
4, whereas the dashed lines

represent fits to the same form constrained to pass through the points at mf = 0 predicted from

the GEM.

mf → −mf. We therefore fit our data points to the form a + bmf
2 + cmf

4 with the fitting

range 0.65 ≤ mf ≤ 0.9, and the extrapolation to mf = 0 yields

ρ1 + ρ2 + ρ3

3
= 0.33(2) ,

ρ4 + ρ5 + ρ6

3
= 0.046(3) , (4.3)

which are close to the values (4.2) predicted by the GEM. In fact, we can make reasonable

fits passing through the points at mf = 0 predicted from the GEM as shown by the dashed

lines. Note, however, that the GEM involves a truncation, which necessarily yields certain

systematic errors. Hence, precise agreement is not anticipated.

5 Summary and discussions

In this paper we have discussed the SSB of rotational symmetry conjectured to occur in

dimensionally reduced super Yang-Mills models for D = 6 and D = 10. In particular, the

D = 10 case is relevant to the dynamical generation of four-dimensional space-time in a

nonperturbative formulation of superstring theory in ten dimensions. It is known that the

phase of the complex fermion determinant should play a crucial role, which implies that a

first principle investigation of this issue based on Monte Carlo methods necessarily faces a

severe sign problem.

Extending the previous work [18] on a simplified model, we have investigated the D = 6

case using the CLM. In particular, we use the deformation technique to overcome the

singular-drift problem, which occurs in many interesting systems with a complex fermion

determinant including finite density QCD at low temperature. In the data analysis, it is

important to probe the probability distribution of the drift term so that we can determine

the parameter region in which the CLM is valid. After taking the large-N limit, we are able

to observe that the remaining SO(5) symmetry of the deformed model is spontaneously

broken to SO(4) or to SO(3) as the deformation parameter mf is decreased. Combining this
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result with the argument that an SO(2) vacuum is suppressed by the fermion determinant,

we conclude that an SO(3) vacuum is chosen in the undeformed model, which is consistent

with the prediction of the GEM. Extrapolations to mf = 0 for the extent of spacetime in

each direction also give results consistent with the values predicted by the GEM. These

results go far beyond those obtained by a reweighting-based method [34].

An application of the same method to the D = 10 case is ongoing [46]. In this case

the GEM results [27] suggest that the SO(10) symmetry is spontaneously broken to SO(3)

as opposed to the original expectation that the SO(4) symmetry survives. Whether we

can observe an SO(3) vacuum for nonzero mf already gives us an important clue on this

issue. The fact that the CLM with the deformation technique turned out to be useful

in investigating such a physically interesting issue that has been hard to address due to

the severe sign problem encourages us to apply it also to other interesting complex action

systems such as finite density QCD [47].
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A Details of the complex Langevin simulation

In this section we provide some details of our complex Langevin simulation.

First we discuss the idea of adaptive step-size [45] used in solving the discretized

complex Langevin equation (3.5) numerically. The point here is that the drift term in (3.5)

can become large occasionally, and the associated discretization artifacts can make the

simulation imprecise or even unstable in the worse case. In order to avoid these problems,

we probe the magnitude of the drift term (3.9) at each step, and when it gets larger than a

certain threshold value u0, we decrease the step-size as ∆t = (∆t)0× u0/u (for u ≥ u0). A

fixed step-size (∆t)0 = 10−5 is used during the thermalization process, and the threshold

value u0 is determined by taking an average of (3.9) during that process.

Next we discuss how we estimate the second term in the drift term (3.3), which is the

most time-consuming part of our calculation. Since the matrixM has the size 4(N2−1)×
4(N2 − 1), direct calculation of M−1 would require O(N6) arithmetic operations. We can

reduce this cost to O(N3) by using the so-called noisy estimator.5

5This technique was not used in the previous work on a simplified model [18], in which the fermionic

variables were in the fundamental representation of SU(N), and hence the calculation of the corresponding

drift term required only O(N3) arithmetic operations even with the direct method.
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The idea is based on the identity

Tr

(
∂M

∂(Aµ)ji
M−1

)
=

〈
χ∗

∂M
∂(Aµ)ji

M−1χ

〉
χ

, (A.1)

where the average 〈 · 〉χ is taken with respect to the Gaussian noise χ, which represents a

4(N2 − 1)-dimensional vector whose elements are complex Gaussian variables normalized

as 〈χ∗kχl〉 = δkl. In practice, we generate the Gaussian noise only once and estimate the

trace using it instead of taking the average on the right hand side of (A.1). The use of this

approximation does not yield any systematic errors in the CLM in the ∆t→ 0 limit since

the associated Fokker-Planck equation remains the same [48].

The quantity ζ =M−1χ in (A.1) can be calculated by solving the linear equation

M†Mζ =M†χ , (A.2)

where M†M is a Hermitian positive semi-definite matrix, using the conjugate gradient

method. This method is an iterative one, in which one acts M and M† on a 4(N2 − 1)-

dimensional vector many times. If one does this directly using an explicit representation

of M, it requires O(N4) arithmetic operations. In fact, one can perform this calculation

using (2.6) for M and

Ψα 7→ (M†Ψ)α ≡ (Γ†µ)αβ [A†µ,Ψβ ] (A.3)

for M†, which requires only O(N3) arithmetic operations. In the parameter region in

which the CLM is valid, the number of iterations required for convergence of the conjugate

gradient method is almost independent of N , and it is typically of the order of 100. Thus

the computational cost of our simulation grows only as O(N3) with the matrix size N .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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