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Abstract

We investigate the critical behaviour of both matter and geometry of the three-state Potts model coupled to
two-dimensional Lorentzian quantum gravity in the framework of causal dynamical triangulations. Contrary
to what general arguments on the effects of disorder suggest, we find strong numerical evidence that the
critical exponents of the matter are not changed under the influence of quantum fluctuations in the geometry,
compared to their values on fixed, regular lattices. This lends further support to previous findings that
quantum gravity models based on causal dynamical triangulations are in many ways better behaved than
their Euclidean counterparts.
© 2008 Elsevier B.V. All rights reserved.
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1. Matter and geometry in two dimensions

A common difficulty for models of nonperturbative quantum gravity, which attempt to de-
scribe a Planckian regime of quantum-fluctuating and strongly coupled degrees of freedom, is
to reproduce aspects of the classical theory of general relativity in a suitable large-scale limit.
Assuming that one has a quantum model which is sufficiently complete to be considered a can-
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didate for a quantum gravity theory, it will by construction not be given in terms of small metric
fluctuations around some classical spacetime geometry. It is then a nontrivial step to show that
classical gravity does indeed emerge on larger scales, and to elucidate the mechanism by which
this happens.

One way to probe the properties of (quantum) geometry is by coupling matter to the gravita-
tional system and observing its behaviour as a function of scale. A necessary condition for the
existence of a good classical limit is that on sufficiently large scales and for sufficiently weak
gravity the matter should behave like on a fixed, classical background geometry. That this should
happen is by no means obvious, if one starts from a Hilbert space or a path integral encoding non-
perturbative Planck-scale excitations. The latter may be too numerous or violent to coalesce into
a well-behaved macroscopic, four-dimensional spacetime. This kind of pathological behaviour is
not just an abstract possibility, but has been found in Euclidean models of quantum gravity [1],
and exhibits a certain genericity.

The set of spacetime geometries1 underlying the approach of Causal Dynamical Triangula-
tions (CDT) to quantum gravity seems to strike a balance between generating large quantum
excitations on small scales [2], and managing to reproduce features of classical geometry on
large scales [3,4]. Something similar is apparently true for the two-dimensional quantum gravity
theory derived from a CDT formulation [5–8]. Although there is no classical limit per se for the
purely gravitational degrees of freedom in this case—the Einstein–Hilbert action is trivial—one
can still ask whether the dynamics of any additional matter fields is changed on a quantum-
fluctuating “background geometry”, compared with the same matter on a fixed background. For
the much-studied case of two-dimensional Euclidean (“Liouville”) quantum gravity, obtained
from Euclidean dynamical triangulations (EDT) or their equivalent matrix models [9], one in-
deed finds that gravity alters the matter behaviour nontrivially. Namely, for matter with a central
charge c, 0 < c � 1, its critical exponents appear as “dressed” versions of their fixed-background
counterparts. While these models present interesting examples of strongly interacting “gravity”–
matter systems, their existence is restricted by the so-called c = 1-barrier for the central charge,
beyond which no consistent unitary matter models have been found. A closer inspection of the
geometric properties of these models suggests that beyond the barrier, the backreaction of mat-
ter on geometry is too strong to be compatible with an extended, connected carrier space; space
simply shrivels to a branched polymer [10,11].

By contrast, the indications so far from analogous two-dimensional models of causal,
Lorentzian gravity coupled to Ising spins are that (i) the universal properties of the matter are not
altered by the quantum fluctuations of the ensemble of CDT geometries [12], and (ii) the mod-
els remain consistent beyond the c = 1-barrier, where the latter comes from a numerical study
of coupling to multiple (in this case, eight) copies of Ising spins [13]. In this sense, Lorentzian
quantum gravity, based on a path integral over causal spacetime geometries, also here turns out to
be better behaved than its Euclidean counterpart, based on a path integral over isotropic “space-
times”, which make no distinction between time-like and spatial directions, see Fig. 1.

While coupled quantum systems of matter and geometry are clearly of central interest to
practitioners of nonperturbative, four-dimensional quantum gravity, for which lower-dimensional
systems may serve as useful toy models, they can also be considered from a quite different angle,
that of statistical mechanical systems with disorder, and their associated critical behaviour as
a function of the strength of the disorder. In the context of spin models and, more specifically,

1 That is, the “histories” contributing to the “sum over histories”, a.k.a. the gravitational path integral.
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Fig. 1. Illustrating the difference between two-dimensional path integral histories of Euclidean and Lorentzian signature,
both of cylinder topology. Superimposing a proper-time slicing onto a two-dimensional Euclidean space (left), starting
from an arbitrary initial circular slice will generically lead to disconnected slices of topology S1 ×S1 ×· · · at later times.
By definition, such “baby universes” are absent from the Lorentzian spacetimes (right), where the spatial topology always
remains a single S1.

the q-state ferromagnetic Potts models, which we shall concentrate on in what follows, one
often looks at bond disorder. The role of random variables in this case is played by the local
spin couplings Jij � 0 in the energy −∑

〈ij〉 Jij δσiσj
, where the sum is taken over all nearest

neighbours i and j on a fixed, regular lattice, and the spins take values σi = 1, . . . , q . For a
discussion of the (somewhat controversial) state of the art with regard to the role of quenched
bond disorder, see [14] and references therein.

Instead, what we will focus on in the present work is a geometric type of disorder, also termed
connectivity disorder, in reference to the irregular nature of the lattice geometry. The situation we
have in mind is that of two-dimensional curved spaces (of fixed topology) obtained from gluing
together flat, equilateral triangles, precisely as in the models of dynamical triangulations.2 The
quantum gravity context implies that we are primarily interested in so-called annealed disorder,
where an ensemble average is taken over the disorder parameter, in our case, in the form of a
sum over triangulated spacetime histories of a given discrete volume N . Unlike in models with
quenched disorder, where one studies the spin system on a fixed, disordered lattice, the disorder
in an annealed setting is itself part of the dynamics, which allows in particular for a backreaction
of matter on geometry. Depending on the details of the matter–gravity interactions, this tends to
increase the strength of the disorder, when compared to the quenched setting.

2 Whenever the number of triangles meeting at a vertex—its “connectivity” or “coordination number”—is not equal to
six, the vertex carries a nontrivial intrinsic curvature.
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Table 1
Comparing the critical exponents α, β , γ and νdH of the q-state Potts models, q = 2,3,4, on fixed, regular lattices (left)
and coupled to Euclidean quantum gravity in the form of Euclidean dynamical triangulations (right). The notation xqy

refers to a model with x copies of the y-state Potts model

Potts models: fixed background

Indices 1q2 1q3 1q4

α 0 0.333 0.666
β 0.125 0.111 0.083
γ 1.75 1.444 1.166
νdH 2 1.667 1.333

Potts models coupled to EQG

Indices 1q2 1q3 1q4

α −1 −0.5 0
β 0.5 0.5 0.5
γ 2 1.5 1
νdH 3 2.5 2

The evidence from models with annealed and quenched connectivity disorder induced by Eu-
clidean quantum gravity is that their universal properties are altered. The annealed case, obtained
by coupling Potts models with q = 2,3,4 (with corresponding central charges c = 1/2,4/5,1) to
an ensemble of EDT, is rather clear-cut, with predictions from exact matrix-model solutions well
confirmed by numerical simulations (see, for example, [15]). As can be seen by comparing the
critical exponents with those of the same Potts models on regular, flat lattices (see Table 1), the
transitions are “softened”, that is, the index α characterizing the behaviour of the heat capacity at
criticality is lowered. Theoretical arguments [16] predict a similar—though less drastic—effect
for the corresponding quenched systems, with a set of non-rational exponents, but these have not
so far been corroborated convincingly by simulations [14], and their status remains unclear. Ad-
ditional arguments for the presence of new, quenched exponents (without predicting their actual
values) come from adapting the Harris–Luck criterion [17,18], predicting the effect of disorder
on the nature of phase transitions, to correlated geometric disorder [19].

Given the rich and only partially understood structure of the Euclidean case, one is clearly
interested in getting a more complete picture of coupled matter–gravity models for Lorentzian
gravity than is currently available, and what these models might teach us about the interplay
of matter and geometry. The studies up to now have been limited to the Ising model, and were
either numerical [12,13] or involved a high-temperature expansion [20]. As already mentioned,
both for a single copy of the Ising model (“1q2”) and for eight copies thereof (“8q2”), strong
evidence for the Onsager values for the matter exponents was found. This indicates a remarkable
robustness of the “flat-space” Onsager exponents, since the geometry is anything but flat—it
quantum-fluctuates and, in the 8q2 case, even changes its Hausdorff dimension dH from two to
three [13], signalling a phase transition of the geometric sector of the model.

In the present work, we will undertake a numerical analysis of the three-state Potts model, with
q = 3 and a central charge of 4/5, coupled to an ensemble of fluctuating geometries represented
by CDTs. We will determine a number of critical exponents which characterize its universal
behaviour, for both matter and geometry. This case is interesting for a number of reasons. With
regard to disorder, it (like the CDT-Ising model) presumably lies in between the fixed, flat lattices
and the annealed (as well as the quenched) Euclidean matter-coupled models, to which it can
readily be compared. We are primarily interested in gathering further evidence or otherwise for
the conjecture that matter on two-dimensional causal dynamical triangulations always behaves
like on a fixed, flat lattice. If this was true in general and if one was just interested in extracting
the universal properties of the matter model, it would open other interesting possibilities. First,
from a numerical point of view, putting matter on “flexible”, fluctuating lattices may speed up
the approach to the continuum limit, in the spirit of the old “random lattice” program for field
theory [21]. Some evidence for this for the case of the CDT-Ising model was found in [20].
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Second—and maybe surprisingly—from the point of view of finding exact solutions, including a
full sum over geometries can simplify this task, as demonstrated by the example of the EDT-
Potts models, which have been solved by matrix-model techniques. Alas, since the order of
the phase transitions in these instances is altered from the flat case, the solutions do not give
us any new insights into solving the standard Potts model for q > 2, which would be of great
theoretical interest. If it is correct that these models on dynamical CDT lattices lie in the same
universality class as those on fixed, flat lattices, this may now be coming within reach, in view
of the fact that a matrix-model formulation for the pure CDT model in two dimensions has just
been found [22].

Do we have any theoretical predictions for the behaviour of the 1q3 system? There is a rel-
evance criterion for systems with quenched geometric disorder due to Janke and Weigel, who
adapted and generalized the original Harris criterion to account for possible effects of long-range
correlations among the disorder degrees of freedom [19], similar to what was done in [18] for
quasi-crystals and other aperiodic lattices. The Harris criterion gives a threshold value α = 0
(for the system without disorder) for the specific-heat exponent, above which the disorder will
be relevant [17]. According to [19], this threshold is lowered for sufficiently long-range correla-
tions between the coordination numbers of the random lattice. In other words, in the presence of
correlations, even more systems (namely, those with α > αc , αc < 0) will change their universal
behaviour as a result of the disorder. Assuming that the disorder is at most getting stronger in
the annealed case, and without any further information about the range of the correlations on the
pure CDT lattices (which we have not attempted to quantify), one would predict on the basis
of these criteria that the critical behaviour of the three-state Potts model with α = 1/3 will be
altered compared to the flat-lattice case. However, as we will describe in what follows, this is not
what we find.

2. Monte Carlo simulations

We start by recalling that in the case of two-dimensional quantum gravity formulated in the
framework of causal dynamical triangulations, any curved spacetime is represented by gluing
together identical, flat triangles3 with one space-like and two time-like edges. All basic triangu-
lar building blocks are identical and their edge lengths fixed. The only degrees of freedom are
therefore contained in the random way they are glued together pairwise along their edges. In con-
trast with Euclidean triangulations, where any gluing is allowed which gives rise to a piecewise
flat manifold of a given topology, the gluing rules of the Lorentzian model are more restric-
tive and lead to two-dimensional spacetimes which are causal and possess a global time arrow
[5]. This anisotropy with regard to space and time directions persists in the continuum limit,
which can be computed analytically and gives rise to a new and inequivalent two-dimensional
quantum gravity theory (see [6] for more details on the construction and solution of the CDT
pure-gravity model).

After Wick rotation, the partition function of the three-state Potts model coupled to 2d
Lorentzian quantum gravity can be written as

(1)G(λ, t, β) =
∑
T ∈Tt

e−λN(T )ZT (β)

3 Since these simplices are by definition flat on the inside, intrinsic curvature can only be located in places where more
than two triangles meet, i.e. at the vertices.
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where the summation is over all triangulations T of torus topology4 with t time-slices, N(T )

counts the number of triangles in the triangulation T , and λ is the bare cosmological constant.
The matter partition function is given by

(2)ZT (β) =
∑

{σi(T )}
exp

(
β

∑
〈ij〉∈T

δσiσj

)
,

where β is proportional to the inverse temperature, β = 1/kT (we have set Jij ≡ J = 1), the
spins take values σi = 0,1,2 and 〈ij 〉 denotes adjacent vertices in the appropriate class of causal
triangulations T . We are putting the matter spins at the vertices of the triangulation, but could
have also placed them at the triangle centres, since both choices are expected to lead to the same
results in the scaling limit. Recall that a geometry characterized by a toroidal triangulation T

of volume N contains Nv = N/2 vertices, N time-like links, N/2 space-like links, and thus
Nl = 3N/2 nearest-neighbour pairs in total.

We have simulated the Potts model for several lattices of sizes N of between 200 and 125 000
triangles,5 which on average have equal extension in time and spatial directions, that is, N � t2.
The Swendsen–Wang cluster algorithm was used to update the spin configuration (each sweep
corresponding to approximately Nv accepted moves), and typically about 500 000 measurements
were taken at each β-value.

A local update of geometry involves a single move A or its inverse B (Fig. 2), which together
are ergodic in the set of triangulations of a fixed number t of time slices [23]. It consists in the
insertion of a pair of triangles which share a space-like link (one that lies entirely in a slice of
constant time). The geometry update is accompanied by an update of the spin configuration, and
transition probabilities are assigned so as to satisfy detailed balance (see [12,24]).

For each measurement (which is performed at fixed volume6 N ) we stored the average energy
density of the system per link, e = −∑

〈ij〉 δσiσj
/Nl and the density per vertex m of the (absolute

value of the) magnetization. All observables we have studied in our analysis can be constructed
from those two. Their scaling behaviour as a function of volume can be derived from standard
finite-size scaling. They are

(3)specific heat: CA = β2N
(〈
e2〉 − 〈e〉2) ∼ Nα/νdH ,

(4)magnetization: m ∼ N−β/νdH ,

(5)magnetic susceptibility: χ = N
(〈
m2〉 − 〈m〉2) ∼ Nγ/νdH .

The critical exponents7 α, β , γ and ν characterize the behaviour of the system in the vicinity of
the critical matter coupling βc (of the order-disorder transition), and are expected to satisfy the
relations

(6)α + 2β + γ = 2, 2β + γ = νdH .

4 That is, spacetimes with compact spatial S1-slices, where (for reasons of simplicity and to minimize finite-size
effects) time has also been cyclically identified.

5 All measurements presented were taken over the entire range of volumes, but are not presented in all the figures in
order to avoid clutter (Figs. 3, 5).

6 Since the geometrical moves are not volume-preserving, in practice this is achieved by letting the volume fluctuate
in a narrow band around its target value N , but only recording measurements collected at volume N precisely.

7 We stick to the standard notation β for both the inverse temperature and the critical exponent of the magnetization
(the latter appearing in the exponent of (4) and in relations (6))—this should not give rise to confusion.
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Fig. 2. Local move changing the lattice geometry by insertion of a vertex (top), together with its inverse (bottom). Top:
the move consists in adding a new vertex P 1 to the right of a randomly chosen vertex P 0 on the same spatial slice,
together with three more links (L0, L1 and L2.) Bottom: the inverse move removes P 1. The free edges are reconnected
as if P 1 had been slid on top of P 0.

The parameter ν is the critical exponent of the divergent spin–spin correlation length and always
appears in the combination νdH in the matter sector, where dH is the Hausdorff dimension. The
latter characterizes the relation between linear distance 
 (for example, the distance appearing in
the correlator) and volume V in the continuum limit according to 
 ∝ V 1/dH , for both 
 and V

sufficiently large. For a regular space, dH always coincides with the usual dimension d . In two-
dimensional quantum gravity, dH need not be 2, as demonstrated by the examples of the 8q2
model coupled to Lorentzian quantum gravity with dH = 3 [13] and Liouville quantum gravity
with dH = 4 [25].

As usual, since the system sizes accessible to the computer are finite, we can never observe
a genuine phase transition, but only a pseudo-critical point βc(N), where the linear extension of
the system is of the order of the correlation length. This point can be determined for each volume
N from the resolved peaks of the specific heat and the magnetic susceptibility (Fig. 3). Using the
extrapolating formula

(7)βc(N) ≈ βc + c

N1/νdH
,
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Fig. 3. The specific heat CA (left) and the magnetic susceptibility χ (right) of the 3-state Potts model coupled to
Lorentzian quantum gravity, as function of the inverse temperature β , and for various volumes N .

Fig. 4. Extracting the value of the critical coupling βc from the finite-size scaling βc(N) of the specific heat CA and
susceptibility χ , as function of the number N of triangles, relation (7).

and combining the two measurements from the specific heat and magnetic susceptibility, we find
that βc(N) approaches βc = 0.2919(5) with increasing volume, see Fig. 4. A useful cross-check
for the location of the phase transition and its order comes from evaluating the Binder cumulant
BC and the reduced cumulant Vl , defined as

(8)BC = 〈m4〉
〈m2〉2

− 3, Vl = 〈e4〉
〈e2〉2

.
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Fig. 5. The Binder and energy cumulants (8) versus β at various system sizes N . The crossing point of the Binder
cumulants (left) gives an estimate for the critical inverse temperature. The flattening of the peak in the reduced cumulant
Vl (right) with increasing volume signals the presence of a second-order phase transition.

The Binder cumulant exhibits a transition between disordered (β < βc) and ordered (β > βc)
phase, which sharpens as the volume increases. The intersection point of the curves BC(β),
illustrated in Fig. 5, allowed us to extract an estimate for the location of the critical point as βc =
0.2929(5), which is in good agreement with the one obtained from the finite-size scaling (7).
The analogous fourth-order cumulant for the energy is the reduced cumulant Vl , which is an
indicator of the order of the phase transition [26]. At a second-order transition, Vl → 1 for all
temperatures as the volume tends to infinity, which in our case is well satisfied, as can be seen
from Fig. 5.

3. Observables of the coupled system: Results

Having located the transition point of the Potts model, our next step is to extract the universal
properties of the system at criticality in the limit as N → ∞, which characterize both the quantum
geometry and the matter interacting with it. We start by looking at purely geometric observables,
which take the form of certain scaling dimensions. The first of them is the large-scale Hausdorff
dimension dH already introduced above. We do not a priori exclude the possibility of a different
(and therefore anomalous) scaling of spatial and time-like distances, in line with the discussion
in [13]. The scaling of spatial distances can be determined by measuring the distribution SVN(l)

of spatial volumes (the lengths l of the circles of constant time) in the simulation. For sufficiently
large l and spacetime volume N , we expect a universal scaling behaviour of the type

(9)SVN(l) ∼ FS

(
l

N1/dH

)
.

With the optimal value of dH , all curves SVN(l) should fall on top of each other. The optimum
was determined from a χ2-test, and the corresponding Hausdorff dimension found to be 2.000(2).
As can be seen from Fig. 6, for this value finite-size scaling is satisfied for a range of ratios around
the most probable value. We have tested for a possible dependence of this result on the degree
of “elongation” of the spacetime histories—as has been observed in the 8q2 system [13]—by
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Fig. 6. The distributions SVN(l) of the lengths l of the spatial slices, suitably rescaled and superposed for different
volumes N , exhibit finite-size scaling for the optimal choice dH = 2. Like elsewhere, measurements at volume N are
taken at the pseudo-critical point βc(N).

repeating the measurement for different ratios τ := t2/N , τ = 2,3,4, but have not found any
significant dependence.

Another way of characterizing universal properties of the geometry, this time on short scales,
is through the behaviour of the one-dimensional shell volumes nN(r) of spherical shells at
a geodesic r from a chosen reference point, as defined in [27,28]. As usual, the distance r is
identified with link distance, and the shell volume is measured by counting the number of ver-
tices at (integer) link distance r from a given reference vertex. The shell volume is expected to
exhibit a power-law behaviour of the form

(10)nN(r) ∝ xdh−1, x = r + a

N1/dH
, x  N1/dH ,

defining the short-distance fractal dimension dh. The shift a has been introduced in order to take
into account short-distance lattice artifacts (see [28] for a more detailed discussion). For each
fixed value of a, the joint χ2 for the extrapolated curves nN(x), with N ranging over the entire
volume range, is computed, leading to one of the data points in Fig. 7. At the optimal value
a = −1.652, where χ2 is minimal and the overlap among curves maximal, we have extracted the
value of the fractal dimension, which is given by dh = 1.98(1). We conclude that our measure-
ments are compatible with dH = dh = 2 and thus all distances scale canonically in the coupled
CDT-Potts system.

Next we turn to the matter properties at criticality, amounting to a fitting of measured data
to the scaling relations (3)–(5), to directly determine the quotients α/νdH , β/νdH and γ /νdH .
Fig. 8 illustrates some of the data taken, for the specific heat and the magnetic susceptibility. We
have plotted the values at the peak of the magnetic susceptibility, as function of the volume N .
A power scaling in N is consistent with the data in all cases, and leads to the values α/νdH =
0.209(7), β/νdH = 0.0647(3) and γ /νdH = 0.8692(4).

We have determined the combination νdH from relation (7) for the magnetic susceptibility. In
order to reduce the number of fitting parameters by one, we have used the value of βc extracted
from the behaviour of Binder cumulants, which appears to be of very good quality. Using the data
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Fig. 7. Determining the optimal additive shift a in the radial variable r used in the measurement of the shell volumes,
relation (10), by minimizing χ2.

Fig. 8. The specific heat and magnetic susceptibility, defined in (3), (5), as functions of the number N of triangles, and
measured at the peak of the magnetic susceptibility.

from the susceptibility measurement and fitting to a straight line in logarithmic scale, we have
extracted the value νdH = 1.71(6), see Fig. 9. We have omitted the data points for the largest
volumes, since the statistics gathered was insufficient.8

We have collected our numerical results for the various critical exponents in Table 2, at the
same time comparing them with those of Refs. [12,13] for the Ising model, and with the known,
exact values for the same models on fixed, flat lattices. The results for the dimensions dH and
dh are clear-cut: they scale canonically, which immediately excludes any resemblance with the

8 We have also attempted an analogous fit for the specific heat, but the quality of data is poor by comparison.
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Fig. 9. Measuring νdH through determining the power of N in relation (7) for the magnetic susceptibility.

Table 2
Comparing critical exponents of the two- and three-state Potts models, on fixed, flat lattices and coupled to Lorentzian
quantum gravity in the form of an ensemble of causal dynamical triangulations. Like in the case of the Ising model (1q2)
studied previously, our present investigation provides strong evidence that also for the three-state Potts model the critical
exponents on flat and on dynamical CDT lattices coincide

Potts models on flat and dynamical LQG lattices

Indices 1q2, flat 1q2, LQG
Ref. [12]

1q3, flat 1q3, LQG
this paper

8q2, LQG
Ref. [13]

c 1/2 1/2 4/5 4/5 4

α/νdH 0 0.0861(1) 0.2 0.209(7)
β/νdH 0.0625 0.070(1) 0.0667 0.0647(3)
γ /νdH 0.875 0.883(1) 0.8667 0.8692(4) 0.85(1)
νdH 2 1.97(6) 1.6667 1.71(6) 1.85(1)

dH 2 2.00(4) 2 2.000(2) 3.07(9)
dh 2 2.00(5) 2 1.98(1) 2.1(2)

Potts model coupled to Euclidean quantum gravity (cf. Table 1), as expected. Likewise, our
measurement of the three matter exponents (divided by νdH ), as well as of νdH leaves little
doubt that they are identical with the corresponding values on regular, fixed lattices. A quick
cross-check reveals that the scaling identities (6) are satisfied at a level of about 1%.

4. Conclusion

We have investigated two-dimensional Lorentzian quantum gravity, in the form of an ensem-
ble of causal dynamical triangulations, coupled to a single copy of the three-state Potts model.
This spin model is of particular interest, because its critical coefficients are known exactly both
on fixed, regular lattices and when coupled to Euclidean dynamical triangulations, and thus can
be compared to, and because it has a positive specific-heat coefficient α, which may make its uni-
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versal properties susceptible to random disorder. We were therefore particularly interested in the
effect of the geometric disorder inherent in the gravity model on the critical behaviour of the spin
system. Using Monte Carlo methods and finite-size scaling techniques, we found that the uni-
versal properties of the gravitational sector, expressed in terms of dynamical critical dimensions
were unchanged from the pure gravitational model. With regard to the spin sector, we observed
the customary second-order transition, and critical exponents for the specific heat, magnetization
and magnetic susceptibility were found to be in good agreement with the corresponding values
on fixed, regular lattices. For νdH (ν being the critical exponent of the spin–spin correlation
length and dH the large-scale Hausdorff dimension) the data quality is slightly inferior (mirror-
ing a similar behaviour as found for the Ising model), but agreement is still good. Overall, the
coincidence with the fixed-lattice critical exponents for the three-state Potts model is comparable
to and even slightly better than what was found previously for the Ising model [12], as can be
seen from Table 2. In summary, in contrast to what may have been expected from the effects of
disorder for a system with positive specific heat, we have found compelling numerical evidence
that the strong geometric disorder implied by the Lorentzian gravity ensemble does not alter the
universality class of a three-state Potts model coupled to it. The Potts spins are shaken, but not
stirred!
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