
Monte Carlo Studies of Supersymmetric Matrix Quantum Mechanics with Sixteen Supercharges
at Finite Temperature

Konstantinos N. Anagnostopoulos,1,* Masanori Hanada,2,† Jun Nishimura,3,4,‡ and Shingo Takeuchi4,x

1Physics Department, National Technical University of Athens, Zografou Campus, GR-15780 Athens, Greece
2Theoretical Physics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

3High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
4Department of Particle and Nuclear Physics, School of High Energy Accelerator Science,

Graduate University for Advanced Studies (SOKENDAI), Tsukuba 305-0801, Japan
(Received 4 September 2007; published 15 January 2008)

We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with 16
supercharges at finite temperature. The recently proposed nonlattice simulation enables us to include the
effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates
the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior
predicted from the dual black-hole geometry. The Polyakov line asymptotes at low temperature to a
characteristic behavior for a deconfined theory, suggesting the absence of a phase transition. These results
provide highly nontrivial evidence for the gauge-gravity duality.
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Introduction.—In the past decade we have witnessed the
increasing importance of large-N gauge theories in particle
physics. For instance, the holographic principle, which was
inspired originally by the Bekenstein-Hawking formula for
black-hole entropy, has been given a concrete manifesta-
tion as a conjectured duality between the strongly coupled
large-N gauge theory and weakly coupled supergravity.
The best understood example is the so-called AdS/CFT
correspondence [1], in which the gauge theory is a 4D
conformal field theory (CFT) and the dual supergravity
solution is given by the anti–de Sitter (AdS) space. There
are numerous extensions to nonconformal cases as well. In
particular, large-N gauge theories in low dimensions have
been studied intensively at finite temperature, which re-
vealed intriguing connections to black-hole thermodynam-
ics [2–7].

Large-N gauge theories in low dimensions also play an
important role in formulating superstring or M theory non-
perturbatively based on the idea of matrix models, which
was successful in the case of noncritical string theories. For
instance, it is conjectured that critical string or M theories
can be formulated in terms of matrix models, which can be
formally obtained by dimensionally reducing U�N� super
Yang-Mills theory in ten dimensions to D � 0; 1; 2 dimen-
sions. In particular, the D � 1 case corresponds to the
matrix theory [8], which is conjectured to describe the M
theory [9] microscopically.

In order to confirm these conjectures or to make use of
them, it is clearly important to study large-N gauge theo-
ries from first principles. Monte Carlo simulation is ex-
pected to be very useful for that purpose. In particular,
totally reduced models [10] (the D � 0 case) have been
studied in Refs. [11–15]. The complex Pfaffian, which
appears from integration over the fermionic matrices,
causes a technical obstacle in numerical simulation, which

may however be overcome by a new method proposed in
Ref. [15]. In fact, the phase of the Pfaffian is speculated to
induce the spontaneous breaking of SO(10) symmetry
down to SO(4), a scenario for the dynamical generation
of four-dimensional space-time [16] suggested from the
Gaussian expansion method [17].

In the D � 1 case, some sort of ‘‘discretization’’ is
needed in order to put the theory on a computer. Given
the well-known problems with the conventional lattice
discretization, three of us have proposed a nonlattice simu-
lation method [18], which is useful for studying super-
symmetric quantum mechanics. The crucial point was
that the gauge dynamics is almost trivial in 1D, and there-
fore we can choose a natural gauge slice nonperturbatively.
This allows us to introduce a Fourier mode cutoff �
without violating the gauge symmetry. In the bosonic
case the new method reproduced the lattice results in the
continuum limit. In the supersymmetric case with 4 super-
charges, it reproduced the results of the high temperature
expansion in the continuum. The same model has been
studied also by the lattice approach [19].

In this Letter we apply the nonlattice simulation method
to the most interesting case with 16 supercharges. While
the model is formally identical to the matrix theory, here
we focus on its behavior in a different parameter region,
which corresponds to the ’t Hooft large-N limit at finite
temperature. At strong ’t Hooft coupling, in particular, the
1D gauge theory has a dual description [2] in terms of a
black D0-brane solution in type IIA supergravity in 10D.
We are able to confirm some predictions of the gauge-
gravity duality from first principles for the first time by
solving the strongly coupled dynamics of the gauge theory
directly. In doing this, it was crucial to reduce the computa-
tional effort by using the rational hybrid Monte Carlo
(RHMC) algorithm [20].
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As discussed in Ref. [18], our action is nothing but the
gauge-fixed action in the continuum except for having a
Fourier mode cutoff. Supersymmetry, which is mildly
broken by the cutoff, is shown to be restored much faster
than the continuum limit is achieved. In fact, the contin-
uum limit is also approached faster than one would naively
expect from the number of degrees of freedom. This is
understandable from the fact that the modes above the
cutoff are naturally suppressed by the kinetic term. A
further (albeit technical) advantage of our formulation is
that the Fourier acceleration, which eliminates the critical
slowing down completely [21], can be implemented with-
out extra cost since we are dealing with Fourier modes
directly. We consider that all the theoretical and technical
merits of the present approach compensate for the super-
ficial increase in the computational effort by the factor of
O��� compared to the lattice approach [19] with the same
number of degrees of freedom.

Simulation techniques.—The model can be obtained
formally by dimensionally reducing 10D super Yang-
Mills theory to 1D. The action is given by
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where Dt � @t � i�A�t�; �� represents the covariant deriva-
tive with the gauge field A�t� being an N 	 N Hermitian
matrix. It can be viewed as a one-dimensional U�N� gauge
theory with adjoint matters. The bosonic matrices Xi�t�
(i � 1; . . . ; 9) come from spatial components of the 10D
gauge field, while the fermionic matrices  ��t� (� �
1; . . . ; 16) come from a Majorana-Weyl spinor in 10D.
The 16	 16 matrices �i in (1) act on spinor indices and
satisfy the Euclidean Clifford algebra f�i; �jg � 2�ij. We
impose periodic and antiperiodic boundary conditions on
the bosons and fermions, respectively. The extent � in the
Euclidean time direction then corresponds to the inverse
temperature � 
 1=T. The ’t Hooft coupling constant is
given by � 
 g2N, and the dimensionless effective cou-
pling constant is given by ~� � �=T3. Without loss of
generality we set � � 1; hence, low (high) T corresponds
to strong (weak) coupling strength, respectively.

We fix the gauge by the static diagonal gauge A�t� �
1
� diag��1; . . . ; �N�, where �a are chosen to satisfy the
constraint maxa��a� �mina��a�< 2� using the large
gauge transformation. We have to add to the action a
term SFP � �

P
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The fermionic action Sf may be written in the form Sf �
1
2MA�r;B�s

~ A�r ~ B�s, where we have expanded ~ �r �PN2

A�1
~ A�rt

A in terms of U�N� generators tA. Integrating
out the fermions, we obtain the Pfaffian PfM, which is
complex in general. However, we observe that it is actually
real positive with high accuracy in the temperature region
studied in the present work. Hence we can replace it by
jPfMj � det�D1=4�, where D �MyM.

The trick of the RHMC algorithm is to use the rational
approximation x�1=4 ’ a0 �

PQ
k�1

ak
x�bk

, which has suffi-
ciently small relative error within a certain range re-
quired by the system to be simulated. (The real posi-
tive parameters ak and bk can be obtained by a code [22]
based on the Remez algorithm.) Then the Pfaffian is
replaced by jPfMj �

R
dFdF�e�SPF , where SPF �

a0F�F�
PQ
k�1 akF

��D� bk��1F, using the auxiliary
complex variables F, the so-called pseudofermions.

At this point we apply the usual prescription of the HMC
algorithm to the whole system as described in Ref. [18],
except that now we introduce the momentum variables
conjugate to the pseudofermions F as well as the bosonic
matrices ~Xi and the gauge variables �a. When we solve the
auxiliary classical Hamiltonian dynamics, it is important to
apply the Fourier acceleration [21] to all the variables. The
main part of the computation comes from solving a linear
system �D� bk��k � F (k � 1; . . . ; Q). We solve the
system for the smallest bk using the conjugate gradient
method, which reduces the problem to the iterative multi-
plications of M to a pseudofermion field, each of which
requires O��2N3� arithmetic operations. The solutions for
larger bk’s can be obtained as by-products using the idea of
the multimass Krylov solver [23]. This avoids the factor of
Q increase of the computational effort.

Infrared instability.—Since the integration domain for
the bosonic matrices is noncompact, the convergence of the
partition function is not obvious. In particular, there exists
a potential danger in the flat direction corresponding to
commuting matrices. Such an issue has been addressed in
the totally reduced model [11,12,16,24]. In the present
D � 1 case, let us expand the cutoff theory (2) around

PRL 100, 021601 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
18 JANUARY 2008

021601-2



the commuting background ~Xi0 � diag�xi1; . . . ; xiN�.
When both T and all of jxia � xibj are large, the fluctua-
tions become very massive, and the one-loop approxima-
tion is justified. The one-loop effective action for the
moduli parameters xia and �a can be easily obtained as

 W �
X
a<b

4 log
�Q

nf�2�n� �ab�
2 � ��xab�2gQ

rf�2�r� �ab�
2 � ��xab�

2g

�
; (3)

where �ab 
 �a � �b and xab 

������������������������
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2
p

. In Eq. (3)
we have omitted terms independent of xab, which ac-
tually vanish in the �! 1 limit. When xab � T and
�ab � 2�, the n � 0 term dominates and yields a loga-
rithmic attractive potential W ’

P
a<b4 logf��ab�2 �

��xab�2g among �a and among xia. This agrees with the
well-known result in the totally reduced bosonic model
[12], which describes the high temperature limit of the
present model. In fact one obtains xab  T1=4 according
to the high temperature expansion (HTE) [25]. On the other
hand, when T � xab � 2��T, the denominator and the
numerator in Eq. (3) cancel each other almost completely.
This implies the existence of an instability.

As T is lowered, the instability region approaches the
typical value of xab  T1=4 representing the high tempera-
ture behavior. However, after taking the sum over all the
pairs of indices (a; b), a tiny difference between the de-
nominator and the numerator is roughly raised to the power
ofN2. This shifts the lower edge of the instability region by
a factor of N. We found empirically that the instability can
be avoided by taking N * 6

T , which is consistent with the
above considerations.

For N satisfying this inequality, we expect the finite-N
effects to be O� 1

N2� as observed in HTE [25]. The finite-�
effects, on the other hand, are expected to become negli-
gible for � * c

T , where empirically we find c ’ 2 for the
energy and c ’ 4 for the Polyakov line.

Results.—In Fig. 1 we plot the absolute value of the
Polyakov line, which is the order parameter for the sponta-
neous breaking of the U�1� symmetry. Unlike in the bo-
sonic case [6,26,27], where the phase transition associated
with the symmetry breaking occurs around T ’ 1, the
Polyakov line changes smoothly [28] for the range of T
investigated. At low T it can be fitted nicely to the asymp-
totic behavior

 hjPji 
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XN
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ei�i
								


� exp

�
�
a
T
� b

�
; (4)

which is characteristic to a deconfined theory. This implies
the absence of a phase transition in the present case, as
predicted by the gauge-gravity duality [3,4,7].

In Fig. 2 we plot the internal energy defined by E �
@
@� ��F �, where F is the free energy of the system. In
practice, we calculate it using a formula, which follows
from a simple scaling argument [19]. In our case it reads

E � �3T�hSbi �
9
2 f�2�� 1�N2 � 1g�. Our results inter-

polate smoothly between the weak coupling behavior—
calculated by the HTE up to the next leading order [25]—
and the strong coupling behavior E=N2 � 7:4T2:8 pre-
dicted by gauge-gravity duality [2] from dual black-hole
geometry [29]. The power-law behavior seems to set in at
T ’ 0:5, which is reasonable since the effective coupling
constant is given by ~� � 1=T3 in our convention. More
data points at lower temperature are desirable to confirm
the duality unambiguously.

In Ref. [5] the energy was obtained by the Gaussian
expansion method at the leading order, and the power-law
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behavior E=N2 � 3:4T2:7 was seen within 0:25 & T & 1.
Their results are in reasonable agreement with our data at
T  1, but disagree at lower temperature. Higher order
calculations in the Gaussian expansion method are
worthwhile.

Summary and outlook.—We have presented the first
Monte Carlo results for the maximally supersymmetric
matrix quantum mechanics. New techniques enabled us
to study the low temperature behavior, which was not
accessible by HTE. As the temperature was lowered, we
observed the infrared instability, which is eliminated, how-
ever, by increasing N. We gave a natural explanation to this
phenomenon based on the one-loop effective action.

The internal energy asymptotes at low T to the power-
law behavior obtained from 10D nonextremal black-hole
geometry. Note that these are based on independent calcu-
lations from both sides of the gauge-gravity duality, and
thus provide highly nontrivial evidence for it. They also
imply that the microscopic origin of the Bekenstein-
Hawking entropy for the 10D nonextremal black hole
can be accounted for by the open strings attached to the
D0-branes, which are described by the gauge theory.

Assuming the duality to hold in the stronger sense, one
may investigate the quantum and stringy corrections to
black-hole thermodynamics from the gauge theory side
as finite-N and finite- ~� effects. In particular, it would be
interesting to understand the physical meaning of the ob-
served infrared instability from that perspective.
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