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Noncommutativity of the zero chemical potential limit and the thermodynamic limit
in finite density systems
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Monte Carlo simulations of finite density systems are often plagued by the complex action problem. We
point out that there exists certain noncommutativity in the zero chemical potential limit and the thermodynamic
limit when one tries to study such systems by reweighting techniques. This is demonstrated by explicit
calculations in a Random Matrix Theory, which is thought to be a simple qualitative model for finite density
QCD. The factorization method allows us to understand how the noncommutativity, which appears at the
intermediate steps, cancels in the end results for physical observables. In the recent reweighting type of
approaches to QCD in the smallm regime, we expect a transition when the volume reachesVtr.const./m2,
which however may not be in the range of current lattice calculations.
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I. INTRODUCTION

QCD at finite baryon density and/or finite temperature h
attracted much attention due to its relevance to the physic
the early universe, heavy ion collisions, and neutron star
is of particular importance to explore the phase diagram
the m ~chemical potential!, T ~temperature! plane, where in-
teresting phases, such as a superconducting phase, have
conjectured to appear. Monte Carlo simulations, which
able first-principle studies atm50, are hindered by the fac
that the fermion determinant becomes complex formÞ0.
The standard reweighting method uses the absolute valu
generating configurations and takes account of the phas
measuring observables. Due to cancellations caused by
oscillating phase, however, the required number of confi
rations grows exponentially with the system size. Furth
more, the method suffers from the so-called overlap prob
that is caused by the mismatch of the region in the confi
ration space, which contributes to the ensemble average
the region that one mostly samples in the phase-quenc
model.

One of the recent developments in this direction is that
reweighting techniques have proven to be of use in explo
the phase diagram at smallm and largeT, where the fluctua-
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tion of the phase is still under control. Substantial improv
ments are achieved by various tricks, such as the mult
rameter reweighting@1,2#, Taylor expansion approach@3#,
and the imaginarym approach@4,5#. In particular the first
approach was able to locate the critical end point in them-T
plane@2#. ~See also Ref.@6#.!

In Ref. @7# the authors proposed a new method, the f
torization method, for simulating systems with complex a
tions. The method utilizes the fact that the distribution
observables factorizes into the corresponding distribution
the phase-quenched model and the weight factor represe
the effect of the phase. Each factor can be obtained by c
strained Monte Carlo simulations, which eliminate the ov
lap problem completely. The knowledge of the weight fac
allows us to understand the effect of the phase intuitive
The method is quite general, and in particular it is expec
to be useful in going beyond the smallm regime in finite
density QCD. The method proposed for simulati
u-vacuum like systems@8# may be viewed as a particula
case of the factorization method. In Ref.@9# it was pointed
out that the factorization method belongs to the class
methods known as ‘‘the density of states method.’’

In Ref. @10# we have tested the method in a Rando
Matrix Theory ~RMT!, which is thought of as a schemat
model for QCD at finite baryon density@11#. RMT was origi-
nally introduced to describe the spectrum of the Dirac ope
tor and has been extensively studied in the literature@12#.
The model we have studied exhibits a first-order phase t
sition at some value of the ‘‘chemical potential’’ and can
solved analytically even for finite-size matrices@13#. One
©2004 The American Physical Society10-1
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hopes to capture the essential properties of real QCD, w
at the same time have a testing ground@14# for methods to be
applied to real QCD. Indeed the factorization method is qu
successful in RMT@10#, where exact results are reproduc
with great accuracy, and one understands clearly how
phase of the determinant induces the first-order phase tra
tion.

In this paper we investigate this model further in order
address the question of the noncommutativity in them→0
limit and the thermodynamic limit. The factorization metho
allows us to understand how the noncommutativity appe
at the intermediate steps of reweighting techniques, and
it cancels in the end results for physical observables. Prel
nary results have already been presented in conference
ceedings, Refs.@15,16#.

Although we consider that our findings in RMT will be o
use in the real QCD, we would like to comment that RMT
not the only schematic model that has been introduced
toy model for QCD at finite density. In particular, lattice
gauge theories at infinite coupling have greatly added to
understanding on the interrelation between the quenched
the full model. For example, the significance of the fermi
determinant in QCD at finite density was first revealed
one-dimensional lattice gauge theories at strong coupl
For a U~1! theory it was found@17# that in the quenched
theory the critical chemical potential vanishes for vanish
quark mass, whereas chiral symmetry remains broken
any finite chemical potential in the unquenched theory. Ho
ever, this behavior was not found for the SU(n) theory,
where the quenched and unquenched results for the c
condensate agree in the thermodynamic limit and they b
have a critical chemical potential that vanishes in the ch
limit @18#. The situation was clarified in Ref.@19#, where it
was realized that the quenched theory behaves as the p
quenched theory, which is a theory of quarks and conjug
antiquarks with a critical chemical potential that is equal
half the pion mass. However, a full analytical understand
of the quenched limit was first obtained@11# for the RMT,
which will be studied in this paper. Let us also comment t
the strong coupling limit of lattice QCD has produced va
able results for the phase diagram of QCD at finite tempe
ture and density@20#, which are in qualitative agreemen
with RMT @21#.

The rest of this paper is organized as follows. In Sec
we briefly review RMT for finite density QCD and th
Monte Carlo methods. In Sec. III we discuss the noncomm
tativity in the aforementioned limits and present our resu
Section IV is devoted to discussions and some comment
future prospects.

II. RMT FOR FINITE DENSITY QCD AND THE MONTE
CARLO METHODS

We consider the RMT defined by the partition function

Z5E dWe2N tr(W†W)detD, ~1!

where W is a N3N complex matrix, andD is a 2N32N
matrix given by
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D5S m iW1m

iW†1m m D . ~2!

The above model can be thought of as a schematic mode
finite density QCD with one flavor, where the parametersm
and m correspond to the chemical potential and the qu
mass, respectively. The size of the matrixW corresponds to
the number of low-lying modes of the Dirac operator, and
the density of these modes is taken to be unity,N can be
interpreted as the volume of space-time. As physical obs
ables, one may consider the ‘‘chiral condensate’’ and
‘‘quark number density’’ defined by

S5
1

2N
tr~D21!, ~3!

n5
1

2N
tr~g4D21!, g45S 0 1

1 0D .

~4!

In what follows we consider the massless case (m50) and
focus on the ‘‘quark number density.’’

The model was first solved in the large-N limit @11#, but
an analytic solution has been obtained in@13# even for finite
N. The partition function can be expressed as

Z~m!5pekN2(N11)N! F11
~21!N11

N!
g~N11,k!G , ~5!

wherek52Nm2 and g(n,x) is the incompleteg-function
defined by

g~n,x!5E
0

x

e2ttn21dt. ~6!

From this one obtains the vacuum expectation value~VEV!
of the quark number density as

^n&5
1

2N

]

]m
ln Z~m! ~7!

52mF11
kNe2k

~21!N11N1g~N11,k!
G . ~8!

In Fig. 1 we plot^n& as a function of the chemical potentia
m for N58,16,32,64,128. The large-N limit of this formula
is easily found by applying the saddle-point method to
incompleteg-function. We obtain

lim
N→`

^n&5H 2m for m,mc

1/m for m.mc ,
~9!

wheremc is the solution to the equation 11m21 ln(m2)50,
and its numerical value is given bymc50.527•••. We find
that the quark number density^n& has a discontinuity atm
5mc . Thus the schematic model reproduces qualitatively
first order phase transition expected to occur in ‘‘real’’ QC
at nonzero baryon density.
0-2
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The model~1! cannot be simulated directly because t
fermion determinant has a nonzero phaseG defined by

detD5eiGudetDu, ~10!

when mÞ0. In order to reveal the importance of the pha
let us consider thephase-quenchedmodel

Z05E dWe2N tr(W†W)udetDu

5E dWe2S0, ~11!

S05N tr~W†W!2 lnudetDu, ~12!

and the corresponding VEVs, which we denote as^ . . . &0.
The large-N limit of ^n&0 can be obtained analytically as@11#

lim
N→`

^n&05H m for m,1

1/m for m.1.
~13!

Comparing this with the result~9! for the full model, we see
that the effect ofG is dramatic form,1.

The reweighting method uses the identity

^n&5
^neiG&0

^eiG&0

~14!

to calculatê n& for the full model by Monte Carlo simulation
of the phase-quenched model. Due to the symmetry of
phase-quenched model underW°2W, where the fermion
determinant detD as well as the observablen becomes com-
plex conjugate, we obtain

^n&5^nR&1 i ^n I&, ~15!

^nR&5
^nRcosG&0

^cosG&0
, ~16!

FIG. 1. The exact result~8! for the ‘‘quark number density’’̂n&
is plotted as a function of the ‘‘chemical potential’’m for N
58,16,32,64,128. In theN→` limit, the function develops a dis
continuity atm5mc50.527•••.
03501
e

e

^n I&5 i
^n IsinG&0

^cosG&0
, ~17!

wherenR andn I denote the real part and the imaginary p
of n, respectively. The same symmetry implies that

^nR&05^n&0 ; ^n I&050. ~18!

For the unquenched model, on the other hand, one obt
@10#

^nR&50; ^n I&5 im ~19!

in the largeN limit for m,mc , which is in sharp contrast to
the phase-quenched result~18!.

The factorization method in the present case amount
calculating the VEVs on the right-hand side of~16! and~17!
by the formulas

^nRcosG&05E
2`

`

dxxrR
(0)~x!wR~x!, ~20!

^cosG&05E
2`

`

dxrR
(0)~x!wR~x!, ~21!

^n IsinG&052E
0

`

dxxr I
(0)~x!wI~x!, ~22!

where the functionsr i
(0)(x) ( i 5R,I) represent the distribu

tion of n i ( i 5R,I) in the phase-quenched model

r i
(0)~x!5

def

^d~x2n i !&0 . ~23!

The weight factorswi(x) in Eqs.~20!–~22! are defined by

wR~x!5
def

^cosG&R,x , ~24!

wI~x!5
def

^sinG& I,x , ~25!

where the VEV̂ . . . & i ,x is taken with respect to yet anothe
partition function

Zi~x!5E dWe2S0d~x2n i !. ~26!

The problem then reduces to the calculation of the fo
functionsr i

(0)(x) and wi(x) ( i 5R,I). This may be done in
various ways. In Ref.@10# as well as in the present work w
have simulated

Zi ,V5E dWe2S0e2V(n i ), ~27!

where thed-function in ~26! is replaced by a sharply peake
potentialV(x), which is taken to be Gaussian

V~x!5
1

2
g~x2j!2 ~28!
0-3
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with g and j being real parameters. By choosingg large
enough, the results become insensitive to its value~we used
g51000.0). The functionsr i

(0)(x) can be obtained from the
same simulation. We refer the reader to Ref.@10# for more
details.

The complex action problem occurs in the reweighti
method because the trigonometric functions in~16! and~17!
flip their signs violently when one moves around the co
figuration space. The same problem occurs in the factor
tion method when one calculates the weight factors~24! and
~25!. However, by simulating the constrained system~27!,
one forces the simulation to sample the important region
the configuration space, which is rarely visited by the sim
lation of the phase-quenched model~11!. Thus the factoriza-
tion method removes the overlap problem completely. O
the weight factors are obtained roughly, one can make
sampling more efficient by the use of multicanonical sim
lations. This is not yet done, however. The knowledge of
weight factors is also useful in understanding the effect
the phase intuitively@7,10#, and it plays a crucial role in the
present work.

III. NONCOMMUTATIVITY OF THE µ\0
AND THE THERMODYNAMIC LIMIT

In this section we discuss the noncommutativity of t
two limits m→0 andN→` in the RMT. Such noncommu
tativity can be readily seen from the partition function~5!.
Below the critical point, the largeN behavior is given by
Z(m);const e2Nm2

. Omitting them-independent factor, the
partition function approaches unity if one takes them→0
limit first, whereas it vanishes if one takes the largeN limit
first. More generally, one obtains e2C, if one takes the two
limits simultaneously with fixedNm2[C. This noncommu-
tativity is caused by the phase of the determinant. The ph
vanishes atm50 for finite N, and one obtains a nonzer
result for the partition function in the largeN limit with
appropriate normalization. If one takes the largeN limit first
for small but finitem, however, the oscillation of the phas
becomes violent, and as a result one obtainsZ50 with the
same normalization.

We note, however, that the free energy defined by

f ~m!52 lim
N→`

H 1

N
ln Z~m,N!2constJ ~29!

after subtracting them-independent constant is given b
f (m)5m2 at m,mc , which is continuous atm50 @24#. Fur-
thermore we find from~8! or Fig. 1 that the quark numbe
density does not have such noncommutativity, either. T
the noncommutativity does not seem to appear in phys
quantities, but it appears at the intermediate steps of the
weighting method as we will see in what follows.

Let us first consider the weight factorwR(x), which has a
noncommutativity similar to the partition function. Since th
phase G disappears identically form50, one obtains
wR(x)[1 atm50 for anyN. On the other hand, one obtain
wR(x)[0 in the largeN limit for any mÞ0, since the phase
oscillates violently. In Fig. 2 we plotwR(x) for m50.1 and
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m50.2 at N58,16,32. The weight factorwR(x) crosses
zero, and the crossing point moves to infinity asm→0. Thus
the convergence ofwR(x) to wR(x)[1 in them→0 limit is
not uniform.

As m approaches zero for fixedN, a linear regime devel-
ops in the region wherewR(x) crosses zero. We extract th
slopesR(m,N) in this regime and plot it againstm in Fig. 3.
At small m we find that the slope can be fitted nicely by

sR~m,N!;2aR~N!m, ~30!

where the coefficientaR(N) grows linearly withN. There-
fore, the asymptotic behavior of the weight factorwR(x)
depends on how the two limitsm→0, N→` are taken.

Let us next turn torR
(0)(x). In Fig. 4 we plot it for various

N at m50.2. At smallN the distribution is peaked near th
origin and the dependence onN is small. As we go to larger
N the peak moves tox;0.2 and starts to grow. The VEV
^nR&0, which represents the position of the peak, is theref
close to zero at smallN, and it approacheŝnR&05m in the
largeN limit.

In Fig. 5 we plot^nR&02m against 1/N for variousm. We
see that the largeN asymptotic behavior is given by

FIG. 2. The weight factorwR(x) is plotted form50.1 and 0.2 at
N58,16,32

FIG. 3. The slopesR(m,N) of the weight factorwR(x) in the
linear regime is plotted againstm for N58,32,64. For sufficiently
small m it fits well to sR(m,N);2aR(N)m.
0-4
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^nR&05m2C~m!
1

N
1•••, ~31!

where the coefficientC(m) grows as;0.2/m for m→0.
From this one finds that the largeN scaling sets in at

N@Ntr.
0.2

m2
. ~32!

The productrR
(0)(x)wR(x) gives the unnormalized distri

bution of nR in the full model, which we plot in Fig. 6. The
distribution itself, even after appropriate normalization, h
the noncommutativity which is inherited fromrR

(0)(x) and
wR(x). However, the VEV̂ nR&, which is the first moment
of the distribution, is always close to zero as one can
from Table I. The reason depends on whetherm!1/AN or
m@1/AN. In the former case the distribution is peak
around the origin, which makes the first moment close
zero. In the latter case the positive and negative region
the distribution cancel each other in the calculation of
first moment. Thus the noncommutativity cancels in the e
result for the VEV^nR&. The situation for the imaginary par
^n I& is discussed in the Appendix.

IV. DISCUSSIONS AND FUTURE PROSPECTS

The fact thatrR
(0)(x) and^nR&0 have the noncommutativ

ity for the limits m→0 andN→` can be understood as
property of the phase-quenched partition function~11!. This

FIG. 4. The distributionrR
(0)(x) of nR in the phase-quenche

model is plotted form50.2 at variousN.

FIG. 5. We plot^nR&02m against 1/N for variousm.
03501
s

e

o
of
e
d

model undergoes a phase transition to a phase of conde
Goldstone bosons with nonzero baryon number atm5mp/2
@11,19#. For zero quark mass, this phase transition ta
place atm50. If we take the thermodynamic limit before th
m→0 limit, the observables are calculated in a Bos
condensed phase. If the limits are taken in the opposite or
the ground state is the regular chirally broken vacuum s
without Bose condensate. For this reason we obtain diffe
values for observables depending on the order of the lim
For example, if the chiral condensate^S&0 is calculated be-
fore them→0 limit, we find ^S&050, whereas if we take the
m→0 limit first, we find ^S&0Þ0. Another example is
]/]m^n&0, which vanishes if them→0 limit is taken before
the thermodynamic limit, while it is equal to unity if th
limits are taken in the opposite order.

These two domains are separated by the weak nonhe
ticity limit @22#, where the thermodynamic limit is taken a
fixed m2N. This is the domain where the real part of th
eigenvalues is of the order of the average spacing of
eigenvalues~the eigenvalues are purely imaginary form
50), and quantities such as the average spectral densi
the Dirac operator can be obtained analytically in this lim
@23#.

Mathematically, the boundarym2N gives the ‘‘average’’
radius of convergence of the perturbative expansion of
fermion determinant in powers ofm. According to Kato’s
criterion the perturbative series is convergent if the norm
the perturbative operator is less than the level spacing.
deed the norm ofmg4 is m2 and the average level spacing
random matrix Dirac operator~2! is ;1/N.

TABLE I. The VEVs ^nR&, i ^n I&, and ^n& obtained by the
factorization method form50.2 at variousN. Statistical errors com-
puted by the jackknife method are shown.

N ^nR& i ^n I& ^n&

8 0.0056~6! 20.1970~5! 20.1915~7!

16 0.0060~4! 20.1905~13! 20.1845~13!

24 0.0076~9! 20.1972~14! 20.1896~17!

32 0.0021~8! 20.1947~19! 20.1927~25!

48 0.0086~37! 20.2086~54! 20.2000~88!

FIG. 6. The productrR
(0)(x)wR(x), which gives the unnormal-

ized distribution fornR in the full model, is plotted form50.2 at
variousN.
0-5
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The Bose condensed phase is not present in the full
tition function ~1!. Observables depend smoothly onm for
m,mcÞ0. Apparently the phase oscillations of the fermio
determinant completely wipe out this phase transition. Ho
ever, because reweighting methods are based on the ph
quenched partition function, we see traces of the noncom
tativity of the m→0 limit and the thermodynamic limit a
intermediate steps of the calculation.

It is expected that such noncommutativity appears a
when one studies real QCD at finite baryon density by
weighting type methods, and the transition occurs when
system size becomes larger thanVtr.const/m2. The system
size in the recent works at smallm @1,2# may be below the
transition point, but the transition will occur if one goes
largerm for the same system size.

Since the noncommutativity cancels in the end results
physical observables in the full model, the transition is no
physical one, but it should rather be considered as a prop
of the reweighting type methods. We hope that our res
will be useful when one tries to go beyond the smallm
regime in real QCD. It should also be mentioned that t
conjectured superconducting phase may be easier to ac
from the other extreme, namely from the largem regime,
where the fluctuation of the phase becomes milder again
cording to the results in RMT@10#.
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FIG. 7. The weight factorwI(x) is plotted form50.1 and 0.2 at
N58,16,32.
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APPENDIX

In this appendix we briefly describe the situation with t
imaginary partn I of the quark number density. The weigh
factor wI(x) becomeswI(x)[0 at m50 for any N, and it
also becomeswI(x)[0 in the largeN limit for any mÞ0.
However, the two extreme cases are not connected smoo
In Fig. 7 we plot the weight factorwI(x) for m50.1 andm
50.2 atN58,16,32.

BecausewI(x) is an odd function due to symmetry,
crosses the origin. A linear regime is seen to extend from
origin asm goes to zero for fixedN. We extract the slope in
the linear regime and plot it as a function ofm in Fig. 8. At
small m, the slope can be fitted nicely by

s I~m,N!;2a I~N!m, ~A1!

where the coefficienta I(N) grows linearly withN. Thus we
find that the weight factorwI(x) has similar noncommutativ
ity as wR(x).

On the other hand,r I
(0)(x) does not depend much onm,

and the peak atx50 grows smoothly withN as one can see
from Fig. 9. The end result fori ^n I& does not have the non
commutativity~See Table I!, but the cancellation in this cas
occurs between the numerator and the denominator of~17!,
which makes it less obvious than the situation with^nR&.

FIG. 8. The slopes I(m,N) of the weight factorwI(x) in the
linear regime is plotted againstm for N58,32,64. For sufficiently
small m, it fits well to s I(m,N);2a I(N)m.

FIG. 9. The functionr I
(0)(x) is plotted forN58, 16, 24, 32, 48,

64, 96 atm50.2.
0-6
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