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Monte Carlo simulations of finite density systems are often plagued by the complex action problem. We
point out that there exists certain noncommutativity in the zero chemical potential limit and the thermodynamic
limit when one tries to study such systems by reweighting techniques. This is demonstrated by explicit
calculations in a Random Matrix Theory, which is thought to be a simple qualitative model for finite density
QCD. The factorization method allows us to understand how the noncommutativity, which appears at the
intermediate steps, cancels in the end results for physical observables. In the recent reweighting type of
approaches to QCD in the small regime, we expect a transition when the volume reashgsconst.ju?,
which however may not be in the range of current lattice calculations.
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I. INTRODUCTION tion of the phase is still under control. Substantial improve-
ments are achieved by various tricks, such as the multipa-
QCD at finite baryon density and/or finite temperature hagameter reweighting1,2], Taylor expansion approad:8],
attracted much attention due to its relevance to the physics @nd the imaginaryu approach(4,5]. In particular the first
the early universe, heavy ion collisions, and neutron stars. lhpproach was able to locate the critical end point ingh€
is of particular importance to explore the phase diagram irplane[2]. (See also Ref.6].)
the u (chemical potential T (temperaturgplane, where in- In Ref. [7] the authors proposed a new method, the fac-
teresting phases, such as a superconducting phase, have bemization method, for simulating systems with complex ac-
conjectured to appear. Monte Carlo simulations, which entions. The method utilizes the fact that the distribution of
able first-principle studies ai =0, are hindered by the fact observables factorizes into the corresponding distribution for
that the fermion determinant becomes complex fot 0. the phase-quenched model and the weight factor representing
The standard reweighting method uses the absolute value ftine effect of the phase. Each factor can be obtained by con-
generating configurations and takes account of the phase sirained Monte Carlo simulations, which eliminate the over-
measuring observables. Due to cancellations caused by tha&p problem completely. The knowledge of the weight factor
oscillating phase, however, the required number of configuallows us to understand the effect of the phase intuitively.
rations grows exponentially with the system size. Further-The method is quite general, and in particular it is expected
more, the method suffers from the so-called overlap problento be useful in going beyond the small regime in finite
that is caused by the mismatch of the region in the configudensity QCD. The method proposed for simulating
ration space, which contributes to the ensemble average afdvacuum like system$8] may be viewed as a particular
the region that one mostly samples in the phase-quenchethse of the factorization method. In Rg®] it was pointed
model. out that the factorization method belongs to the class of
One of the recent developments in this direction is that thenethods known as “the density of states method.”
reweighting techniques have proven to be of use in exploring In Ref. [10] we have tested the method in a Random
the phase diagram at smalland largeT, where the fluctua- Matrix Theory (RMT), which is thought of as a schematic
model for QCD at finite baryon densiff1]. RMT was origi-
nally introduced to describe the spectrum of the Dirac opera-
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hopes to capture the essential properties of real QCD, while
at the same time have a testing grojihd] for methods to be D=
applied to real QCD. Indeed the factorization method is quite

successful in RMT10], where exact results are reproducedthe apove model can be thought of as a schematic model of
with great accuracy, and_ one underst_ands clearly how thf‘?nite density QCD with one flavor, where the paramefers
phase of the determinant induces the first-order phase transi;4 , correspond to the chemical potential and the quark
tion. . . . . mass, respectively. The size of the maWikcorresponds to

In this paper we investigate this model f%”.”‘e_f in order ©the number of low-lying modes of the Dirac operator, and if
address the question of the noncommutativity in fhe:0  he density of these modes is taken to be uritycan be
limit and the thermodynamic limit. The factorization method interpreted as the volume of space-time. As physical observ-

allows us to understand how the noncommutativity appeargpies, one may consider the “chiral condensate” and the
at the intermediate steps of reweighting techniques, and ho““ﬁuark number density” defined by

it cancels in the end results for physical observables. Prelimi-

nary results have already been presented in conference pro- 1

ceedings, Refd.15,16]. 2= mtf(D_l), (©)]
Although we consider that our findings in RMT will be of

m IW+

. . 2
IWT-I-,u, m 2

use in the real QCD, we would like to comment that RMT is 1 0 1

not the only schematic model that has been introduced as a v=——tr(y,D7Y), 74:( )
toy model for QCD at finite density. In particular, lattice- 2N 10
gauge theories at infinite coupling have greatly added to our (4)

understanding on the interrelation between the quenched arfg what follows we consider the massless c 0) and
the full model. For example, the significance of the fermion]cocus on the *quark number density.”

determinant in QCD at finite density was first revealed for The model was first solved in the largedimit [11], but

one-dimensional lattice gauge theories at strong coupling{.i ; : : o

i . n analytic solution has been obtained 13] even for finite
For a U1) theory it was found17] that in the quenched N. The }[;tartition function can be expr(gssgd as
theory the critical chemical potential vanishes for vanishing ™

guark mass, whereas chiral symmetry remains broken for

any finite chemical potential in the unquenched theory. How-  Z(u)=7e*N~(N*NI
ever, this behavior was not found for the Si)J(theory,

where the quenched and unquenched results for the chir N2 ; ; g ;
condensate agree in the thermodynamic limit and they botwgf?rzgg by Nwu™ and y(n,x) is the incompletey-function
have a critical chemical potential that vanishes in the chira

limit [18]. The situation was clarified in Ref19], where it X

was realized that the quenched theory behaves as the phase Y(H,X)ZJ e 't""dt. (6)
guenched theory, which is a theory of quarks and conjugate 0

antiquarkg with a critical chemical potenti_al that is equal.toFrOm this one obtains the vacuum expectation VAWEV)
half the pion mass. However, a full analytical understandingy¢ e quark number density as

of the quenched limit was first obtainédl] for the RMT,

which will be studied in this paper. Let us also comment that 1 9

the strong coupling limit of lattice QCD has produced valu- (V=55 7, N2k 7
able results for the phase diagram of QCD at finite tempera- K
ture and densityf20], which are in qualitative agreement
with RMT [21].

The rest of this paper is organized as follows. In Sec. Il
we briefly review RMT for finite density QCD and the
Monte Carlo methods. In Sec. Ill we discuss the noncommu!n Fig. 1 we plot(») as a function of the chemical potential
tativity in the aforementioned limits and present our resultsu for N=8,16,32,64,128. The large-limit of this formula
Section IV is devoted to discussions and some comments df easily found by applying the saddle-point method to the
future prospects. incompletey-function. We obtain

(_1)N+1
+ —Iy(N-l-l,K) , (5

ST

kNe™«

(—DN"IN+ y(N+1,k)

=—pul|l+ . (8

—p for u<up
Up for u>pe,

IIl. RMT FOR FINITE DENSITY QCD AND THE MONTE

CARLO METHODS ©

lim (v)=

N—o

We consider the RMT defined by the partition function . . .
! ! y the partition funct where i is the solution to the equation+lu?+ In(u?)=0,

" and its numerical value is given hy.=0.527 - -. We find
z:f dwe N "W WdetD, (1) that the quark number density) has a discontinuity a
= u.. Thus the schematic model reproduces qualitatively the
whereW is a NXN complex matrix, andD is a 2NX 2N first order phase transition expected to occur in “real” QCD
matrix given by at nonzero baryon density.
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FIG. 1. The exact resu(B) for the “quark number density{v)
is plotted as a function of the “chemical potentiaji for N
=8,16,32,64,128. In th&l—< limit, the function develops a dis-
continuity atu= p.=0.527 - -.

The model(1) cannot be simulated directly because the

fermion determinant has a nonzero phéisdefined by

detD=¢€"|detD|, (10)

when u#0. In order to reveal the importance of the phase

let us consider th@hase-quenchenhodel

Zo= J dWe N tW'W) derD|

= f dwe %o, (12)

So=N tr(W'W) —In|detD|, (12

and the corresponding VEVs, which we denote(as . ).
The largeN limit of (v), can be obtained analytically §%1]

pno for u<1

Up for u>1. (13

lim (v)o=

N— o

Comparing this with the resu(®) for the full model, we see
that the effect of” is dramatic foru<1.
The reweighting method uses the identity

_ <Veir>o
C= @,

(14
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(wsinl)o

W ost, o

wherevg and v, denote the real part and the imaginary part
of v, respectively. The same symmetry implies that

(vr)o=(¥)0; (¥1)o=0.

For the unquenched model, on the other hand, one obtains
[10]

(18)

(vR)=0; (19

in the largeN limit for u<u., which is in sharp contrast to
the phase-quenched res(8).

The factorization method in the present case amounts to
calculating the VEVs on the right-hand side(@6) and(17)
by the formulas

(vp=ip

(vecosl)o= | aopfl0owe0, (20

(cosl')o= f " axpl0wR(), (2D)

(nsinl)o=2 f deprO)(x)W,(x), (22)
0

where the functionp(?(x) (i=R,l) represent the distribu-
tion of »; (i=R,l) in the phase-quenched model

def
PO =(8(x=1))o.

The weight factorsv;(x) in Egs.(20)—(22) are defined by

(23

def
Wg(X)=(cosl")g x, (24
def

wi(x)=(sinT"), y, (25

where the VEV( . . .);  is taken with respect to yet another
partition function

zi(x)zf dWe S08(x— ;). (26)

The problem then reduces to the calculation of the four
functions p{®(x) andw;(x) (i=R,l). This may be done in

to calculatg v) for the full model by Monte Carlo simulation varioug ways. In Ref.10] as well as in the present work we
of the phase-quenched model. Due to the symmetry of thbave simulated

phase-quenched model und&— —W, where the fermion
determinant deD as well as the observablebecomes com-
plex conjugate, we obtain

(m=(vr)+i(m), (15
(vgeosl)g 16

W feosty

Z = f dWe ™ Sog= V() (27

where thes-function in (26) is replaced by a sharply peaked
potentialV(x), which is taken to be Gaussian

1
V(0= 5 y(x—§)? (28)
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with y and ¢ being real parameters. By choosinglarge 1
enough, the results become insensitive to its vélue used 08 |
y=1000.0). The functionp{?)(x) can be obtained from the '
same simulation. We refer the reader to H&0] for more L6
details. 04
The complex action problem occurs in the reweighting 02+t PO
method because the trigonometric functiong16) and(17) 8,: ol Leom %
flip their signs violently when one moves around the con-z MM T
figuration space. The same problem occurs in the factorize 0.2 801 = =
tion method when one calculates the weight fact@ and 04 1601 o
(25). However, by simulating the constrained Systé2i), .06 | 3201 e
one forces the simulation to sample the important region o 08 | 12 8:3 o
the configuration space, which is rarely visited by the simu- 3202 -4 . ‘ ‘
lation of the phase-quenched mod#l). Thus the factoriza- '1_1 5 I 05 0 05 1 15

tion method removes the overlap problem completely. Onci
the weight factors are obtained roughly, one can make the
sampling more efficient by the use of multicanonical simu- FIG. 2. The weight factowg(x) is plotted foru=0.1 and 0.2 at
lations. This is not yet done, however. The knowledge of théN=8,16,32

weight factors is also useful in understanding the effect of

the phase intuitively7,10], and it plays a crucial role in the x=0.2 at N=8,16,32. The weight factowg(x) crosses

present work. zero, and the crossing point moves to infinitywas>0. Thus
the convergence ofig(X) to wg(x)=1 in the xu—0 limit is
IIl. NONCOMMUTATIVITY OF THE pu—0 not uniform.
AND THE THERMODYNAMIC LIMIT As u approaches zero for fixed, a linear regime devel-

ops in the region whera/g(x) crosses zero. We extract the
slopeor(u,N) in this regime and plot it againgt in Fig. 3.
At small » we find that the slope can be fitted nicely by

In this section we discuss the noncommutativity of the
two limits u—0 andN—« in the RMT. Such noncommu-
tativity can be readily seen from the partition functi@s).
Below the critical point, the larg® behavior is given by

Z(M)~constéN“2. Omitting the u-independent factor, the
partition function approaches unity if one takes the-0
limit first, whereas it vanishes if one takes the laijdimit
first. More generally, one obtains &, if one takes the two
limits simultaneously with fixedNw?=C. This noncommu-
tativity is caused by the phase of the determinant. The phaSﬁ
vanishes atu=0 for finite N, and one obtains a nonzero
result for the partition function in the largd limit with
appropriate normalization. If one takes the laNjémit first
for small but finitex, however, the oscillation of the phase
becomes violent, and as a result one obtars0 with the
same normalization.

We note, however, that the free energy defined by

O-R(MIN)N_aR(N)/*L! (30)

where the coefficienteg(N) grows linearly withN. There-
fore, the asymptotic behavior of the weight factwg(x)
depends on how the two limitg —0, N—« are taken.
Let us next turn t(p(RO)(x). In Fig. 4 we plot it for various
at ©=0.2. At smallN the distribution is peaked near the
origin and the dependence bhis small. As we go to larger
N the peak moves ta~0.2 and starts to grow. The VEV
(vr)o, Which represents the position of the peak, is therefore
close to zero at small, and it approacheévg)o= 1 in the
large N limit.

In Fig. 5 we plot{vg)q— n against N for variousu. We
see that the larghl asymptotic behavior is given by

f(u)=— lim %InZ(,u,N)—consA} (29

N—oo

after subtracting theu-independent constant is given by
f(u)=u? at u<uc, which is continuous gt =0 [24]. Fur- LN
thermore we find from8) or Fig. 1 that the quark number o4l LN
density does not have such noncommutativity, either. Thus ° P
the noncommutativity does not seem to appear in physical

guantities, but it appears at the intermediate steps of the re- 6r H

weighting method as we will see in what follows. 7t v S Sanani
Let us first consider the weight factanz(x), which has a . e, 84 e

noncommutativity similar to the partition function. Since the 0 005 0.1 0.15 0.2 025 0.3 0.35 0.4 045 05

phase I' disappears identically foru=0, one obtains "

Wr(x)=1 atu=0 for anyN. On the other hand, one obtains  FIG. 3. The sloperg(x,N) of the weight factomg(x) in the
Wg(X)=0 in the largeN limit for any u+#0, since the phase linear regime is plotted againgi for N=8,32,64. For sufficiently
oscillates violently. In Fig. 2 we plovg(x) for u=0.1 and  small u it fits well to og(u,N)~ — ar(N) u.
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X X
FIG. 4. The distributionpY(x) of vg in the phase-quenched  FIG. 6. The produchY(x)Wg(x), which gives the unnormal-
model is plotted foru=0.2 at various\. ized distribution forvg in the full model, is plotted forw=0.2 at
variousN.

1
<VR>0:'“_C('“)N+ T G model undergoes a phase transition to a phase of condensed
Goldstone bosons with nonzero baryon numbegr atm /2
where the coefficienC(u) grows as~0.2ju for u—0. [11,19. For zero quark mass, this phase transition takes
From this one finds that the lard¢scaling sets in at place atu=0. If we take the thermodynamic limit before the
pn—0 limit, the observables are calculated in a Bose-
NS Nom (32) condensed phase. If the limits are taken in the opposite order,
tr luz' the ground state is the regular chirally broken vacuum state
without Bose condensate. For this reason we obtain different
The productpgo)(x)wR(x) gives the unnormalized distri- Vvalues for observables depending on the order of the limits.
bution of vg in the full model, which we plot in Fig. 6. The For example, if the chiral condensaf®), is calculated be-
distribution itself, even after appropriate normalization, hagore theu—0 limit, we find(2),=0, whereas if we take the
the noncommutativity which is inherited from{)(x) and ~ #—0 limit first, we find (%),#0. Another example is
Wr(x). However, the VEV(vg), which is the first moment @/du(v)o, which vanishes if thes— 0 limit is taken before
of the distribution, is always close to zero as one can sefe thermodynamic limit, while it is equal to unity if the
from Table I. The reason depends on whetpeg1/JN or  limits are taken in the opposite order. .
u>11N. In the former case the distribution is peaked = 1hese two domains are separated by the weak nonhermi-
around the origin, which makes the first moment close td'ty I|n21|t [22], where the thermodynamic limit is taken at
zero. In the latter case the positive and negative regions df<€d #°N. This is the domain where the real part of the
the distribution cancel each other in the calculation of thefigenvalues is of the order of the average spacing of the

first moment. Thus the noncommutativity cancels in the endigenvalues(the eigenvalues are purely imaginary fpr
result for the VEV( vg). The situation for the imaginary part —0), @nd quantities such as the average spectral density of
(v)) is discussed in the Appendix. the Dirac operator can be obtained analytically in this limit

[23].
IV. DISCUSSIONS AND FUTURE PROSPECTS Mathematically, the boundansN gives the “average”
radius of convergence of the perturbative expansion of the
The fact thatp!9(x) and(vg)o have the noncommutativ- fermion determinant in powers qf. According to Kato's
ity for the limits x—0 andN— can be understood as a Ccriterion the perturbative series is convergent if the norm of

property of the phase-quenched partition functidh). This ~ the perturbative operator is less than the level spacing. In-
deed the norm of.y, is u? and the average level spacing of

random matrix Dirac operatd®) is ~ 1/N.

0

002 TABLE I. The VEVs (vg), i (v), and(v) obtained by the
-0.04 | factorization method fop = 0.2 at various\. Statistical errors com-
2 puted by the jackknife method are shown.
'ﬁﬂ -0.06
v 0.08 N (vR) i(v) (v)
o 8 0.00566) —0.1970@5) —0.191%7)
) 16 0.006@4) —0.190513) —0.184513)
o2l .o 24 0.00769) —0.197214) —0.189617)
0 0.020.040.06 0.08 0.1 0.120.140.16 0.18 0.2 32 0.00218) ~0.194719) ~0.192725)
"W 48 0.008637) —0.208654) ~0.200G88)

FIG. 5. We plot(vg)o— x against IN for various .
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"o 0.0 0.4 06 08 1 19 14 FIG. 8. The sloper,(u,N) of the weight factorw,(x) in the

linear regime is plotted againgt for N=28,32,64. For sufficiently
small u, it fits well to o (u,N)~—a;(N) w.

FIG. 7. The weight factow,(x) is plotted foru=0.1 and 0.2 at
N=8,16,32. APPENDIX

The Bose condensed phase is not present in the full par- In this appendix we briefly describe the situation with the
tition function (1). Observables depend smoothly anfor ~ imaginary party, of the quark number density. The weight
n<u.#0. Apparently the phase oscillations of the fermion factor w,(x) becomesw (x)=0 at u=0 for any N, and it
determinant completely wipe out this phase transition. How-also becomesy (x)=0 in the largeN limit for any u+#0.
ever, because reweighting methods are based on the phaséewever, the two extreme cases are not connected smoothly.
guenched partition function, we see traces of the noncommu#n Fig. 7 we plot the weight factow,(x) for ©=0.1 andu
tativity of the u—0 limit and the thermodynamic limit at =0.2 atN=8,16,32.
intermediate steps of the calculation. Becausew,(x) is an odd function due to symmetry, it

It is expected that such noncommutativity appears als@rosses the origin. A linear regime is seen to extend from the
when one studies real QCD at finite baryon density by reorigin asu goes to zero for fixedN. We extract the slope in
weighting type methods, and the transition occurs when théhe linear regime and plot it as a function @fin Fig. 8. At
system size becomes larger thdp=constju?. The system small u, the slope can be fitted nicely by
size in the recent works at small [1,2] may be below the
transition point, but the transition will occur if one goes to o(w,N)~ — a(N) e, (A1)
larger u for the same system size.

Since the noncommutativity cancels in the end results for o ] )
physical observables in the full model, the transition is not avhere the coefficiend|(N) grows linearly withN. Thus we
physical one, but it should rather be considered as a properfjnd that the weight factaw,(x) has similar noncommutativ-
of the reweighting type methods. We hope that our resultdy 8sWg(X).
will be useful when one tries to go beyond the small On the other handp{®)(x) does not depend much qn,
regime in real QCD. It should also be mentioned that theand the peak at=0 grows smoothly witiN as one can see
conjectured superconducting phase may be easier to accd§8m Fig. 9. The end result fax v;) does not have the non-
from the other extreme, namely from the largeregime, commutativity(See Table)l, but the cancellation in this case
where the fluctuation of the phase becomes milder again a@ccurs between the numerator and the denominatot of
cording to the results in RMT10]. which makes it less obvious than the situation with).
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