

Activity quantification and dosimetry in PSMA Radioligand Therapy

Yuni K Dewaraja, PhD

Department of Radiology University of Michigan

Example ¹⁷⁷Lu-PSMA RLT Dosimetry Calculation: Imaging & Segmentation

0

- Patient treated at U Mich ightarrow
- Two-bed quantitative ¹⁷⁷Lu-SPECT/CT at day0,2, 4 and 6 after Cycle 1
 - Activity directly from image (Bq/mL units) •
 - Recovery Coefficients (RC) applied for ٠ Partial Volume Correction (PVC)
- Segmentation
 - Salivary glands, kidney, liver, spleen: deep learning tools + checked by radiologist
 - Lesions: manually on baseline CT by radiologist or PET-gradient based autotools
 - Bones, lung: CT thresholding ٠

Example ¹⁷⁷Lu-PSMA RLT Dosimetry Calculation: Time-activity

Patient Example Absorbed Dose Calculation: MIRD Formalism

• Absorbed dose to target region:

 $\overline{D}(r_T) = \sum_{r_S} \tilde{A}(r_S) \overline{S(r_T \leftarrow r_S)}$

- Kidney, liver, spleen: Reference phantom S-values
 - Mass scaling for self-dose S

$$\begin{split} \overline{D}(kid) &= \tilde{A}(kid)S(kid \leftarrow kid) * m_{kid, pat}/m_{kid, std} \\ &+ \tilde{A}(spl)S(kid \leftarrow spl) + \tilde{A}(liv)S(kid \leftarrow liv) \\ &+ \tilde{A}(rb)S(kid \leftarrow rb) \end{split}$$

 Tumor, parotids, submandibular: Sphere model S-values
 Self Dose only: D
 (tumor, t) = A
 (tum)S(sph ← sph)
 ¹⁷⁷Lu S-values (mGy/MBq-s) from MIRDcalc v1.1 for ICRP133 Adult Male phantom.

		Targets							
	Total	Kidneys	Liver	Prostate	Salivary glands	Spleen			
rces	Kidneys	5.70E-05	1.40E-07	3.37E-09	9.59E-10	1.85E-07			
Sou	Liver	1.40E-07	1.05E-05	1.46E-09	2.81E-09	4.13E-08			
	Lungs	2.82E-08	9.64E-08	3.68E-10	1.24E-08	1.24E-07			
	Prostate	3.54E-09	1.39E-09	1.32E-03	1.13E-11	9.63E-10			
	Salivary gl.	1.13E-09	3.17E-09	2.19E-11	2.64E-04	3.01E-09			
	Spleen	1.85E-07	4.13E-08	9.63E-10	2.68E-09	1.05E-04			
	Total body	3.66E-07	3.64E-07	3.64E-07	3.46E-07	3.62E-07			

Example ¹⁷⁷Lu-PSMA RLT Dosimetry: using MIRDCalc v1.1

MRDcalc_v1.1alsm - MRDcalc									
MIRD SCHEMA ORGAN LEVEL DOSIMETRY SPREADSHEET									
MIRDCalc_v1.1-Genesis Biodistribut	ion Model INPUT	MIRD Dosimetry Estimate OUTPUT							
Element 🗧 🔽 Isotope 🚝 🔽	Sex 🐲 🔀 Phant	Input parameters:							
					Phantom ICRP Adult Male 👶 % injection accounted for : 1% W _R				
Ho I In A LU-176		10 year old male	Isotope Lu-177 Input S value uncertainty : 20% y 1						
Ir K Kr Lu-1//	ICRP	• 15 year old male	Halflife 1.5952F+02	[bours] # organs with n	onzero TIACs : E ß 1				
La Lu Mg v subject ID (opt)	ICRP	Subject ID	[notic]						
300jeerib (001)			Sobject ID	Inpot isotope,	organ OID : KST α 20				
Source organs	Target organs		Estimated dosimetry (absorbed dose) - 37/50 displayed here		Detriment Weighted & Effective Dose				
integrated σ	Patient	σ	Organ A	bs Dose Uncertainty (SD) [⊕]					
activity (Std. Dev.)	Organ name organ mass	(Std. Dev.) Calculation		GY/MDQJ [mGy/MDQ]	Scalc [mSv/MBq]				
coefficients (optional)	(optional)	(optional) organ Mass			EDW Detr Wght Dose 5.12E-03 8.07E-04				
Organ name *			Adipose tissue 3.	.61E-04 <u>5</u> .40E-05	E Effective Dose 5.63E-03 8.81E-04				
[hours] [hours]	[grams]	[grams] [grams]	Adrenals 9.	.57E-03 1.33E-03					
Adipose tissue	Adipose tissue	1.75E+04	Bone - endosteal cells 1.	.94E-04 3.51E-05	Dose per injection (top organs)				
Adrenals	Bone marrow - red (1.39E+03	Bone marrow - red (ac 4.	.32E-04 7.81E-05					
Bone - cortical volur	Brain	1.52E+03	Brain 2.	.44E-06 3.76E-07	Injected activity: 6318 [MBq]				
Brain		2.622+01	Breast tissue 1. Breachial basal colls 3	2.26E-05	Est. dose for injection: 6316 MBq				
Breast tissue	Esophagus	9.50E-02	Colon - ICRP122 8	26F-04 1.52F-04					
Cartilage	Extrathoracic regior	4.70E-01	Esophagus 3.	.60E-04 5.63E-05	mgy/injection				
Esophagus wall	Eye lens	4.00E-01	Extrathoracic region - 9.	.99E-06 1.54E-06	8 8 8				
Gallbladder content	Gallbladder wall	1.05E+01	Eye lens 6.	.11E-06 1.12E-06	QU + V - 5 - 0				
Heart content	Heart wall	3.86E+02	Gallbladder wall 2.	.11E-03 2.89E-04	Tumor4				
Heart wall	Kidneys	4.22E+02	Heart wall 3.	.83E-04 5.91E-05	Tumor3				
(a) Kidneys 2.1646111 1%	Liver	2.36E+03	Kidneys 4	.44E-01 8.70E-02	Kidneys 🛏 🛏				
(a) Liver 0.2262167 0%	Lymphatic nodes - I	1.90E+02	Liver 9.	175 04 4 6 55 05	Spleen I				
Major blood vessels	Oral mucosa	2.96E+04	Lung - ICKF 133 3.	6E-04 8 10E-05	Liver I				
Muscle	Ovaries	0.00E+00	Muscle 1.	.87E-04 3.39E-05	Adrenals I				
Oral mucosa	Pancreas	1.74E+02	Oral mucosa 9.	.30E-06 1.41E-06	Gallbladder wall				
Pancreas	Skin	3.47E+03	Ovaries 0.0	00E+00 0.00E+00	Pancreas (
Salivary glands	Small intestine	3.71E+00	Pancreas 1.	.80E-03 3.20E-04	Ureters)				
@ Spleen 0.0387583 0%	Spleen	2.28E+02	Pituitary gland 3.	.86E-06 6.15E-07	Colon - right				
Thymus	Stomach	6.16E-01	Prostate 2.	.76E-05 5.25E-06	Stomach				
	Thyroid	3./2E+01	Salivary glands 1.	77E-05 1.56E-06	Colon - left				
(a) Tumora 8cc co%5 0.1051039 0%	Tonque	7.64F+01	Small intestine 9.	.07E-06 1.70E-06	Small intestine				
Urinary bladder con	Urinary bladder wall	5.11E+01	Spleen 1.	.61E-02 2.89E-03	Colon - ICRP133				
	· · · · · · · · · · · · · · · · · · ·		Stomach 9.	.48E-04 1.58E-04	Lymph nodes)				
Rest of body	Whole body 73.1 Kg		Testes 4.	.39E-06 8.37E-07	Lymphatic nodes)				
Rest of body mass: 68.9 Kg			Thymus 8.	.19E-05 1.25E-05	Bone marrow)				
Organ model (S value) uncertainty 20%		d Save N	Thyroid 4.	.56E-05 7.01E-06	alaka beta samma				
(selected error propagated into calcs)			Turners one collect	.03E-05 1.57E-06					
Waste			Tumory 8cc co%ST /	02E-01 0.1/E-05	error bars = SD of total dose				
Total TIAC entered into table : 2.64	% theoretical		Urinary bladder wall 5.	.72E-05 1.09E-05	Projected EDW / 6318 MBg				
Total TIAC required to account for 100% emissions: 230.15	activity accounted 1%		Uterus 0.0	00E+00 0.00E+00	EDW: 3.56E+01 ±σ 5.57E+00				
* Time integrated activity coefficients (TIACs) in units [hours]			Whole body target 3.	.83E-03 6.28E-04					
e time-integrated activity [dis] divided by the administered (📳) (?) ()									
activity [dis/time]	0%	100%	* E and Epv calculated using ICR	P 103 radiation and tissue weighting fac	tors. NIRD COMMITTEE Mocra manual Real Provider				
() Internal dosimetry spreadsheet					:				
Ready Calculate									

MICHIGAN

https://mirdsoft.org/mirdcalc

Example ¹⁷⁷Lu-PSMA RLT Calculation: Voxel dosimetry using automated contouring, registration and curve fitting coupled with Monte Carlo

177Lu-SPECT/CT after Cycle 1 **Patient Specific Absorbed Dose Map Automation Monte Carlo** CNN **Registration &** Voxel-level Dose-Segmentation VOI Propagation Dosimetry rate Fit Auto select best fit ^(b) ^{g 16} ^{g 16} DVHs

Dewaraja et al, A pipeline for automated voxel dosimetry: application in patients with multi-SPECT/CT imaging following ¹⁷⁷Lu peptide receptor radionuclide therapy. J Nucl Med. 2022 doi: 10.2967/jnumed.121.263738. Epub ahead of print

Example ¹⁷⁷Lu-PSMA RLT Patient Dosimetry Results

Cycle 1 Mean Absorbed dose following 7.3 GBq of ¹⁷⁷Lu-PSMA 617

	Volume (mL)	Effective Half-life (h)	Mean Absorbed Dose using MIRD Gy (%diff using MC)
Tumor 1 (L Iliac)	22	64	36 (0%)
Tumor 2 (L Lumbar)	14	55	31 (2%)
Tumor 3 (Thoracic)	15	55	39 (-18%)
Tumor 4 (Cervical)	8	57	36 (-5%)
Lesion5 (L scapula)	7	48	32 (5%)
Kidney	186	(47, 27)	3.4 (0%)
L Parotid	21	42	4.2 (5%)
R Parotid	24	31	5.5 (5%)
L Submandibular	7	29	4.4 (1%)
R Submandibular	7	35	5.7 (2%)
L lacrimal	0.6	66	29 (-4%)
R lacrimal	0.3	33	40 (-2%)

Another approach for lesion segmentation

- Threshold whole body to capture all regions above a dose level (5 Gy used by Violet et al. JNM 2019)
- For previous example (WB tumor dose was 12 Gy)

PSMA RLT in mCRPC: Challenges for dosimetry

- Small lesions (often bone mets), and small organs (lacrimal glands)
 - Difficult to segment
 - For lesions include all voxels above a pre-determined threshold, but need to manually remove regions of physiological uptake (Violet et al, JNM 2019)
 - Partial volume effects can be substantial
 - Use Recovery coefficients or an expanded VOI to capture 'spill-out', but challenging ...
 - Mis-registration of serial images especially problematic
 - Planar imaging also especially problematic. Hybrid planar/SPECT
- Multiple SPECT bed positions
 - Promise of single timepoint methods demonstrated for ¹⁷⁷Lu-PSMA
- Complexity of bone marrow dosimetry
 - Conventional methods likely unreliable. Direct Monte Carlo models may help
- Challenges of imaging α emitters (^225Ac-PSMA) due to low activity
 - Specialized reconstruction algorithms

Recovery Coefficients (RC) & Validation of Quantification

- RCs for mean value Partial Volume Correction (PVC)
 - RC vs. volume curve using phantom meas.
 - Practical, but limitations
 - Voxel-level corrections still under development

 Validation of quantification process using a different phantom

		MBq/mL	w/RC
30	0.376	0.323 (14%)	0.374 (1%)
16	0.376	0.312 (17%)	0.392 (-4%)
1126	0.099	0.105 (-6%)	0.103 (-4%)
	3.80	2.98 (22%)	3.81 (0%) MICH
	30 16 1126	ML WBQ/ML 30 0.376 16 0.376 1126 0.099 3.80	ML MBq/mL MBq/mL 30 0.376 0.323 (14%) 16 0.376 0.312 (17%) 1126 0.099 0.105 (-6%) 3.80 2.98 (22%)

Dewaraja et al, MIRD 23, J Nucl Med 2012

RCs depend not only on volume and reconstruction method: Study to look at impact of object shape, target-to-background activity ratio ...

Impact of object shape and target-to-background on recovery

Bone Marrow (BM) Dosimetry in ¹⁷⁷Lu-PSMA RLT

- BM should be considered an OAR
 - Important when heavily pretreated and have intensive disease involvement in the BM
- Dosimetry complex due to high bone lesion load
 - Activity near BM sites
 - Altered BM distribution
- Method based on S-values and blood meas. likely unreliable
- 3D imaging of BM regions coupled with Monte Carlo (MC)

3D Monte Carlo bone marrow dosimetry for Lu-177-PSMA therapy with guidance of non-invasive 3D localization of active bone marrow via Tc-99m-anti-granulocyte antibody SPECT/CT Gosewisch et al. EJNMMI Research (2019) 9:76

Astrid Gosewisch¹, Harun Ilhan¹, Sebastian Tattenberg¹, Andrea Mairani², Katia Parodi³, Julia Brosch¹, Lena Kaiser¹, Franz Josef Gildehaus¹, Andrei Todica¹, Sibylle Ziegler¹, Peter Bartenstein¹ and Guido Böning^{1*}

- MC model including the displacement of BM from the lesion location
 - Higher correlation between BM absorbed dose and decrease in platelet count with this MC model.

MEDICINE

²²⁵Ac-PSMA-617 Dosimetry

Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with ²²⁵Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding

The Journal of Nuclear Medicine • Vol. 58 • No. 10 • October 2017

Clemens Kratochwil¹, Frank Bruchertseifer², Hendrik Rathke¹, Marcus Bronzel³, Christos Apostolidis², Wilko Weicher Uwe Haberkorn^{1,5}, Frederik L. Giesel¹, and Alfred Morgenstern²

- Direct imaging of ²²⁵Ac challenging due to multiple low yield gamma-rays & low admin activity (4 -10 MBq)
- Dosimetry:
 - Time-activity approximated by serial ¹⁷⁷Lu-PSMA-617 scans extrapolated to physical half-life of ²²⁵Ac assuming instantaneous decay of daughters
 - Rel. Biological Effect. (RBE) set to 5
 - Microdosimetry not performed
 - Salivary glands, kidney, BM: 2.3, 0.7, and 0.05 Sv_{RBE5}/MBq,

Image-based dosimetry for ²²⁵Ac-PSMA-I&T therapy using quantitative SPECT

A. Gosewisch ¹ • M. Schles H. Ilhan ¹ (b) • G. Böning ¹	ske ¹ • F. J. Gildehaus ¹ • Eur J	I. Be J Nu	rg ¹ • L. Kaiser ¹ • J. Brosch cl Med Mol Imaging	¹ •Р. (202	Bartenstein ¹ • A. Todica 1) 48:1260–1261
¹⁸ F-PSMA I&T PET/CT	¹⁷⁷ Lu-PSMA I&T 3D dose map	+	²²⁵ Ac-PSMA I&T SPECT/CT 24 h p. i.	•	²²⁵ Ac-PSMA I&T 3D dose map
0 > 20 SUV	0 > 0.25 Gy/GBq		0 > 5.5 SUV		0 > 0.25 Sv _{RBE=5} /MBq

- One patient, 8.1 MBq ²²⁵Ac-PSMA-I&T
- Dosimetry: At 24 h direct imaging of ²²⁵Ac using the 440 keV (26%) gamma-ray. 16 projections/head, 210 sec/proj
 - T_{eff} from prior ¹⁷⁷Lu-PSMA-I&T
 - Kidneys: 0.17 to 0.18 Sv_{RBE5}/MBq

Studies Reporting Dosimetry and Dose - Response

PSMA-RLT: Reported dosimetry

Cycle 1 mean AD(Gy/GBq ± STD)

	Ligand	GBq/cycle	Ν		Kidney	Parotid glands	Tumor	other
Scarpa, 2017	¹⁷⁷ Lu-PSMA-617	6.1 (5.4-6.5) 2-3 cycles	10	WB planar (0.5,4,24,72,96h)+OLINDA	0.60±0.36	0.56±0.25	Bone: 3.4 ± 1.9 Node: 2.6 ± 0.4	BM:0.04± 0.03 Lacrimal:1.00±0.69 Spleen: 0.12±0.09
Violet, 2019	¹⁷⁷ Lu-PSMA-617	7.8 (5.7-8.7)	30	SPECT(4,24,96, multi-exp)+DVK or OLINDA	0.39 ±0.15	0.58 ±0.43	Max for Bone: 5.3 (0.4-10.7) Node:3.9(0.5-16.2) 'WB tumor':12.6±4.2	Lacrimal:0.36±0.18 (voxel) 3.8±2.1 (sphere model) BM (image-based): 0.11 (0.10)
Peters, 2021	¹⁷⁷ Lu-PSMA-617	9.0 (8.0-9.2) 2 Cycles	10 mHSPC	SPECT(1,24,48,72,168h, multi- exp)+ OLINDA	0.57 ± 0.16	0.46 ± 0.19	Bone: 1.5 (0.4-3.7) Node: 1.8 (0.5-10.3) (lesions < 1 mL)	Liver: 0.10±0.02 BM(blood based):0.0176±0.003
Kurth, 2021	¹⁷⁷ Lu-PSMA-617	6.01±0.37 2 - 6 cycles	46	SPECT(2,24,48,72h, bi- exp)+OLINDA	0.49 ± 0.22	0.79 ±0.37		
Baum, 2016 [*]	¹⁷⁷ Lu-PSMA I&T		30	WB planar (5 TPs between 0.5 – 118h, multi-exp)+OLINDA	0.80 ±0.4 * Ave	1.3 ±2.3 erage from all cycles	Bone: 3.0 ± 10 Node: 4.0 ± 20	WB: 0.02 ±0.01 BM(blood based):0.01-0.04
Okamoto, 2017	¹⁷⁷ Lu-PSMA I&T	7.3(6.5 -7.8) 4 cycles	18	WB planar (0.5-2, 24, 144- 192h)+OLINDA	0.71 ± 0.25	0.56 ± 0.17	Bone: 3.8 ± 3.1 Node: 2.6 ± 0.89	Lacrimal:3.8 ± 1.5 Liver: 0.12 ± 0.07
Feuerecker , 2022	¹⁷⁷ Lu-PSMA I&T	Pretherapy w/ ~ 1 GBq	6	WB planar (1,4, 24, 48,168h)+OLINDA	0.69		Bone: 1.7 ± 1.1 Node: 4.5 ± 2.7	BM(image-based):0.30 ±0.27
Feuerecker , 2022	¹⁷⁷ Lu-rhPSMA-7.3	Pretherapy w/ ~ 1 GBq	6	WB planar (1,4, 24, 48,168h)+OLINDA	1.62		Bone: 4.1 ± 2.6 Node: 11.1 ± 8.8	BM(image-based):0.67± 0.62
Rathke, 2019	⁹⁰ Y-PSMA-617	3.2 (2.8-3.7)	11	Extrapolated from ¹⁷⁷ Lu-PSMA- 617 imaging + OLINDA	3.5 ± 1.4	5.6 ± 1.3	22.8 (4.8-72)	BM (blood-based): 0.11± 0.04
Kratochwil, 2017	²²⁵ Ac-PSMA-617	3 – 19 MBq Up to 4 cycles	14	Extrapolated from ¹⁷⁷ Lu-PSMA- 617 imaging	2.33 Sv _{RBE5} /MBq	0.74 Sv _{RBE5} /MBq		BM0.05 Sv _{RBE5} /MBq MICHIGAN MEDICINE

Summary of Reported Dosimetry for ¹⁷⁷Lu-PSMA-617

- Data fairly consistent except for lacrimal glands
- Tumor: 1 15 Gy/GBq, typically 10 40 Gy from each cycle
 - Cumulative dose typically exceeds prescription in EBRT
- Renal: 0.4 to 1 Gy/GBq, typically 0.5 Gy/GBq
 - Threshold from EBRT 23 Gy. Can deliver ~ 50 GBq
- Salivary glands: 0.6 1.4 Gy/GBq
 - Threshold from EBRT for long term xerostemia: 25 Gy.
- Lacrimal glands: 0.4 2.8 Gy/GBq.
 - Variable due to partial volume effects. Lower values reported for voxel dosimetry
- Bone Marrow: 0.01 0.1 Gy/GBq
 - Variable due to complexity of calculation. Generally used threshold for RLT is 2 Gy
- Toxicity thresholds expected to be higher for RLT compared to EBRT due to low dose-rate, delayed fractionation, non-uniform dose deposition

¹⁷⁷Lu PSMA RLT: Dose - response

Dosimetry of ¹⁷⁷Lu-PSMA-617 in Metastatic Castration-Resistant Prostate Cancer: Correlations Between Pretherapeutic Imaging and Whole-Body Tumor Dosimetry with Treatment Outcomes J Nucl Med 2019; 60:517–523

John Violet¹, Price Jackson^{1,2}, Justin Ferdinandus², Shahneen Sandhu³, Tim Akhurst², Amir Iravani², Grace Kong², Aravind Ravi Kumar², Sue Ping Thang², Peter Eu², Mark Scalzo², Declan Murphy^{4,5}, Scott Williams^{1,5}, Rodney J. Hicks^{2,5}, and Michael S. Hofman^{2,5}

• 30 patients

- Lesion Dosimetry (after Cycle 1):
 - 2 bed position serial ¹⁷⁷Lu SPECT/CT
 - Voxel-level multi-exp fits
 - Dose map using GATE-derived DVK
 - Whole Body (WB) tumor volume by applying a 5 Gy threshold to dose map and removing physiological uptake

Significant correlation between WB
 tumor absorbed dose & PSA response

 Median of 14.1 Gy in patients achieving a PSA decline >= 50%, vs. 9.6 Gy for those achieving a PSA decline < 50% (P < 0.01)

> MICHIGAN MEDICINE

¹⁷⁷Lu PSMA RLT: Dose-response

Correlation of an Index-Lesion-Based SPECT Dosimetry Method with Mean Tumor Dose and Clinical Outcome after ¹⁷⁷Lu-PSMA-617 Radioligand Therapy *Diagnostics* 2021, 11, 428

Friederike Völter ¹, Lena Mittlmeier ¹, Astrid Gosewisch ¹, Julia Brosch-Lenz ¹, Franz Josef Gildehaus ¹, Mathias Johannes Zacherl ¹, Leonie Beyer ¹, Christian G. Stief ², Adrien Holzgreve ¹, Johannes Rübenthaler ³ Clemens C. Cyran ³, Guido Böning ¹, Peter Bartenstein ¹, Andrei Todica ¹, and Harun Ilhan ^{1,*}

- 30 patients, 2 x 6 GBq/cycle
- Tumor Dosimetry: multi- SPECT/CT, threshold-based segmentation, monoexp, sphere S-values
- Response from PERCIST, RECIST, PSA, PSMA-positive tumor volume

⁶⁸ Ga-PSMA-11 Images for PERCIST

 Tumor absorbed doses correlated with ⁶⁸ Ga-PSMA-11 PET PERCIST response but not with other response criteria

¹⁷⁷Lu PSMA RLT : Dose - response

Intra-therapeutic dosimetry of [¹⁷⁷Lu]Lu-PSMA-617 in low-volume hormone-sensitive metastatic prostate cancer patients and correlation with treatment outcome European Journal of Nuclear Medicine and Molecular Imaging

WITH TREATMENT OUTCOME European Journal of Nuclear Medicine and Molecular Imaging https://doi.org/10.1007/s00259-021-05471-4

Steffie M. B. Peters¹ Sastiaan M. Privé¹ Maarten de Bakker¹ Frank de Lange¹ Walter Jentzen² Annemarie Eek¹ Constantijn H. J. Muselaers³ Niven Mehra⁴ J. Alfred Witjes³ Martin Gotthardt¹ James Nagarajah¹ Mark W. Konijnenberg^{1,5}

- 10 mHSPC cases, 2 Cycles (3+6 GBq)
- Lesions < 1 cm diameter. Oversized VOI (defined on ⁶⁸Ga PET/CT) to account for partial volume effects
- Lesion Dosimetry: serial ¹⁷⁷Lu SPECT/CT, mono-exp fit, sphere model S-values

 Response (PSA drop of <50% vs. > 50%) correlated with AD to index lesion

- Single index lesion dosimetry. Potential to simplify protocol for low volume disease?
- May not hold for high volume disease due to heterogeneity?

Lesion AD higher in lymph node compared with bone lesions MICHIGAN MEDICINE