Shapes of M-theory black-hole microstates (y, x¹¹)

 $(M5 - M2 - P)(y, 3^{1}, x^{1})$

, (y,z)

11 T

Based on [22xx.xxxx] with I. Bena, A. Houppe and D. Toulikas and [2202.08844] with I. Bena, N. Ceplak, S. Hampton, D. Toulikas and N. Warner

September 8th, 2022

Holography and the Swampland, Corfu

Yixuan Li

MPI Munich & IPhT Saclay

What this talk is about

« Dijkgraaf-Verlinde-Verlinde microstates »

- M5-M2(-P) black hole: The microstates that are made of **fractionated M2 branes** account for the entropy.
- We found: They can transition into microstates with 16 local supersymmetries.

What this talk is about

« Dijkgraaf-Verlinde-Verlinde microstates »

- M5-M2(-P) black hole: The microstates that are made of **fractionated M2 branes** account for the entropy.
- We found: They can transition into microstates with 16 local supersymmetries.

Microstates with 16 local susys account for the black-hole entropy!

• We expect their backreaction to be horizonless microstates.

1. Local supersymmetries, bound states and black-hole microstates

2. The new M5-M2-P microstates with 16 local supersymmetries

1. Local supersymmetries, bound states and black-hole microstates

2. The new M5-M2-P microstates with 16 local supersymmetries

1.a. Supersymmetries and horizons

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_v^1 \times T^4$
- Take brane system with 3 charges:
 D5(y, T⁴), D1(y), P(y)
 or NS5(y, T⁴), F1(y), P(y)
 - naively, 1/8-BPS everywhere

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_v^1 \times T^4$
- Take brane system with 3 charges:
 D5(y, T⁴), D1(y), P(y)
 or NS5(y, T⁴), F1(y), P(y)

naively, 1/8-BPS everywhere

 \Rightarrow controls form of harmonic functions in metric: $1/r^{\sharp}$

⇒ develops horizon in supergravity

$$ds^{2} = -\frac{2}{\sqrt{H_{1}H_{5}}} \left[dt^{2} + dy^{2} + (H_{P} - 1)^{-1} (dy - dt) + \sqrt{H_{1}H_{5}} ds^{2}_{\mathbb{R}^{4}} + (H_{1}H_{5})^{-1/2} ds^{2}_{T^{4}} \right]$$

with
$$H_{1,5,P} = 1 + \frac{Q_{1,5,P}}{r^2} \, . \label{eq:H1}$$

 $(t)^2$

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_v^1 \times T^4$
- Take brane system with 3 charges:
 D5(y, T⁴), D1(y), P(y)
 or NS5(y, T⁴), F1(y), P(y)

naively, 1/8-BPS everywhere

 \Rightarrow controls form of harmonic functions in metric: $1/r^{\sharp}$

⇒ develops horizon in supergravity

Possible conclusion:

All of the microstates seem to develop the same horizon in supergravity.

Therefore nothing special happens at the scale of the horizon:

The microstates differ at Planck size away from singularity, where supergravity breaks down.

- Type IIA/IIB: $\mathbb{R}^{4,1} \times S_v^1 \times T^4$
- Take brane system with 3 charges: $D5(y, T^4), D1(y), P(y)$ or NS5(y, T^4), F1(y), P(y)

 \Rightarrow naively, 1/8-BPS everywhere

 \Rightarrow controls form of harmonic functions in metric: $1/r^{\sharp}$

 \Rightarrow develops horizon in supergravity

• Supertube transition: ingredients combine together to form a **bound state** that is locally 1/2-BPS.

Local VS global supersymmetries

- The presence of fundamental objects halves the supersymmetries of ST vacua: $\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon = 0$
- Generically, the number of constraints Π_i add up. But when the objects form a bound state: $\hat{\Pi} \epsilon \equiv \frac{1}{2} (1 + \alpha_1 P_1 + ... + \alpha_n P_n) \epsilon = 0$

Local VS global supersymmetries

- The presence of fundamental objects halves the supersymmetries of ST vacua: $\Pi \epsilon \equiv \frac{1}{2}(1+P) \epsilon = 0$
- Generically, the number of constraints Π_i add up. But when the objects form a **bound state**: $\hat{\Pi} \epsilon \equiv \frac{1}{2} \left(1 + \alpha_1 P_1 + \dots + \alpha_n P_n \right) \epsilon = 0$
- The α_i are not unique, can depend on *internal dimensions x* of bound state $\widehat{\Pi}(x)\,\epsilon(x)=0$ \rightarrow local supersymmetry
- While for *global supersymmetry*: $\forall x, \hat{\Pi}(x) \epsilon = 0.$

Rewrite projector as:

 $\hat{\Pi}(x) = F_1(x) \Pi_1 + \ldots + F_k(x) \Pi_k$ and the global ϵ verifies $\Pi_1 \epsilon = \ldots = \Pi_k \epsilon = 0$

Supertube transition: example 1

 One can make a bound state out of F1(y) and P(y) by giving a profile to the F1:

• F1(y), P(y) \longrightarrow F1(z), P(z) dipoles

Supertube transition: example 1

 One can make a bound state out of F1(y) and P(y) by giving a profile to the F1:

• F1(y), P(y) \longrightarrow F1(z), P(z) dipoles

 The bound state is globally 1/4-BPS, but locally 1/2-BPS

• One can make a bound state out of F1(y) and P(y) by giving a profile to the F1:

• F1(y), P(y) \longrightarrow F1(z), P(z) dipoles

```
Supertube transition: example 1
```

- The bound state is globally 1/4-BPS, but locally 1/2-BPS
- From M-theory:

1.b. Dealing with horizons: The old way

Supertube transition of D1-D5

- D1(y), D5(y1234) \longrightarrow KKM(1234 ψ , y), P(ψ) dipoles
 - The D1-D5 brane system gains a dimension through the KKM

Supertube transition of D1-D5

- D1(y), D5(y1234) \longrightarrow KKM(1234 ψ , y), P(ψ) dipoles
 - The D1-D5 brane system gains a dimension through the KKM
 - The (angular) momentum $P(\psi)$ or $J(\psi)$ stabilises the size of the supertube.

Supertube transition of D1-D5-P

- How to add momentum on D1-D5 supertube?
 - \rightarrow Add shape modes on the KKM in \mathbb{R}^4 .

\Rightarrow momentum Q_P along y.

Supertube transition of D1-D5-P

- How to add momentum on D1-D5 supertube?
 - \rightarrow Add shape modes on the KKM in \mathbb{R}^4 .

\Rightarrow momentum Q_P along y.

 The bound state is globally 1/8-BPS (like the black hole), but locally 1/2-BPS

Supertube transition of D1-D5-P

- How to add momentum on D1-D5 supertube?
 - \rightarrow Add shape modes on the KKM in \mathbb{R}^4 .

\Rightarrow momentum Q_P along y.

- The bound state is globally 1/8-BPS (like the black hole), but locally 1/2-BPS
- Different shape modes give different microstates
- Their backreaction are the « superstrata »

[Bena, de Boer, Shigemori, Warner '11]

 Superstrata have been constructed in supergravity: horizonless [Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner '16] • Part of the

Fuzzball hypothesis:

Individual black-hole microstates differ from themselves and from the BH solution at the horizon scale.

Superstrata and their limits

 Superstrata have been constructed in supergravity: horizonless [Bena, Giusto, Martinec, Russo, Shigemori, Turton, Warner '16]

Fuzzball hypothesis:

Individual black-hole microstates differ from themselves and from the BH solution at the **horizon** scale.

Superstrata and their limits

Drawbacks:

1. $S \sim \sqrt{N_1 N_5} N_P^{1/4} \ll \sqrt{N_1 N_5 N_P}$

2. Have a non-vanishing angular momentum in \mathbb{R}^4 \Rightarrow are atypical ↑ are not exactly spherically symmetric

See also [Lin, Maldacena, Rozenberg, Shan '22]

[[]Shigemori '19]

1. Local supersymmetries, bound states and black-hole microstates

2. The new M5-M2-P microstates with 16 local supersymmetries

2.a. Dealing with horizons: A new hope

Taking the problem from the other side • For the NS5-F1-P black hole (IIA), we know where the entropy is coming from: Little strings / fractionated (M2) branes

« Dijkgraaf-Verlinde-Verlinde microstates »

See e.g. [Martinec, Massai, Turton '19]

• The momentum is carried by the M2 fractionated M2's through their motion in the T^4

 \rightarrow reproduce entropy.

Taking the problem from the other side • For the NS5-F1-P black hole (IIA), we know where the entropy is coming from: Little strings / fractionated (M2) branes

M5

« Dijkgraaf-Verlinde-Verlinde microstates »

See e.g. [Martinec, Massai, Turton '19]

• The momentum is carried by the M2 fractionated M2's through their motion in the T^4

 \rightarrow reproduce entropy.

• The brane system is point-like in the non-compact spatial dimensions

 \rightarrow exact spherical symmetry.

microstates.

[Bena, Houppe, YL, Toulikas, to appear]

• We found the supertube transition of the Dijkgraaf-Verlinde-Verlinde (DVV)

Our results

- microstates.
- We found the *supersymmetric projector*
 - (||A|)
 - preserving the supersymmetries of NS5(y, T^4), F1(y), P(y) • corresponding to a locally 1/2-BPS (16 supersymmetries) object:

$$\Pi_{\text{NS5-F1-P}} = \frac{1}{2} \left[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}(y)} + c^2 P_{\text{P}(y)} + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y1)} \right) + bc \left(P_{\text{P}(y)} + bc \right) \right]$$

[Bena, Houppe, YL, Toulikas, to appear] We found the supertube transition of the Dijkgraaf-Verlinde-Verlinde (DVV)

 $P_{D2(y1)}$) + $bc \left(P_{P(1)} - P_{F1(1)} \right) + ca \left(P_{D4(1234)} - P_{D0} \right) \right|$.

$$\begin{aligned} & \mathsf{First \ look \ at \ the \ projector} \\ \Pi_{\text{NS5-F1-P}} &= \frac{1}{2} \bigg[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}(y)} + c^2 P_{\text{P}(y)} \\ &\quad + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y1)} \right) + bc \left(P_{\text{P}(1)} - P_{\text{F1}(1)} \right) + ca \left(P_{\text{D4}(1234)} - P_{\text{D0}} \right) \bigg] \end{aligned}$$

 $a^2 + b^2 + c^2 = 1$

2.b. Supertube transitions between 2 ingredients out of NS5, F1 and P

$$\Pi_{\text{NS5-F1-P}} = \frac{1}{2} \left[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y1234)} + b^2 \right) \right]$$

• Put
$$a = 0$$

• $F1(y), P(y) \longrightarrow F1(z), P(z) dipoles$

g F1 and **P** $_{1(y)} + c^2 P_{P(y)}$

 $(P_{\mathrm{D4}(y234)} - P_{\mathrm{D2}(y1)}) + bc (P_{\mathrm{P}(1)} - P_{\mathrm{F1}(1)}) + ca (P_{\mathrm{D4}(1234)} - P_{\mathrm{D0}})$.

$$\Pi_{\text{NS5-F1-P}} = \frac{1}{2} \left[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y234)} + b^2 \right) \right]$$

• Put
$$a = 0$$

- $F1(y), P(y) \longrightarrow F1(z), P(z) dipoles$
- Corresponds to a M2-brane carrying momentum along y by moving in T^4 .

$$b = \cos \alpha, \quad c = \sin \alpha$$

• Brane system is point-like in \mathbb{R}^4 .

g F1 and **P** $_{1(y)} + c^2 P_{P(y)}$

$(J_{1}) + bc \left(P_{P(1)} - P_{F1(1)} \right) + ca \left(P_{D4(1234)} - P_{D0} \right) \right|.$

$$\Pi_{\text{NS5-F1-P}} = \frac{1}{2} \left[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y1)} \right) \right]$$

- Put b = 0
- NS5(y, T^4), P(y) \longrightarrow D4(T^4), D0 dip.

NS5 and P

 $\mathbf{L}(y) + c^2 P_{\mathbf{P}(y)}$

 $(y_{1}) + bc \left(P_{P(1)} - P_{F1(1)} \right) + ca \left(P_{D4(1234)} - P_{D0} \right) \right|.$

$$\begin{aligned} \Pi_{\text{NS5-F1-P}} &= \frac{1}{2} \bigg[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} \\ &+ ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y1)} \right) \bigg] \bigg] \end{aligned}$$

• Put
$$b = 0$$

- NS5(y, T^4), P(y) \longrightarrow D4(T^4), D0 dip.
- Corresponds to a M5-brane carrying momentum along y by moving in x^{11} .

$$a = \cos \alpha, \quad c = \sin \alpha$$

• Brane system is point-like in \mathbb{R}^4 .

NS5 and P

 $L(y) + c^2 P_{P(y)}$

 $(A_{1}) + bc \left(P_{P(1)} - P_{F1(1)} \right) + ca \left(P_{D4(1234)} - P_{D0} \right) \right|.$

Glueing NS5 and F1 $\Pi_{\text{NS5-F1-P}} = \frac{1}{2} \left| 1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}(y)} + c^2 P_{\text{P}(y)} \right|$

- Put c = 0
- NS5(y, T^4), F1(y) \longrightarrow local D4(y234), D2(y1)

 $+ ab \left(P_{\mathrm{D4}(y234)} - P_{\mathrm{D2}(y1)} \right) + bc \left(P_{\mathrm{P}(1)} - P_{\mathrm{F1}(1)} \right) + ca \left(P_{\mathrm{D4}(1234)} - P_{\mathrm{D0}} \right) \right| \,.$

$$\begin{aligned} &\Pi_{\text{NS5-F1-P}} = \frac{1}{2} \bigg[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} \\ &+ ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y24)} \right) \bigg] \end{aligned}$$

• Put
$$c = 0$$

- NS5(y, T^4), F1(y) \longrightarrow local D4(y234), D2(y1)
- ROUGH ANGLES between M5's and M2's become *smooth*:

 \rightarrow new brane system looks like a *furrow* along *y*.

NS5 and F1

 $l(y) + c^2 P_{\mathrm{P}(y)}$

 $(P_{P(1)}) + bc \left(P_{P(1)} - P_{F1(1)} \right) + ca \left(P_{D4(1234)} - P_{D0} \right) \right|.$

↑ This M5-M2 furrow is dual to aD4-F1 Callan-Maldacena spike

$$\begin{aligned} & \Pi_{\text{NS5-F1-P}} = \frac{1}{2} \bigg[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} \\ & + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y234)} + b^2 P_{\text{D2}(y234)} \right) \bigg] \end{aligned}$$

 The furrow interpolates between M5 and M2:

$$a = \cos \beta$$
, $b = \sin \beta$

⇒ The orientation of a local piece of the furrow determines the ratio between M5 and M2 charges.

NS5 and F1

 $\mathbf{l}(y) + c^2 P_{\mathbf{P}(y)}$

 $(D_{2(y1)}) + bc \left(P_{P(1)} - P_{F1(1)} \right) + ca \left(P_{D4(1234)} - P_{D0} \right) \right|.$

Transition of a M5-M2 black-hole microstate

M5

M5

M5

31

~11 X

- Joining 2 furrows make a tunnel between two M5's
- Local transition \Rightarrow a M5-M2 black-hole microstate will transition into a « labyrinth » ...

Transition of a M5-M2 black-hole microstate

M5

M5

M5

11 X

- Joining 2 furrows make a tunnel between two M5's
- Local transition \Rightarrow a M5-M2 black-hole microstate will transition into a « labyrinth » ...

... which is actually multiple layers of multiple tunnels/columns

Transition of a M5-M2 black-hole microstate

M5

M5

M5

11 X

- Joining 2 furrows make a tunnel between two M5's
- Local transition \Rightarrow a M5-M2 black-hole microstate will transition into a « labyrinth » ...

... which is actually multiple layers of multiple tunnels/columns

→ « Multi-storey Greek temple »

2. c. Supertube transition of three-charge black-hole microstates

$$\begin{aligned} & \Pi_{\text{NS5-F1-P}} = \frac{1}{2} \bigg[1 + a^2 P_{\text{NS5}(y1234)}^{\text{IIA}} + b^2 P_{\text{F1}} \\ & + ab \left(P_{\text{D4}(y234)} - P_{\text{D2}(y1234)} + b^2 P_{\text{D2}(y1234)} \right) \end{vmatrix}$$

 The M5-M2 furrow carries momentum through *rípples* modulated orthogonally to its surface

$$a = \cos \alpha \cos \beta$$

$$b = \cos \alpha \sin \beta \left(\sum_{N \le 5 (y + 12) y} \right)$$

$$c = \sin \alpha$$

$$a^{1}$$

04(1234)

+ ca

JS5, F1 and P

 $P_{\mathrm{P}(y)} + c^2 P_{\mathrm{P}(y)}$

 $_{2(y1)}) + bc\left(P_{P(1)} - P_{F1(1)}\right) + ca\left(P_{D4(1234)} - P_{D0}\right)\right).$

Glueing NS5, F1 and P

- The M5-M2 furrow carries momentum through *rípples* modulated orthogonally to its surface
 - $a = \cos \alpha \cos \beta$ $b = \cos \alpha \sin \beta$ $c = \sin \alpha$
- β controls the bending

 angle of the furrow; α
 controls the angle of ripples
 orthogonal to the furrow.

Consequence on a M5-M2-P microstate

M5

M5

M5

11 72

11 X

- The *ripples* of the furrow correspond to shape modes of the M5-M2 labyrinth
- The shape modes are the way 16-susy microstates carry momentum.

Consequence on a M5-M2-P microstate

M5

M5

M5

11 X

- The *ripples* of the furrow correspond to shape modes of the M5-M2 labyrinth
- The shape modes are the way 16-susy microstates carry momentum.

 \Rightarrow The microstates are ensured to have *exact* spherical symmetry.

 1/8-BPS systems have a large moduli space of solutions that have more supersymmetries locally

↑ This is crucial in order to understand the physics of horizons of supersymmetric black-holes

Conclusion

- 1/8-BPS systems have a large moduli space of solutions that have more supersymmetries locally
 - **↑** This is crucial in order to understand the physics of horizons of supersymmetric black-holes
- The microstate geometries programme used to replace D1-D5- P horizons with brane systems that extend in \mathbb{R}^4

 1/8-BPS systems have a large moduli space of solutions that have more supersymmetries locally

↑ This is crucial in order to understand the physics of horizons of supersymmetric black-holes

- The microstate geometries programme used to replace D1-D5-P horizons with brane systems that extend in \mathbb{R}^4
 - ↑ But this approach seems to have limits: entropy, typicality...

 1/8-BPS systems have a large moduli space of solutions that have more supersymmetries locally

↑ This is crucial in order to understand the physics of horizons of supersymmetric black-holes

• The microstate geometries programme used to replace D1-D5-P horizons with brane systems that extend in \mathbb{R}^4

↑ But this approach seems to have limits: entropy, typicality...

• New approach: microstates can carry momentum by having motion in the *internal dimensions* \Rightarrow exactly spherical symmetry

• The DVV microstates account for the black-hole entropy... ... and we have identified what they become when the branes start interacting.

Conclusion

- The DVV microstates account for the black-hole entropy... ... and we have identified what they become when the branes start interacting.
- These « labyrinth microstates » have 16 local susys, just like the superstrata, but without having their drawbacks.

7 (y,z)

- The DVV microstates account for the black-hole entropy... ... and we have identified what they become when the branes start interacting.
- These « labyrinth microstates » have 16 local susys, just like the superstrata, but without having their drawbacks.
- 16 local susys is a smoking gun for horizonless microstate solutions

 \Rightarrow support Fuzzball hypothesis for M-theory black-hole microstates

7 (y,ż)

- The DVV microstates account for the black-hole entropy... ... and we have identified what they become when the branes start interacting.
- These « labyrinth microstates » have 16 local susys, just like the superstrata, but without having their drawbacks.
- 16 local susys is a smoking gun for horizonless microstate solutions

 \Rightarrow support Fuzzball hypothesis for M-theory black-hole microstates

• We have already begun to build the fully-backreacted supergravity solution.

7 (y,ż)

Thank you

for your

