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Translations in cCFT

cCFTs posess the full symmetry group of flat space amplitudes,
including the Poincaré group.

Celestial amplitudes therefore obey new Ward identities of the form∑
j

εjP
µ
j A(1ε1

∆1,a1
· · · nεn∆n,an

) = 0 (1)

where Pµj generates a translation acting on the j-th particle.

For massless particles Pµ = qµ(z , z̄)e∂∆ .
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Translations in cCFT

Ward identities force two-, three-, and four-point amplitudes to be
vanishing or nonsingular.

Three point functions can only be non-vanishing in (2,2) signature
and when z12 = z23 or z̄12 = z̄23.

Four-point functions have support only where the cross-ratio is real

A4 ∝ δ(z − z̄) (2)

This does not match the expectations from standard conformal field
theories.
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What to do?

Some of these divergences may arrise from having non-compact
spectrum

We can also try to find celestial CFTs that don’t have translation
symmetry but preserve as much structure as possible.
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Celestial Holography and AdS/CFT

We would also like to understand connections with other forms of
holography, in particular AdS/CFT.

In AdS/CFT, boundary correlation functions can be built up
perturbatively by Witten diagrams, which integrate products of
propogators over the AdS bulk.

Klein space and regions of Minkowski space are foliated by AdS slices,
so we’d like to understand if we can build up celestial amplitudes from
Witten diagrams integrated over these AdS slices.
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YM + Massive Scalar

We work with the action

L =
1

2
∂µφ∂µφ−

1

2
m2φ2 − 1

4
Tr FµνF

µν − µ

4
φTr F+

µνF
+µν (3)

Here F+ = 1
2 (F +∗F ) is the self-dual component of the field strength.

φ couples to positive-helicity gluons.

Giving φ a position-dependent background breaks translation
invariance, rendering low-point functions non-singular.
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Amplitudes in Non-Trivial Background

For MHV and all-+ helicity configurations, φ+ gluon amplitudes are
simple

A(φ1+2+ · · · n+) =
µm4

〈12〉 · · · 〈n1〉
δ(4)(pφ + p1 + · · · pn)

A(φ1+2+3− · · · n−) =
µ[12]4

[12][23] · · · [n1]
δ(4)(pφ + p1 + · · · pn)

(4)
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Amplitudes in Non-Trivial Background

We want to consider scattering in a massive scalar background φ(x)
that

1 Solves the massive wave equation: (∂2 −m2)φ = 0
2 Is damped for large x2 > 0
3 Is a function of x2 = −τ 2 only

Because x2 is invariant under Lorentz transformations but not
translations, scattering in this background will be Lorentz invariant
but not translation invariant.

We choose the background wavefunction

φB(x) = φ+
∆=0,m(x) + φ−∆=0,m(x) =

8π2

imτ
K1(−imτ) (5)
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Amplitudes in Non-Trivial Background

We calculate the scattering at linear order in µ by considering
amplitudes with a single interaction with the background:

Aφn(1+ · · · n+) =

∫
d̃3pφφB(pφ)An+1(φ1+ · · · n+) (6)

where φB(pφ) is the momentum-space wavefunction of the
background field.
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Position-Space Computations of Celestial Amplitudes

We transform to the celestial sphere by taking the Mellin transform:

Aφn(1ε1
∆1,+

· · · nεn∆n,+
) =

∫ n∏
j=1

dωjω
∆j−1
j Aφn(1+ · · · n+)

pj = εjωjq(zj , z̄j)

(7)

Expanding δ(4)(P) = 1
(2π)4

∫
d4Xe iP·X and performing the Mellin

transform gives

Aφn(1ε1
∆1,+

· · · nεn∆n,+
) =

µm4

8(2π)4z12 · · · zn1

∫
d4XφB(X )

×
n∏

j=1

φ
εj
∆j−1(X |zj , z̄j)

(8)
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Klein Space

Klein space has (2,2) signature. With coordinates
xµ = (x0, x1, x2, x3), the metric is

ds2 = −dx2
0 + dx2

1 − dx2
2 + dx2

3 (9)

We can write Klein space in coordinates (τ, x̂) such that

ds2 =

{
−dτ2 + τ2d2H x2 < 0

dτ2 − τ2d2H x2 > 0
(10)

where d2H is the metric on the AdS3/Z constant-x2 slice of Klein
space.

A generic null momenta takes the form

pµ(z , z̄) = ±ωq(z , z̄) = ±ω(1 + zz̄ , z + z̄ , z − z̄ , 1− zz̄) (11)
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Foliations of Klein Space

Klein space can be foliated by slices of constant x2 = −τ2.

Both the τ2 > 0 and τ2 < 0 are geometrically AdS3/Z.

We want to integrate over Klein space by integrating over τ2 and the
constant τ2 slice of Klein space.
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Integrating over Klein Space

For analytic functions f with certain pole configurations, we can
deform the x̂ integration contour so that integrating over Klein space
becomes ∫

d4xf (x) =

∫ ∞
i∞

dττ3

∫
d̃3x̂ f (τ x̂) (12)

where the τ contour runs down the positive imaginary axis and then
along the positive real axis, and x̂2 = −1.

A suitable choice of iε procedure guarantees that we can perform this
contour rotation.
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Celestial Amplitudes as Witten Diagrams

We now evaluate the n-point all-+ amplitude with background as an
integral over Klein space:

Aφn(1ε1
∆1,+

· · ·nεn∆n,+
) =

µm4
∏n

j=1(−iεj)∆j−1Γ(∆j − 1)

8(2π)4z12 · · · zn1

×
∫

d4XφB(X )
n∏

j=1

1

(−q(zj , z̄j) · X )∆j−1

=
µm4

∏n
j=1(−iεj)∆j−1Γ(∆j − 1)

8(2π)4z12 · · · zn1

×
∫ ∞
i∞

dττ3d̃3x̂φB(τ x̂)
n∏

j=1

1

(−q(zj , z̄j) · τ x̂)∆j−1

(13)
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Celestial Amplitudes as Witten Diagrams

Closing the contour in τ gives

Aφ =
µm4

∏n
j=1(−iεj)∆j−1Γ(∆j − 1)

2n(2π)4z12 · · · zn1

×
∫ i∞

0
dττ3−βφB(τ)(e−2πiβ − 1)

×
∫
AdS3/Z

d̃3x
1∏n

j=1(−qnx̂)∆j−1

β =
n∑

j=1

(∆j − 1) (14)

An = Kin(zi , z i) × f (β) ×
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Three-Point Function

The three-point function takes the form

Aφ(1ε1
∆1,+

2ε2
∆2,+

3ε3
∆3,+

) =
µm4(e−2πiβ − 1)(1 + (−1)β)

16(2π)4z12z23z31

×
∫ i∞

0
dττ3−βφB(τ)

× π

2
Γ

(
∆1 + ∆2 + ∆3 − 5

2

)
Γ

(
∆1 + ∆2 −∆3 − 1

2

)
× Γ

(
∆1 −∆2 + ∆3 − 1

2

)
Γ

(
−∆1 + ∆2 + ∆3 − 1

2

)
× 1

(z12z̄12)
∆1+∆2−∆3−1

2 (z23z̄23)
∆2+∆3−∆1−1

2 (z31z̄31)
∆3+∆1−∆2−1

2

(15)

Walker Melton (Harvard) Cel. Amp. Witt. Diag. Sep. 15, 2022 17 / 21



18/21

Soft and Collinear Structure

The integral formula for the connected celestial amplitudes at first
order in the background imply that they obey the soft theorem

lim
ε→0

εAn(1ε1
1+ε,+ · · · ) =

zn2

2zn1z12
An−1(2ε2

∆2,+
· · · ) (16)

and the collinear limit

An(1+
∆1,+

2+
∆2+ · · · ) ∼

1

2z12

∞∑
m=0

B(∆1 + m − 1,∆2 − 1)

m!

× z̄m12∂̄2
mAn(2+

∆1+∆2−1,+) +O(z0
12)

(17)
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Background Deformations to the Leading Soft Algebra

The connected diagrams for n > 3 seem to imply that the
soft-algebra is undeformed, but examining low-point functions shows
that there is now a nontrivial level to the Kac-Moody algebra
describing the leading soft theorem.

Taking the soft-limit of the full amplitude

lim
ε→0

ε3A(1+a
1+ε,+2+b

1+ε,+3+c
1+ε,+) =

4µf abc

z12z23z31
(18)

implies that the Ja1J
b
1 OPE takes the form

Ja1 (z1)Jb1 (z2) ∼ 4iµδab

z2
12

+
if abcJ

c
1 (z2)

z12
(19)

so that the Kac-Moody algebra has a nontrivial level k = 4iµ.
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Background Deformations to the Leading Soft Algebra

Calculating the n-point soft gluon correlator, either directly or using
the leading soft theorem recursively, reveals that

〈Ja1
1 (z1) · · · Jan1 (zn)〉 =

−4iµTr [T a1 · · ·T an ]

2n−1z12 · · · zn1
+ · · · . (20)

where · · · includes other color orderings and multi-trace terms at
higher order in k

These correlation functions can be derived by fixing the singularities
of the JaJb currents in CFTs with Kac-Moody current algebras with
level k = 4iµ.
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Future Work

Adding the background gives the leading soft algebra for
position-space celestial amplitudes a central term. We would like to
understand possible central terms for the full soft algebra and
compute the background-deformed soft algebra for modes at
∆ = 0,−1,−2, . . .

Correlation functions of soft currents correspond exactly to correlation
functions of holomorphic currents in a WZW model of level k = 4iµ.
We would like to understand if there is a broader correspondence
between the soft sector of cCFTs and WZW models, including, for
example, negative helicity gluons and antiholomorphic currents in
WZW models, and with other representations that appear in WZW
models when k = 4iµ ∈ N.
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