Spectral truncations in noncommutative geometry

Walter van Suijlekom

Spectral geometry: origins

H.A. Lorentz door Jan Veth

Spectral geometry: origins

H.A. Lorentz door Jan Veth

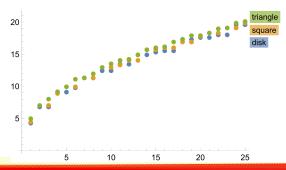
"Hierbei entseht das mathematische Problem, zu beweisen, dass die Anzahl der genügend hohen Obertöne zwischen n und n+dn unabhängig von der Gestalt der Hülle und nur ihrem Volumen proportional ist."

"Here arises the mathematical problem of proving that the number of sufficiently high harmonics between n and n + dn is independent of the shape of the envelope and proportional only to its volume."

Weyl's Law

$$N(\Lambda) = \# ext{wave numbers } \leq \Lambda \ \sim rac{\Omega_d ext{Vol}(M)}{d(2\pi)^d} \Lambda^d$$

Evidence by the parabolic shapes $(\sqrt{\Lambda})$:



A spectral approach to geometry

"Can one hear the shape of a drum?" (Kac, 1966)

A spectral approach to geometry

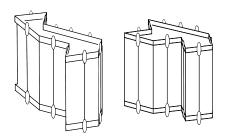
"Can one hear the shape of a drum?" (Kac, 1966)

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

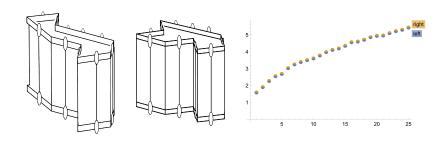
$$\Delta_M u = k^2 u$$

determine the geometry of M? Similarly, for a Riemannian spin manifold and Dirac operator D_M

Isospectral drums



Isospectral drums



so answer to Kac's question is no

Noncommutative geometry

If combined with the C^* -algebra C(M), then the answer to Kac's question is affirmative.

Noncommutative geometry

If combined with the C^* -algebra C(M), then the answer to Kac's question is affirmative.

Connes' reconstruction theorem [2008]:

$$(C(M), L^2(S_M), D_M) \longleftrightarrow (M, g)$$

• unital C*-algebra A

• self-adjoint operator D with $(i+D)^{-1}$ compact and [D,a] bounded for $a \in A \subset A$

ullet both acting on Hilbert space ${\cal H}$

"coordinate algebra"

"inverse fermion propagator"

"one-particle space"

• unital C*-algebra A

• self-adjoint operator D with $(i+D)^{-1}$ com-

pact and [D,a] bounded for $a \in \mathcal{A} \subset A$

ullet both acting on Hilbert space ${\cal H}$

"coordinate algebra"

"inverse fermion propagator"

"one-particle space"

$$D^{-1} = \bullet \longrightarrow$$

• unital C*-algebra A

"coordinate algebra"

• self-adjoint operator D with $(i+D)^{-1}$ compact and [D,a] bounded for $a \in A \subset A$

"inverse fermion propagator"

ullet both acting on Hilbert space ${\cal H}$

"one-particle space"

$$D^{-1} = \bullet$$

• Distance function on state space of $A = \overline{A}$:

$$d(\phi, \psi) = \sup_{a \in A} \{ |\phi(a) - \psi(a)| : ||[D, a]|| \le 1 \}$$

• unital C*-algebra A

"coordinate algebra"

• self-adjoint operator D with $(i+D)^{-1}$ compact and [D, a] bounded for $a \in A \subset A$

"inverse fermion propagator"

ullet both acting on Hilbert space ${\cal H}$

"one-particle space"

$$D^{-1} = \bullet$$

• Distance function on state space of $A = \overline{A}$:

$$d(\phi, \psi) = \sup_{a \in A} \{ |\phi(a) - \psi(a)| : ||[D, a]|| \le 1 \}$$

• Eg. for Riemannian spin manifold (M, g) we consider $(C(M), L^2(S_M), D_M)$ for which we have $d(x, y) = d_g(x, y)$.

• The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.

- The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

- The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

- The mathematical reformulation of geometry in terms of spectral data requires the knowledge of all eigenvalues of the Dirac operator.
- From a physical standpoint this is not very realistic: detectors have limited energy ranges and resolution.

We develop the mathematical formalism for (noncommutative) geometry with only part of the spectrum and/or with finite resolution.

This is in line with [D'Andrea–Lizzi–Martinetti 2014], [Glaser–Stern 2019] and based on [Connes–vS] (CMP, Szeged)

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, PAP is an operator system: $(PaP)^* = Pa^*P$.

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, PAP is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution:
 - Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x, y) < \epsilon$

- (I) Given (A, \mathcal{H}, D) we project onto part of the spectrum of D:
 - $\mathcal{H} \mapsto P\mathcal{H}$, projection onto closed Hilbert subspace
 - $D \mapsto PDP$, still a self-adjoint operator
 - $A \mapsto PAP$, this is not an algebra any more (unless $P \in A$)

Instead, PAP is an operator system: $(PaP)^* = Pa^*P$.

- (II) Another approach would be to consider metric spaces up to a finite resolution :
 - Consider integral operators associated to the tolerance relation R_{ϵ} given by $d(x, y) < \epsilon$

So first, some background on operator systems.

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators. Unital: it contains the identity operator.

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators. Unital: it contains the identity operator.

• E is ordered: cone $E_+ \subseteq E$ of positive operators, in the sense that $T \in E_+$ iff

$$\langle \psi, T\psi \rangle \ge 0; \qquad (\psi \in \mathcal{H}).$$

• in fact, E is matrix ordered: cones $M_n(E)_+ \subseteq M_n(E)$ of positive operators on \mathcal{H}^n for any n.

Operator systems

Definition (Choi-Effros 1977)

An operator system is a *-closed vector space E of bounded operators. Unital: it contains the identity operator.

• *E* is ordered: cone $E_+ \subseteq E$ of positive operators, in the sense that $T \in E_+$ iff

$$\langle \psi, T\psi \rangle \ge 0; \qquad (\psi \in \mathcal{H}).$$

• in fact, E is matrix ordered: cones $M_n(E)_+ \subseteq M_n(E)$ of positive operators on \mathcal{H}^n for any n.

Maps between operator systems E, F are completely positive maps in the sense that their extensions $M_n(E) \to M_n(F)$ are positive for all n.

Isomorphisms are complete order isomorphisms

C*-envelope of a unital operator system

Arveson introduced the notion of C^* -envelope for unital operator systems in 1969, Hamana established existence and uniqueness in 1979. Non-unital case: [Connes-vS 2020], [Kennedy–Kim–Manor 2021]

C*-envelope of a unital operator system

Arveson introduced the notion of C^* -envelope for unital operator systems in 1969, Hamana established existence and uniqueness in 1979. Non-unital case: [Connes-vS 2020], [Kennedy-Kim-Manor 2021]

A C^* -extension $\kappa: E \to A$ of a unital operator system E is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$. A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$

A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to F$ with the following universal property:

C*-envelope of a unital operator system

Arveson introduced the notion of C^* -envelope for unital operator systems in 1969, Hamana established existence and uniqueness in 1979. Non-unital case: [Connes-vS 2020], [Kennedy–Kim–Manor 2021]

A C^* -extension $\kappa: E \to A$ of a unital operator system E is given by a complete order isomorphism onto $\kappa(E) \subseteq A$ such that $C^*(\kappa(E)) = A$. A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$

A C^* -envelope of a unital operator system is a C^* -extension $\kappa: E \to A$ with the following universal property:

Example: operator system $C_{\text{harm}}(\overline{\mathbb{D}})$ of continuous harmonic functions with C^* -envelope $C(S^1)$.

Propagation number of an operator system

One lets $E^{\circ n}$ be the norm closure of the linear span of products of $\leq n$ elements of E.

Definition

The propagation number prop(E) of E is defined as the smallest integer n such that $\kappa(E)^{\circ n} \subseteq C^*_{env}(E)$ is a C^* -algebra.

Returning to harmonic functions in the disk we have $prop(C_{harm}(\overline{\mathbb{D}})) = 1$.

Propagation number of an operator system

One lets $E^{\circ n}$ be the norm closure of the linear span of products of $\leq n$ elements of E.

Definition

The propagation number prop(E) of E is defined as the smallest integer n such that $\kappa(E)^{\circ n} \subseteq C^*_{env}(E)$ is a C^* -algebra.

Returning to harmonic functions in the disk we have $prop(C_{harm}(\overline{\mathbb{D}})) = 1$.

Proposition

The propagation number is invariant under complete order isomorphisms, as well as under stable=Morita equivalence [EKT, 2019]:

$$prop(E) = prop(E \otimes_{min} K)$$

More generally [Koot, 2021], we have

$$prop(E \otimes_{\min} F) = \max\{prop(E), prop(F)\}$$

State spaces of operator systems

• The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.

State spaces of operator systems

- The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- In the finite-dimensional case, the dual E^d of a unital operator system is a unital operator system with

$$E_+^d = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the matrix order.

State spaces of operator systems

- The existence of a cone $E_+ \subseteq E$ of positive elements allows to speak of states on E as positive linear functionals of norm 1.
- In the finite-dimensional case, the dual E^d of a unital operator system is a unital operator system with

$$E_+^d = \left\{ \phi \in E^d : \phi(T) \ge 0, \forall T \in E_+ \right\}$$

and similarly for the matrix order.

- Also, we have $(E^d)_+^d \cong E_+$ as cones in $(E^d)^d \cong E$.
- It follows that we have the following useful correspondence:

pure states on $E \longleftrightarrow \text{extreme rays in } (E^d)_+$ and the other way around.

Spectral truncation of the circle: Toeplitz matrices

- Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$
- Orthogonal projection $P = P_n$ onto span $\mathbb{C}\{e_1, e_2, \dots, e_n\}$
- The space $C(S^1)^{(n)} := PC(S^1)P$ is an operator system

Spectral truncation of the circle: Toeplitz matrices

- Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$
- Orthogonal projection $P = P_n$ onto span $\mathbb{C}\{e_1, e_2, \dots, e_n\}$
- The space $C(S^1)^{(n)} := PC(S^1)P$ is an operator system
- Any T = PfP in $C(S^1)^{(n)}$ can be written as a Toeplitz matrix

$$PfP \sim (t_{k-l})_{kl} = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_1 & t_0 & t_{-1} & & t_{-n+2} \\ \vdots & t_1 & t_0 & \ddots & \vdots \\ t_{n-2} & \vdots & \ddots & \vdots \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{pmatrix}$$

Spectral truncation of the circle: Toeplitz matrices

- Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$
- Orthogonal projection $P = P_n$ onto $span_{\mathbb{C}}\{e_1, e_2, \dots, e_n\}$
- The space $C(S^1)^{(n)} := PC(S^1)P$ is an operator system
- Any T = PfP in $C(S^1)^{(n)}$ can be written as a Toeplitz matrix

$$PfP \sim (t_{k-l})_{kl} = \begin{pmatrix} t_0 & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_1 & t_0 & t_{-1} & t_{-n+2} \\ \vdots & t_1 & t_0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ t_{n-2} & \vdots & \ddots & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_1 & t_0 \end{pmatrix}$$

We have: $C^*_{\text{env}}(C(S^1)^{(n)}) \cong M_n(\mathbb{C})$ and $\text{prop}(C(S^1)^{(n)}) = 2$ (for any n).

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

• functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

• an element a is positive iff $\sum_k a_k e^{ikx}$ is a positive function on S^1 .

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

• functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

- an element a is positive iff $\sum_k a_k e^{ikx}$ is a positive function on S^1 .
- The C^* -envelope of $C^*(\mathbb{Z})_{(n)}$ is given by $C^*(\mathbb{Z})$.

Dual operator system: Fejér-Riesz

We introduce the Fejér–Riesz operator system $C^*(\mathbb{Z})_{(n)}$:

• functions on S^1 with a finite number of non-zero Fourier coefficients:

$$a = (\ldots, 0, a_{-n+1}, a_{-n+2}, \ldots, a_{-1}, a_0, a_1, \ldots, a_{n-2}, a_{n-1}, 0, \ldots)$$

- an element a is positive iff $\sum_k a_k e^{ikx}$ is a positive function on S^1 .
- The C^* -envelope of $C^*(\mathbb{Z})_{(n)}$ is given by $C^*(\mathbb{Z})$.

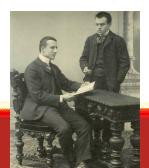
Proposition

- 1. The extreme rays in $(C^*(\mathbb{Z})_{(n)})_+$ are given by the elements $a = (a_k)$ for which the Laurent series $\sum_k a_k z^k$ has all its zeroes on S^1 .
- 2. The pure states of $C^*(\mathbb{Z})_{(n)}$ are given by $a \mapsto \sum_k a_k \lambda^k$ $(\lambda \in S^1)$.

Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes–vS 2020] and [Farenick 2021]:

$$C(S^1)^{(n)} imes C^*(\mathbb{Z})_{(n)} o \mathbb{C} \ (T=(t_{k-l})_{k,l},a=(a_k))\mapsto \sum_k a_k t_{-k}$$



Pure states on the Toeplitz matrices

Duality of $C(S^1)^{(n)}$ and $C^*(\mathbb{Z})_{(n)}$ [Connes–vS 2020] and [Farenick 2021]:

$$C(S^1)^{(n)} imes C^*(\mathbb{Z})_{(n)} o \mathbb{C} \ (T=(t_{k-l})_{k,l},a=(a_k))\mapsto \sum_k a_k t_{-k}$$

Proposition

- 1. The extreme rays in $C(S^1)^{(n)}_+$ are $\gamma(\lambda) = |f_{\lambda}\rangle\langle f_{\lambda}|$ for any $\lambda \in S^1$.
- 2. The pure state space $\mathcal{P}(C(S^1)^{(n+1)}) \cong \mathbb{T}^n/\widetilde{S_n}$.



Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$\mathcal{T} = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$\mathcal{T} = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

The pure state space is \mathbb{T}^2/S_2 , given by vector states $|\xi\rangle\langle\xi|$ with

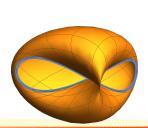
$$\xi \propto egin{pmatrix} 1 \ e^{ix} + e^{iy} \ e^{i(x+y)} \end{pmatrix}$$

Spectral truncations of the circle (n = 3)

We consider n = 3 for which the Toeplitz matrices are of the form

$$\mathcal{T} = egin{pmatrix} t_0 & t_{-1} & t_{-2} \ t_1 & t_0 & t_{-1} \ t_2 & t_1 & t_0 \end{pmatrix}$$

The pure state space is \mathbb{T}^2/S_2 , given by vector states $|\xi\rangle\langle\xi|$ with



$$\xi \propto egin{pmatrix} 1 \ e^{ix} + e^{iy} \ e^{i(x+y)} \end{pmatrix}$$

This is a Möbius strip!

Finite Fourier transform and duality

- Fourier transform on the cyclic group maps $I^{\infty}(\mathbb{Z}/m\mathbb{Z})$ to $\mathbb{C}[\mathbb{Z}/m\mathbb{Z}]$ and vice versa, exchanging pointwise and convolution product.
- This can be phrased in terms of a duality:

$$\mathbb{C}[\mathbb{Z}/m\mathbb{Z}] imes I^{\infty}(\mathbb{Z}/m\mathbb{Z}) o \mathbb{C} \ \langle c,g
angle \mapsto \sum_{k,l} c_l g(k) e^{2\pi i k l/m}$$

compatibly with positivity.

Finite Fourier transform and duality

- Fourier transform on the cyclic group maps $I^{\infty}(\mathbb{Z}/m\mathbb{Z})$ to $\mathbb{C}[\mathbb{Z}/m\mathbb{Z}]$ and vice versa, exchanging pointwise and convolution product.
- This can be phrased in terms of a duality:

$$\mathbb{C}[\mathbb{Z}/m\mathbb{Z}] \times I^{\infty}(\mathbb{Z}/m\mathbb{Z}) \to \mathbb{C}$$

$$\langle c, g \rangle \mapsto \sum_{k,l} c_{l} g(k) e^{2\pi i k l/m}$$

compatibly with positivity.

- Thus we may consider the above duality for Toeplitz matrices as some sort of generalization of Fourier theory to operator systems.
- However, note that for finite Fourier theory the symmetries are reduced from S^1 to $\mathbb{Z}/m\mathbb{Z}$.

Convergence to the circle

[vS 2021] and [Hekkelman, 2021] study the Gromov–Hausdorff convergence of the state spaces $S(C(S^1)^{(n)})$ with the distance function d_n to the circle.

Convergence to the circle

[vS 2021] and [Hekkelman, 2021] study the Gromov–Hausdorff convergence of the state spaces $S(C(S^1)^{(n)})$ with the distance function d_n to the circle.

- The map $R_n: C(S^1) \to C(S^1)^{(n)}$ given by compression with P_n allows to pull-back states from $C(S^1)^{(n)}$ to the circle
- There is a C^1 -approximate order inverse $S_n: C(S^1)^{(n)} \to C(S^1)$:

$$R_n(S_n(T)) = T_n \odot T;$$
 $S_n(R_n(f)) = F_n * f$

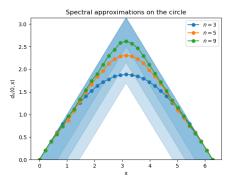
in terms of a Schur product with a matrix T_n and the convolution with the Fejér kernel F_n :

• The fact that S_n is a C^1 -approximate inverse of R_n allows one to prove

$$d_{S^1}(\phi,\psi)-2\gamma_n\leq d_n(\phi\circ S_n,\psi\circ S_n)\leq d_{S^1}(\phi,\psi)$$

where $\gamma_n \to 0$ as $n \to \infty$.

• Some (basic) Python simulations for point evaluation on S^1 :



Gromov-Hausdorff convergence

Recall Gromov-Hausdorff distance between two metric spaces:

$$d_{\mathrm{GH}}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f:X \to Z,g:Y \to Z \text{ isometric}\}$$

and

$$d_H(X, Y) = \inf\{\epsilon \geq 0; X \subseteq Y_{\epsilon}, Y \subseteq X_{\epsilon}\}$$

• Using the maps R_n , S_n we can equip $\mathcal{S}(C(S^1)) \coprod \mathcal{S}(C(S^1)^{(n)})$ with a distance function that bridges the given distance functions on $\mathcal{S}(C(S^1))$ and $\mathcal{S}(C(S^1)^{(n)})$ within ϵ for large n.

Gromov-Hausdorff convergence

Recall Gromov–Hausdorff distance between two metric spaces:

$$d_{\mathrm{GH}}(X,Y) = \inf\{d_H(f(X),g(Y)) \mid f:X \to Z,g:Y \to Z \text{ isometric}\}$$

and

$$d_H(X, Y) = \inf\{\epsilon \geq 0; X \subseteq Y_{\epsilon}, Y \subseteq X_{\epsilon}\}$$

• Using the maps R_n , S_n we can equip $\mathcal{S}(C(S^1)) \coprod \mathcal{S}(C(S^1)^{(n)})$ with a distance function that bridges the given distance functions on $\mathcal{S}(C(S^1))$ and $\mathcal{S}(C(S^1)^{(n)})$ within ϵ for large n.

Proposition (vS21, Hekkelman 2021)

The sequence of state spaces $\{(S(C(S^1)^{(n)}), d_n)\}$ converges to $(S(C(S^1)), d_{S^1})$ in Gromov–Hausdorff distance.

Operator systems associated to tolerance relations [Connes-vS, 2021]

• Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.

Operator systems associated to tolerance relations [Connes-vS, 2021]

- Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.
- Key motivating example: a metric space (X, d) with the relation

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

Operator systems associated to tolerance relations [Connes-vS, 2021]

- Suppose that X is a set and consider a relation $\mathcal{R} \subseteq X \times X$ on X that is reflexive, symmetric but not necessarily transitive.
- Key motivating example: a metric space (X, d) with the relation

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

• If (X, μ) is a measure space and $\mathcal{R} \subseteq X \times X$ an open subset we obtain the operator system $E(\mathcal{R})$ as the closure of integral operator with support in \mathcal{R} . Note that $E(\mathcal{R}) \subseteq \mathcal{K}(L^2(X))$

Tolerance relations on finite sets [Gielen-vS, 2022]

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X and suppose that \mathcal{R} generates the full equivalence class $X \times X$ (*i.e.* the graph corresponding to \mathcal{R} is connected). Then

- 1. the C^* -envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X)) \cong M_{|X|}(\mathbb{C})$ and $\operatorname{prop}(E(\mathcal{R})) = \operatorname{diam}(\mathcal{R})$.
- 2. If \mathcal{R} is a chordal graph, then $E(\mathcal{R})^d \cong E(\mathcal{R})$ as a vector space, but with order structure given by being partially positive.
- 3. the pure states of $E(\mathcal{R})$ are given by vector states $|v\rangle\langle v|$ for which the support of $v\in\ell^2(X)$ is \mathcal{R} -connected.

Tolerance relations on finite sets [Gielen-vS, 2022]

Let X be a finite set and $\mathcal{R} \subseteq X \times X$ a symmetric reflexive relation on X and suppose that \mathcal{R} generates the full equivalence class $X \times X$ (*i.e.* the graph corresponding to \mathcal{R} is connected). Then

- 1. the C^* -envelope of $E(\mathcal{R})$ is $\mathcal{K}(\ell^2(X)) \cong M_{|X|}(\mathbb{C})$ and $\operatorname{prop}(E(\mathcal{R})) = \operatorname{diam}(\mathcal{R})$.
- 2. If \mathcal{R} is a chordal graph, then $E(\mathcal{R})^d \cong E(\mathcal{R})$ as a vector space, but with order structure given by being partially positive.
- 3. the pure states of $E(\mathcal{R})$ are given by vector states $|v\rangle\langle v|$ for which the support of $v\in\ell^2(X)$ is \mathcal{R} -connected.

Example

The operator systems of $p \times p$ band matrices with band width N.

- 1. The propagation number of $\mathcal{E}_{p,N} \subseteq M_p(\mathbb{C})$ is equal to $\lceil p/N \rceil$.
- 2. The dual operator system consists of band matrices (with order given by partially positive).

Spaces at finite resolution

Consider now a path metric measure space X with a measure of full support, and the following tolerance relation:

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

It gives rise to the operator system $E(\mathcal{R}_{\epsilon}) \subseteq \mathcal{K}(L^2(X))$.

Spaces at finite resolution

Consider now a path metric measure space X with a measure of full support, and the following tolerance relation:

$$\mathcal{R}_{\epsilon} := \{(x,y) \in X \times X : d(x,y) < \epsilon\}$$

It gives rise to the operator system $E(\mathcal{R}_{\epsilon}) \subseteq \mathcal{K}(L^2(X))$.

Proposition

If X is a complete and locally compact path metric measure space X with a measure of full support, then

- 1. $C_{env}^*(E(\mathcal{R}_{\epsilon})) = \mathcal{K}(L^2(X))$ and $\operatorname{prop}(E(\mathcal{R}_{\epsilon})) = \lceil \operatorname{diam}(X)/\epsilon \rceil$
- 2. The pure states of $E(\mathcal{R}_{\epsilon})$ are given by vector states $|\psi\rangle\langle\psi|$ where the essential support of $\psi \in L^2(X)$ is ϵ -connected.

Outlook

- Spectral truncations: tori, compact Lie groups, etc.
- Bonds in groupoids: approximate order unit, duality, etc.
- Metric structure on state spaces for spaces at finite spatial resolution
- Gromov–Hausdorff convergence, entropy
- General theory of spectral triples for operator systems
- ...

Outlook

- Spectral truncations: tori, compact Lie groups, etc.
- Bonds in groupoids: approximate order unit, duality, etc.
- Metric structure on state spaces for spaces at finite spatial resolution
- Gromov–Hausdorff convergence, entropy
- General theory of spectral triples for operator systems
- ...

