
A twistorial higher-spin theory from the IKKT-matrix model

Tung Tran (UMONS)

Based on 2203.05436 with Harold Steinacker (University of Vienna)



Why higher spin gravity (HSGRA)?

. Some of the most promising approaches toward a quantum theory of gravity
involve higher-spin fields (string theory, bulk reconstruction ...)

• The main idea: the more massless fields, the more gauge symmetries. The more
gauge symmetries, the fewer counter terms.

Higher-spin symmetry ?−→ Quantum Gravity

• In the context of AdS/CFT: HSGRAs in AdS should be the dual theories of (large
N) free or weakly coupled Vector Model (Ising) and Chern-Simons matter theories.

HSGRAs may help us to make CFT predictions.
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If higher-spin symmetry is that good, is there a free lunch?

. HSGRAs are typically blocked by No-go theorems/results and plagued by
pathological non-locality issues.

• Coleman-Mandula, Weinberg, Maldacena-Zhiboedov
• 〈Taronna, [Sleight〉, Erdmenger-Bakaert/({Ponomarev}], Skvortsov, Boulanger);
Roiban-Tseylin ...
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HSGRAs that can avoid No-go theorems

• 3d HSGRAs. Typically topological with no propagating dof. and can be written in
Chern-Simons form
(Blencowe+(Berhshoeff-Stelle); Pope-Townsend; Fradkin-Linetsky; Kuzenko;
Henneaux-Rey; Campoleoni-Fredenhagen-Pfenninger-Theisen; Gaberdiel-Gopakumar;
[Mkrtchyan-(Grigoriev-Skvortsov]-Lovrekovic) ...)

S =
∫

ωdω +
2
3
ω3 .

• 4d conformal HSGRA. Higher-spin extension of Weyl gravity: non-unitary due to
higher derivatives in the kinetic action
(Tseylin-Segal; Bakaert-Joung-Mourad; Kuzenko ...)

• 4d chiral theories. Non-unitary theories that have complex actions. They are
quasi-topological (have propagating dof but trivial S-matrix)
(Metsaev; [”Ponomarev”-({Skvortsov}]-TT-Tsulaia)||
〈 Sharapov-Skvortsov〉-Sukhanov-Van Dongen)
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In this talk

. A higher-spin gauge theory induced by the IKKT-matrix model (HS-IKKT)
on fuzzy 4-sphere S4

N (Sperling, Steinacker).

Our main result

A twistorial description for the (HS)-IKKT on S4
N

Other results

� Scattering amplitudes of the HS-IKKT in the flat limit.
� Twistor action for the self-dual YM sector of the HS-IKKT (gravHS-SDYM).
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Outline

� Review of the IKKT-matrix model.

� Fuzzy S4
N

� Twistors and higher-spin fields on fuzzy S4
N

� A novel action of the (HS)-IKKT on fuzzy S4
N

� Spacetime action and scattering amplitudes

� Twistor action for self-dual gauge sector of HS-IKKT
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The IKKT-matrix model (1)

• The IKKT-matrix model (Ishibashi, Kawai, Kitazawa, Tsuchiya-96’) is an alternative
and constructive description of type IIB superstring theory.

. Obtained by dimensional reduction of 10-dim SYM theory to a point.

. Spacetime along with physical fields emerge from matrix dof.

. Similar to the Connes’ approach (95’) to non-commutative geometry.

. Naturally induces a HS theory on fuzzy (quantized) twistor space.
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The IKKT-matrix model (2)

The IKKT has a remarkably simple action

S = Tr
(

[YI,YJ][YI,YJ] + Ψ̄αΓI
αβ[YI,Ψβ]

)
, I, J = 1, ..., 10 .

Here, YI are N × N hermitian matrices, and Ψ are matrix-valued spinors. The action
has a manifiest SO(10)-symmetry endowed with δIJ = (+, ...,+).

The embedding space of the IKKT is a 10-dimensional space

The action is also invariant under

δYI = U−1YIU ,

with U being arbitrary unitary matrix.

• Note that fields emerge as fluctuations of the background Ȳ I

Y I = Ȳ I + AI .
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Fuzzy S4
N (1) - Fuzzy ambient space

Assumption: We live in 4-dimensional spacetime.

. We can split δIJ = (δab, δIJ ).
• For the case of S4, δab = (+,+,+,+,+) with further constraints as

YaYa = R2 ,

[Mab,Yc] = i(δbcYa − δacYb) .

where Mab are generators of SO(5) that obey

[Mab,Mcd] = i(Madδbc + 3 more) .

Since Ya are matrices, they do not commute

[Ya,Yb] = iθab = ir2Mab , r is a natural length scale

The non-commutativity of Y gives a fuzzy geometry
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Fuzzy S4
N (2) - The space of functions

Roughly speaking, the fuzzy S4
N is described by so(6) subjects to the additional

constraint YaYa = R2
N. In summary,

[Mab,Mcd] = i(Madδbc + 3 more) ,

[Mab,Yc] = i(δbcYa − δacYb) ,

[Ya,Yb] = iθab = ir2Mab ,

YaYa = R2
N = r2N(N + 4)/4 .

There are also self-duality constraints

εabcdeMabMcd =
4
r

(N + 2)Ye , εabcdeMcdYe = r(N + 2)Mab .

The space of functions are then

C =
∑

fa(n)c(s)|b(n)θ
ab...θabYc...Yc =

⊕
n,s

n
n + s .

Truncated higher-spin algebra as subspace of C

ths(so(5)) =
N∑

ga(n),b(n)θ
ab...θab =

⊕
n

n
n .

Sperling-Steinacker
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Fuzzy S4
N (3) - so(6) ' su(4)

By the following identification

YAB = −YBA = r−1YaγAB
a , LAB = LBA =

1
2

MabΣAB
ab ,

we can go from so(6) to su(4) as
[LAB, LCD] = i(LACCBD + LADCBC + LBDCAC + LBCCAD) ,

[LAB,YCD] = i(YACCBD + YBCCAD − YADCBC − YBDCAC) ,

[YAB,YCD] = i(LACCBD − LADCBC − LBCCAD + LBDCAC) .
Other relations

YABYAB = 4R2
N = N(N + 4) , εABCDYAB = −YCD

The space of functions

C =
∑
k,m

fA(k)B(2m)|C(k)YAC...YACLBB...LBB =
⊕
k,m

k
k + 2m .

Truncated higher-spin algebra

ths(sp(4)) =
N∑
n

gA(2n)LAA...LAA =
⊕

n

2n ,

Note that the symmetric coefficients gA(2n) are manifestly traceless wrt. CAB.
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Fuzzy S4
N (4) - Fuzzy twistor space

The above realization of su(4) allows us to make connections to fuzzy twistor space
CP3

N that is spanned by ZA and its dual Ẑ A where

ZA = (Z1,Z2,Z3,Z4) ∈ C4\{0} , Ẑ A = Z̄ BCAB

In particular,

CP3
N = End(HN) = (N, 0, 0) ⊗ (0, 0,N) =

N∑
n

fA(n)B(n)ZA...ZAẐ A
...Ẑ A

where HN = (0, 0,N) = (0, 0, 1)⊗symN is N-particle Fock space.

The relations that describe quantized twistor space are

[ZA, Z̄ B] = δA
B , [ZA, Ẑ B] = CAB

Take home message:

CP3
N consists of ”balanced” polynomials in Z, Ẑ with cutoff at N
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Fuzz S4
N (5) - Remarks

• What we have discussed so far is fully quantum.
• There is not yet a proper notion of geometry of spacetime from the fuzzy

ambient space R5 because ”metric” contains anti-symmetric part due to
non-commutativity of coordinates addressed by the symplectic structure
θab = r2 Mab. However, we can have commutative geometry in the limit r ' 0.
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Semi-classical (large N) limit

In the large N limit, matrices become effectively commutative since r ∼ R
N

. Spacetime will emergence
. ths coincides with the hs of the target space

Replacement rules (Review: 1911.03162)

Quantum/fuzzy geometry 7→ Semi-classical/dequantized geometry
(matrix) Ya 7→ ya (function)

[ , ] 7→ i{ , }

Tr 7→
∫

∆

We can parametrize ya = (yµ, y5) for µ = 1, 2, 3, 4 as

yµ =
2R2xµ

(R2 + x2)
, y5 =

R(x2 − R2)
(R2 + x2)

which gives the 4-sphere metric

ds2 =
∂ya

∂xµ

∂ya
∂xν

dxµdxν = gµνdxµdxν =
4R4dxµdxµ

(R2 + x2)2
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Twistor/spinor (1) - Basic

Let ZA = (λα, µα′ ) for α = 0, 1 and α′ = 0′, 1′. The Euclidean twistor space PT is
defined as

PT = {ZA ∈ CP3|λα 6= 0 & N 6= 0}

where N is an SU(4)-invariant number operator defined as

N = Z̄ AZA = −Ẑ AZA = 〈λλ̂〉 + [µµ̂]

Here,
〈ab〉 = aαbα , [ab] = aα′ bα′

The Sp(4)-invariant matrix [also known as the infinity twistor]

CAB =
(
εαβ

εα
′β′

)
, ε01 = 1

The correspondence between twistor space and spacetime is expressed via the incident
relation:

µα′
= x̃αα′

λα ⇒ x̃αα′
=
λ̂αµα′ − λαµ̂α′

〈λ̂λ〉

The relation between x and x̃ reads

xµ =
R
2

(σ̂µ)αα′ x̃αα′
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Twistor/spinor (2) - CP1 ↪−→ PT → S4

Consider the symplectic form on CP3

Ω = dẐ A ∧ dZA = (1 + x̃2)
[

Dλ̂α ∧ Dλα + λ̂α
d̃xαα′

∧ d̃xβ
α′

(1 + x̃2)2
λβ

]
,

Hence, we can identify CP3 as CP1-bundles over S4, where S4 is the base space and
CP1 are the fibers. This can also be understood using the Hopf map following by a
stereographic projection

CP1 ↪−→ CP3 ' S7/U(1) → S4 ,

ZA 7→ ya := −
r
2

Ẑ A(γa)ABZB ,

The above allows us to read off two important equations

〈λλ̂〉 =
NR2

R2 + x2 , [µµ̂] =
Nx2

R2 + x2

which can be used to parametrize

λα =
R√

R2 + x2

( z
−1

)
, λ̂α =

R√
R2 + x2

(+1
z̄

)
,

for |z|2 + 1 = N.
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Twistor/spinor (3) - The measure + effective metric

On twistor space there is a natural holomorphic measure (Penrose 68’)

D3Z = εABCDZAdZBdZCdZD =
R4

(R2 + x2)2 〈λdλ〉 ∧ [dµ ∧ dµ]

The anti-holomorphic measure is

D3Z̄ =
R4

(R2 + x2)2 〈λ̂dλ̂〉 ∧ [dµ̂ ∧ dµ̂]

The total measure is chosen as

∆ = D3Z ∧ D3Z̄ =
R8

(R2 + x2)4
〈λdλ〉 ∧ 〈λ̂dλ̂〉

〈λ̂λ〉2
d4x̃ = e2σ(x)KCP1 d4x̃

Note that the tensorial part of the effective metric that emerges from the IKKT-matrix
model can be obtained by considering

{̃xαα′
, φ}{̃xαα′ , φ} = gαα′ββ′

∂αα′φ∂ββ′φ

where at large N
gαα′ββ′

' Nεαβεα
′β′

The total metric in the large N limit is therefore

Gαα′ββ′
= e2σ(x)gαα′ββ′

= √g gαα′ββ′
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Twistor/spinor (4) - Higher-spin modes

Using the incident relation, we can write ω(λ, µ; λ̂, µ̂) as ω(̃x, λ, λ̂). Hence, the space
of functions in terms of spinors λ, λ̂ reads

C =
∑

n

f α(n)β(n)( x̃ )λα...λαλ̂β ...λ̂β .

For vector modes, we have

A =
∑
m=n

Aα(m)β(n)γ,γ′
( x̃ )λα...λαλ̂β ...λ̂β

The coefficients f α(n)β(n)( x̃ ) and Aα(m)β(n)γ,γ′ are tensorial fields in spacetime,
which for irreducible modes are totally symmetric in all 2n unprimed indices.

Twistor fields live in the balanced weight representation (BWR)

Spacetime fields live in the maximally unbalanced representation (MUR)

MUR: Comprises of S(m − 1, 1) and S(m, 0) irrep of the Lorentz group.
(Krasnov-Zhenya-TT)
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Twistor/spinor (5) - Remarks

• The effective metric at the large N limit coincides with the usual one.
• Twistor/spinor formalism allows for a straightforward analysis of higher-spin fields.
• On twistor space, fields live in the BWR which constrains higher-rank tensors to

increase with integers in spins.
• The Penrose transform will carry fields in the BWR on twistor space to the MUR

on spacetime.
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What is left?

� Review of the IKKT-matrix model.

� Fuzzy S4
N

� Twistors and higher-spin fields on fuzzy S4
N

� A novel action of the (HS)-IKKT on fuzzy S4
N

� Spacetime action and scattering amplitudes

� Twistor action for self-dual gauge sector of HS-IKKT
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Twistor action for the IKKT (1) - Rewriting

Due to sp(4) ' so(5), we have the following decomposition

YAB = PAB + QAB =
(

0 Pαβ′

−Pβ′α 0

)
+

(
Qαβ 0

0 Qα′β′

)
where P are the 4-tangential modes and Q is the transverse mode of the 5th direction.

. Small remarks:

• The SO(5) external symmetry breaks SUSY explicitly since it acts on Q.
• The other 5 coordinates of the IKKT model will be treated as the scalar fields of the
internal group SU(4).

Consider the following fluctuation(Pαα′

Qαβ

)
=

( Yαα′

Y5εαβ

)
+

(Aαα′

φ̂εαβ

)
,

• For large enough R in the semi-classical limit, all contributions associated to Y5 can
be neglected. We refer to this limit as the semi-classical and flat (SCF) limit.
• In the SCF limit, the φ̂ scalar will rejoin with other 5 scalars and transform in the
adjoint of SU(4).
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Twistor action for IKKT (2) - The action in SCF limit

The action of the IKKT in the SCF limit reads

S =
∫ [ i

2
FααFαα + i{Pαα′

, φIJ }{Pαα′ , φIJ } + 2χ̄α{Pαβ′ , χ̃β′
}

+ χ̄I{φIJ , χ
J } + ˜̄χI

{φIJ , χ̃
J } +

i
2

{φIJ , φMN }{φIJ , φMN }
]
,

where

FααFαα = 4{yα
γ′ ,Aαγ′

}{yαζ′ ,A ζ′
α } + 2{yα

γ′ , yαγ′
}{Aαζ′ ,A ζ′

α }

+ 4{yα
γ′ ,Aαγ′

}{Aαζ′ ,A ζ′
α } + {Aα

γ′ ,Aαγ′
}{Aαζ′ ,A ζ′

α } .

The significance of spinor formalism:

• There is no gauge-fixing term {Ya,Aa}2 in the action like in 1704.02863.
• The strange term {yακ′ , y κ′

α }{Aα
ζ′ ,Aαζ′ } inside F2 can be absorbed by

introducing an auxiliary field B.
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Twistor action for IKKT (3) - First order formalism and Self-dual sector

The first order action of the IKKT in the SCF limit reads

S =
∫ [

BααFαα +
i
2

BααBαα + i{Pαα′
, φIJ }{Pαα′ , φIJ } + 2χ̄α{Pαβ′ , χ̃β′

}

+ χ̄I{φIJ , χ
J } + ˜̄χI

{φIJ , χ̃
J } +

i
2

{φIJ , φMN }{φIJ , φMN }
]
,

We can drop some terms to obtain the self-dual sector as in Chalmers Siegel 96’

S =
∫ [

BααFαα + i{Pαα′
, φIJ }{Pαα′ , φIJ } + 2χ̄α{Pαβ′ , χ̃β′

} + ˜̄χI
{φIJ , χ̃

J }
]
,

which is reminiscent of self-dual N = 4 SYM in 4d.

The HS-IKKT contains higher-derivative vertices, where the interactions at the
lowest order are gravitational (two-derivative) type due to the Poisson brackets.
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Twistor action for IKKT (4) - Higher-spin valued eigenmodes

In terms of hs-modes, A has the following 2 modes
Aαα′

(1) = Aκ(2s)α,α′
λs

κλ̂
s
κ , Aαα′

(2) = εακωκ(2s−1),α′
λs

κλ̂
s
κ .

Similarly, B also has two modes
Bα•

(1) = Bκ(2s)α•λs
κλ̂

s
κ , Bα•

(2) = ε•κψκ(2s−1)αλs
κλ̂

s
κ .

The gauge transformation for δAκ(2s)|α,α′ reads
δξ,ϑAκ(2s)|α,α′

= {yαα′
, ξκ(2s)} + εκαϑκ(2s−1),α′

.

The algebraic symmetry ϑ can be used to gauge away the (unwanted) second
eigenmode A(2).

The second mode of B plays the role of a Lagrangian multiplier and gives us the usual
generalized Lorenz gauge condition of the form∫

∆ψα(2n−1){yαα′ ,Aα(2n),α′
} .

Only the first eigenmodes of Aαα′ and Bαα propagate!

• A has 1 dof and describes positive helicity higher-spin fields.
• B has another one and describes negative helicity fields
(Kaparulin, Lyakhovich, Sharapov 13’)
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Twistor action for IKKT (5) - Solutions for free EOMs

The free equation of motion for Aαα′ is

{yα
α′ ,Aαα′

} = 0 .

It has the following solution

Aα,α′

(1) = Aκ(2s)α,α′
λs

κλ̂
s
κ ,

Aα(2s+1),α′
=
ζα...ζαυ̃α′

〈ζυ〉2s+1 eiυα x̃αα′ υ̃α′

The free equation of motion for the B field reads

2{yγ
α′ ,B

(1)
γα} = 0 ,

It is solved by

Bαα
(1) = Bαακ(2s)λs

κλ̂
s
κ ,

Bα(2s) = υα...υαeiυκ x̃κκ′ υ̃κ′
.

(Krasnov-Zhenya-TT)
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Twistor action for IKKT (6) - Remarks

• The spinor formalism allows us to organize the action of the IKKT in full
non-linearity without ambiguity of extra terms which usually appear in
matrix-model.

• Our analysis shows that spacetime fields are massless higher-spin fields that carry
2 propagating degrees of freedom even though the original system lives on
5-dimensional ambient space.

• The solutions of free EOMs in the SCF limit coincide with the usual ones of
twistor theory in flat space after integrating out the fibres.
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Spacetime action (1) - The Penrose transform

The spacetime action can be obtained by integrating out all fibre coordinates∫
CP1

K
λ̂α...λ̂α λβ ...λβ

〈λ̂λ〉m
δm,n = −

2πi
(m + 1)

ε α
β ...ε α

β .

The final result is

S =
∫

d4x
〈

BααFαα +
i
2

BααBαα + i{Pαα′
, φIJ }{Pαα′ , φIJ } + 2χ̄α{Pαβ′ , χ̃β′

}

+ χ̄I{φIJ , χ
J } + ˜̄χI

{φIJ , χ̃
J } +

i
2

{φIJ , φMN }{φIJ , φMN }
〉
,

where 〈〉 means all possible contractions between unprimed indices.

Remarks on the fuzzy twistor construction

• We do not need to refer to twistor cohomology.
• Everything is naturally higher-spin extensible.
• Interactions on twistor space are local thanks to BWR.
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Spacetime action (2) - The 3-pt amplitudes

Consider the lowest order in derivatives of the Poisson bracket, we obtain the following
vertex in the gauge sector after integrating out fibre coordinates

V3 =
∑

m+n=2s−2

Bα(2s)∂α•′ Aα(m),
α′∂

•′
α Aα(n),α′

+ V irrelevant .

. The above vertex is of gravitational type.

• In light-cone gauge, it matches with the vertex of HS-SDGRA in 2105.12782

V3 =
∑
s2,s3

P2(Φ−(s2+s3−2)Φ+s2 Φ+s3 )

where p := (β, p−, p, p̄) and Pij = p̄iβj − p̄jβi for pi being the 4-momenta of the
external field Φsi .

• Using the plane wave solutions for A and B, we obtain

M−s1|s2,s3 = δ(2 − (s2 + s3 − s1))
[23]2s2+2s3−2

[31]2s2−2[12]2s3−2 .

27



Spacetime action (3) - Remarks

• The fuzzy twistor construction is suitable for finding higher-order vertices
(quartic, quintic, ... ) of higher-spin fields.

• Gauge invariance on twistor space is easier to control compared to spacetime.
Hence, it makes sense to explore higher-spin theories on twistor space.

Question: Can we obtain the same V3 from the usual twistor construction ???
(Mason et al.)

28



Twistor construction (1)

• Higher-spin extending the non-linear graviton construction (Penrose 72’).

• The curved twistor space PT ∼diff CP1 × R4 ≡ PS.

• Assuming all perturbations to be sufficiently small
. The incident relations remain the same!

• The gravHS-SDYM action reads

S =
∫

D3Z B(∂̄ω +
1
2

{ω, ω}h) ,

where

{ω, ω}h =
λ̂αλ̂α

〈λλ̂〉2
∂αα′ω∂α

α′
ω .

• Higher-spin diffeomorphism is subtle due to the Poisson bracket on PT

δZ =
∑
n∈Z

{Z, ξn}h , ξ ∈ O(2n − 2)

. Non-gauge-invariant measure D3Z.
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Twistor construction (2) - gravHS-(SD)YM

• The spacetime action for gravHS-SDYM

S =
∫ ∑

s

Bα(2s)
[
∂α•′ A •′

α(2s−1), +
∑

m+n=2s−2

{Aα(m),•′ ,A •′

α(n), }h

]
where

{a, b}h = ∂α
α′ a ∂αα′ b

Consider a deformation away from the chiral sector

S =
∑

s

∫
d4x Bα(2s)Gα(2s) −

1
2

∑
s

∫
d4x Bα(2s)Bα(2s) .

By integrating out the B fields, we end up with a gravitational-type HS-YM
(gravHS-YM) action

S =
1
2

∑
s

∫
d4x Gα(2s)Gα(2s) .

It is a gravitational extension of HS-YM (TT-21’)
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What all of these are about?

• Results from the light-cone gauge showed that local higher-spin theories with
propagating degrees of freedom can exist. Moreover, they can avoid No-go
theorems by having trivial/simple (holographic) S-matrix.
Brink, Bengtsson2, Linden; Metsaev; Ponomarev-Zhenya; Zhenya-T-Tsulaia ...

BUT ...

” Light-cone is the second best ... ” - Anders Bengtsson

• Folklore: Twistorial or world-sheet formalism for higher-spin theories are
needed to construct consistent covariant higher-spin theories that can avoid
No-go theorems.

Options ...

. twistor theory (Adamo-Hahnel-Mcloughlin,T, Steinacker-T)

. Free differential algebra (〈 Sharapov-Skvortsov〉-Sukhanov-Van Dongen)
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On construction of viable higher-spin theories

• The assumption of higher-spin symmetry is crucial to avoid No-go theorems

BUT NOT ENOUGH ...

• Fronsdal approach faces No-go results for locality
(Maldacena-Zhiboedov, Bekaert-Sleight-Ponomarev-Erdmenger, Taronna-Sleight,
Ponomarev ...)
• Light-cone approach predicts there is no parity-invariant theory
(Metsaev, Ponomarev-Zhenya)

NO FREE LUNCH CONJECTURE

• Unitary higher-spin theories are non-local.

• Local higher-spin theories are non-unitary. 32



Over the years, what have we learned?

• Old Beliefs:

. HSGRAs prefer (A)dS.

. Flat space HSGRA can only be
written in light-cone gauge.

. The interactions can be very
non-local!

. Flat limit is rather hard to achieve.

. Can there be a non-trivial scattering
amplitudes for HS theories ?! ...

• New Studies:

. HS can also live on flat, self-dual
and fuzzy backgrounds.

. Covariant actions for (grav)
HS-(SD)YM and HS-SDGRA in flat
space are found.

. Local interactions exist in both
(A)dS and flat space.

. Recent developments show it is not
the case.

. Twistor theory ?!
Adamo-TT to appear
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Summary

Main Results:
• Twistorial action for the HS-IKKT.
• Fuzzy twistor construction and the usual twistor construction can complement
each other in finding consistent higher-spin theories using BWR/MUR.

Outlook:
� Study HS-IKKT on fuzzy 4-hyperboloid H4

N using twistor formalism.
� Go for higher orders in deformation!
� Find more higher-spin theories from twistor space and compute their
amplitudes.
� And much more to come ...
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More twistorial higher-spin theories are coming,
Brace yourself!
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