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1. Introduction

Invariant differential operators play very important role in the description of
physical symmetries - starting from the early occurrences in the Maxwell,
d’Allembert, Dirac, equations, to the latest applications of (super-)differential
operators in conformal field theory, supergravity and string theory. Thus, it is
important for the applications in physics to study systematically such operators.

Some years ago we started the systematic explicit construction of invariant
differential operators 1. We gave an explicit description of the building blocks,
namely, the parabolic subgroups and subalgebras from which the necessary
representations are induced. Thus we have set the stage for study of different
non-compact groups.

Since the study and description of detailed classification should be done group
by group we had to decide which groups to study first. A natural choice would be
non-compact groups that have discrete series of representations. By the Harish-
Chandra criterion 2 these are groups where holds:

rankG = rankK, (1.1)

where K is the maximal compact subgroup of the non-compact group G. Another
formulation is to say that the Lie algebra G of G has a compact Cartan subalgebra.

Example: The groups SO(p, q) have discrete series, except when both p, q are odd
numbers. ♢
This class is still rather big, thus, we decided to start with a subclass, namely, the

class of Hermitian symmetric spaces. The practical criterion is that in these cases,
the maximal compact subalgebra K is of the form:

K = so(2)⊕K′ . (1.2)

The Lie algebras from this class are:

so(n, 2), sp(n,R), su(m,n), so∗(2n), E6(−14) , E7(−25) (1.3)

These groups/algebras have highest/lowest weight representations, and relatedly
holomorphic discrete series representations 3.

The most widely used of these algebras are the conformal algebras so(n, 2) in
n-dimensional Minkowski space-time. In that case, there is a maximal Bruhat
decomposition 4:

so(n, 2) = P ⊕ Ñ = M ⊕ A ⊕ N ⊕ Ñ , (1.4)

M = so(n− 1, 1) , dimA = 1, dimN = dim Ñ = n

that has direct physical meaning, namely, so(n − 1, 1) is the Lorentz algebra of
n-dimensional Minkowski space-time, the subalgebra A = so(1, 1) represents the
dilatations, the conjugated subalgebras N , Ñ are the algebras of translations,

1 V.K. Dobrev, Rev. Math. Phys. 20 (2008) 407-449.
2 Harish-Chandra, Ann. Math. 116 (1966) 1-111.
3 A.W. Knapp, Representation Theory of Semisimple Groups (An Overview Based on Examples), (Princeton
Univ. Press, 1986).
4 F. Bruhat, Bull. Soc. Math. France, 84 (1956) 97-205.



and special conformal transformations, both being isomorphic to n-dimensional
Minkowski space-time.

The subalgebra P = M ⊕ A ⊕ N (∼= M ⊕ A ⊕ Ñ ) is a maximal parabolic
subalgebra.

There are other special features which are important. In particular,
the complexification of the maximal compact subgroup is isomorphic to the
complexification of the first two factors of the Bruhat decomposition:

KC = so(n,C)⊕ so(2,C) ∼= so(n− 1, 1)C ⊕ so(1, 1)C =MC ⊕AC . (1.5)

In particular, the coincidence of the complexification of the semi-simple
subalgebras:

K′C = MC (1.6)

means that the sets of finite-dimensional (nonunitary) representations of M are in
1-to-1 correspondence with the finite-dimensional (unitary) representations of K′.
It turns out that some of the hermitian-symmetric algebras share the above-

mentioned special properties of so(n, 2). This subclass consists of:

so(n, 2), sp(n,R), su(n, n), so∗(4n), E7(−25) (1.7)

the corresponding analogs of Minkowski space-time V being:

Rn−1,1, Sym(n,R), Herm(n,C), Herm(n,Q), Herm(3,O) (1.8)

where we use standard notation R,C,Q,O for the four division algebras (real,
complex, quaternion, octonion).

In view of applications to physics, we proposed to call these algebras ’conformal
Lie algebras’, (or groups) 5.

We have started the study of the above class in the framework of the present
approach in the cases: so(n, 2), su(n, n), sp(n,R), E7(−25), SO∗(12).
Later we have considered some algebras outside the above class: E6(−14), F ′4, F ′′4 ,
furthermore some cases with other parabolics, e.g., Heisenberg parabolics: G2(2),
SO∗(2n).

Later, in 6 we discovered an efficient way to extend our considerations beyond
this class introducing the notion of ’parabolically related non-compact semisimple
Lie algebras’.

• Definition: Let G,G′ be two non-compact semisimple Lie algebras with
the same complexification GC ∼= G′C. We call them parabolically related if they
have parabolic subalgebras P = M⊕ A ⊕ N , P ′ = M′ ⊕ A′ ⊕ N ′, such that:
MC ∼= M′C (⇒ PC ∼= P ′C). ♢
Certainly, there may be more than one such parabolic relationships for any given

algebra G. Furthermore, two algebras G,G′ may be parabolically related with
different parabolic subalgebras.

5 V.K. Dobrev, J. Phys. A42 (2009) 285203.
6 V.K. Dobrev, J. High Energy Phys. 02 (2013) 015.



2. Conformal algebras so(n, 2) and parabolically related

2.1. Maxwell equations hierarchy

We start with the simplest case of conformal intertwining differential operators.

It is well known that Maxwell equations

∂µFµν = Jν (2.1a)

∂µ ∗Fµν = 0 (2.1b)

(where ∗Fµν ≡ ϵµνρσF
ρσ, ϵµνρσ being totally antisymmetric with ϵ0123 = 1), or,

equivalently

∂kEk = J0 (= 4πρ), ∂0Ek − εkℓm∂ℓHm = Jk (= −4πjk),
∂kHk = 0 , ∂0Hk + εkℓm∂ℓEm = 0 , (2.2)

where Ek ≡ Fk0, Hk ≡ (1/2)εkℓmFℓm, may be rewritten in the following
manner:

∂kF
±
k = J0 , ∂0F

±
k ± iεkℓm∂ℓF

±
m = Jk , (2.3)

where
F±k ≡ Ek ± iHk . (2.4)

Not so well known is the fact that the eight equations in (2.3) may be rewritten
as two conjugate scalar equations in the following way:

I+ F+(z) = J(z, z̄) , (2.5a)

I− F−(z̄) = J(z, z̄) , (2.5b)

where

I+ = z̄∂+ + ∂v − 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z , (2.6a)

I− = z∂+ + ∂v̄ − 1
2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄ , (2.6b)

x± ≡ x0 ± x3, v ≡ x1 − ix2, v̄ ≡ x1 + ix2, (2.7a)

∂± ≡ ∂/∂x±, ∂v ≡ ∂/∂v, ∂v̄ ≡ ∂/∂v̄, (2.7b)

F+(z) ≡ z2(F+
1 + iF+

2 )− 2zF+
3 − (F+

1 − iF+
2 ) , (2.8a)

F−(z̄) ≡ z̄2(F−1 − iF−2 )− 2z̄F−3 − (F−1 + iF−2 ) , (2.8b)

J(z, z̄) ≡ z̄z(J0 + J3) + z(J1 + iJ2) + z̄(J1 − iJ2) + (J0 − J3) = (2.8c)

≡ z̄zJ+ + zJv + z̄Jv̄ + J−

It is easy to recover (2.3) from (2.5) - just note that both sides of each equation
are first order polynomials in each of the two variables z and z̄, then comparing the
independent terms in (2.5) one gets at once (2.3).

Writing the Maxwell equations in the simple form (2.5) has also important
conceptual meaning. The point is that each of the two scalar operators I+, I− is



indeed a single object, namely it is an intertwiner of the conformal group, or
conformally invariant differential operator, while the individual components in (2.1)
- (2.3) do not have this interpretation. This is also the simplest way to see that
the Maxwell equations are conformally invariant, since this is equivalent to the
intertwining property.

Let us be more explicit. The physically relevant representations Tχ of
the 4-dimensional conformal algebra so(4, 2) = su(2, 2) may be labelled by
χ = [n1, n2; d], where n1, n2 are non-negative integers fixing finite-dimensional
irreducible representations of the Lorentz subalgebra, (the dimension being (n1 +
1)(n2 + 1)), and d is the conformal dimension (or energy). (In the literature
these Lorentz representations are labelled also by (j1, j2) = (n1/2, n2/2).) Then
the intertwining properties of the operators in (2.6) are given by:

I+ : C+ −→ C0 , I+ ◦ T+ = T 0 ◦ I+ , (2.9a)

I− : C− −→ C0 , I− ◦ T− = T 0 ◦ I− , (2.9b)

where T a = Tχa
, a = 0,+,−, Ca = Cχa

are the representation spaces, and the
signatures are given explicitly by:

χ+ = [2, 0; 2] , χ− = [0, 2; 2] , χ0 = [1, 1; 3] , (2.10)

as anticipated. Indeed, (n1, n2) = (1, 1) is the four-dimensional Lorentz
representation, (carried by Jµ above), and (n1, n2) = (2, 0), (0, 2) are the two

conjugate three-dimensional Lorentz representations, (carried by F±k above), while
the conformal dimensions are the canonical dimensions of a current (d = 3), and
of the Maxwell field (d = 2). We see that the variables z, z̄ are related to the spin
properties and we shall call them ’spin variables’.

It is also important that the variables x±, v, v̄, z, z̄ have definite group-theoretical
meaning, namely, they are six local coordinates on the coset Y = SL(4)/B, where
B is the Borel subgroup of SL(4) consisting of all upper diagonal matrices. (Equally
well one may take the coset SL(4)/B−, where B− is the Borel subgroup of lower
diagonal matrices.) Under the natural conjugation (cf. also below) this is also a
coset of the conformal group SU(2, 2).

Now we recollect that closely related to the above fields is the potential Aµ with
signature

χ̃0 = [1, 1; 1] (2.11)

so that the analog of (2.1a) is
∂µAν = Fµν (2.12)

(not forgetting that the RHS is only a subspace). We also recall that there are two
more conformal operators involving two scalar fields with signatures:

ϕ = [0, 0; 0], Φ = [0, 0; 4] (2.13)

so that
∂µϕ = Aµ, ∂µJµ = Φ (2.14)

(again the RHSs are subspaces).

Altogether we have the following picture:
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Remark: Note that the ± pairs (that are symmetrical w.r.t. the bullet in the
figure) are related by integral operators GKS, so-called Knapp-Stein operators
7, with kernels which are conformal two-point functions. Their action on the
signatures is:

GKS : [n1, n2; d] −→ [n2, n1; 4− d] . ♢ (2.15)

The above picture is the simplest occurrence of 4D conformally invariant
differential operators. The general case is given by a 3-parameter generalization
given as follows:

χ−pνn = [p− 1, n− 1; 2− ν − 1
2
(p + n)] (ϕ) (2.16)

χ+
pνn = [n− 1, p− 1; 2 + ν + 1

2
(p + n)] (Φ)

χ′−pνn = [p + ν − 1, n + ν − 1; 2− 1
2
(p + n)] (Aµ)

χ′+pνn = [n + ν − 1, p + ν − 1; 2 + 1
2
(p + n)] (Jµ)

χ′′−pνn = [ν − 1, p + n + ν − 1; 2 + 1
2
(p− n)] (F−)

χ′′+pνn = [p + n + ν − 1, ν − 1; 2 + 1
2
(n− p)] (F+)

where p, ν, n are positive integers which are exactly the Dynkin labels
m1,m2,m3 of sl(4) for χ−pνn.

We call ”multiplets” such collection of representations related by intertwining
differential operators.

The simplest example we considered first is obtained for p = ν = n = 1.

The multiplets (sextets here) are given now in the following figure:

7 A.W. Knapp and E.M. Stein, Ann. Math. 93 (1971) 489-578; II : Inv. Math. 60 (1980) 9-84.
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where the differential operators are given explicitly by:

(I2)
m = (z̄1z1∂+ + z1z̄2∂v + z̄1z2∂v̄ + z̄2z2∂−)

m =

=

(
(z̄1, z̄2) σµ∂µ

(
z1
z2

))m

, (2.17a)

(I12)
m =

(
(z̄1, z̄2) σµ∂µ ε

(
∂z1

∂z2

))m

, (2.17b)

(I23)
m =

(
(∂z̄1, ∂z̄2) εσµ∂µ

(
z1
z2

))m

, (2.17c)

(I13)
m =

(
(∂z̄1, ∂z̄2) σµ∂µ

(
∂z1

∂z2

))m

, (2.17d)

where σµ are the Pauli matrices, ε = iσ2 . Note that here for the finite-dimensional
irreps of the Lorentz subalgebra we have passed from polynomials in z, z̄ of degrees
n1, n2, to homogeneous polynomials in z1, z2 of degree n1 and in z̄1, z̄2 of degree
n2 . The two realizations are easily related via z = z1/z2 , z̄ = z̄1/z̄2 .

The above picture is valid also for the 4-dimensional Euclidean conformal algebra
so(5, 1), 8, and also for the Lie algebra so(3, 3).

2.2. Generalization : so(n, 2) and so(p, q)

Next we recall that the conformal algebra of n-dimensional Minkowski space-time
is the algebra so(2n, 2). Actually we shall consider a more general picture, namely,
the Lie algebras G = so(p, q).

The analogue of the Lorentz subalgebra is:

M = so(p− 1, q − 1) . (2.18)

The analogue of Minkowski space-time is N with:

dim N = p + q − 2 . (2.19)

We label the signature of the representations of G as follows:

χ = {n1 , . . . , nh ; c } , (2.20)

nj ∈ Z/2 , c = d− p+q−2
2

, h ≡ [p+q−2
2

],

|n1| < n2 < · · · < nh , p + q even ,

0 < n1 < n2 < · · · < nh , p + q odd ,

where the last entry of χ labels the characters of A , and the first h entries are
labels of the finite-dimensional nonunitary irreps ofM = so(p− 1, q − 1).

8 V.K. Dobrev and V.B. Petkova, Rept. Math. Phys. 13 (1978) 233-277.



The reason to use the parameter c instead of d is that the parametrization of
the ERs in the multiplets is given in a simple intuitive way:

χ±1 = {ϵn1 , . . . , nh ; ±nh+1} , nh < nh+1 , (2.21)

χ±2 = {ϵn1 , . . . , nh−1 , nh+1 ; ±nh}
χ±3 = {ϵn1, . . . , nh−2, nh, nh+1 ; ±nh−1}
...

χ±h = {ϵn1 , n3 , . . . , nh , nh+1 ; ±n2}
χ±h+1 = {ϵn2 , . . . , nh , nh+1 ; ±n1}

ϵ =

{
± , n even

1, n odd

(ϵ = ± is correlated with χ±).

Further, we denote by C̃±i the representation space with signature χ±i .

The number of ERs in a multiplet is:

|W (GC,HC)| / |W (MC,HC
m)| (2.22)

where HC, HC
m are Cartan subalgebras of GC, MC, resp.

The above in our case gives:

|W (GC,HC)| / |W (MC,HC
m)| = 2(1 + h) (2.23)

Below we give the multiplets pictorially first for p + q even, then for p + q odd.
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The degrees of the operators in the two pictures are:

deg di = deg d′i = nh+2−i − nh+1−i, i = 1, . . . , h,

deg d′h = n2 + n1, (p + q)− even ,

deg dh+1 = 2n1, (p + q)− odd (2.24)

where d′h is omitted from the first line for (p + q) even.

Again the pairs C̃±i are related by Knapp-Stein operators that correspond to
elements of the restricted Weyl group of G, namely, we have:

G±i : C̃∓i −→ C̃
±
i , i = 1, . . . , 1 + h (2.25)

There is a peculiarity, namely, that for p + q odd, for the pair C±h+1 the KS

operator acting from C−h+1 to C+
h+1 has degenerated (due to regularization of the

kernel) to the differential operator dh+1 .

Matters are arranged so that in every multiplet only the ER with signature
χ−1 contains a finite-dimensional nonunitary subrepresentation in a subspace E.
The latter corresponds to the finite-dimensional unitary irrep of so(n + 2) with
signature {n1 , . . . , nh , nh+1}. The subspace E is annihilated by the operator

G+
1 , and is the image of the operator G−1 .

Although the diagrams are valid for arbitrary so(p, q) (p + q ≥ 5) the contents

is very different. We comment only on the ER with signature χ+
1 . In all cases it

contains an UIR of so(p, q) realized on an invariant subspace D of the ER χ+
1 .

That subspace is annihilated by the operator G−1 , and is the image of the operator

G+
1 . (Other ERs contain more UIRs.)

If pq ∈ 2N the mentioned UIR is a discrete series representation. (Other ERs
contain more discrete series UIRs.)

And if q = 2 the invariant subspace D is the direct sum of two subspaces
D = D+ ⊕D−, in which are realized a holomorphic discrete series representation
and its conjugate anti-holomorphic discrete series representation, resp. Note
that the corresponding lowest weight GVM is infinitesimally equivalent only to
the holomorphic discrete series, while the conjugate highest weight GVM is
infinitesimally equivalent to the anti-holomorphic discrete series.

Above for so(n, 2) we restricted to n > 2. The case n = 2 is reduced to
n = 1 since so(2, 2) ∼= so(1, 2)⊕ so(1, 2). The case so(1, 2) is special and must
be treated separately. But in fact, it is contained in what we presented already.
In that case the multiplets contain only two ERs which may be depicted by the
top pair χ±1 in all pictures that we presented. And they have the properties that
we described. That case was the first given already in 1946-7 independently by
Gel’fand et al 9 and Bargmann 10.

9 I.M. Gelfand and M.A. Naimark, Acad. Sci. USSR. J. Phys. 10 (1946) 93-94.
10V. Bargmann, Annals Math. 48, (1947) 568-640.



3. The Lie algebra su(n, n) and parabolically related

Let G = su(n, n), n ≥ 2. The maximal compact subgroup is K ∼=
u(1)⊕ su(n)⊕ su(n), while M = sl(n,C)R .

The signature of the ERs of G is:

χ = {n1 , . . . , nn−1 , nn+1 . . . , n2n−1 ; c } , nj ∈ N , c = d− 1
2
n2 (3.1)

The Knapp–Stein restricted Weyl reflection is given by:

GKS : Cχ −→ Cχ′ ,

χ′ = {(n1, . . . , nn−1, nn+1, . . . , n2n−1)
∗;−c} , (3.2)

(n1, . . . , nn−1, nn+1, . . . , n2n−1)
∗ .

= (nn+1, . . . , n2n−1, n1, . . . , nn−1)

Further, we use the root system of the complex algebra sl(2n,C). The positive
roots αij in terms of the simple roots αi are:

αij = αi + αi+1 + · · ·+ αj , 1 ≤ i < j ≤ 2n− 1 , (3.3)

αii ≡ αi , 1 ≤ i ≤ 2n− 1

from which the non-compact are:

αij , 1 ≤ i ≤ n , n ≤ j ≤ 2n− 1 (3.4)

The correspondence between the signatures χ and the highest weight Λ is through
the Dynkin labels:

ni = mi ≡ (Λ + ρ, α∨i ) = (Λ + ρ, αi) , i = 1, . . . , 2n− 1, (3.5)

c = −1
2
(mα̃ + mn) = − 1

2
(m1 + · · ·+ mn−1 + 2mn + mn+1 + · · ·+ m2n−1) ,

Λ = Λ(χ), α̃ = α1 + · · ·+ α2n−1 is the highest root.

The number of ERs in the corresponding multiplets by (2.22) is equal to:

|W (GC,HC)| / |W (MC,HC
m)| =

(
2n

n

)
(3.6)

In our diagrams we need also the Harish-Chandra parameters for the non-compact
roots using the following notation:

mij ≡ mαij = mi + · · ·+ mj , i < j (3.7)

We use the following conventions. Each intertwining differential operator is
represented by an arrow accompanied by a symbol ij...k encoding the root
βj...k and the number mβj...k which is involved in the BGG criterion. This notation
is used to save space, but it can be used due to the fact that only intertwining
differential operators which are non-composite are displayed, and that the data
β,mβ , which is involved in the embedding V Λ −→ V Λ−mβ,β turns out to involve
only the mi corresponding to simple roots, i.e., for each β,mβ there exists
i = i(β,mβ,Λ) ∈ {1, . . . , r}, (r = rankG), such that mβ = mi . Hence the
data βj...k ,mβj...k is represented by ij...k on the arrows.
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Fig. 5. Main multiplets for su(3, 3) and sl(6,R)

with parabolic M-factors sl(3, CI)R, sl(3,R) ⊕ sl(3,R), resp.
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Fig. 6. Main multiplets for su(4, 4), sl(8,R), su∗(8)

with parabolic M-factors sl(4,C)R, sl(4,R) ⊕ sl(4,R), su∗(4) ⊕ su∗(4), resp.
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4. The Lie algebras sp(n,R) and sp(n
2
, n
2
) (n–even)

Let n ≥ 2. Let G = sp(n,R), the rank n split real form of sp(n,C) = GC. The
maximal compact subgroup is K ∼= u(1)⊕ su(n), while M = sl(n,R).
The signature of the ERs of G is:

χ = {n1 , . . . , nn−1 ; c } , nj ∈ N . (4.1)

The Knapp-Stein restricted Weyl reflection acts as follows:

GKS : Cχ −→ Cχ′ ,

χ′ = { (n1, . . . , nn−1)
∗ ; −c } , (4.2)

(n1, . . . , nn−1)
∗ .

= (nn−1, . . . , n1)

In terms of an orthonormal basis ϵi , i = 1, . . . , n, the positive roots are:

∆+ = { ϵi ± ϵj, 1 ≤ i < j ≤ n; 2ϵi, 1 ≤ i ≤ n } (4.3)

the simple roots are:

π = {αi = ϵi − ϵi+1, 1 ≤ i ≤ n− 1, αn = 2ϵn } (4.4)

the non-compact roots:

βij ≡ ϵi + ϵj, , 1 ≤ i ≤ j ≤ n , (4.5)

the Harish-Chandra parameters: mβ ≡ (Λ + ρ, β) for the noncompact roots are:

mβij =
( n∑

s=i

+
n∑

s=j

)
ms , i < j , (4.6)

mβii =
n∑

s=i

ms

The correspondence between the signatures χ and the highest weight Λ is:

ni = mi , c = − 1
2
(mα̃ + mn) = − 1

2
(m1 + · · ·+ mn−1 + 2mn) (4.7)

where α̃ = β11 is the highest root.

The number of ERs in the corresponding multiplets by (2.22) is:

|W (GC,HC)| / |W (MC,HC
m)| = 2n (4.8)

Below we give pictorially the multiplets for sp(n,R) for n = 3, 4, 5, 6. For
n = 2r these are also multiplets for sp(r, r), r = 1, 2, 3 with parabolicM-factor
su∗(2r).

Note that the cases n = 1, 2 were already considered recalling that sp(1,R) ∼=
sl(2,R), sp(2,R) ∼= so(3, 2)). Also the case sp(1, 1) was considered recalling that
sp(1, 1) ∼= so(4, 1).
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Fig. 7. Main multiplets for sp(3, IR)
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Fig. 8. Main multiplets for sp(4, IR) and sp(2, 2)

with parabolic M-factors sl(4, IR), su∗(4), resp.
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Fig. 9. Main multiplets for sp(5, IR)
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Fig. 10. Main multiplets for Sp(6,R) and Sp(3, 3)

with parabolic M-factors sl(6,R), su∗(6), resp.



5. SO∗(4n) case

Let G = so∗(4n). We choose a maximal parabolic P = MAN such that
A ∼= so(1, 1), M = su∗(2n). Since the algebras so∗(4n) belong to the class
called ’conformal Lie algebras’ we have:

KC ∼= u(1)C ⊕ sl(2n,C) ∼= AC ⊕MC (5.1)

Here we have the series of algebras: so∗(4), so∗(8), so∗(12), ...
However the first two cases are reduced to well known conformal algebras due to
the coincidences: so∗(4) ∼= so(3)⊕ so(2, 1), so∗(8) ∼= so(6, 2).

Thus, we shall study the algebra G ≡ so∗(12).

We label the signature of the ERs of G6 as follows:

χ = {n1 , n2 , n3 , n4 , n5 ; c } , nj ∈ Z+ , c = d− 15
2

(5.2)

where the last entry of χ labels the characters of A , and the first five entries are
labels of the finite-dimensional nonunitary irreps of su∗(6).

Finally, we remind that the above considerations are applicable also for the
parabolically related algebra so(6, 6) with parabolic M-factor sl(6,R). It has
discrete series representations but no highest/lowest weight representations.

The multiplets of the main type are in 1-to-1 correspondence with the finite-
dimensional irreps of so∗(12), i.e., they are labelled by the six positive Dynkin
labels mi ∈ N. The number of ERs/GVMs in the main multiplets is:

|W (GC6 ,H
C)| / |W (MC

6 ,H
C
m)| = |W (so(12,C))| / |W (sl(6,C))| = 32 (5.3)

where HC,HC
m are Cartan subalgebras of GC6 ,MC

6 , resp.
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Fig. 11. Main multiplets for so∗(12) and so(6, 6)

with parabolic M factors su∗(6), sl(6,R), resp.



6. The Lie algebras E7(−25) and E7(7)

Let G = E7(−25). The maximal compact subgroup is K ∼= e6 ⊕ so(2). We work
with maximal parabolic P =M⊕M⊕N with M∼= E6(−26).

The signatures of the ERs of G are:

χ = {n1 , . . . , n6 ; c } , nj ∈ N , (6.1)

expressed through the Dynkin labels:

ni = mi , c = − 1
2
(mα̃+m7) = − 1

2
(2m1+2m2+3m3+ 4m4+3m5+2m6+2m7)

The same holds for the parabolically related exceptional Lie algebra E7(7) (with
M-factor E6(6)).

The noncompact roots of the complex algebra E7 are:

α7 , α17 , . . . , α67 ,
α1,37 , α2,47 , α17,4 , α27,4 , (6.2)

α17,34 , α17,35 , α17,36 , α17,45 , α17,46 ,
α27,45 , α27,46 ,
α17,25,4 , α17,26,4 , α17,35,4 , α17,36,4 ,
α17,26,45 , α17,36,45 ,
α17,26,35,4 , α17,26,45,4 ,
α17,16,35,4 = α̃ ,

using compact notation:

αij = αi + αi+1 + · · ·+ αj , i < j , (6.3)

αij,k = αk,ij = αi + αi+1 + · · ·+ αj + αk , i < j , etc.

The multiplets of the main type are in 1-to-1 correspondence with the finite-
dimensional irreps of E7 , i.e., they will be labelled by the seven positive Dynkin
labels mi ∈ N. The number of ERs in the corresponding multiplets by (2.22) is
equal to:

|W (GC,HC)| / |W (MC,HC
m)| = 56 (6.4)

The Knapp-Stein operators G±χ act pictorially as reflection w.r.t. the bullet

intertwining each T −χ member with the corresponding T +
χ member.
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Fig. 12. Main Type for E7(−25) and E7(7)



7. The Lie algebras E6(−14), E6(6) and E6(2)

Let G = E6(−14) . The maximal compact subalgebra is K ∼= so(10)⊕ so(2), while
M∼= su(5, 1).

The signature of the ERs of G is:

χ = {n1 , n3 , n4 , n5 , n6 ; c} , c = d− 11
2

, (7.1)

expressed through the Dynkin labels as:

ni = mi , −c = 1
2
mα̃ = 1

2
(m1 + 2m2 + 2m3 + 3m4 + 2m5 + m6) (7.2)

The same holds for the parabolically related exceptional Lie algebras E6(6) and
E6(2) withM–factors sl(6,R) and su(3, 3), resp.

Further, we need the noncompact roots of the complex algebra E6 :

α2 , α14 , α15 , α16 , α24 , α25 , α26 (7.3)

α2,4 , α2,45 , α2,46 , α25,4 , α15,4 , α26,4

α16,4 , α15,34 , α26,45 , α16,34 , α16,45

α16,35 , α16,35,4 , α16,25,4 = α̃

The multiplets of the main type are in 1-to-1 correspondence with the finite-
dimensional irreps of G , i.e., they will be labelled by the six positive Dynkin
labels mi ∈ N. It turns out that each such multiplet contains 70 ERs/GVMs - see
the figure below.

The Knapp-Stein operators G±χ act pictorially as reflection w.r.t. the dotted line

separating the T −χ members from the T +
χ members.

Note that there are five cases when the embeddings correspond to the highest root

α̃ : V Λ− −→ V Λ+
, Λ+ = Λ−−mα̃ α̃ . In these five cases the weights are denoted

as: Λ±k′′ , Λ±k′ , Λ±
k̃
, Λ±k , Λ±ko , then: mα̃ = m1,m3,m4,m5,m6 , resp. Thus,

their action coincides with the action of the Knapp-Stein operators G+
χ which in

the above five cases degenerate to differential operators as we discussed for so(3, 2).

Note that the figure has the standard E6 symmetry, namely, conjugation
exchanging indices 1←→ 6, 3←→ 5.

Full details are given in 11.

11V.K. Dobrev, in: Proceedings, 5th Mathematical Physics Meeting: Summer School and Conference on Modern
Mathematical Physics, Belgrade, 6-17.07.2008, Eds. B. Dragovich, Z. Rakic, (Institute of Physics, Belgrade, 2009)
pp. 95-124.
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Fig. 13. Main Type for E6(−14), E6(6) and E6(2)

with parabolic M-factors su(5, 1), sl(6,R), su(3, 3), resp.



8. Heisenberg Parabolic Subgroups of Exceptional Noncompact G2(2)

Let GC = G2, with Cartan matrix: (aij) =

(
2 −3
−1 2

)
, simple roots α1, α2 with

products: (α2, α2) = 3(α1, α1) = −2(α2, α1). We choose (α1, α1) = 2, then
(α2, α2) = 6, (α2, α1) = −3. As we know G2 is 14–dimensional. The positive roots
may be chosen as:

∆+ = {α1, α2, α3 = α1 +α2, α4 = α2 +2α1, α5 = α2 +3α1, α6 = 2α2 +3α1}
(8.1)

The Weyl group W (GC,HC) of G2 is the dihedral group of order 12.

The complex Lie algebra G2 has one non-compact real form: G = G2(2) which
is naturally split. Its maximal compact subalgebra is K = su(2) ⊕ su(2), also
written as K = su(2)S ⊕ su(2)L to emphasize the relation to the root system
(after complexification the first factor contains a short root, the second - a long
root). We remind that G = G2(2) has discrete series representations. Actually,
it is quaternionic discrete series since K contains as direct summand (at
least one) su(2) subalgebra. The number of discrete series is equal to the ratio
|W (GC,HC)|/|W (KC,HC)|, where H is a compact Cartan subalgebra of both G and
K, W are the relevant Weyl groups. Thus, the number of discrete series in our
setting is three. One case will be explicitly identified below.

The compact Cartan subalgebra H of G will be chosen to coincide with the
Cartan subalgebra of K and we may write: H = u(1)S ⊕ u(1)L .

The minimal parabolic of G is:

P0 = M0 ⊕A0 ⊕N0 = A0 ⊕N0 (8.2)

There are two isomorphic maximal cuspidal parabolic subalgebras of G which are
of Heisenberg type:

Pk = Mk ⊕Ak ⊕Nk, k = 1, 2; (8.3)

Mk = sl(2,R)k, dim Ak = 1, dim Nk = 5

Let us denote by Tk the compact Cartan subalgebra of Mk. Then Hk = Tk⊕Ak is
a non-compact Cartan subalgebra of G. We choose T1 to be generated by the short
K-compact root α1+α2 and A1 to be generated by the long root α2, while T2 to
be generated by the long K-compact root α2+3α1 and A2 to be generated by the
short root α1.

Equivalently, the M1-compact root of GC is α1 + α2, while the M2-compact
root is α2 + 3α1. In each case the remaining five positive roots of GC are Mk-
noncompact.

To characterize the Verma modules we shall use first the Dynkin labels:

mi ≡ (Λ + ρ, α∨i ), i = 1, 2, (8.4)

where ρ is half the sum of the positive roots of GC. Thus, we shall use :

χΛ = {m1,m2} (8.5)

Note that when both mi ∈ N then χΛ characterizes the finite-dimensional irreps
of GC and its real forms, in particular, G. Furthermore, mk ∈ N characterizes
the finite-dimensional irreps of theMk subalgebra.



We shall use also the Harish-Chandra parameters:

mβ = (Λ + ρ, β∨) , (8.6)

for any positive root β, and explicitly in terms of the Dynkin labels:

χHC = { m1, m3 = 3m2 + m1, m4 = 3m2 + 2m1 (8.7a)

m2, m5 = m2 + m1, m6 = 2m2 + m1, } (8.7b)

8.1. Induction from minimal parabolic

The main multiplets are in 1-to-1 correspondence with the finite-dimensional irreps
of G2, i.e., they are labelled by the two positive Dynkin labels mi ∈ N.
Using this labelling the signatures may be given in the following pair-wise manner:

χ±0 = {∓m1,∓m2; ± 1
2
(2m2 + m1)} (8.8)

χ±2 = {∓(3m2 + m1),±m2; ± 1
2
(m2 + m1)},

χ±1 = {±m1,∓(m2 + m1); ± 1
2
(2m2 + m1)},

χ±12 = {∓(3m2 + 2m1),±(m2 + m1); ± 1
2
m2}

χ±21 = {±(3m2 + m1),∓(2m2 + m1); ± 1
2
(m2 + m1)}

χ±121 = {∓(3m2 + 2m1),±(2m2 + m1); ∓ 1
2
m2},

We have included as third entry also the parameter c = − 1
2
(2m2+m1), related to

the Harish-Chandra parameter of the highest root (recalling that mα6 = 2m2+m1).
It is also related to the conformal weight d = 3

2
+ c.

The ERs in the multiplet are related also by intertwining integral Knapp-Stein
operators. These operators are defined for any ER, the general action in our
situation being:

GKS : Cχ −→ Cχ′ ,

χ = [n1, n2 ; c ] , χ′ = [−n1,−n2 ; −c ]. (8.9)

The main multiplets are given explicitly in the next figure:
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Fig. 14. Main multiplets for G2(2)

using induction from the minimal parabolic



The pairs χ± are symmetric w.r.t. the bullet in the middle of the picture
- this symbolizes the Weyl symmetry realized by the Knapp-Stein operators
(11.22): G± : Cχ∓ −→ Cχ± .

Some comments are in order.

Matters are arranged so that in every multiplet only the ER with signature
χ−0 contains a finite-dimensional nonunitary subrepresentation in a finite-
dimensional subspace E. The latter corresponds to the finite-dimensional irrep
of G2(2) with signature [m1,m2]. The subspace E is annihilated by the operators

G+ , Dm1
α1

, Dm2
α2

and is the image of the operator G− .
When both mi = 1 then dim E = 1, and in that case E is also the trivial one-
dimensional UIR of the whole algebra G. Furthermore in that case the conformal
weight is zero: d = 3

2
+ c = 3

2
− 1

2
(2m2 + m1)|mi=1

= 0.

In the conjugate ER χ+
0 there is a unitary discrete series representation

(according to the Harish-Chandra criterion) in an infinite-dimensional subspace D̃0

with conformal weight d = 3
2
+ c = 3

2
+ 1

2
(2m2 +m1) = 3, 7

2
, 4, .... It is annihilated

by the operator G−, and is in the intersection of the images of the operators G+

(acting from χ−0 ), Dm1
α1

(acting from χ+
1 ), Dm2

α2
(acting from χ+

2 ).

Full details are given in 12.

8.2. Induction from maximal parabolics

When inducing from the maximal parabolic P1 =M1 ⊕A1 ⊕N1 there is oneM1-
compact root, namely, α1. We take again the Verma module with ΛHC = Λ1−

0 . We

take χ1−
0 = χHC . Altogether, the main multiplet in this case includes the same

number of ERs/GVMs as in (8.8), so we may use the same notation only adding
super index 1, but in order to avoid coincidence with (8.8) we must impose the
conditions: m1 /∈ N, m1 /∈ N/2.
What is peculiar is that the ERs/GVMs of the main multiplet here actually

12V.K. Dobrev, Symmetry 14 (4) 660 (2022).



consists of three submultiplets with intertwining diagrams as follows:

Λ1−
0

Dm2
α2
−→ Λ1−

2

↕ ↕

Λ1+
0

Dm2
α2
←− Λ1+

2

subtype (A1) (8.10a)

Λ1−
1

Dm2
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−→ Λ1−

21
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Λ1+
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Dm2
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21

subtype (B1) (8.10b)
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12
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121
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Λ1+
12

Dm2
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←− Λ1−

121

subtype (C1) (8.10c)

Next we relax one of the conditions, namely, we allow m1 ∈ N/2, still keeping
m2 ∈ N, m1 /∈ N. This changes the diagram of subtype (C1), (8.10c), as given in
Fig. 15. :
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Fig. 15. Subdiagrams C1 and C2 of G2(2) multiplets

using induction from maximal parabolics P1, P2, resp.



Inducing from the other maximal parabolic P2 is partly dual to the previous
one. The main multiplet is given as (8.8) only adding superscript 2 but in order to
avoid coincidence with (8.8) we must impose the conditions: m2 /∈ N, m2 /∈ N/2,
m2 /∈ N/3.
Similarly to the P1 case the ERs/GVMs of the main miltiplet here actually

consists of three submultiplets with intertwining diagrams as follows:

Λ2−
0

Dm1
α1
−→ Λ2−

1

↕ ↕

Λ2+
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Dm1
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1

subtype (A2) (8.11a)
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121

subtype (C2) (8.11c)

Next we relax one of the conditions, namely, we allow m2 ∈ N/2, still keeping
m2 /∈ N, m2 /∈ N/3. This changes the diagram of subtype (C2), (8.11c), as given in
Fig. 15.

Next we relax another condition, namely, we allow m2 ∈ N/3, still keeping
m2 /∈ N, m2 /∈ N/2. This changes the diagrams of subtypes (B2) and (C2) combining
them as given in the next figure:
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using induction from maximal parabolic P2

for m1 ∈ N, m2 ∈ N/3, m2 /∈ N, m2 /∈ N/2.



9. Exceptional Lie Algebra F ′4
We start with the complex exceptional Lie algebra GC = F4. We use the standard
definition of GC given in terms of the Chevalley generators X±i , Hi , i =
1, 2, 3, 4(=rankF4), by the relations :

[Hj , Hk] = 0 , [Hj , X
±
k ] = ±ajkX

±
k , [X+

j , X−k ] = δjk Hj , (9.1)∑n
m=0 (−1)m

( n
m

) (
X±j

)m
X±k

(
X±j

)n−m
= 0 , j ̸= k , n = 1− ajk ,

where

(aij) =


2 −1 0 0
−1 2 −1 0
0 −2 2 −1
0 0 −1 2

 ; (9.2)

is the Cartan matrix of GC, α∨j ≡
2αj

(αj ,αj)
is the co-root of αj , (·, ·) is the scalar

product of the roots, so that the nonzero products between the simple roots are:
(α1, α1) = (α2, α2) = 2(α3, α3) = 2(α4, α4) = 2, (α1, α2) = −1, (α2, α3) = −1,
(α3, α4) = −1/2. The elements Hi span the Cartan subalgebra H of GC, while the

elements X±i generate the subalgebras G±. We shall use the standard triangular
decomposition

GC = G+ ⊕H⊕ G− , G± ≡ ⊕
α∈∆±

Gα , (9.3)

where ∆+, ∆−, are the sets of positive, negative, roots, resp. Explicitly we have
that there are roots of two lengths with length ratio 2 : 1.
The long roots are: α1, α2, α1 + α2, α2 + 2α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3,
α2 +2α3 +2α4, α1 +α2 +2α3 +2α4, α1 +2α2 +2α3 +2α4, α1 +2α2 +4α3 +2α4,
α1 +3α2 +4α3 +2α4, 2α1 +3α2 +4α3 +2α4. With the chosen normalization they
have length 2.
The short roots are: α3, α4, α2 + α3, α3 + α4, α1 + α2 + α3, α2 + α3 + α4,
α1 + α2 + α3 + α4, α2 + 2α3 + α4, α1 + 2α2 + 2α3 + α4, α1 + α2 + 2α3 + α4,
α1 + 2α2 + 3α3 + α4, α1 + 2α2 + 3α3 + 2α4, and they have length 1.
(Note that the short roots are exactly those which contain α3 and/or α4 with
coefficient 1, while the long roots contain α3 and α4 with even coefficients.)

Thus, F4 is 52–dimensional (52 = |∆|+ rank F4).

In terms of the normalized basis ε1, ε2, ε3, ε4 we have:

∆+ = {εi, 1 ≤ i ≤ 4; εj ± εk, 1 ≤ j < k ≤ 4;

1

2
(ε1 ± ε2 ± ε3 ± ε4), all signs} . (9.4)

The simple roots are:

π = {α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4)} . (9.5)

The maximal compact subalgebra is K = sp(3) ⊕ su(2). Its complexification
KC may be embedded most easily in F4 as the Lie algebra generated by the
subalgebras with simple roots {α2, α3, α4} and {α1}. The long roots of sp(3,C)
in this embedding are: α2, α2 + 2α3, α2 + 2α3 + 2α4. The short roots are: α3,
α4, α2 + α3, α3 + α4, α2 + α3 + α4, α2 + 2α3 + α4.



Note that the 16 roots on the first line of (9.4) form the positive root system of
B4 with simple roots εi − εi+1 , i = 1, 2, 3, ε4 .

The Weyl group of F4 is the semidirect product of S3 with a group which itself
is the semidirect product of S4 with (Z/2Z)3, thus, |W | = 27 32 = 1152.

9.1. Structure theory of the real split form

The real split form of F4 is denoted as F ′4 , sometimes as F2(2) . This real form
has discrete series representations since rankF ′4 = rankK. We can use the same
basis (but over R) and the same root system.

The Iwasawa decomposition of the real split form G ≡ F ′4 , is:

G = K⊕A0 ⊕N0 , (9.6)

the Cartan decomposition is:
G = K⊕Q, (9.7)

where we use: the maximal compact subalgebra K ∼= sp(3)⊕ su(2), dimR Q = 28,

dimR A0 = 4, N0 = N+
0 , or N0 = N−0 ∼= N

+
0 , dimR N±0 = 24.

Since G is maximally split, then the centralizer M0 of A0 in K is zero, thus,
the minimal parabolic P0 and the corresponding Bruhat decomposition are:

P0 = A0 ⊕N0 , G = A0 ⊕N+
0 ⊕N

−
0 (9.8)

9.2. Intertwining differential operators for F ′4
The real form F ′4 has several parabolic subalgebras. We shall consider the maximal
parabolic subalgebra:

P = M⊕A⊕N ,

M = sl(3,R)⊕ sl(2,R) , (9.9)

dimA = 1, dimN = 20

such that the embedding ofM andMC in GC is given by:

sl(3,R)C : {α1, α2, α12 = α1 + α2}, sl(2,R)C : {α4} (9.10)

Remark: Note that F ′4 has a another maximal parabolic subalgebra that is also
written as (9.9) but the embedding ofM andMC flips the short and long roots:

sl(3,R)C : {α3, α4, α34 = α3 + α4}, sl(2,R)C : {α1} (9.11)

That case is also very interesting and was considered in 13. ♢
The result of our classification is a follows. The multiplets of GVMs (and ERs)

induced from (9.9) are parametrized by four positive integers χ = [m1,m2,m3,m4].
Each multiplet contains 96 GVMs (ERs). They are presented in the next figure.

13V.K. Dobrev, in: Springer Proceedings in Mathematics and Statistics, Vol. 335 (Springer, Heidelberg-Tokyo,
2020) pp. 383-398.
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4
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On the figure each arrow represents an embedding between two Verma modules,
V Λ and V Λ′

, the arrow pointing to the embedded module V Λ′
. Each arrow

carries a number n, n = 1, 2, 3, 4, which indicates the level of the embedding,
Λ′ = Λ − mn β. Another feature is indicated by the enumeration of the GVMs
(ERs). Namely, if Λ corresponds to signature χk,ℓ, then Λ′ corresponds to
signature χk+1,ℓ′ (where ℓ, ℓ′ are secondary enumerations that are absent in some
cases).

Further, we mention the additional symmetry w.r.t. to the central point of the
diagram (marked by a bullet) which indicates the integral intertwining Knapp-
Stein (KS) operators acting between the ERs. Due to this symmetry in the actual
parametrization we shall use the conformal weight d = 7/2 + c, more precisely,
the parameter c, instead of the non-compact Dynkin label m3. The parameter c is
more convenient since the KS operators just flip its sign. The KS operators also
involve sl(3) flip of the Dynkin labels m1,m2 (see below). Thus, the entries are:

χ = {n1, n2, c, n4} (9.12)

so that for the top ER (GVM) on the figure Λ−0 we have:

χ−0 = {n1 = m1, n2 = m2, c = −(m1 + m2 + m3 + m4/2), n4 = m4} (9.13)

Furthermore the sl(3) flip (n1, n2)
± will be given below by:

(n1, n2)
+ = (n1, n2), (n1, n2)

− = (n2, n1) (9.14)

The explicit parametrization of the multiplets is given in 14.

Concluding remark:
We expect that the discrete series are contained in the representation χ+

0 since it is

dual to χ−0 where are located the finite-dimensional (non-unitary) irreps. Following
the Harish-Chandra criterion we must check which M-non-compact entries are
negative. We recall that the M-compact entries are m′1,m

′
2,m

′
12,m

′
4 , all other

are non-compact. It is easy to see that all the M-non-compact entries are negative.
The discrete series irrep with lowest possible conformal weight d = 7 happens
naturally when m1 = m2 = m3 = m4 = 1. It corresponds to the one-dimensional
irrep contained in χ−0 .

14V.K. Dobrev, in: Proceedings, of Workshop on Quantum Geometry, Field Theory and Gravity, Corfu, 18-
25.9.2019; Volume 376, PoS (CORFU2019) (Published 2020) 233.



10. Exceptional Lie Algebra F ′′4
The split real form of F4 is denoted as F ′′4 , sometimes as F4(−20) . It has rank four.
Its maximal compact subalgebra is K ∼= so(9), also of rank four. This real form has
discrete series representations since rankF ′′4 = rankK. The number of discrete
series is equal to the ratio |W (GC,HC)|/|W (KC,HC)|, where H is a compact Cartan
subalgebra of both G and K, W are the relevant Weyl groups. Thus, the number of
discrete series in our setting is three. They will be identified below. Here there is
only one nontrivial parabolic: P =M⊕A⊕N , where M = so(7), dimRN = 15.

Note that the root system of MC = so(7,C) = B3 consists of the roots

∆+
3 = {εi, 2 ≤ i ≤ 4; εj ± εk, 2 ≤ j < k ≤ 4} (10.1)

which are part of (9.4), while the simple roots are part of (9.5)

π3 = {α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4} (10.2)

The roots of MC are called M-compact roots of the F4 root system (9.4), the
rest are called M-noncompact roots. The latter give rise to intertwining differential
operators, as explained below.

More explicitly, theM-compact roots are:

α1, α2, α1 + α2 ≡ α12, α2 + 2α3 ≡ α23,3, α1 + α2 + 2α3 ≡ α13,3,

α1 + 2α2 + 2α3 ≡ α13,23, (10.3a)

α3, α2 + α3 ≡ α23, α1 + α2 + α3 ≡ α13, (10.3b)

(10.3a) are long roots, (10.3b) - short.
TheM-noncompact roots are:

α2 + 2α3 + 2α4 ≡ α24,23, α1 + α2 + 2α3 + 2α4 ≡ α14,34,

α1 + 2α2 + 2α3 + 2α4 ≡ α14,24,

α1 + 2α2 + 4α3 + 2α4 ≡ α14,24,3,3, α1 + 3α2 + 4α3 + 2α4 ≡ α14,24,23,3,

2α1 + 3α2 + 4α3 + 2α4 ≡ α14,14,23,3 (10.4a)

α4, α3 + α4 ≡ α34, α2 + α3 + α4 ≡ α24, α1 + α2 + α3 + α4 ≡ α14,

α2 + 2α3 + α4 ≡ α24,3, α1 + 2α2 + 2α3 + α4 ≡ α14,23,

α1 + α2 + 2α3 + α4 ≡ α14,3, α1 + 2α2 + 3α3 + α4 ≡ α14,23,3,

α1 + 2α2 + 3α3 + 2α4 ≡ α14,24,3 (10.4b)

(10.4a) are long roots, (10.4b) - short.

Correspondingly, the Dynkin labels m1,m2,m3 are called M-compact, while
m4 is calledM-noncompact.

The result of our classification is a follows. The multiplets of GVMs (and ERs)
induced from P are parametrized by four positive integers - the Dynkin labels.
Each multiplet contains 24 GVMs (ERs). These multiplets are presented in the
figure below. On the figure each arrow represents an embedding between two
Verma modules, V Λ and V Λ′

, the arrow pointing to the embedded module V Λ′
.

Each arrow carries a number n, n = 1, 2, 3, 4, which indicates the level of the
embedding, Λ′ = Λ −mn β. By our construction it also represents the invariant
differential operator Dn,β .



Further, we use the additional symmetry w.r.t. to the dashed line in the
figure which indicates the integral intertwining Knapp-Stein (KS) operators acting
between the spaces Cχ∓ in opposite directions:

G+
KS : Cχ− −→ Cχ+ , G−KS : Cχ+ −→ Cχ− (10.5)

Note that the KS opposites are induced from the same irreps of M.

This symmetry may be more explicit if we change the parametrization:

{m1,m2,m3,m4} −→ [m1,m2,m3; c] (10.6)

so that the action of the KS operators on this signature is:

G±KS : [m1,m2,m3; c] −→ [m1,m2,m3;−c] (10.7)

This enables us to write the multiplet in a more compact way:

χ±0 = [m1,m2,m3;±(m14,2,4 + m3/2)] (10.8)

χ±a = [m1,m2,m34;±1
2
m14,13,23,2]

χ±b = [m1,m23,m4;±1
2
m14,13,2,2]

χ±c = [m12,m23,m4;±1
2
m14,13]

χ±d = [m2,m13,m4;±1
2
m24,23]

χ±e = [m13,m2,m34;±1
2
m14,12]

χ±f = [m23,m12,m34;±1
2
m24,2]

χ±g = [m14,m2,m3;±1
2
m13,12]

χ±h = [m23,m1,m24,2;±1
2
m34]

χ±i = [m24,m12,m3;±1
2
m23,2]

χ±j = [m2,m1,m24,23;±1
2
m4]

χ±k = [m24,m1,m23,2;±1
2
m3]

Note that if in (10.8) we denote generically

χ± = {m1,m2,m3,m
±
4 } = [m1,m2,m3; c

±] (10.9)

then there is the relation

|c+|+ |c−| = |m+
4 |+ |m

−
4 | . (10.10)

Remark: Note that the pairs χ±j and χ±k are related by KS operators, but in

each case the operator G+
KS is degenerated into a differential operator, namely,

we have

Λ−j
m4α14,24,3

−→
Λ+

j (10.11a)

Λ−k
m3α14,24,3

−→
Λ+

k (10.11b)



Concluding remarks:
Matters are arranged so that in every main multiplet only the ER with
signature χ−0 contains a finite-dimensional nonunitary subrepresentation in a finite-
dimensional subspace E. The latter corresponds to the finite-dimensional irrep of
F ′′4 with signature {m1 ,m2 ,m3 ,m4}. Thus, the main multiplets are in 1-to-1
correspondence with the finite-dimensional representations of F ′′4 .

The subspace E is annihilated by the operator G+ , and is the image of the
operator G− . The subspace E is annihilated also by the intertwining differential
operator Dm4α4 acting from χ−0 to χ−a . When all mi = 1 then dim E = 1,
and in that case E is also the trivial one-dimensional UIR of the whole algebra G.
Furthermore in that case the conformal weight is zero: d = 7

2
+ c|mi=1

= 0.

In the conjugate ER χ+
0 there is a unitary discrete series subrepresentation in

an infinite-dimensional subspace D0. It is annihilated by the operator G−, and is in
the image of the operator G+ acting from χ−0 and in the image of the intertwining
differential operator Dm4

α14,23,3
acting from χ+

a .

Two more occurrences of discrete series are in the infinite-dimensional subspaces
Da, Db of the ERs χ+

a , χ+
b , resp. As above they are annihilated by the operator G−,

and are in the images of the operator G+ acting from χ−a , χ−b , resp. Furthermore

the subspace Da is in the image of the operator Dm3
α14,23

acting from χ+
b and

is annihilated by the intertwining differential operator Dm4
α14,23,3

. Furthermore the

subspace Db is in the image of the operator Dm2
α14,14,23,3

acting from χ+
c and is

annihilated by the intertwining differential operator Dm3
α14,23

.

Full details are given in 15.

15V.K. Dobrev, Contribution to Peter Suranyi 87th Birthday Festschrift: ”A Life in Quantum Field Theory”,
https://doi.org/10.1142/13025 (World Scientific, November 2022), Edited by: P. Argyres, G. Dunne, G. Semenoff,
R. Wijewardhana.
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11. Heisenberg Parabolic Subgroups of SO∗(2n)

Here we focus on the algebras SO∗(2n). In Section 5 we considered already part
of this family, namely, SO∗(4n), with maximal parabolic factor MC equal to the
semisimple part of the maximal compact subalgebra. Here the maximal parabolic
factor belongs to a different case, namely, Heisenberg parabolics.

The compact roots w.r.t. the real form SO∗(2n) are αij - they form (by
restriction) the root system of the semisimple part of KC, namely, KC

s
∼= su(n)C ∼=

sl(n,C), while the roots βij are K-noncompact.

The minimal parabolics of SO∗(2n) depend on whether n is even or odd and are:

M0 = so(3)⊕ · · · ⊕ so(3), r factors, for n = 2r (11.1a)

= so(2)⊕ so(3)⊕ · · · ⊕ so(3), r factors, for n = 2r + 1 (11.1b)

The subalgebras N±0 which form the root spaces of the root system (G,A0) are of
real dimension n(n− 1)− [n/2].

The maximal parabolic subalgebras haveM-factors as follows:

Mmax
j = so∗(2n− 4j)⊕ su∗(2j) , j = 1, . . . , r . (11.2)

The N± factors in the maximal parabolic subalgebras have dimensions:
dim (N±j )max = j(4n− 6j − 1).

The case j = 1 is special.16 In this case we have a maximal Heisenberg parabolic
withM-factor:

Mmax
Heisenberg = so∗(2n− 4)⊕ su(2) (11.3a)

rankMmax
Heisenberg = n− 1 (11.3b)

which we use in this paper.

11.1. The case SO(p, q)

The Lie algebras Gp,q = so(p, q) (p ≥ q ≥ 2) in general belong to the class that have
maximal Heisenberg parabolic subalgebras. The latter have the factor Mp,q =
sl(2,R)⊕ so(p− 2, q − 2) which has rankMp,q = [(p + q)/2]− 1 = rankGp,q − 1.

For us it is important that when p + q = 2n is even, then Gp,q is parabolically
related to so∗(2n). For this are needed the following facts:

GCp,q = (so∗(2n))C, p + q = 2n (11.4)

MC
p,q = (Mmax

Heisenberg)
C

Let us consider the data for this relation.

We need the root system of the complexification: so(p + q,C) for p + q = 2n.
The positive roots are given standardly as:

αij = ϵi − ϵj , 1 ≤ i < j ≤ n , (11.5a)

βij = ϵi + ϵj , 1 ≤ i < j ≤ n (11.5b)

16In Section 5 we considered the case j = r, n = 2r.



where ϵi are standard orthonormal basis: ⟨ϵi, ϵj⟩ = δij . The simple roots are:

πn = {γi = αi,i+1, 1 ≤ i ≤ n− 1, γn = βn−1,n} (11.6)

Thus, the root system of MC
p,q = sl(2,C)⊕ so(2n− 4,C) is given by:

α12, αij, βij 3 ≤ i < j ≤ n , n ≥ 4 (11.7a)

α23, n = 3 (11.7b)

The simple roots ofMC
p,q are:

πMp,q = {γ1, γi = αi,i+1, 3 ≤ i ≤ n− 1, γn = βn−1,n},
p + q

2
= n ≥ 4(11.8a)

πM3 = { γ2 },
p + q

2
= 3 (11.8b)

We see that the cases p + q = 6 are not representative in relation to the Satake-
Dynkin diagrams. Namely, the Satake-Dynkin diagram of so(3, 3) is:

⃝−−−⃝−−−⃝ (11.9)

since the algebra is split and M0 = 0.

The Satake-Dynkin diagram of so(4, 2) is:

⃝
|
⃝

−−−⃝
↖↘

(11.10)

where by standard convention the left-right arrow represents the so(2) subalgebra
(actually equal to M0).

We recall that the Satake-Dynkin diagram of so(2n)C for n ≥ 4 contains a node
related to three nodes unrelated to each other (see also next subsection).

We mention also that for p + q = 6 the parabolically related Lie algebra
so∗(6) ∼= su(3, 1) is not included in the list of algebras with maximal Heisenberg
parabolic subalgebra, since being of split rank 1 it has one non-trivial parabolic
(which is both minimal and maximal) with so(2)⊕ so(3).

Finally, we mention that one representative case of p + q = 6, namely, so(4, 2)
with Heisenberg parabolic M4,2 = sl(2,R)⊕ so(2) was considered in detail in 17.

Thus, it is clear that we can safely consider so∗(2n) only for n ≥ 4. Below we
consider the nontrivial case so∗(10).

11.2. SO∗(10)

Further we restrict to our case of study G = so∗(10) with minimal parabolic:

M0 = so(2)⊕ so(3)⊕ so(3) (11.11)

17V.K. Dobrev, Physics of Atomic Nuclei, 80, No. 2 (2017) 347–352.



The Satake-Dynkin diagram of G is:

•−−−⃝−−−•|
⃝

−−−⃝
↖↘

(11.12)

where by standard convention the black dots represent the so(3) subalgebras of
M0 and the left-right arrow represents the so(2) subalgebra of M0.

We shall use the Heisenberg maximal parabolic (11.3) withM-subalgebra:

M = so∗(6)⊕ so(3) ∼= su(3, 1)⊕ su(2) (11.13)

The Satake-Dynkin diagram ofM is a subdiagram of (11.12):

• •|
⃝

−−−⃝
↖↘

(11.14)

where the single black dot represents the so(3) subalgebra, while the connected
part of the diagram represents the su(3, 1) subalgebra.

From the above follows that the M-compact roots of GC are (given in terms of
the simple roots):

α12 = γ1, (11.15a)

α34 = γ3, α45 = γ4, β45 = γ5, (11.15b)

α35 = γ3 + γ4, β34 = γ3 + γ4 + γ5, β35 = γ3 + γ5

By definition the above are the positive roots of MC, namely: su(2)C (11.15a),
and su(3, 1)C = sl(4,C) (11.15b).

The positiveM-noncompact roots of GC in terms of the simple roots are:

γ12 = γ1 + γ2, γ13 = γ1 + γ2 + γ3, γ14 = γ1 + γ2 + γ3 + γ4,

γ2, γ23 = γ2 + γ3, γ24 = γ2 + γ3 + γ4, (11.16a)

β12 = γ1 + 2γ2 + 2γ3 + γ4 + γ5, β13 = γ1 + γ2 + 2γ3 + γ4 + γ5,

β14 = γ1 + γ2 + γ3 + γ4 + γ5, β15 = γ1 + γ2 + γ3 + γ5,

β23 = γ2 + 2γ3 + γ4 + γ5, β24 = γ2 + γ3 + γ4 + γ5,

β25 = γ2 + γ3 + γ5 (11.16b)

where for convenience we use the notation γij ≡ αi,j+1

To characterize the Verma modules we shall use first the Dynkin labels:

mi ≡ (Λ + ρ, γ∨i ) = (Λ + ρ, γi) , i = 1, . . . , 5, (11.17)

where ρ is half the sum of the positive roots of GC. Thus, we shall use :

χΛ = {m1,m2,m3,m4,m5} (11.18)

Note that when all mi ∈ N then χΛ characterizes the finite-dimensional irreps of
GC and its real forms, in particular, so∗(10). Furthermore, m1 ∈ N characterizes



the finite-dimensional irreps of the su(2) subalgebra, while the set of positive
integers {m3,m4,m5} characterizes the finite-dimensional irreps of su(3, 1).

For the M-noncompact roots of GC we shall use also the Harish-Chandra
parameters:

mij = (Λ + ρ, γ∨ij) , (11.19a)

m̂ij = (Λ + ρ, β∨ij) (11.19b)

and explicitly in terms of the Dynkin labels (compare (11.16)):

χHC = {m12 = m1 + m2, m13 = m1 + m2 + m3,

m14 = m1 + m2 + m3 + m4, m2,

m23 = m2 + m3, m24 = m2 + m3 + m4, (11.20a)

m̂12 = m1 + 2m2 + 2m3 + m4 + m5,

m̂13 = m1 + m2 + 2m3 + m4 + m5,

m̂14 = m1 + m2 + m3 + m4 + m5,

m̂15 = m1 + m2 + m3 + m5,

m̂23 = m2 + 2m3 + m4 + m5,

m̂24 = m2 + m3 + m4 + m5,

m̂25 = m2 + m3 + m5} (11.20b)

The main multiplets are in 1-to-1 correspondence with the finite-dimensional
irreps of so∗(10), i.e., they are labelled by the five positive Dynkin labels mi ∈ N.
We take χ0 = χHC . It has one embedded Verma module with HW Λa =

Λ0 −m2γ2. The number of ERs/GVMs in a main multiplet is 40.

We shall label the signature of the ERs of G also as follows:

χ = [n ; c ; n1 , n2 , n3] , n ∈ N, c = −1
2
m15,23, nj = mj+2 ∈ Z+ , (11.21)

where the first entry n = m1 labels the finite-dimensional irreps of su(2), the second
entry labels the characters of A , the last three entries of χ are labels of the finite-
dimensional (nonunitary) irreps of M = su(3, 1) when all nj > 0 or limits of the
latter when some nj = 0. Note that m15,23 = m1 + 2m2 + 2m3 + m4 + m5 is the
Harish-Chandra parameter for the highest root β12.

Using this labelling signatures may be given in the following pair-wise manner:



χ±0 = [m1;m3,m4,m5 ; ±1
2
m15,23]

χ±a = [m12;m23,m4,m5 ; ±1
2
m15,3]

χ±b = [m2;m13,m4,m5 ; ±1
2
m25,3]

χ±c = [m13;m2,m34,m3,5 ; ±1
2
m15]

χ±d = [m23;m12,m34,m3,5 ; ±1
2
m25]

χ±e = [m14;m2,m3,m35 ; ±1
2
m13,5]

χ±f = [m13,5;m2,m35,m3 ; ±1
2
m14]

χ±g = [m3;m1,m24,m23,5 ; ±1
2
m35]

χ±h = [m24;m12,m3,m35 ; ±1
2
m23,5]

χ±i = [m23,5;m12,m35,m3 ; ±1
2
m24]

χ±j = [m15;m2,m3,5,m34 ; ±1
2
m13]

χ±k = [m34;m1,m23,m25 ; ±1
2
m3,5]

χ±l = [m3,5;m1,m25,m23 ; ±1
2
m34]

χ±m = [m25;m12,m3,5,m34 ; ±1
2
m23]

χ±n = [m15,3;m23,m5,m4 ; ±1
2
m12]

χ±p = [m4;m1,m2,m25,3 ; ±1
2
m5]

χ±q = [m35;m1,m23,5,m24 ; ±1
2
m3]

χ±r = [m5;m1,m25,3,m2 ; ±1
2
m4]

χ±s = [m25,3;m13,m5,m4 ; ±1
2
m2]

χ±t = [m15,23;m3,m5,m4 ; ±1
2
m1]

The ERs in the multiplet are related also by the Knapp-Stein intertwining integral
operators. These operators are defined for any ER, the general action here is: being:

GKS : Cχ −→ Cχ′ ,

χ = {n ; n1, n2, n3 ; c } , χ′ = {n ; n1, n2, n3 ; −c }. (11.22)

The main multiplets are given explicitly in the figure below. The pairs χ± are
symmetric w.r.t. to the dashed line in the middle the figure - this represents the
Weyl symmetry realized by the Knapp-Stein operators (11.22): GKS : Cχ∓ −→
Cχ± .

Some comments are in order.

Matters are arranged so that in every multiplet only the ER with signature
χ−0 contains a finite-dimensional nonunitary subrepresentation in a finite-
dimensional subspace E. The latter corresponds to the finite-dimensional irrep
of so∗(10) with signature {m1 , . . . ,m5}. The subspace E is annihilated by the
operator G+ , and is the image of the operator G− . The subspace E is annihilated
also by the intertwining differential operator acting from χ−0 to χ−a . When all
mi = 1 then dim E = 1, and in that case E is also the trivial one-dimensional



UIR of the whole algebra G. Furthermore in that case the conformal weight is
zero: d = 7

2
+ c = 7

2
− 1

2
(m1 + 2m2 + 2m3 + m4 + m5)|mi=1

= 0.

In the conjugate ER χ+
0 there is a unitary discrete series subrepresentation in

an infinite-dimensional subspace D. It is annihilated by the operator G−, and is
the image of the operator G+.

Thus, for so∗(10) the ER with signature χ+
0 contains both a holomorphic

discrete series representation and a conjugate anti-holomorphic discrete series
representation. The direct sum of the holomorphic and the antiholomorphic
representations spaces form the invariant subspace D mentioned above. Note
that the corresponding lowest weight GVM is infinitesimally equivalent only to
the holomorphic discrete series, while the conjugate highest weight GVM is
infinitesimally equivalent to the anti-holomorphic discrete series.

Finally, we remind that the above considerations for the intertwining differential
operators are applicable also for the algebras so(p, q) (with p + q = 10,
p ≥ q ≥ 2) with maximal Heisenberg parabolic subalgebras: P ′ =M′ ⊕A′ ⊕N ′,
M′ = so(p− 2, q − 2)⊕ sl(2,R).
Full details are given in 18.

18V.K. Dobrev, Symmetry 2022, 14 (8), 1592
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Fig. 19. Main multiplets for SO
∗(10)

using induction from maximal Heisenberg parabolic
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