METRIC COMPATIBILITY AND LEVI-CIVITA CONNECTIONS ON QUANTUM GROUPS

Thomas Weber

University of Turin

Workshop on Noncommutative and generalized geometry in string theory, gauge theory and related physical models

Corfu

24.09.2022

In collaboration with P. Aschieri arXiv:2209.05453

What is this talk about?

Goal: Give a mathematical model for quantum gravity general enough to cover some of our favorite noncommutative spaces.

Problem: While noncommutative differential geometry is rather well-understood there is no straightforward approach to quantum Riemannian geometry.

Ingredients:

- Space of observables: A noncommutative algebra (associative, unital)
- Differential calculus: $(\Omega^{\bullet}, \wedge, d)$ DGA on $\Omega^{0} = A$
- Connection on A: $\nabla : \Omega^1 \to \Omega^1 \otimes_A \Omega^1$ satisfying

$$abla(\omega a) =
abla(\omega) a + \omega \otimes_A \mathrm{d} a$$

• Torsion, curvature:
$$\operatorname{Tor}^{\nabla} = \wedge \circ \nabla + d$$
, $R^{\nabla} = \nabla^2$

• ...

But:

- What is a metric $\mathbf{g} \in \Omega^1 \otimes_A \Omega^1$?
- How to make sense of metric-compatibility $\nabla(\mathbf{g}) = 0$?

Solutions: Drinfel'd Twist/Triangular Structure

Quantum Levi-Civita connections have been studied in the twisted/triangular setting [Wess et al. '05], [Aschieri-Castellani '09], [TW '20], [Aschieri '20],...

- A has a triangular Hopf algebra symmetry (H, \mathcal{R})
- There is a canonical calculus $(\Omega^{\bullet}_{R}, \wedge_{\mathcal{R}}, \mathrm{d})$ on A dual to the braided derivations

$$X(ab) = X(a)b + (\mathcal{R}^i \triangleright a)(\mathcal{R}_i \triangleright X)(b)$$

where $X \in \text{End}(A)$, $a, b \in A$, $\mathcal{R}^{-1} = \mathcal{R}^i \otimes \mathcal{R}_i \in H \otimes H$

- A metric $\mathbf{g} \in \Omega^1_{\mathcal{R}} \otimes_A \Omega^1_{\mathcal{R}}$ is defined as $\sigma^{\mathcal{R}}$ -symmetric and non-degenerate
- Connections are extended as braided derivations

 ∇(ω ⊗_A η) = ∇(ω) ⊗_A η + (Rⁱ ▷ ω) ⊗_A (R_i ▷ ∇)(η)

Theorem (Levi-Civita for A with (H, \mathcal{R}) -symmetry)

For every metric **g** on A \exists ! torsion-free connection \forall satisfying \forall (**g**) = 0.

Solutions: Bimodule Connections and Weak Levi-Civita

[DuboisViolette-Michor '96], [DuboisViolette-Masson '96], [Majid '99], [Beggs-Majid '11,'14],...

Bimodule connection: $\nabla: \Omega^1 \to \Omega^1 \otimes_A \Omega^1$ right connection with A-bimodule map $\sigma: \Omega^1 \otimes_A \Omega^1 \to \Omega^1 \otimes_A \Omega^1$ such that

$$\nabla(\mathbf{a}\omega) = \mathbf{a}\nabla(\omega) + \sigma(\mathrm{d}\mathbf{a}\otimes_A\omega)$$

corresponding to central metrics $\mathbf{g} \in \Omega^1 \otimes_A \Omega^1$.

If there is a 'framing' of the differential calculus $\Omega^1 \cong (A \otimes V)^{\operatorname{co} H}$, V an *H*-comodule (together with a dual 'coframing') there is a weak metric-compatibility condition

$$(d \otimes id - id \otimes \nabla)g$$

Theorem (Majid)

For $SL_q(2)$ there is a unique weak Levi-Civita connection.

- NC Riemannian geometry for central metrics on fuzzy spaces [Madore '93, '96, '97]
- Connections on central modules _{Z(A)} M_{Z(A)} and 'tame' differential calculi [DuboisViolette-Michor '96], [DuboisViolette-Masson '96], [Bhowmick-Goswami-Landi '19,'20]
- Pseudo-Riemannian calculi and LC connections for NC spaces with preferred frame of derivations [Arnlind '17]
- Covariant connections on the matrix quantum groups $SL_q(N), O_q(N), Sp_q(N)$ [Heckenberger-Schmüdgen '99], [Bhowmick-Mukhopadhyay '19]

• ...

Approach of this talk

Goals:

- Provide a metric compatibility condition 𝒴(g) = 0 for A = H a quantum group (Hopf algebra). In particular
 - *H* is NOT (quasi-)triangular
 - g is NOT central
- Prove existence and uniqueness of ∇^{LC} for a certain class of metrics. In particular for $SL_q(2)$.

Main tools:

- 'Sum of connections' (or 'braided derivation') formula for the tensor product extension of a connection
- Direct sum decomposition

$$\Omega^1_H \otimes_H \Omega^1_H \cong (\Omega^1_H \vee \Omega^1_H) \oplus (\Omega^1_H \wedge \Omega^1_H)$$

in case the canonical quantum double braiding $\sigma^{\mathcal{W}} \colon \Omega^1_H \otimes_H \Omega^1_H \to \Omega^1_H \otimes_H \Omega^1_H$ is diagonalisable (e.g. for $\mathrm{SL}_q(N), \mathrm{O}_q(N), \mathrm{Sp}_q(N), \ldots$). Inspired by ideas of [Bhowmick-Mukhopadhyay '20]

Plan of the talk

- A 'braided'-tensor product for connections
 - closed monoidal category ($\mathcal{M}^{H},\otimes,\mathrm{HOM}^{\mathrm{Ad}}$)
 - rational morphisms HOM^{Ad}
 - bicovariant bimodules ${}^{H}_{H}\mathcal{M}^{H}_{H}$
- 2 Decomposition of $\Omega^1_H \otimes_H \Omega^1_H$ for diagonalisable $\sigma^{\mathcal{W}}$
- Sum of connections
- Quantum Riemannian geometry on quantum groups

Comodules and rational morphisms

 (H, Δ, ϵ, S) Hopf algebra (with invertible antipode) over a field \Bbbk . $(\mathcal{M}^{H}, \otimes)$ monoidal category of right *H*-comodules. $M, \Delta_{M} : M \to M \otimes H$

The external Hom-functor Hom^H is given by right H-colinear maps

$$\phi \colon M \to N \text{ s.t. } \Delta_N \circ \phi = (\phi \otimes \mathrm{id}) \circ \Delta_M$$

The internal $Hom\text{-}functor\ HOM^{Ad}_\Bbbk$ is given by $\Bbbk\text{-}linear$ maps which admit a right adjoint coaction, the so-called right rational morphisms:

 $\Delta^{\mathrm{Ad}} \colon \mathrm{Hom}_{\Bbbk}(M,N) \to \mathrm{Hom}_{\Bbbk}(M,N\otimes H), \qquad \Delta^{\mathrm{Ad}}(\phi)(m) = \phi(m_0)_0 \otimes \phi(m_0)_1 S(m_1)$

Then $\operatorname{HOM}_{\Bbbk}^{\operatorname{Ad}}(M, N) := (\Delta^{\operatorname{Ad}})^{-1}(\operatorname{Hom}_{\Bbbk}(M, N) \otimes H).$

Proposition (Ulbrich '90)

Let M, N be objects in \mathcal{M}^H . Then

- **1** HOM^{Ad}_k(M, N) is an object in \mathcal{M}^H
- $left {\rm HOM}^{\rm Ad}_{\Bbbk}(M,N)^{{\rm co}H} = {\rm Hom}^{H}(M,N)$

3 The evaluation and concatenation for HOM^{Ad}_{\Bbbk} are morphisms in \mathcal{M}^{H}

Covariant modules

Remark

 $(\mathcal{M}^H,\otimes,\mathrm{HOM}^{\mathrm{Ad}}_\Bbbk)$ is a closed monoidal category, i.e. the currying

$$\operatorname{Hom}^{H}(M\otimes \cdot, \cdot) \Rightarrow \operatorname{Hom}^{H}(M, \operatorname{HOM}_{\Bbbk}^{\operatorname{Ad}}(\cdot, \cdot))$$

is a natural isomorphism.

Let *M* be a right *H*-covariant right *H*-module, i.e. $M \in \mathcal{M}_H \cap \mathcal{M}^H$ such that $\Delta_M(ma) = \Delta_M(m)\Delta(a), m \in M, a \in H$.

Proposition (Caenepeel-Guedenon '07)

For $M, N \in \mathcal{M}_{H}^{H}$ we have

 $\operatorname{HOM}_{H}^{\operatorname{Ad}}(M, N) = \operatorname{Hom}_{H}(M, N)$

if M is finitely generated as a right H-module.

In the following we write $HOM_{\Bbbk} := {}^{Ad}HOM_{\Bbbk}^{Ad}$ and $HOM_{\mathcal{H}} := {}^{Ad}HOM_{\mathcal{H}}^{Ad}$.

Bicovariant bimodules

A bicovariant H-bimodule is an H-bimodule and H-bicomodule M such that

 $\Delta_M(amb) = \Delta(a)\Delta_M(m)\Delta(b)$ and $_M\Delta(amb) = \Delta(a)_M\Delta(m)\Delta(b)$.

Category ${}^{H}_{H}\mathcal{M}^{H}_{H}$ with morphisms *H*-bilinear and *H*-bicolinear.

For $M, N \in {}^{H}_{H}\mathcal{M}_{H}^{H}$ the tensor product $M \otimes_{H} N$ becomes object in ${}^{H}_{H}\mathcal{M}_{H}^{H}$ via $a \cdot (m \otimes_{H} n) \cdot b = (am) \otimes_{H} (nb)$ and the diagonal coactions.

Proposition

 $({}^{H}_{H}\mathcal{M}^{H}_{H}, \otimes_{H}, \sigma^{\mathcal{W}})$ is a braided monoidal category with Woronowicz braiding

 $\sigma_{M,N}^{\mathcal{W}}: M \otimes_H N \to N \otimes_H M, \qquad m \otimes n \mapsto m_{-2}n_0 S(m_{-1}n_1) \otimes_H m_0 n_2.$

The restriction to finitely generated bicovariant bimodules is closed braided monoidal with internal Hom-functor $HOM_H = Hom_H$.

Note that the *H*-module actions on $\phi \in HOM_H(M, N)$ are $(a \cdot \phi \cdot b)(m) = a\phi(bm)$.

We write
$$\sigma^{\mathcal{W}}(m \otimes_H n) = {}_{\alpha}n \otimes_H {}^{\alpha}m$$
.

Braided tensor product of internal homomorphisms

For $M, M', N, N' \in {}^{H}_{H}\mathcal{M}^{H}_{H}$ we define

 $\otimes_{\sigma^{\mathcal{W}}} \colon \operatorname{Hom}_{H}(M, M') \otimes_{H} \operatorname{Hom}_{H}(N, N') \to \operatorname{Hom}_{H}(M \otimes_{H} N, M' \otimes_{H} N')$ (1)

via

 $(\phi \otimes_{\sigma^{\mathcal{W}}} \psi)(m \otimes_{H} n) = \phi(_{\alpha}m) \otimes_{H} (^{\alpha}\psi)(n) = \phi(\psi_{-2}m_{0}S(\psi_{-1}m_{1})) \otimes_{H} \psi_{0}(m_{2}n).$

Proposition (Majid)

The operation (1) is a morphism in ${}^{H}_{H}\mathcal{M}^{H}_{H}$ and associative, i.e.

$$(\phi \otimes_{\sigma^{W}} \psi) \otimes_{\sigma^{W}} \chi = \phi \otimes_{\sigma^{W}} (\psi \otimes_{\sigma^{W}} \chi).$$

This works in any closed braided monoidal category.

Problem: Connections are NOT right *H*-linear. Can we generalize $\otimes_{\sigma W}$ to connections?!

Lifting of Woronowicz braiding

Consider the following lifting $\sigma \colon M \otimes N \to N \otimes M$ of Woronowicz braiding

$$\begin{array}{cccc} m \otimes n & M \otimes N \stackrel{\sigma}{\longrightarrow} N \otimes M & m_{-2}n_0 S(m_{-1}n_1) \otimes m_0 n_2 \\ & & \downarrow^{\pi_H} & \pi_H \downarrow \\ m \otimes_H n & M \otimes_H N \stackrel{\sigma^{\mathcal{W}}}{\longrightarrow} N \otimes_H M & m_{-2}n_0 S(m_{-1}n_1) \otimes_H m_0 n_2 \end{array}$$

Lemma

Definition

For M, M', N, N' in ${}^{H}_{H}\mathcal{M}^{H}_{H}$ we define

```
\otimes_{\sigma} \colon \operatorname{HOM}_{\Bbbk}(M, M') \otimes \operatorname{HOM}_{\Bbbk}(N, N') \to \operatorname{HOM}_{\Bbbk}(M \otimes N, M' \otimes N')
```

by $(\phi \otimes_{\sigma} \psi)(m \otimes n) = \phi(_{\alpha}m) \otimes (^{\alpha}\psi)(n) = \phi(\psi_{-2}m_0S(\psi_{-1}m_1)) \otimes \psi_0(m_2n).$

Braided tensor product for rational morphisms

Theorem (Aschieri-TW)

The operation

```
\otimes_{\sigma} \colon \operatorname{HOM}_{\Bbbk}(M,M') \otimes \operatorname{HOM}_{\Bbbk}(N,N') \to \operatorname{HOM}_{\Bbbk}(M \otimes N,M' \otimes N')
```

is associative and a morphism in ${}^{H}_{H}\mathcal{M}^{H}_{H}$.

Since $(\phi \otimes_{\sigma} \psi)(ma \otimes n) = (\phi \otimes_{\sigma} \psi)(m \otimes an)$ the map $\phi \otimes_{\sigma} \psi \colon M \otimes N \to M' \otimes N'$ descends to a map $\phi \otimes_{\sigma} \psi \colon M \otimes_{H} N \to M' \otimes N'$. Define $\phi \otimes_{\psi} \psi = \pi_{H} \circ (\phi \otimes_{\sigma} \psi)$.

Corollary

The operation

 $\hat{\otimes} \colon \mathrm{HOM}_\Bbbk(M,M') \otimes \mathrm{HOM}_\Bbbk(N,N') \to \mathrm{HOM}_\Bbbk(M \otimes_H N,M' \otimes_H N'),$

is associative and a morphism in ${}^{H}_{H}\mathcal{M}^{H}_{H}$.

If ϕ and ψ are right H-linear we obtain $\phi \hat{\otimes} \psi = \phi \otimes_{\sigma^{W}} \psi$.

Connections on bicovariant bimodules

Fix a bicovariant FODC (Ω^1 , d) on H and an object M in ${}^{H}_{H}\mathcal{M}^{H}_{H}$.

Definition

A right connection on M is a k-linear map $\nabla: M \to M \otimes_H \Omega^1$ such that $\nabla(ma) = \nabla(m)a + m \otimes_H da$.

Its extension $\nabla^{\bullet}: M \otimes_H \Omega^{\bullet} \to M \otimes_H \Omega^{\bullet+1}$ to higher orders is defined by

$$\nabla^{\bullet} = \wedge_{23} \circ (\nabla \otimes_H \operatorname{id}_{\Omega^{\bullet}}) + \operatorname{id}_M \otimes_H d$$
⁽²⁾

and satisfies

$$\nabla^{ullet}(m\otimes_H\omega a)=
abla^{ullet}(m\otimes_H\omega)a+(-1)^{|\omega|}m\otimes_H\omega\wedge\mathrm{d} a.$$

Remark

The individual terms on the right of (2) are not well-defined on \otimes_{H} . However, we have an equality

$$\nabla^{ullet} = \wedge_{23} \circ (\nabla \hat{\otimes} \mathrm{id}_{\Omega^{ullet}}) + \mathrm{id}_M \hat{\otimes} \mathrm{d}$$

where all individual terms are well-defined on $M \otimes_H \Omega^{\bullet}$.

Torsion, curvature and canonical connections

Definition

The curvature of ∇ is the right *H*-linear map defined by

$$\mathbf{R}^{\nabla} = \nabla^{\bullet} \circ \nabla : M \to M \otimes_H \Omega^2.$$

If $M = \Omega^1$ the torsion of ∇ is the right *H*-linear map defined by

$$\operatorname{Tor}^{\bigtriangledown} = \wedge \circ \nabla + \mathrm{d} \colon \Omega^1 \to \Omega^2.$$

Example

On every bicovariant bimodule there is a canonical flat connection $d^M: M \to M \otimes_H \Omega^1$ given by

 $\mathrm{d}^{M}(m)=m_{0}S(m_{1})\otimes_{H}\mathrm{d}m_{2}.$

For a basis $\{\omega^i\}$ of left coinvariant 1-forms the structure constants $C^k_{ij} \in \mathbb{k}$ determined by the Cartan-Maurer formula $d\omega^k = C^k_{ij}\omega^i \wedge \omega^j$ give a canonical torsion-free connection

$$\nabla^{C}(\omega^{k}) = -C_{ji}^{k}\omega^{i} \otimes_{H} \omega^{j}.$$

Sum of connections via canonical connections

Lemma

Let *M* be a finitely generated bicovariant bimodule. Any right connection $\nabla : M \to M \otimes_H \Omega^1$ is a rational morphism.

Proof.

All right *H*-linear maps $\phi: M \to M \otimes_H \Omega^1$ are rational and also d^M is rational since it is right *H*-colinear. Thus, $\nabla = d^M + \phi$ is rational.

Remark

The canonical connections satisfy

$$\mathrm{d}^{M\otimes_H N} = \sigma_{23}^{\mathcal{W}} \circ (\mathrm{d}^M \otimes_H \mathrm{id}_N) + \mathrm{id}_M \otimes_H \mathrm{d}^N$$

where the individual terms are not well-defined.

Using the canonical connections there is a natural notion of "sum of connection":

$$\nabla^{M\otimes_H N} := \sigma_{23}^{\mathcal{W}} \circ ((\nabla^M - \mathrm{d}^M) \otimes_{\sigma^{\mathcal{W}}} \mathrm{id}_N) + \mathrm{id}_M \otimes_{\sigma^{\mathcal{W}}} (\nabla^N - \mathrm{d}^N) + \mathrm{d}^{M\otimes_H N}$$

Sum of connections independent from can. connections

Using the braided tensor product $\hat{\otimes}$ of rational morphism we define

$$\nabla^{M} \oplus \nabla^{N} := \sigma_{23}^{\mathcal{W}} \circ (\nabla^{M} \hat{\otimes} \mathrm{id}_{N}) + \mathrm{id}_{M} \hat{\otimes} \nabla^{N}$$

with all individual terms well-defined.

Theorem (Aschieri-TW)

 $\overline{\nabla}^{M} \oplus \overline{\nabla}^{N} \colon M \otimes_{H} N \to M \otimes_{H} N \otimes_{H} \Omega^{1} \text{ is a right connection on } M \otimes_{H} N \text{ and both notions of sum of connection coincide: } \overline{\nabla}^{M} \oplus \overline{\nabla}^{N} = \overline{\nabla}^{M} \otimes_{H} N.$

The curvature of $\nabla^{M\otimes_H N}$ is

$$\begin{split} \mathrm{R}^{\overline{\nabla}^{M} \oplus \overline{\nabla}^{N}} &= \sigma_{23}^{\mathcal{W}} \circ (\mathrm{R}^{\overline{\nabla}^{M}} \otimes_{\sigma^{\mathcal{W}}} \mathrm{id}_{N}) + \mathrm{id}_{M} \otimes_{\sigma^{\mathcal{W}}} \mathrm{R}^{\overline{\nabla}^{N}} \\ &+ \wedge_{34} \circ \sigma_{23}^{\mathcal{W}} \circ ((\overline{\nabla}^{M} - \mathrm{d}^{M}) \otimes_{\sigma^{\mathcal{W}}} (\overline{\nabla}^{N} - \mathrm{d}^{N})) \\ &+ \wedge_{34} \circ (\mathrm{id}_{M} \otimes_{\sigma^{\mathcal{W}}} ((\overline{\nabla}^{N} - \mathrm{d}^{N}) \otimes_{\sigma^{\mathcal{W}}} \mathrm{id}_{\Omega^{1}})) \circ \sigma_{23}^{\mathcal{W}} \circ ((\overline{\nabla}^{M} - \mathrm{d}^{M}) \otimes_{\sigma^{\mathcal{W}}} \mathrm{id}_{N}). \end{split}$$

Some linear algebra

In the following we assume that $\sigma^{\mathcal{W}} \colon \Omega^1 \otimes_H \Omega^1 \to \Omega^1 \otimes_H \Omega^1$ is diagonalizable, i.e. $\exists \lambda \in \Lambda$ eigenvalues of $\sigma^{\mathcal{W}}$ with eigenspaces V_{λ} . Then

$$\Omega^1 \otimes_H \Omega^1 = \underbrace{\Omega^1 \vee \Omega^1}_{:=V_1} \oplus \underbrace{\Omega^2}_{=\bigoplus_{\lambda \neq 1} V_\lambda},$$

where we identify $\bigoplus_{\lambda \neq 1} V_{\lambda}$ with degree 2 of the exterior algebra.

We have a projectors $P_{\vee} = \prod_{\lambda \neq 1} \frac{\sigma^{\mathcal{W}} - \lambda \mathrm{id}}{1 - \lambda}$ and $\wedge = 1 - P_{\vee}$ with corresponding projections $\pi_{\vee} \colon \Omega^1 \otimes_H \Omega^1 \to \Omega^1 \vee \Omega^1$ and $\pi_{\wedge} \colon \Omega^1 \otimes_H \Omega^1 \to \Omega^2$

The dual bicovariant H-bimodule $\mathfrak{X} := \operatorname{Hom}_{H}(\Omega^{1}, H)$ of "vector fields" admits a dual decomposition

$$\mathfrak{X}^1 \otimes_H \mathfrak{X}^1 = \underbrace{\mathfrak{X}^1 \vee \mathfrak{X}^1}_{=V_1^*} \oplus \underbrace{\mathfrak{X}^2}_{=\bigoplus_{\lambda \neq 1} V_\lambda^*}.$$

Example

 $\sigma^{\mathcal{W}}$ is diagonalizable for all matrix quantum groups of the A, B, C, D series.

Decomposition of connections and LC

Given a right connection ∇ on Ω^1 we construct the sum of connection $\nabla \oplus \nabla : \Omega^1 \otimes_H \Omega^1 \to (\Omega^1 \otimes_H \Omega^1) \otimes_H \Omega^1$. Then we obtain

- $\textbf{2} \text{ a connection } \nabla_{\wedge} := \pi^{12}_{\wedge} \circ (\nabla \oplus \nabla)|_{\Omega^2} \colon \Omega^2 \to \Omega^2 \otimes_H \Omega^1 \text{ on } \Omega^2$

The dual left connection $\nabla : \mathfrak{X} \to \Omega^1 \otimes_H \mathfrak{X}$ with respect to ∇ is defined by

$$\langle \nabla X, \omega \rangle = \mathrm{d} \langle X, \omega \rangle - \langle X, \nabla \omega \rangle.$$

Lemma

It follows that $(\nabla_{\vee}, \nabla_{\vee})$ and $(\nabla_{\wedge}, \nabla_{\wedge})$ are dual connections. Furthermore $(\nabla_{12}, -\nabla_{21})$ and $(\nabla_{21}, -\nabla_{12})$ are transposed maps.

Definition (Levi-Civita connection)

An element $\mathbf{g} \in \mathfrak{X} \lor \mathfrak{X}$ is said to be a (pseudo-Riemannian) metric if $\mathbf{g}^{\#} : \Omega^1 \to \mathfrak{X}$, $\mathbf{g}^{\#}(\omega) = \langle \mathbf{g}, \omega \rangle$ is an isomorphism in \mathcal{M}_H .

A right connection ∇ on Ω^1 is said to be Levi-Civita if $\nabla_{\vee}(\mathbf{g}) = 0$ and $\operatorname{Tor}^{\vee} = 0$.

Existence and uniqueness theorem

Given a metric \mathbf{g} we define a right H-linear map

$$\Phi_{\mathbf{g}} \colon \operatorname{Hom}_{H}(\Omega^{1}, \Omega^{1} \vee \Omega^{1}) \to \operatorname{Hom}_{H}(\Omega^{1} \vee \Omega^{1}, \Omega^{1})$$

by $\Phi_{\mathbf{g}}(\phi) = \langle \mathbf{g}, \cdot \lor \cdot \rangle \circ (\phi \oplus \phi)_{\lor}$, where

$$\phi \oplus \phi = \sigma_{23}^{\mathcal{W}} \circ (\phi \otimes_{\sigma^{\mathcal{W}}} \mathrm{id}_{\Omega^{1}}) + \mathrm{id}_{\Omega^{1}} \otimes_{\sigma^{\mathcal{W}}} \phi$$

mimics the sum of connections.

Theorem (Aschieri-TW)

Let $g\in\mathfrak{X}\vee\mathfrak{X}$ be a metric. If Φ_g is invertible then

$$\boldsymbol{\mathbb{\nabla}}^{\mathrm{LC}} = \boldsymbol{\mathbb{\nabla}}^{\mathsf{C}} + \boldsymbol{\Phi}_{\boldsymbol{g}}^{-1} \bigg(\bigg(\mathrm{d} \circ \langle \boldsymbol{g}, \cdot \vee \cdot \rangle - \langle \boldsymbol{g}, \boldsymbol{\mathbb{\nabla}}^{\mathsf{C}} (\cdot \vee \cdot) \rangle \bigg) \bigg|_{\Omega^1 \vee \Omega^1} \bigg)$$

is the unique Levi-Civita connection for g.

Sketch of the proof

Existence:

$$\begin{split} \langle \mathbf{g}, \nabla^{\mathrm{LC}}_{\vee}(\cdot \otimes_{\mathcal{S}} \cdot) \rangle &= \langle \mathbf{g}, \nabla^{\mathcal{C}}_{\vee}(\cdot \vee \cdot) \rangle + \langle \mathbf{g}, (\phi \oplus \phi)_{\vee}(\cdot \vee \cdot) \rangle \\ &= \langle \mathbf{g}, \nabla^{\mathcal{C}}_{\vee}(\cdot \vee \cdot) \rangle + \psi(\cdot \vee \cdot) \\ &= \mathrm{d} \circ \langle \mathbf{g}, \cdot \vee \cdot \rangle \end{split}$$

Uniqueness: Assume ∇ is another LC connection for **g**. Then $\nabla^{LC} - \nabla$: $\Omega^1 \to \Omega^1 \vee \Omega^1 \subseteq \Omega^{\otimes_{H^2}}$ since $\wedge \circ (\nabla^{LC} - \nabla) = -d + d = 0$. Now

$$\Phi_{\mathbf{g}}(\mathbf{\nabla}^{\mathrm{LC}}-\mathbf{\nabla})=\langle \mathbf{g}, \mathbf{\nabla}^{\mathrm{LC}}(\cdot \vee \cdot)\rangle-\langle \mathbf{g}, \mathbf{\nabla}(\cdot \vee \cdot)\rangle=\mathrm{d}\circ \langle \mathbf{g}, \cdot \vee \cdot\rangle-\mathrm{d}\circ \langle \mathbf{g}, \cdot \vee \cdot\rangle=\mathbf{0}$$

implies $\nabla^{\rm LC} = \nabla$ by the injectivity of $\Phi_{\boldsymbol{g}}.$

Another existence and uniqueness theorem

We call $\mathbf{g} \ \sigma$ -central if $\sigma^{\mathcal{W}}(\mathbf{g} \otimes_H \omega) = \omega \otimes_H \mathbf{g}$ and $\sigma^{\mathcal{W}}(\omega \otimes_H \mathbf{g}) = \mathbf{g} \otimes_H \omega \ \forall \omega \in \Omega^1$.

Lemma

- **1** If **g** is σ -central then **g** is a central element.
- **2** If **g** is central and bi-coinvariant then **g** is σ -central.

Theorem (Aschieri-TW)

If ${\bf g}$ is $\sigma\text{-central}$ then $\Phi_{{\bf g}}$ is invertible if and only if

$$\pi^{23}_{\vee} \colon (\Omega^1 \vee \Omega^1) \otimes_{\mathcal{H}} \Omega^1 \to \Omega^1 \otimes_{\mathcal{H}} (\Omega^1 \vee \Omega^1)$$

is invertible.

Proof.

Theorem (Aschieri-TW)

Let **g** be a metric such that $\Phi_{\mathbf{g}}$ is invertible. For any metric **g**' which is conformally equivalent to **g** (i.e. $\mathbf{g}' = f\mathbf{g}$ for an $f \in H$ invertible) there is the unique Levi-Civita connection

$$\boldsymbol{\nabla}^{'\mathrm{LC}} = \boldsymbol{\nabla}^{\mathrm{LC}} + \boldsymbol{\Phi}_{\mathbf{g}}^{-1} \left(f^{-1} \mathrm{d} f \left\langle \mathbf{g}, \cdot \otimes_{\boldsymbol{H}} \cdot \right\rangle \right|_{\Omega^{1} \vee \Omega^{1}} \right).$$

Example

For the 4-dim bicovariant calculus on $SL_q(2)$ it was shown that π_{\vee}^{23} is invertible. \Rightarrow for any σ -central metric on $SL_q(2)$ there is a unique LC connection.

Consider for example the bi-coinvariant central (so in particular σ -central) metric

$$\mathbf{g} = e_c \otimes_H e_b + q^2 e_b \otimes_H e_c + \frac{q^2}{(2)_q} (e_z \otimes_H e_z + \theta \otimes_H \theta).$$

Then there is a unique LC connection for \mathbf{g} on $SL_q(2)$.

References

ASCHIERI, P. AND WEBER, T.: *Metric compatibility and Levi-Civita Connections on Quantum Groups.* arXiv:2209.05453.

- MUKHOPADHYAY, S.: Levi-Civita connection for $SU_q(2)$. arXiv:2003.14196.
- CAENEPEEL, S. AND GUÉDÉNON, T.: On the Cohomology of Relative Hopf Modules. Commun. Algebra 33(11):4011-4034, 2007.
- ULBRICH, K.-H.: Smash products and comodules of linear maps. Tsukuba J. Math. 14(2):371-378, 1990.

BEGGS, E. J. AND MAJID, S.: *Quantum Riemannian Geometry*. Springer International Publishing, 2019.

BEGGS, E. J. AND MAJID, S.: *-compatible connections in noncommutative Riemannian geometry. J. Geom. Phys., 61:95-124, 2011.

Thank you for your attention!