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What is this talk about?

Goal: Give a mathematical model for quantum gravity general enough to cover some
of our favorite noncommutative spaces.

Problem: While noncommutative differential geometry is rather well-understood there
is no straightforward approach to quantum Riemannian geometry.

Ingredients:

• Space of observables: A noncommutative algebra (associative, unital)

• Differential calculus: (Ω•,∧, d) DGA on Ω0 = A

• Connection on A:
∆

: Ω1 → Ω1 ⊗A Ω1 satisfying

∆

(ωa) =

∆

(ω)a+ ω ⊗A da

• Torsion, curvature: Tor

∆

= ∧ ◦

∆

+ d, R

∆

=

∆2

• . . .

But:

• What is a metric g ∈ Ω1 ⊗A Ω1?

• How to make sense of metric-compatibility

∆

(g) = 0?
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Solutions: Drinfel’d Twist/Triangular Structure

Quantum Levi-Civita connections have been studied in the twisted/triangular setting
[Wess et al. ’05], [Aschieri-Castellani ’09], [TW ’20], [Aschieri ’20],...

• A has a triangular Hopf algebra symmetry (H,R)

• There is a canonical calculus (Ω•
R ,∧R, d) on A dual to the braided derivations

X (ab) = X (a)b + (Ri ▷ a)(Ri ▷ X )(b)

where X ∈ End(A), a, b ∈ A, R−1 = Ri ⊗Ri ∈ H ⊗ H

• A metric g ∈ Ω1
R ⊗A Ω1

R is defined as σR-symmetric and non-degenerate

• Connections are extended as braided derivations∆

(ω ⊗A η) =

∆

(ω)⊗A η + (Ri ▷ ω)⊗A (Ri ▷

∆

)(η)

Theorem (Levi-Civita for A with (H,R)-symmetry)

For every metric g on A ∃! torsion-free connection

∆

satisfying

∆

(g) = 0.
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Solutions: Bimodule Connections and Weak Levi-Civita

[DuboisViolette-Michor ’96], [DuboisViolette-Masson ’96],
[Majid ’99], [Beggs-Majid ’11,’14],...

Bimodule connection:

∆

: Ω1 → Ω1 ⊗A Ω1 right connection with A-bimodule map
σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1 such that

∆

(aω) = a

∆

(ω) + σ(da⊗A ω)

corresponding to central metrics g ∈ Ω1 ⊗A Ω1.

If there is a ’framing’ of the differential calculus Ω1 ∼= (A⊗ V )coH , V an H-comodule
(together with a dual ’coframing’) there is a weak metric-compatibility condition

(d⊗ id− id⊗

∆

)g

Theorem (Majid)

For SLq(2) there is a unique weak Levi-Civita connection.
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Other Solutions

• NC Riemannian geometry for central metrics on fuzzy spaces
[Madore ’93, ’96, ’97]

• Connections on central modules Z(A)MZ(A) and ’tame’ differential calculi
[DuboisViolette-Michor ’96], [DuboisViolette-Masson ’96],
[Bhowmick-Goswami-Landi ’19,’20]

• Pseudo-Riemannian calculi and LC connections for NC spaces with preferred
frame of derivations
[Arnlind ’17]

• Covariant connections on the matrix quantum groups SLq(N),Oq(N), Spq(N)
[Heckenberger-Schmüdgen ’99], [Bhowmick-Mukhopadhyay ’19]

• . . .
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Approach of this talk

Goals:

• Provide a metric compatibility condition

∆

(g) = 0 for A = H a quantum group

(Hopf algebra). In particular

• H is NOT (quasi-)triangular
• g is NOT central

• Prove existence and uniqueness of

∆LC for a certain class of metrics. In
particular for SLq(2).

Main tools:

• ’Sum of connections’ (or ’braided derivation’) formula for the tensor product
extension of a connection

• Direct sum decomposition

Ω1
H ⊗H Ω1

H
∼= (Ω1

H ∨ Ω1
H)⊕ (Ω1

H ∧ Ω1
H)

in case the canonical quantum double braiding σW : Ω1
H ⊗H Ω1

H → Ω1
H ⊗H Ω1

H is
diagonalisable (e.g. for SLq(N),Oq(N), Spq(N), . . .).
Inspired by ideas of [Bhowmick-Mukhopadhyay ’20]
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Plan of the talk

1 A ’braided’-tensor product for connections

• closed monoidal category (MH ,⊗,HOMAd)

• rational morphisms HOMAd

• bicovariant bimodules H
HM

H
H

2 Decomposition of Ω1
H ⊗H Ω1

H for diagonalisable σW

3 Sum of connections

4 Quantum Riemannian geometry on quantum groups
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Comodules and rational morphisms

(H,∆, ϵ, S) Hopf algebra (with invertible antipode) over a field k.
(MH ,⊗) monoidal category of right H-comodules. M, ∆M : M → M ⊗ H

The external Hom-functor HomH is given by right H-colinear maps

ϕ : M → N s.t. ∆N ◦ ϕ = (ϕ⊗ id) ◦∆M .

The internal Hom-functor HOMAd
k is given by k-linear maps which admit a right

adjoint coaction, the so-called right rational morphisms:

∆Ad : Homk(M,N) → Homk(M,N ⊗ H), ∆Ad(ϕ)(m) = ϕ(m0)0 ⊗ ϕ(m0)1S(m1)

Then HOMAd
k (M,N) := (∆Ad)−1(Homk(M,N)⊗ H).

Proposition (Ulbrich ’90)

Let M,N be objects in MH . Then

1 HOMAd
k (M,N) is an object in MH

2 HOMAd
k (M,N)coH = HomH(M,N)

3 The evaluation and concatenation for HOMAd
k are morphisms in MH
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Covariant modules

Remark

(MH ,⊗,HOMAd
k ) is a closed monoidal category, i.e. the currying

HomH(M ⊗ ·, ·) ⇒ HomH(M,HOMAd
k (·, ·))

is a natural isomorphism.

Let M be a right H-covariant right H-module, i.e. M ∈ MH ∩MH such that
∆M(ma) = ∆M(m)∆(a), m ∈ M, a ∈ H.

Proposition (Caenepeel-Guedenon ’07)

For M,N ∈ MH
H we have

HOMAd
H (M,N) = HomH(M,N)

if M is finitely generated as a right H-module.

In the following we write HOMk := AdHOMAd
k and HOMH := AdHOMAd

H .
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Bicovariant bimodules

A bicovariant H-bimodule is an H-bimodule and H-bicomodule M such that

∆M(amb) = ∆(a)∆M(m)∆(b) and M∆(amb) = ∆(a)M∆(m)∆(b).

Category H
HM

H
H with morphisms H-bilinear and H-bicolinear.

For M,N ∈ H
HM

H
H the tensor product M ⊗H N becomes object in H

HM
H
H via

a · (m ⊗H n) · b = (am)⊗H (nb) and the diagonal coactions.

Proposition

(HHM
H
H ,⊗H , σ

W ) is a braided monoidal category with Woronowicz braiding

σW
M,N : M ⊗H N → N ⊗H M, m ⊗ n 7→ m−2n0S(m−1n1)⊗H m0n2.

The restriction to finitely generated bicovariant bimodules is closed braided monoidal
with internal Hom-functor HOMH = HomH .

Note that the H-module actions on ϕ ∈ HOMH(M,N) are (a · ϕ · b)(m) = aϕ(bm).

We write σW (m ⊗H n) = αn ⊗H
αm.
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Braided tensor product of internal homomorphisms

For M,M′,N,N′ ∈ H
HM

H
H we define

⊗σW : HomH(M,M′)⊗H HomH(N,N
′) → HomH(M ⊗H N,M′ ⊗H N′) (1)

via

(ϕ⊗σW ψ)(m ⊗H n) = ϕ(αm)⊗H (αψ)(n) = ϕ(ψ−2m0S(ψ−1m1))⊗H ψ0(m2n).

Proposition (Majid)

The operation (1) is a morphism in H
HM

H
H and associative, i.e.

(ϕ⊗σW ψ)⊗σW χ = ϕ⊗σW (ψ ⊗σW χ).

This works in any closed braided monoidal category.

Problem: Connections are NOT right H-linear. Can we generalize ⊗σW to
connections?!

Thomas Weber LC Connections on Quantum Groups



12/24

Lifting of Woronowicz braiding

Consider the following lifting σ : M ⊗ N → N ⊗M of Woronowicz braiding

m ⊗ n M ⊗ N N ⊗M m−2n0S(m−1n1)⊗m0n2

m ⊗H n M ⊗H N N ⊗H M m−2n0S(m−1n1)⊗H m0n2

σ

πH πH

σW

Lemma

1 σ is a morphism in HMH
H

2 σ(ma⊗ n) = σ(m ⊗ an)

3 σM⊗N,O = (σM,O ⊗ idN) ◦ (idM ⊗ σN,O)

Definition

For M,M′,N,N′ in H
HM

H
H we define

⊗σ : HOMk(M,M′)⊗HOMk(N,N
′) → HOMk(M ⊗ N,M′ ⊗ N′)

by (ϕ⊗σ ψ)(m ⊗ n) = ϕ(αm)⊗ (αψ)(n) = ϕ(ψ−2m0S(ψ−1m1))⊗ ψ0(m2n).
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Braided tensor product for rational morphisms

Theorem (Aschieri-TW)

The operation

⊗σ : HOMk(M,M′)⊗HOMk(N,N
′) → HOMk(M ⊗ N,M′ ⊗ N′)

is associative and a morphism in H
HM

H
H .

Since (ϕ⊗σ ψ)(ma⊗ n) = (ϕ⊗σ ψ)(m ⊗ an) the map ϕ⊗σ ψ : M ⊗ N → M′ ⊗ N′

descends to a map ϕ̃⊗σ ψ : M ⊗H N → M′ ⊗ N′.

Define ϕ⊗̂ψ = πH ◦ (ϕ̃⊗σ ψ).

Corollary

The operation

⊗̂ : HOMk(M,M′)⊗HOMk(N,N
′) → HOMk(M ⊗H N,M′ ⊗H N′),

is associative and a morphism in H
HM

H
H .

If ϕ and ψ are right H-linear we obtain ϕ⊗̂ψ = ϕ⊗σW ψ.
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Connections on bicovariant bimodules

Fix a bicovariant FODC (Ω1, d) on H and an object M in H
HM

H
H .

Definition

A right connection on M is a k-linear map

∆

: M → M ⊗H Ω1 such that∆

(ma) =

∆

(m)a+m ⊗H da.

Its extension

∆• : M ⊗H Ω• → M ⊗H Ω•+1 to higher orders is defined by

∆• = ∧23 ◦ (

∆

⊗H idΩ• ) + idM ⊗H d (2)

and satisfies

∆•(m ⊗H ωa) =

∆•(m ⊗H ω)a+ (−1)|ω|m ⊗H ω ∧ da.

Remark

The individual terms on the right of (2) are not well-defined on ⊗H . However, we
have an equality ∆• = ∧23 ◦ (

∆

⊗̂idΩ• ) + idM⊗̂d

where all individual terms are well-defined on M ⊗H Ω•.
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Torsion, curvature and canonical connections

Definition

The curvature of

∆

is the right H-linear map defined by

R

∆

=

∆• ◦

∆

: M → M ⊗H Ω2.

If M = Ω1 the torsion of

∆

is the right H-linear map defined by

Tor

∆

= ∧ ◦ ∇+ d : Ω1 → Ω2.

Example

On every bicovariant bimodule there is a canonical flat connection
dM : M → M ⊗H Ω1 given by

dM(m) = m0S(m1)⊗H dm2.

For a basis {ωi} of left coinvariant 1-forms the structure constants C k
ij ∈ k determined

by the Cartan-Maurer formula dωk = C k
ij ω

i ∧ ωj give a canonical torsion-free
connection ∆C (ωk ) = −C k

ji ω
i ⊗H ω

j .
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Sum of connections via canonical connections

Lemma

Let M be a finitely generated bicovariant bimodule. Any right connection∆

: M → M ⊗H Ω1 is a rational morphism.

Proof.

All right H-linear maps ϕ : M → M ⊗H Ω1 are rational and also dM is rational since it
is right H-colinear. Thus,

∆

= dM + ϕ is rational.

Remark

The canonical connections satisfy

dM⊗HN = σW
23 ◦ (dM ⊗H idN) + idM ⊗H dN

where the individual terms are not well-defined.

Using the canonical connections there is a natural notion of ”sum of connection”:

∆M⊗HN := σW
23 ◦ ((

∆M − dM)⊗σW idN) + idM ⊗σW (

∆N − dN) + dM⊗HN
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Sum of connections independent from can. connections

Using the braided tensor product ⊗̂ of rational morphism we define

∆M ⊕

∆N := σW
23 ◦ (

∆M⊗̂idN) + idM⊗̂

∆N

with all individual terms well-defined.

Theorem (Aschieri-TW)

∆M ⊕

∆N : M ⊗H N → M ⊗H N ⊗H Ω1 is a right connection on M ⊗H N and both
notions of sum of connection coincide:

∆M ⊕
∆N =

∆M⊗HN .

The curvature of

∆M⊗HN is

R

∆

M⊕

∆

N
= σW

23 ◦ (R

∆

M
⊗σW idN) + idM ⊗σW R

∆

N

+ ∧34 ◦ σW
23 ◦ ((

∆M − dM)⊗σW (

∆N − dN))

+ ∧34 ◦ (idM ⊗σW ((

∆N − dN)⊗σW idΩ1 )) ◦ σW
23 ◦ ((

∆M − dM)⊗σW idN).
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Some linear algebra

In the following we assume that σW : Ω1 ⊗H Ω1 → Ω1 ⊗H Ω1 is diagonalizable, i.e.
∃ λ ∈ Λ eigenvalues of σW with eigenspaces Vλ. Then

Ω1 ⊗H Ω1 = Ω1 ∨ Ω1︸ ︷︷ ︸
:=V1

⊕ Ω2︸︷︷︸
=
⊕

λ ̸=1 Vλ

,

where we identify
⊕

λ ̸=1 Vλ with degree 2 of the exterior algebra.

We have a projectors P∨ = Πλ̸=1
σW−λid

1−λ
and ∧ = 1− P∨ with corresponding

projections π∨ : Ω1 ⊗H Ω1 → Ω1 ∨ Ω1 and π∧ : Ω1 ⊗H Ω1 → Ω2

The dual bicovariant H-bimodule X := HomH(Ω
1,H) of ”vector fields” admits a dual

decomposition
X1 ⊗H X1 = X1 ∨ X1︸ ︷︷ ︸

=V∗
1

⊕ X2︸︷︷︸
=
⊕

λ ̸=1 V∗
λ

.

Example

σW is diagonalizable for all matrix quantum groups of the A,B,C ,D series.
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Decomposition of connections and LC
Given a right connection

∆

on Ω1 we construct the sum of connection∆

⊕

∆

: Ω1 ⊗H Ω1 → (Ω1 ⊗H Ω1)⊗H Ω1. Then we obtain
1 a connection

∆

∨ := π12
∨ ◦ (

∆

⊕

∆

)|Ω1∨Ω1 : Ω1 ∨ Ω1 → (Ω1 ∨ Ω1)⊗H Ω1 on
Ω1 ∨ Ω1

2 a connection

∆

∧ := π12
∧ ◦ (

∆

⊕

∆

)|Ω2 : Ω2 → Ω2 ⊗H Ω1 on Ω2

3 two right H-linear maps

∆

12 := π12
∨ ◦ (

∆

⊕

∆

)|Ω2 : Ω2 → (Ω1 ∨ Ω1)⊗H Ω1 and∆

21 := π12
∧ ◦ (

∆

⊕

∆

)|Ω1∨Ω1 : Ω1 ∨ Ω1 → Ω2 ⊗H Ω1

∆

=

( ∆

∨

∆

12∆

21

∆

∧

)
The dual left connection

∆
: X → Ω1 ⊗H X with respect to

∆

is defined by

⟨
∆
X , ω⟩ = d⟨X , ω⟩ − ⟨X ,
∆

ω⟩.

Lemma

It follows that (

∆

∨,
∆

∨) and (

∆

∧,
∆

∧) are dual connections. Furthermore
(

∆

12,−
∆

21) and (

∆

21,−
∆

12) are transposed maps.

Definition (Levi-Civita connection)

An element g ∈ X ∨ X is said to be a (pseudo-Riemannian) metric if g# : Ω1 → X,
g#(ω) = ⟨g, ω⟩ is an isomorphism in MH .

A right connection

∆

on Ω1 is said to be Levi-Civita if
∆

∨(g) = 0 and Tor

∆

= 0.
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Existence and uniqueness theorem

Given a metric g we define a right H-linear map

Φg : HomH(Ω
1,Ω1 ∨ Ω1) → HomH(Ω

1 ∨ Ω1,Ω1)

by Φg(ϕ) = ⟨g, · ∨ ·⟩ ◦ (ϕ⊕ ϕ)∨, where

ϕ⊕ ϕ = σW
23 ◦ (ϕ⊗σW idΩ1 ) + idΩ1 ⊗σW ϕ

mimics the sum of connections.

Theorem (Aschieri-TW)

Let g ∈ X ∨ X be a metric. If Φg is invertible then

∆LC =

∆C +Φ−1
g

((
d ◦ ⟨g, · ∨ ·⟩ − ⟨g,

∆C (· ∨ ·)⟩
)∣∣∣∣

Ω1∨Ω1

)
is the unique Levi-Civita connection for g.
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Sketch of the proof

Existence:

1 ψ :=

(
d ◦ ⟨g, · ∨ ·⟩ − ⟨g,

∆C (· ∨ ·)⟩
)∣∣∣∣

Ω1∨Ω1

: Ω1 ∨ Ω1 → Ω1 is right H-linear

2 ϕ := Φ−1
g (ψ) ∈ HomH(Ω

1,Ω1 ∨ Ω1)

and

∆LC :=

∆C + ϕ is a right connection on Ω1

3 Torsion-free: ∧ ◦

∆LC = ∧ ◦

∆C + ∧ ◦ ϕ = −d+ 0

4 Metric compatible:

⟨g,

∆LC
∨ (· ⊗S ·)⟩ =⟨g,

∆C
∨(· ∨ ·)⟩+ ⟨g, (ϕ⊕ ϕ)∨(· ∨ ·)⟩

=⟨g,
∆C
∨(· ∨ ·)⟩+ ψ(· ∨ ·)

=d ◦ ⟨g, · ∨ ·⟩

⇒
∆

∨(g) = 0

Uniqueness: Assume

∆

is another LC connection for g. Then∆LC −

∆

: Ω1 → Ω1 ∨ Ω1 ⊆ Ω⊗H2 since ∧ ◦ (

∆LC −

∆

) = −d+ d = 0. Now

Φg(

∆LC −

∆

) = ⟨g,

∆LC(· ∨ ·)⟩ − ⟨g,

∆

(· ∨ ·)⟩ = d ◦ ⟨g, · ∨ ·⟩ − d ◦ ⟨g, · ∨ ·⟩ = 0

implies ∇LC = ∇ by the injectivity of Φg.
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Another existence and uniqueness theorem
We call g σ-central if σW (g ⊗H ω) = ω ⊗H g and σW (ω ⊗H g) = g ⊗H ω ∀ω ∈ Ω1.

Lemma

1 If g is σ-central then g is a central element.

2 If g is central and bi-coinvariant then g is σ-central.

Theorem (Aschieri-TW)

If g is σ-central then Φg is invertible if and only if

π23
∨ : (Ω1 ∨ Ω1)⊗H Ω1 → Ω1 ⊗H (Ω1 ∨ Ω1)

is invertible.

Proof.

HomH(Ω
1,Ω1 ∨ Ω1) ∼= (Ω1 ∨ Ω1)⊗H X (Ω1 ∨ Ω1)⊗H Ω1

HomH(Ω
1 ∨ Ω1,Ω1) ∼= Ω1 ⊗H (Ω1 ∨ Ω1)∗ Ω1 ⊗H (Ω1 ∨ Ω1)

1
2
Φg

id
Ω1∨Ω1⊗σW g#−1

π23
∨

id
Ω1⊗σW g#2
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Extension and examples

Theorem (Aschieri-TW)

Let g be a metric such that Φg is invertible. For any metric g′ which is conformally
equivalent to g (i.e. g′ = f g for an f ∈ H invertible) there is the unique Levi-Civita
connection

∆′LC =

∆LC +Φ−1
g

(
f −1df ⟨g, · ⊗H ·⟩

∣∣∣∣
Ω1∨Ω1

)
.

Example

For the 4-dim bicovariant calculus on SLq(2) it was shown that π23
∨ is invertible.

⇒ for any σ-central metric on SLq(2) there is a unique LC connection.

Consider for example the bi-coinvariant central (so in particular σ-central) metric

g = ec ⊗H eb + q2eb ⊗H ec +
q2

(2)q
(ez ⊗H ez + θ ⊗H θ).

Then there is a unique LC connection for g on SLq(2).
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