
The Geometric !SMEFT

30 August 2022  ||  (B)SM Workshop ||  Corfu, Greece

Jim Talbert, DAMTP, Cambridge

Building on work from: Alonso, Corbett, Hays, Helset, 
Jenkins, Kim, Manohar, Martin, Paraskevas, Trott…:

[2001.01453]

[1605.03602]

[1909.08470]
[1803.08001]

[2106.10284]
[2102.02819]
[2007.00565]

[2107.07470]

[2203.11976]

+ + …

[2107.03951] J. Talbert, M. Trott
[2208.11139] J. Talbert



2

Graham Garland Ross



3

The SMEFT, briefly: 
The SMEFT’s operator basis can be expanded order by order in mass dimension.  At dim-5, the ‘Weinberg 
Operator’ [PRL 43, ’79] is the unique new-physics contribution (and accounts for neutrino masses!).

The ‘Warsaw Basis’ of [1008.4884] is a non-redundant, complete set of dim-6 operators.
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1 Basic Idea

Following on the successful derivation of all-orders formulae describing fermionic mass and mixing in the
(geo)SM(EFT) found in [1], using the technologies of the Geometric SMEFT (geoSMEFT) of [2] and the
invariant theory of [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], we want to find an analogous formalism
applicable to the Majorana neutrino sector.

2 Majorana Neutrino Masses in the SMEFT

In the SMEFT with no SM gauge-singlet in the IR spectrum, i.e. no light right-handed Majorana neutrino,
Majorana neutrino masses are described exclusively by lepton-number-violating (LNV) operators of the
form O / f

n(v, C, ...) (`i`j), where `i is the SM isospin lepton doublet with flavor label i, `i ⇠ (e, ⌫)Ti ,
and where n indicates the order of the Operator Product Expansion (OPE) of the EFT construction
(we ignore dimensional suppressions at the moment). The lowest-order such contribution is of course the
Weinberg Operator [3],

L
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c
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with c
(5)
ij a dimensionful Wilson coefficient with flavor labels {i, j}, H the SM Higgs doublet with H̃↵ =

✏↵�H
†� , and C = �i�2�0 in the chiral �i basis. This is the only dimenion-5 operator in the SM-EFT.

After electroweak symmetry breaking (EWSB) and expanding about the Higgs vacuum expectation
value (vev), this term generates a left-handed (LH) Majorana neutrino mass term of the form:
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where it is clear that we have transformed to the mass eigenstate basis of the neutrino fields via the
rotation matrices U⌫ . continuing As is well known, when ⌫L are Majorana fields, the low-energy matrix
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EWSB

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)$ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Qqqq εαβγεjnεkm

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ

[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.
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of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.
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where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)
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indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

+ "(1/Λn≥3)

couplings ? Developing such a formalism with only two fermion generations is straightforward,
see Section 2. However, for three generations standard diagonalization techniques become in-
tractable for generic Y

u,d,e.
In this paper we employ flavour invariants to derive exact, compact formulae for the computa-

tion of Dirac mass, mixing, and CP violation parameters for fully generic 3⇥3 Yukawa couplings
in not just the SM, but also its generalization to the SM e↵ective field theory (SMEFT) [3, 4],

LSMEFT = LSM +
X

i

C
(d)
i

⇤d�4
Q

(d)
i

. (2)

Here the sum runs over the complete basis of non-renormalizable operators Q(d)
i

composed of SM
fields and invariant under the SM gauge group GSM ⌘ SU(3)C⇥SU(2)L⇥U(1)Y , at a given mass

dimension d > 4, with associated Wilson coe�cients C(d)
i

. Such operators are induced generically
when new physics is integrated out at a scale ⇤ > vT ⌘

p
2hH†Hi, with vT the vacuum

expectation value (vev) of the SM Higgs doublet.1 In particular, we will employ the geometric
realization of the SMEFT, the geoSMEFT [6], in our computation. The geoSMEFT represents
an all-orders reorganization of (2), such that interactions are described on a curved manifold
in scalar field space(s). The degree of curvature depends on the ratio vT/⇤, with the ‘flat’
limit (where vT/⇤ ! 0) corresponding to LSM . The geoSMEFT factorizes into simple operator
forms multiplying field-space connections, with the latter encoding SM theory parameters valid
at all orders in vT/⇤. Our results will therefore complete the geoSMEFT expressions in the
Dirac flavour sector. In addition we show that the formulae can be used to make predictions in
ultraviolet scenarios when (e.g.) spontaneous flavour-symmetry breaking leads to special textures
for SM Yukawa matrices, and even in theories that introduce additional flavour violation into
the low-energy spectrum, as long as the global U(3)QL

transformation properties of Y Y
† are

respected.
Besides their obvious predictive utility, our formulae may also be of use in high(er)-order

global SMEFT fits to existing data, especially to CKM mixing elements (see [7]), or in studying
non-standard flavour e↵ects in the SMEFT (see e.g. [8, 9]). Towards the latter end, we use our
formulae to rapidly derive their renormalization group flow at all mass dimension and loop orders
in the (geo)SM(EFT), including an explicit numerical calculation of quark sector RGE at one-
loop perturbative order in minimally flavour-violating (MFV) [10] theories. Our results therefore
constitute a generic formalism for studying flavour in (B)SM matching cases of the SMEFT, and
also open the door for related studies in the leptonic sector, when non-zero neutrino masses are
properly accounted for.

The paper develops as follows: in Section 2 we review the Yukawa sector of the geoSMEFT,
while in Section 3 we present the unique flavour invariants we employ, and use them to derive
the final formulae. In addition, we discuss the domain of applicability of these expressions with
demonstrated examples. In Section 4 we derive generic, analytic expressions for the renormal-
ization group flow of the flavour parameters. Finally, we conclude in Section 5, providing an
outlook for the extension of this formalism into the lepton sector. Some useful formulae are
presented in Appendix A.

1
For a comprehensive review of the SMEFT formalism, see [5].
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1 Introduction and Motivation

Neutrino physics represents an ideal sector for probing novel interactions Beyond-the-Standard
Model (BSM). After all, the very presence of non-zero neutrino masses and Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixings, as unambiguously inferred from global oscillation exper-
iments (cf. [1]), requires the introduction of operators beyond those furnished by the (renor-
malizable) SM Lagrangian. For example, upon allowing for an operator-product-expansion
(OPE) in non-renormalizable interactions, the SM E↵ective Field Theory (SMEFT) can eas-
ily generate a Majorana neutrino mass term via the dimension-five Weinberg Operator [2]
Q5,

LSMEFT ⌘ LSM +
X

i

C̃iQi = LSM +
1

2⇤


C 5

pr

⇣
H̃

†
`p

⌘T

C
⇣
H̃

†
`r

⌘
+ h.c.

�
+O(1/⇤2) + ... , (1)

upon electroweak symmetry breaking, when the scalar Higgs field H acquires a vacuum expec-
tation value (VEV) vT ⌘

p
2hH†Hi. Here Ci represent unknown Wilson Coe�cients (with
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1 Introduction and Motivation

Neutrino physics represents an ideal sector for probing novel interactions Beyond-the-Standard
Model (BSM). After all, the very presence of non-zero neutrino masses and Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixings, as unambiguously inferred from global oscillation exper-
iments (cf. [1]), requires the introduction of operators beyond those furnished by the (renor-
malizable) SM Lagrangian. For example, upon allowing for an operator-product-expansion
(OPE) in non-renormalizable interactions, the SM E↵ective Field Theory (SMEFT) can eas-
ily generate a Majorana neutrino mass term via the dimension-five Weinberg Operator [2]
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Expanding the SMEFT Lagrangian
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

information (i.e. setting all spurions equal to unity), but still retaining Nf dependence:
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(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.16), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.16)
which are SM specific are the gauge groups (and as such the Haar measures that need to be
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The geoSMEFT, intuited2 The Yukawa Sector of the (geo)SM(EFT)

The geoSMEFT [6] represents a re-organization of the SMEFT operator product expansion
(OPE) in (2), such that

LSMEFT =
X

i

Gi (I, A,�, ...) fi . (3)

HereGi are field-space connections that depend on the group indices I, A of all internal symmetry
groups, and real scalar field coordinates �I of the SU(2)L Higgs doublet, normalized as follows:2

H (�I) =
1
p
2

"
�2 + i�1

�4 � i�3

#
=) H̃ (�I) =

1
p
2

"
�4 + i�3

��2 + i�1

#
. (4)

On the other hand, fi are operator forms composed of the Lorentz-index-carrying building blocks
of LSMEFT, and which are (largely)3 independent of �. That is, upon the Higgs obtaining its vev,
the tower of interactions composing Gi reduces to a number and emissions of h (the propagating
Higgs field), while fi remains a distinct operator of SM fields and derivatives. Critically, by
using Hilbert series techniques one can show that, at least for two- and three-point functions,
the number of fi saturates to a constant value at arbitrary mass-dimension. This then allows the
field-space connections Gi, and thereby important theory parameters (e.g. gauge boson masses,
gauge couplings, weak mixing angles, the Higgs mass, etc.), to be defined at all orders in the
SMEFT’s characteristic vT/⇤ expansion. For a complete description of the geoSMEFT see [6],
which builds on prior work [11–14]. See [15–18] for recent geoSMEFT applications.

In what follows we are only concerned with the Yukawa sector of the e↵ective theory, i.e.
with non-renormalizable SMEFT operators of the form

Q
6+2n
 H
pr

=
�
H

†
H
�n+1 �

 ̄L,p R,rH
�

with n � 0 , (5)

with  L 2 {Q,L}L and  R 2 {u, d, e}R, and where H ! H̃ in the second bracket when  R = uR.
Hence the classification of two- and three-point functions in terms of their field space connections
and composite operator forms, as already present in [6], is su�cient for our purposes. From there
we recall the two-point Yukawa function Y (�) 1 2, whose field space connection Y (�) is given
by

Y
 1
pr

(�I) =
�LSMEFT

�( 
I

2,p 1,r)

����
L(↵,�,...)!0

, (6)

for a generic fermion sector  2 {u, d, e}. Here ↵, �, ... denote e↵ective gauge couplings etc., such
that the notation L(↵, �, ...) ! 0 implies that all Lagrangian terms and spin connections with
non-trivial Lorentz indices are sent to zero. As a demonstrative example, the Higgs potential is
given simply by V (�) = �LSMEFT|L(↵,�,...)!0.

Using (6) one quickly arrives at the explicit expressions for the fermionic field space connec-
tions,

Y
 

pr
(�I) = �H (�I) [Y ]

†
pr
+H (�I)

1X

n=0

C
(6+2n)
 H
pr

✓
�
2

2

◆n

, (7)

2
�4 is expanded around the vev via �4 ! �4 + vT .

3
Except powers of D

µ
H, which get grouped with fi. This residual scalar coordinate-dependence in the

composite operator forms manifests in powers of @µh, upon the Higgs acquiring its vev.

3

couplings ? Developing such a formalism with only two fermion generations is straightforward,
see Section 2. However, for three generations standard diagonalization techniques become in-
tractable for generic Y

u,d,e.
In this paper we employ flavour invariants to derive exact, compact formulae for the computa-

tion of Dirac mass, mixing, and CP violation parameters for fully generic 3⇥3 Yukawa couplings
in not just the SM, but also its generalization to the SM e↵ective field theory (SMEFT) [3, 4],

LSMEFT = LSM +
X

i

C
(d)
i

⇤d�4
Q

(d)
i

. (2)

Here the sum runs over the complete basis of non-renormalizable operators Q(d)
i

composed of SM
fields and invariant under the SM gauge group GSM ⌘ SU(3)C⇥SU(2)L⇥U(1)Y , at a given mass

dimension d > 4, with associated Wilson coe�cients C(d)
i

. Such operators are induced generically
when new physics is integrated out at a scale ⇤ > vT ⌘

p
2hH†Hi, with vT the vacuum

expectation value (vev) of the SM Higgs doublet.1 In particular, we will employ the geometric
realization of the SMEFT, the geoSMEFT [6], in our computation. The geoSMEFT represents
an all-orders reorganization of (2), such that interactions are described on a curved manifold
in scalar field space(s). The degree of curvature depends on the ratio vT/⇤, with the ‘flat’
limit (where vT/⇤ ! 0) corresponding to LSM . The geoSMEFT factorizes into simple operator
forms multiplying field-space connections, with the latter encoding SM theory parameters valid
at all orders in vT/⇤. Our results will therefore complete the geoSMEFT expressions in the
Dirac flavour sector. In addition we show that the formulae can be used to make predictions in
ultraviolet scenarios when (e.g.) spontaneous flavour-symmetry breaking leads to special textures
for SM Yukawa matrices, and even in theories that introduce additional flavour violation into
the low-energy spectrum, as long as the global U(3)QL

transformation properties of Y Y
† are

respected.
Besides their obvious predictive utility, our formulae may also be of use in high(er)-order

global SMEFT fits to existing data, especially to CKM mixing elements (see [7]), or in studying
non-standard flavour e↵ects in the SMEFT (see e.g. [8, 9]). Towards the latter end, we use our
formulae to rapidly derive their renormalization group flow at all mass dimension and loop orders
in the (geo)SM(EFT), including an explicit numerical calculation of quark sector RGE at one-
loop perturbative order in minimally flavour-violating (MFV) [10] theories. Our results therefore
constitute a generic formalism for studying flavour in (B)SM matching cases of the SMEFT, and
also open the door for related studies in the leptonic sector, when non-zero neutrino masses are
properly accounted for.

The paper develops as follows: in Section 2 we review the Yukawa sector of the geoSMEFT,
while in Section 3 we present the unique flavour invariants we employ, and use them to derive
the final formulae. In addition, we discuss the domain of applicability of these expressions with
demonstrated examples. In Section 4 we derive generic, analytic expressions for the renormal-
ization group flow of the flavour parameters. Finally, we conclude in Section 5, providing an
outlook for the extension of this formalism into the lepton sector. Some useful formulae are
presented in Appendix A.

1
For a comprehensive review of the SMEFT formalism, see [5].

2
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f: operator forms composed of Lorentz-index-carrying 
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of these expressions with demonstrated examples. In section 4 we derive generic, analytic
expressions for the renormalization group flow of the flavour parameters. Finally, we con-
clude in section 5, providing an outlook for the extension of this formalism into the lepton
sector. Some useful formulae are presented in appendix A.

2 The Yukawa sector of the (geo)SM(EFT)

The geoSMEFT [6] represents a re-organization of the SMEFT operator product expansion
(OPE) in (1.2), such that

LSMEFT =
∑

i

Gi (I,A,φ, . . .) fi . (2.1)

Here Gi are field-space connections that depend on the group indices I,A of all inter-
nal symmetry groups, and real scalar field coordinates φI of the SU(2)L Higgs doublet,
normalized as follows:2

H (φI) =
1√
2

[
φ2 + iφ1
φ4 − iφ3

]

=⇒ H̃ (φI) =
1√
2

[
φ4 + iφ3

−φ2 + iφ1

]

. (2.2)

On the other hand, fi are operator forms composed of the Lorentz-index-carrying building
blocks of LSMEFT, and which are (largely)3 independent of φ. That is, upon the Higgs
obtaining its vev, the tower of interactions composing Gi reduces to a number and emissions
of h (the propagating Higgs field), while fi remains a distinct operator of SM fields and
derivatives. Critically, by using Hilbert series techniques one can show that, at least for
two- and three-point functions, the number of fi saturates to a constant value at arbitrary
mass-dimension. This then allows the field-space connections Gi, and thereby important
theory parameters (e.g. gauge boson masses, gauge couplings, weak mixing angles, the
Higgs mass, etc.), to be defined at all orders in the SMEFT’s characteristic vT /Λ expansion.
For a complete description of the geoSMEFT see [6], which builds on prior work [11–14].
See [15–18] for recent geoSMEFT applications.

In what follows we are only concerned with the Yukawa sector of the effective theory,
i.e. with non-renormalizable SMEFT operators of the form

Q6+2n
ψH
pr

=
(
H†H

)n+1 (
ψ̄L,pψR,rH

)
with n ≥ 0 , (2.3)

with ψL ∈ {Q,L}L and ψR ∈ {u, d, e}R, and where H → H̃ in the second bracket when
ψR = uR. Hence the classification of two- and three-point functions in terms of their field
space connections and composite operator forms, as already present in [6], is sufficient for
our purposes. From there we recall the two-point Yukawa function Y (φ)ψ1ψ2, whose field
space connection Y (φ) is given by

Y ψ1
pr (φI) =

δLSMEFT

δ(ψI
2,pψ1,r)

∣∣∣∣
L(α,β,...)→0

, (2.4)

2φ4 is expanded around the vev via φ4 → φ4 + vT .
3Except powers of DµH, which get grouped with fi. This residual scalar coordinate-dependence in the

composite operator forms manifests in powers of ∂µh, upon the Higgs acquiring its vev.
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(or even explain) this distinct flavour structure. In practice this extraction is typically
achieved via numerical methods for computing matrix eigenvalues (giving Dirac masses)
via diagonalizing these matrices with (bi-)unitary transformations. A natural question to
ask is: can one obtain analytic expressions for mass and mixing parameters given arbi-
trary forms for the complex Yukawa couplings? Developing such a formalism with only
two fermion generations is straightforward, see section 2. However, for three generations
standard diagonalization techniques become intractable for generic Y u,d,e.

In this paper we employ flavour invariants to derive exact, compact formulae for the
computation of Dirac mass, mixing, and CP violation parameters for fully generic 3 × 3
Yukawa couplings in not just the SM, but also its generalization to the SM effective field
theory (SMEFT) [3, 4],

L <SMEFT= LSM +
∑

i

C(d)
i

Λd−4Q
(d)
i . (1.2)

Here the sum runs over the complete basis of non-renormalizable operators Q(d)
i composed

of SM fields and invariant under the SM gauge group GSM ≡ SU(3)C ×SU(2)L ×U(1)Y , at
a given mass dimension d > 4, with associated Wilson coefficients C(d)

i . Such operators are
induced generically when new physics is integrated out at a scale Λ > vT ≡

√
2〈H†H〉, with

vT the vacuum expectation value (vev) of the SM Higgs doublet.1 In particular, we will
employ the geometric realization of the SMEFT, the geoSMEFT [6], in our computation.
The geoSMEFT represents an all-orders reorganization of (1.2), such that interactions are
described on a curved manifold in scalar field space(s). The degree of curvature depends
on the ratio vT /Λ, with the ‘flat’ limit (where vT /Λ → 0) corresponding to LSM. The
geoSMEFT factorizes into simple operator forms multiplying field-space connections, with
the latter encoding SM theory parameters valid at all orders in vT /Λ. Our results will
therefore complete the geoSMEFT expressions in the Dirac flavour sector. In addition we
show that the formulae can be used to make predictions in ultraviolet scenarios when (e.g.)
spontaneous flavour-symmetry breaking leads to special textures for SM Yukawa matri-
ces, and even in theories that introduce additional flavour violation into the low-energy
spectrum, as long as the global U(3)QL transformation properties of Y Y † are respected.

Besides their obvious predictive utility, our formulae may also be of use in high(er)-
order global SMEFT fits to existing data, especially to CKM mixing elements (see [7]), or
in studying non-standard flavour effects in the SMEFT (see e.g. [8, 9]). Towards the latter
end, we use our formulae to rapidly derive their renormalization group flow at all mass
dimension and loop orders in the (geo)SM(EFT), including an explicit numerical calcu-
lation of quark sector RGE at one-loop perturbative order in minimally flavour-violating
(MFV) [10] theories. Our results therefore constitute a generic formalism for studying
flavour in (B)SM matching cases of the SMEFT, and also open the door for related studies
in the leptonic sector, when non-zero neutrino masses are properly accounted for.

The paper develops as follows: in section 2 we review the Yukawa sector of the
geoSMEFT, while in section 3 we present the unique flavour invariants we employ, and
use them to derive the final formulae. In addition, we discuss the domain of applicability

1For a comprehensive review of the SMEFT formalism, see [5].
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Consequences of the Higgs field becoming a number
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The Higgs field takes on a vev, recall what happens:

4-point
W⌫

B = UBCAC,⌫
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while lower case latin letters i, j, k, l · · · run over {1, 2}.
The metric takes the form

hIJ(φ) = δIJ − 2
CH!

Λ2
φIφJ +

1

2

CHD

Λ2
fIJ(φ), (4)

where

fIJ(φ) =







a 0 d c
0 a c −d
d c b 0
c −d 0 b






,

a = φ2
1 + φ2

2,

b = φ2
3 + φ2

4,

c = φ1φ4 + φ2φ3,

d = φ1φ3 − φ2φ4.

(5)

The Riemann curvature tensor calculated from the scalar
field metric is non-vanishing [1, 2, 15]. The scalar mani-
fold is curved due to the power counting expansion. An
interesting consequence is that there does not exist a
gauge independent field redefinition which sets hIJ = δIJ
when considering L(6) corrections [15]. As a result, de-
manding that the Higgs doublet field to be canonically
normalized in the SMEFT to L(6) cannot be used as a
defining condition for operator bases [15–18].
Gauge boson space. The operators that lead to CP

even bilinear interactions for the SU(2)L × U(1)Y spin
one fields up to L(6) are

LWB = −
1

4
W a

µνW
a,µν −

1

4
BµνB

µν +
CHB

Λ2
H†HBµνB

µν

+
CHW

Λ2
H†HW a

µνW
a,µν +

CHWB

Λ2
H†σaHW a

µνB
µν ,

≡ −
1

4
gAB(H)WA

µνWB,µν , (6)

where a, b · · · run over {1, 2, 3}, A,B,C · · · run over
{1, 2, 3, 4}. Here W4

µν = Bµν . Analogous to the scalar
sector, we have introduced a metric gAB[H(φi)], taking
the form

gab =

(

1− 4
CHW

Λ2
H†H

)

δab, g44 = 1− 4
CHB

Λ2
H†H,

ga4 = g4a = −2
CHWB

Λ2
H†σaH. (7)

The Riemann curvature tensor for the gauge fields can be
calculated from gAB and is nonvanishing; the (CP even)
R4 spin one field manifold is also curved.3 A physical
consequence is that, as in the case of the scalar manifold,
there does not exist a gauge independent field redefini-
tion that sets gAB = δAB including L(6) corrections.4,5

3SU(2)L is self adjoint. As a result, one can define a GAB tensor of
the same form as gAB through GAB(H)Wµν

A WB,µν . This GAB

is not the tensor gAB defined through the relation gABgBC = δAC
and used in the gauge fixing term.

4 A rotation to the mass eigenstate basis for the field bilinear inter-
actions can be made, and this is consistent with the curvature of
the gauge manifold.

5Field redefiniton invariant quantities are more directly connected to
S-matrix elements. For a similar discussion of how field redefintion
invariant beta functions can be defined in the SMEFT, see [19].

The power counting expansion of the SMEFT is relevant
for gauge fixing and cannot be removed with gauge inde-
pendent field redefinitions, which is a novel feature com-
pared to more familiar EFTs without a Higgsed phase.
The particular form of the field space metrics depends
on the operator basis used, but the utility of the geomet-
ric approach developed here does not. This argues for a
modified gauge fixing procedure using the BFM in the
SMEFT.
Gauge fixing. Eliminating bilinear kinetic mixing

between the gauge bosons and the Goldstone bosons in
an efficient gauge fixing procedure is advantageous. A
simpler LSZ procedure [20] to construct S-matrix ele-
ments results from this condition being imposed. Rξ

gauge [21] in the SM when ξW = ξB has some further
advantages in eliminating contact operators that compli-
cate calculations in intermediate steps. Using the BFM
combined with Rξ gauge fixing, the gauge fixing term for
the SU(2)L×U(1)Y fields in the SM takes the form [6–9]

LGF =−
1

2ξW

∑

a

[

∂µW
a,µ − g2ε

abcŴb,µW
µ
c (8)

+ ig2
ξW
2

(

Ĥ†
i (σ

a)ijH
j −H†

i (σ
a)ijĤ

j
)

]2

−
1

2ξB

[

∂µB
µ + ig1

ξB
2

(

Ĥ†
i H

i −H†
i Ĥ

i
)

]2

,

where the background fields are denoted by a hat.
The SU(2)L Pauli matrix representation in Eq. 8 is

inconvenient for characterizing the gauge fixing term as
gAB is defined on R4. The Pauli matrix algebra is iso-
morphic to the Clifford algebra C(0, 3), and the latter
can be embedded in the R4 field space using the real
representations γ1,2,3 such that

γI
1,J =







0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0







, γI
2,J =







0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0







,

γI
3,J =







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0






, γI

4,J =







0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0






. (9)

The γ4 generator is used for the U(1)Y embedding. As
SU(2)L is self adjoint we can also define this algebra for
the adjoint fields, using the same real representations.
γ1,2,3,4〈φ〉 &= 0 and the unbroken combination of genera-
tors (γ3 + γ4)〈φ〉 = 0 corresponds to U(1)em. We absorb
the couplings into the structure constants and gamma
matrices,

ε̃ABC = g2 ε
A
BC , with ε̃123 = +g2,

γ̃I
A,J =

{

g2 γI
A,J , for A = 1, 2, 3

g1γI
A,J , for A = 4.

(10)

The different couplings g1, g2 enter as the group defined
on the R4 field space is not simple. The γI

a,J matricies

2

while lower case latin letters i, j, k, l · · · run over {1, 2}.
The metric takes the form

hIJ(φ) = δIJ − 2
CH!

Λ2
φIφJ +

1

2

CHD

Λ2
fIJ(φ), (4)

where

fIJ(φ) =







a 0 d c
0 a c −d
d c b 0
c −d 0 b






,

a = φ2
1 + φ2

2,

b = φ2
3 + φ2

4,

c = φ1φ4 + φ2φ3,

d = φ1φ3 − φ2φ4.

(5)

The Riemann curvature tensor calculated from the scalar
field metric is non-vanishing [1, 2, 15]. The scalar mani-
fold is curved due to the power counting expansion. An
interesting consequence is that there does not exist a
gauge independent field redefinition which sets hIJ = δIJ
when considering L(6) corrections [15]. As a result, de-
manding that the Higgs doublet field to be canonically
normalized in the SMEFT to L(6) cannot be used as a
defining condition for operator bases [15–18].
Gauge boson space. The operators that lead to CP

even bilinear interactions for the SU(2)L × U(1)Y spin
one fields up to L(6) are

LWB = −
1

4
W a

µνW
a,µν −

1

4
BµνB

µν +
CHB

Λ2
H†HBµνB

µν

+
CHW

Λ2
H†HW a

µνW
a,µν +

CHWB

Λ2
H†σaHW a

µνB
µν ,

≡ −
1

4
gAB(H)WA

µνWB,µν , (6)

where a, b · · · run over {1, 2, 3}, A,B,C · · · run over
{1, 2, 3, 4}. Here W4

µν = Bµν . Analogous to the scalar
sector, we have introduced a metric gAB[H(φi)], taking
the form

gab =

(

1− 4
CHW

Λ2
H†H

)

δab, g44 = 1− 4
CHB

Λ2
H†H,

ga4 = g4a = −2
CHWB

Λ2
H†σaH. (7)

The Riemann curvature tensor for the gauge fields can be
calculated from gAB and is nonvanishing; the (CP even)
R4 spin one field manifold is also curved.3 A physical
consequence is that, as in the case of the scalar manifold,
there does not exist a gauge independent field redefini-
tion that sets gAB = δAB including L(6) corrections.4,5

3SU(2)L is self adjoint. As a result, one can define a GAB tensor of
the same form as gAB through GAB(H)Wµν

A WB,µν . This GAB

is not the tensor gAB defined through the relation gABgBC = δAC
and used in the gauge fixing term.

4 A rotation to the mass eigenstate basis for the field bilinear inter-
actions can be made, and this is consistent with the curvature of
the gauge manifold.

5Field redefiniton invariant quantities are more directly connected to
S-matrix elements. For a similar discussion of how field redefintion
invariant beta functions can be defined in the SMEFT, see [19].

The power counting expansion of the SMEFT is relevant
for gauge fixing and cannot be removed with gauge inde-
pendent field redefinitions, which is a novel feature com-
pared to more familiar EFTs without a Higgsed phase.
The particular form of the field space metrics depends
on the operator basis used, but the utility of the geomet-
ric approach developed here does not. This argues for a
modified gauge fixing procedure using the BFM in the
SMEFT.
Gauge fixing. Eliminating bilinear kinetic mixing

between the gauge bosons and the Goldstone bosons in
an efficient gauge fixing procedure is advantageous. A
simpler LSZ procedure [20] to construct S-matrix ele-
ments results from this condition being imposed. Rξ

gauge [21] in the SM when ξW = ξB has some further
advantages in eliminating contact operators that compli-
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the SU(2)L×U(1)Y fields in the SM takes the form [6–9]

LGF =−
1

2ξW

∑

a

[

∂µW
a,µ − g2ε

abcŴb,µW
µ
c (8)

+ ig2
ξW
2

(

Ĥ†
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abcŴb,µW
µ
c (8)

+ ig2
ξW
2

(

Ĥ†
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The different couplings g1, g2 enter as the group defined
on the R4 field space is not simple. The γI

a,J matricies

Also,
√
h
IJ√

hJK ≡ δIK and
√
gAB√gBC ≡ δ

A
C . The rotation angles cθ, sθ are functions of αA

and 〈gAB〉 and are defined geometrically in Section 4.3.

The SMEFT weak/mass eigenstate dynamical fields5 and related couplings are then given

by [10] (see also Refs. [26–29])

αA = UA
C β

C , WA,µ = UA
CAC,µ, φJ = VJ

K ΦK , (2.4)

where in the SM limit

αA = {g2 g2, g2, g1}, WA = {W1,W2,W3, B},

βC =

{

g2 (1− i)√
2

,
g2 (1 + i)√

2
,
√

g21 + g22(c
2
θ̄ − s2θ̄),

2 g1 g2
√

g21 + g22

}

, AC =
(

W+,W−,Z,A
)

.

and φJ = {φ1,φ2,φ3,φ4},ΦK = {Φ−,Φ+,χ, h} for the scalar fields. All-orders results in the

v̄T /Λ expansion can be derived as the relationship between the mass and weak eigenstate

fields is always given by Eqn. (2.4). Remarkably, the remaining field space connections for

two- and three-point functions can also be defined at all-orders in the v̄T /Λ expansion.

2.2 Classifying field space connections for two- and three-point functions

We first classify the operators contributing to two- and three-point functions. The arguments

used here build on those in Refs. [2, 18]. Consider a generic three-point function, including

the effects of a tower of higher-dimensional operators. We denote a SM field, defined in the

weak eigenstate basis, as F = {H,ψ,Wµν} for the discussion to follow. Recall the SM EOM

for the Higgs field,

D2Hk − λv2Hk + 2λ(H†H)Hk + qj Y †
u u(iσ2)jk + dYd qk + e Ye lk = 0 , (2.5)

indicating that dependence on D2Hk can be removed in a set of operator forms contributing

to three-point functions, in favour of just Hk, and higher-point functions. Further, using the

Bianchi identity

DµWαβ +DαWβµ +DβWµα = 0, (2.6)

one can also reduce D2Wαβ to EOM-reducible terms and higher-point interactions via

D2WA
αβ = DµDνg

µνWA
αβ ,

= −Dµg
µν
(

DαWA
βν +DβWA

να

)

,

= −
1

2
D{ν,α}WA

βν −
1

2
D{ν,β}WA

να −
1

2
WA
ναWA

βν −
1

2
WA
νβW

A
να,

⇒ EOM and higher-points (2.7)

Here D{ν,α} is the symmetric combination of covariant derivatives. An explicit appearance of

D[µ,ν]F is reduced to WA
µνF , where A is dictated by the SM charge of F .

5The vev v̄T is subtracted from φ4 in the equation below involving φJ .
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Building up the gAB(ɸ) metric
[2203.06771]
[2001.01453]

Consider the higher-order operators that can connect two gauge field strengths:

Expanding in terms of real scalar fields, and combining into a single gauge field (A,B = 1,2,3,4), 
one can write

vertices to all orders in vT/⇤6. For example, the operators that feed into the kinetic term
for electroweak gauge bosons are limited to

Q(6+2n)
HB = (H†H)n+1Bµ⌫ Bµ⌫ , (21)

Q(6+2n)
HW = (H†H)n+1W µ⌫

a W a
µ⌫ , (22)

Q(6+2n)
HWB = (H†H)n(H†�aH)W µ⌫

a Bµ⌫ , (23)

Q(8+2n)
HW,2 = (H†H)n(H†�aH)(H†�bH)W µ⌫

a Wb,µ⌫ , (24)

Re-expressing the operators in terms of the four real degrees of freedom �I in the Higgs and
combining them with the SM terms, we can lump all of the SMEFT e↵ects into a ‘metric’
gAB(�)WA

µ⌫W
B,µ⌫ . Explicitly

gAB(�I) =

"
1� 4

1X

n=0

⇣
C(6+2n)

HW (1� �A4) + C(6+2n)
HB �A4

⌘✓
�2

2

◆n+1
#
�AB

+
1X

n=0

C(8+2n)
HW,2

✓
�2

2

◆n �
�I�

I
A,J�

J
� �
�L�

L
B,K�

K
�
(1� �A4)(1� �B4)

+

"
1X

n=0

C(6+2n)
HWB

✓
�2

2

◆n
#
(�I�

I
A,J�

J) (1� �A4)�B4, (25)

where �A are the SU(2) generators as 4 by 4 matrices (see for definition).
Carrying out this process for all other possible 2- and 3- point vertices using SM fields,

we arrive at a set of metrics:

hIJ(�)(Dµ�)
I(Dµ�)

J , gAB(�)W
A
µ⌫W

B,µ⌫ , kA
IJ(�)(Dµ�)

I(D⌫�)
J W µ⌫

A , fABC(�)W
A
µ⌫W

B,⌫⇢WC,⇢µ,

Y (�) ̄1 2, LI,A(�) ̄1�
µ⌧A 2(Dµ�)

I , dA(�) ̄1�
µ⌫ 2W

A
µ⌫ ,

(plus analogous forms for gluons and with dual field strengths). Each possesses an expansion
similar to those found in [9] in terms of a small number of easily identifiable operators at
each mass dimension.

Working with the metric forms, canonically normalizing the gauge bosons and changing
to the mass eigenstate basis, we can identify the couplings of matter to W/Z in the presence
of higher dimensional operators.

hZ| ̄p ri =
ḡZ
2
 ̄p /✏

Z

h
(2s2✓ZQ � �3)�pr + �3v̄T hL

 ,pr
3,3 i+ v̄T hL

 ,pr
3,4 i

i
 r, (26)

hW±| ̄p ri = �
ḡ2
p
2
 ̄p(/✏

W±)T
±

h
�pr � v̄T hL

 ,pr
1,1 i± iv̄T hL

 ,pr
1,2 i

i
 r. (27)

6
Here vT is the minimum of the full Higgs potential including higher order terms, and is distinct from

the SM Lagrangian parameter v0. It is possible to express the former in terms of the latter, though this

is only necessary in processes where multiple Higgses are produced, as the parameter that enters the W/Z

masses – and is therefore linked to GF – is vT .
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of these expressions with demonstrated examples. In section 4 we derive generic, analytic
expressions for the renormalization group flow of the flavour parameters. Finally, we con-
clude in section 5, providing an outlook for the extension of this formalism into the lepton
sector. Some useful formulae are presented in appendix A.

2 The Yukawa sector of the (geo)SM(EFT)

The geoSMEFT [6] represents a re-organization of the SMEFT operator product expansion
(OPE) in (1.2), such that

LSMEFT =
∑

i

Gi (I,A,φ, . . .) fi . (2.1)

Here Gi are field-space connections that depend on the group indices I,A of all inter-
nal symmetry groups, and real scalar field coordinates φI of the SU(2)L Higgs doublet,
normalized as follows:2

H (φI) =
1√
2

[
φ2 + iφ1
φ4 − iφ3

]

=⇒ H̃ (φI) =
1√
2

[
φ4 + iφ3

−φ2 + iφ1

]

. (2.2)

On the other hand, fi are operator forms composed of the Lorentz-index-carrying building
blocks of LSMEFT, and which are (largely)3 independent of φ. That is, upon the Higgs
obtaining its vev, the tower of interactions composing Gi reduces to a number and emissions
of h (the propagating Higgs field), while fi remains a distinct operator of SM fields and
derivatives. Critically, by using Hilbert series techniques one can show that, at least for
two- and three-point functions, the number of fi saturates to a constant value at arbitrary
mass-dimension. This then allows the field-space connections Gi, and thereby important
theory parameters (e.g. gauge boson masses, gauge couplings, weak mixing angles, the
Higgs mass, etc.), to be defined at all orders in the SMEFT’s characteristic vT /Λ expansion.
For a complete description of the geoSMEFT see [6], which builds on prior work [11–14].
See [15–18] for recent geoSMEFT applications.

In what follows we are only concerned with the Yukawa sector of the effective theory,
i.e. with non-renormalizable SMEFT operators of the form

Q6+2n
ψH
pr

=
(
H†H

)n+1 (
ψ̄L,pψR,rH

)
with n ≥ 0 , (2.3)

with ψL ∈ {Q,L}L and ψR ∈ {u, d, e}R, and where H → H̃ in the second bracket when
ψR = uR. Hence the classification of two- and three-point functions in terms of their field
space connections and composite operator forms, as already present in [6], is sufficient for
our purposes. From there we recall the two-point Yukawa function Y (φ)ψ1ψ2, whose field
space connection Y (φ) is given by

Y ψ1
pr (φI) =

δLSMEFT

δ(ψI
2,pψ1,r)

∣∣∣∣
L(α,β,...)→0

, (2.4)

2φ4 is expanded around the vev via φ4 → φ4 + vT .
3Except powers of DµH, which get grouped with fi. This residual scalar coordinate-dependence in the

composite operator forms manifests in powers of ∂µh, upon the Higgs acquiring its vev.
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Also,
√
h
IJ√

hJK ≡ δIK and
√
gAB√gBC ≡ δ

A
C . The rotation angles cθ, sθ are functions of αA

and 〈gAB〉 and are defined geometrically in Section 4.3.

The SMEFT weak/mass eigenstate dynamical fields5 and related couplings are then given

by [10] (see also Refs. [26–29])

αA = UA
C β

C , WA,µ = UA
CAC,µ, φJ = VJ

K ΦK , (2.4)

where in the SM limit

αA = {g2 g2, g2, g1}, WA = {W1,W2,W3, B},

βC =

{

g2 (1− i)√
2

,
g2 (1 + i)√

2
,
√

g21 + g22(c
2
θ̄ − s2θ̄),

2 g1 g2
√

g21 + g22

}

, AC =
(

W+,W−,Z,A
)

.

and φJ = {φ1,φ2,φ3,φ4},ΦK = {Φ−,Φ+,χ, h} for the scalar fields. All-orders results in the

v̄T /Λ expansion can be derived as the relationship between the mass and weak eigenstate

fields is always given by Eqn. (2.4). Remarkably, the remaining field space connections for

two- and three-point functions can also be defined at all-orders in the v̄T /Λ expansion.

2.2 Classifying field space connections for two- and three-point functions

We first classify the operators contributing to two- and three-point functions. The arguments

used here build on those in Refs. [2, 18]. Consider a generic three-point function, including

the effects of a tower of higher-dimensional operators. We denote a SM field, defined in the

weak eigenstate basis, as F = {H,ψ,Wµν} for the discussion to follow. Recall the SM EOM

for the Higgs field,

D2Hk − λv2Hk + 2λ(H†H)Hk + qj Y †
u u(iσ2)jk + dYd qk + e Ye lk = 0 , (2.5)

indicating that dependence on D2Hk can be removed in a set of operator forms contributing

to three-point functions, in favour of just Hk, and higher-point functions. Further, using the

Bianchi identity

DµWαβ +DαWβµ +DβWµα = 0, (2.6)

one can also reduce D2Wαβ to EOM-reducible terms and higher-point interactions via

D2WA
αβ = DµDνg

µνWA
αβ ,

= −Dµg
µν
(

DαWA
βν +DβWA

να

)

,

= −
1

2
D{ν,α}WA

βν −
1

2
D{ν,β}WA

να −
1

2
WA
ναWA

βν −
1

2
WA
νβW

A
να,

⇒ EOM and higher-points (2.7)

Here D{ν,α} is the symmetric combination of covariant derivatives. An explicit appearance of

D[µ,ν]F is reduced to WA
µνF , where A is dictated by the SM charge of F .

5The vev v̄T is subtracted from φ4 in the equation below involving φJ .
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Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM , (2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µσAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,

– 6 –

This field-space connection is therefore valid at all-orders in !  In the Higgsed phase the 
connection reduces to a number + emissions of h.

vT /Λ

vertices to all orders in vT/⇤6. For example, the operators that feed into the kinetic term
for electroweak gauge bosons are limited to

Q(6+2n)
HB = (H†H)n+1Bµ⌫ Bµ⌫ , (21)

Q(6+2n)
HW = (H†H)n+1W µ⌫

a W a
µ⌫ , (22)

Q(6+2n)
HWB = (H†H)n(H†�aH)W µ⌫

a Bµ⌫ , (23)

Q(8+2n)
HW,2 = (H†H)n(H†�aH)(H†�bH)W µ⌫

a Wb,µ⌫ , (24)

Re-expressing the operators in terms of the four real degrees of freedom �I in the Higgs and
combining them with the SM terms, we can lump all of the SMEFT e↵ects into a ‘metric’
gAB(�)WA

µ⌫W
B,µ⌫ . Explicitly

gAB(�I) =

"
1� 4

1X

n=0

⇣
C(6+2n)

HW (1� �A4) + C(6+2n)
HB �A4

⌘✓
�2

2

◆n+1
#
�AB

+
1X

n=0

C(8+2n)
HW,2

✓
�2

2

◆n �
�I�

I
A,J�

J
� �
�L�

L
B,K�

K
�
(1� �A4)(1� �B4)

+

"
1X

n=0

C(6+2n)
HWB

✓
�2

2

◆n
#
(�I�

I
A,J�

J) (1� �A4)�B4, (25)

where �A are the SU(2) generators as 4 by 4 matrices (see for definition).
Carrying out this process for all other possible 2- and 3- point vertices using SM fields,

we arrive at a set of metrics:

hIJ(�)(Dµ�)
I(Dµ�)

J , gAB(�)W
A
µ⌫W

B,µ⌫ , kA
IJ(�)(Dµ�)

I(D⌫�)
J W µ⌫

A , fABC(�)W
A
µ⌫W

B,⌫⇢WC,⇢µ,

Y (�) ̄1 2, LI,A(�) ̄1�
µ⌧A 2(Dµ�)

I , dA(�) ̄1�
µ⌫ 2W

A
µ⌫ ,

(plus analogous forms for gluons and with dual field strengths). Each possesses an expansion
similar to those found in [9] in terms of a small number of easily identifiable operators at
each mass dimension.

Working with the metric forms, canonically normalizing the gauge bosons and changing
to the mass eigenstate basis, we can identify the couplings of matter to W/Z in the presence
of higher dimensional operators.

hZ| ̄p ri =
ḡZ
2
 ̄p /✏

Z

h
(2s2✓ZQ � �3)�pr + �3v̄T hL

 ,pr
3,3 i+ v̄T hL

 ,pr
3,4 i

i
 r, (26)

hW±| ̄p ri = �
ḡ2
p
2
 ̄p(/✏

W±)T
±

h
�pr � v̄T hL

 ,pr
1,1 i± iv̄T hL

 ,pr
1,2 i

i
 r. (27)
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the SM Lagrangian parameter v0. It is possible to express the former in terms of the latter, though this

is only necessary in processes where multiple Higgses are produced, as the parameter that enters the W/Z

masses – and is therefore linked to GF – is vT .
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where �A are the SU(2) generators as 4 by 4 matrices (see for definition).
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(plus analogous forms for gluons and with dual field strengths). Each possesses an expansion
similar to those found in [9] in terms of a small number of easily identifiable operators at
each mass dimension.

Working with the metric forms, canonically normalizing the gauge bosons and changing
to the mass eigenstate basis, we can identify the couplings of matter to W/Z in the presence
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Dim 6+

Dim 8+

Mass Dimension

Field space connection 6 8 10 12 14

hIJ(φ)(Dµφ)I(Dµφ)J 2 2 2 2 2

gAB(φ)WA
µνWB,µν 3 4 4 4 4

kIJA(φ)(Dµφ)I(Dνφ)JWA
µν 0 3 4 4 4

fABC(φ)WA
µνWB,νρWC,µ

ρ 1 2 2 2 2

Y u
pr(φ)Q̄u+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y d
pr(φ)Q̄d+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y e
pr(φ)L̄e+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

de,prA (φ)L̄σµνeWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

du,prA (φ)Q̄σµνuWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

dd,prA (φ)Q̄σµνdWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

LψR

pr,A(φ)(D
µφ)J (ψ̄p,RγµσAψr,R) N2

f N2
f N2

f N2
f N2

f

LψL

pr,A(φ)(D
µφ)J(ψ̄p,LγµσAψr,L) 2N2

f 4N2
f 4N2

f 4N2
f 4N2

f

Table 1. Counting of operators contributing to two- and three-point functions from Hilbert series.
These results are consistent with Ref. [4].

The minimum is redefined order by order in the power counting expansion

〈H†H〉 =
v2

2






1 +

3C(6)
H v2

4λ
+ v4

9
(

C(6)
H

)2
+ 4C(8)

H λ

8λ2
+ · · ·






≡

v̄2T
2
. (3.2)

This generalization of the expectation value simplifies at leading order in 1/Λ2 to the vev

of the SM. Including the leading 1/Λ2 correction, the result is that of Ref. [26], the 1/Λ4

correction is as given in Ref. [18], etc. At higher orders in the polynomial expansion of H†H

that results from taking the derivative of the potential, numerical methods must be used to

find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)
[

(DµH)† σa (DµH)
]

.
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Similarly, D2ψ can be reduced as

D2ψ = DµDνg
µνψ = DµDν(γ

µγν + iσµν)ψ ⇒ EOM and higher-points, (2.8)

where σµν = i
2(γµγν − γνγµ). In what follows, when D2F appears, it is replaced in terms of

EOM terms and higher-point functions for these reasons. Explicitly reducing operator forms

by the EOM, when possible, in favour of other composite operators, has a key role in these

arguments.

Now consider higher-derivative contributions to three-point functions. Explicit appear-

ances of D2F are removed due to the proceeding argument. Further, a general combination

of derivatives, acting on three general SM fields F1,2,3,

f(H)(DµF1)(DνF2)D{µν}F3, (2.9)

is removable in terms of EOM terms and higher-point functions, using integration by parts:

f(H)(DµF1)(DνF2)D{µν}F3 (2.10)

=− f(H)
[

(D2F1)(DνF2) + (DµF1)(DµDνF2) + (DµDνF1)(DµF2) + (DνF1)(D
2F2)

]

(DνF3)

− (Dµf(H)) [(DµF1)(DνF2) + (DνF1)(DµF2)] (DνF3)

⇒− f(H) [(DµF1)(DµDνF2) + (DµDνF1)(DµF2)] (DνF3) + EOM and higher-points

⇒− f(H)(D[µ,ν]F1)(DµF2)(DνF3) + f(H)(DµF1)(DµF2)(D
2F3) + EOM and higher-points

⇒ EOM and higher-points.

As a result, in general, an operator with four or more derivatives acting on three (possibly

different) fields Fi can be reduced out of three-point amplitudes.

When considering field space connections that can reduce to three-point functions when

a vacuum expectation value is taken, we also use

f(φ)F1 (DµF2) (DµF3)⇒ (Dµf(φ)) (DµF1)F2 F3 +
1

2
(D2f(φ))F1 F2 F3 + EOM , (2.11)

to conventionally move derivative terms onto scalar fields. After reducing the possible field

space connections using these arguments systematically, and integrating by parts, a minimal

generalization of field space connections for CP even electroweak bosonic two- and three-point

amplitudes is composed of

hIJ (φ)(Dµφ)
I(Dµφ)

J , gAB(φ)WA
µνWB,µν , kAIJ(φ)(Dµφ)

I(Dνφ)
J Wµν

A ,

fABC(φ)WA
µνWB,νρWC,µ

ρ ,

and the scalar potential V (φ).

The minimal set of field space connections involving fermionic field in two- and three-point

functions is

Y (φ)ψ̄1ψ2, LI,A(φ)ψ̄1γ
µσAψ2(Dµφ)

I , dA(φ)ψ̄1σ
µνψ2WA

µν ,

– 6 –

That the operator forms saturate at all orders 
can be seen with Hilbert Series techniques:
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The geoSMEFT at 2 & 3 pts [2001.01453]

4.7 hZZ, hWW couplings

The off-shell coupling of the Higgs to ZZ and WW are given by summing over multiple field

space connections. One finds

〈h|Z(p1)Z(p2)〉 = −
√
h
44

4
ḡ2Z

[

〈
δg33(φ)

δφ4
〉
c4θZ
g22
− 2〈

δg34(φ)

δφ4
〉
c2θZ s2θZ
g1g2

+ 〈
δg44(φ)

δφ4
〉
s4θZ
g21

]

〈hZµνZµν〉

+
√
h
44 ḡ2Z

2

[

〈
δh33(φ)

δφ4
〉
( v̄T

2

)2
+ 〈h33(φ)〉

v̄T
2

]

〈hZµZµ〉

+
√
h
44
ḡ2Z v̄T

[

〈k334〉
c2θZ
g2
− 〈k434〉

s2θZ
g1

]

〈∂νhZµZµν〉, (4.23)

and

〈h|W(p1)W(p2)〉 = −
√
h
44

2
ḡ22

[

〈
δg11(φ)

δφ4
〉
1

g22

]

〈hWµνWµν〉

+
√
h
44
ḡ22

[

〈
δh11(φ)

δφ4
〉
( v̄T

2

)2
+ 〈h11(φ)〉

v̄T
2

]

〈hWµWµ〉

+ 2
√
h
44 ḡ22
g2

v̄T
4

[

i 〈k142〉 − 〈k242〉
]

〈(∂µh)(W+
µνW

ν
− +W−

µνW
ν
+)〉. (4.24)

As these couplings are off-shell, they are not directly observable.

4.8 Z → ψ̄ψ, W → ψ̄ψ partial widths

A key contribution to the full width of the Z,W bosons in the SMEFT are the two-body

partial widths that follow from the SMEFT couplings of the Z,W to fermions of the same

chirality. These results can be defined at all orders in the v̄T /Λ expansion as

Γ̄Z→ψ̄ψ =
∑

ψ

Nψ
c

24π

√

m̄2
Z |g

Z,ψ
eff |2

(

1−
4M̄2

ψ

m̄2
Z

)3/2

(4.25)

where

gZ,ψeff =
ḡZ
2

[

(2s2θZ Qψ − σ3)δpr + v̄T 〈Lψ,pr3,4 〉+ σ3v̄T 〈Lψ,pr3,3 〉
]

(4.26)

and ψ = {qL, uR, dR, 'L, eR}, while σ3 = 1 for uL, νL and σ3 = −1 for dL, eL. Similarly one

can define

Γ̄W→ψ̄ψ =
∑

ψ

Nψ
c

24π

√

m̄2
W |gW,ψ

eff |2
(

1−
4M̄2

ψ

m̄2
W

)3/2

(4.27)

with

gW,qL
eff = −

ḡ2√
2

[

V pr
CKM − v̄T 〈LqL,pr

1,1 〉± iv̄T 〈LqL,pr
1,2 〉

]

,

gW,$L
eff = −

ḡ2√
2

[

Upr,†
PMNS − v̄T 〈L$L,pr1,1 〉± iv̄T 〈L$L,pr1,2 〉

]

,

where the VCKM and UPMNS matrices are implicitly absorbed into 〈LJ,A〉.
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defined at all orders in !!vT /Λ
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Can build up observable quantities, such as a decay width.

Consider a             coupling to a fermion bilinear.W±, Z
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Two body decay widths:

Michael Trott, NBI

…

…

GeoSMEFT All orders result ex.

Can do LEP to dim 8 in about 3 weeks of work if you learn this stuff.

Towards loop calculations at all- -orders :vT /Λ [2106.10284]

This is a powerful reorganization.  It allows for all- -orders amplitudes of fundamental processes:vT /Λ

EOM / Hilbert Series techniques allows for proof of all 2- and 3-pt field space connections!

112

Whats under control? 
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General growth in operator forms from  Hilbert series
https://arxiv.org/pdf/1512.03433.pdf

https://arxiv.org/abs/1706.08520

https://arxiv.org/abs/1503.07537

https://arxiv.org/abs/1510.00372

Pole parameters O(10’s)

Tails are exponential
Mass Dimension

Field space connection 6 8 10 12 14

hIJ(φ)(Dµφ)I(Dµφ)J 2 2 2 2 2

gAB(φ)WA
µνWB,µν 3 4 4 4 4

kIJA(φ)(Dµφ)I(Dνφ)JWA
µν 0 3 4 4 4

fABC(φ)WA
µνWB,νρWC,µ

ρ 1 2 2 2 2

Y u
pr(φ)Q̄u+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y d
pr(φ)Q̄d+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

Y e
pr(φ)L̄e+ h.c. 2N2

f 2N2
f 2N2

f 2N2
f 2N2

f

de,prA (φ)L̄σµνeWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

du,prA (φ)Q̄σµνuWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

dd,prA (φ)Q̄σµνdWµν
A + h.c. 4N2

f 6N2
f 6N2

f 6N2
f 6N2

f

LψR

pr,A(φ)(D
µφ)J (ψ̄p,RγµσAψr,R) N2

f N2
f N2

f N2
f N2

f

LψL

pr,A(φ)(D
µφ)J(ψ̄p,LγµσAψr,L) 2N2

f 4N2
f 4N2

f 4N2
f 4N2

f

Table 1. Counting of operators contributing to two- and three-point functions from Hilbert series.
These results are consistent with Ref. [4].

The minimum is redefined order by order in the power counting expansion

〈H†H〉 =
v2

2






1 +

3C(6)
H v2

4λ
+ v4

9
(

C(6)
H

)2
+ 4C(8)

H λ

8λ2
+ · · ·






≡

v̄2T
2
. (3.2)

This generalization of the expectation value simplifies at leading order in 1/Λ2 to the vev

of the SM. Including the leading 1/Λ2 correction, the result is that of Ref. [26], the 1/Λ4

correction is as given in Ref. [18], etc. At higher orders in the polynomial expansion of H†H

that results from taking the derivative of the potential, numerical methods must be used to

find a minimum due to the Abel–Ruffini theorem. Note that this also means that expanding

out the vev dependence in a formal all-orders result to a fixed order necessarily requires

numerical methods.

The expectation values of the field space connections is also denoted by 〈〉 and a critical

role is played by
√
h
IJ

= 〈hIJ 〉1/2, and √gAB = 〈gAB〉1/2. The
√
h and

√
g depend on v̄T .

3.1 Scalar bilinear metric: hIJ(φ)

The relevant terms in L(6,8) for the scalar metric are [18]

L(6,8) ⊇ C(6)
H!(H

†H)!(H†H) + C(6)
HD(H

†DµH)$(H†DµH) (3.3)

+ C(8)
HD(H

†H)2(DµH)†(DµH) + C(8)
H,D2(H

†H)(H†σaH)
[

(DµH)† σa (DµH)
]

.
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ITP Talk]

[1512.03433]

Lagrangian parameters & Feynman rules obtained at all- -orders before physical amplitude calculated!vT /Λ
Connections often field-redefinition invariant & yield large reduction in operators (EFT parameters)!

Consistent SMEFT Phenomenology @ dim-8: [2102.02819][2007.00565][2107.07470] [2203.11976]
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Motivating (light) gauge singlets
H qL `L uR dR eR N

SU(3)c 1 3 1 3 3 1 1

SU(2)L 2 2 2 1 1 1 1

U(1)Y
1
2

1
6 �

1
2

2
3 �

1
3 �1 0

Table 1: Field and (gauge) symmetry content of the ⌫SM(EFT).

SU(3)c⇥ SU(2)L⇥ U(1)Y gauge symmetries of the SM, composed of SM fields only (cf. the

first seven columns of Table 1), with unspecified couplings/coe�cients C(d)
i

.
Similar in spirit to the SMEFT, the ⌫SMEFT allows for all (non-)renormalizable gauge-

and spacetime-invariant operators composed of SM fields, but also introduces nf flavors of a
light gauge singlet neutrino N into the IR spectrum.2 The field and gauge symmetry content
of the ⌫SM(EFT) is also presented in Table 1, while its Lagrangian is given by

L⌫SMEFT ⌘ LSM + LN +
X

i

C
(d)
i

⇤d�4
Q

(d)
i

, (2)

where the renormalizable interactions of N are simply

LN = N i/@N �
1

2

⇥
N M N

c +N c M
?
N
⇤
� `L H̃ YN N �N Y

†
N
H̃

†
`L , (3)

which respectively constitute a kinetic term, lepton-number-violating (LNV) Majorana mass
terms, and novel Yukawa interactions that serve as a portal to the SM. Note also that in
(2) we have included the relevant scale suppression factor ⇤d�4 associated to a given mass-
dimension-d operator. Hence the ⌫SMEFT is the relevant EFT describing nature at energy
scales M⌫SM << ⇤, such that (2) allows one to calculate neutrino amplitudes in a model-
independent way, encoding the e↵ects of heavier particles associated to explicit new physics
scenarios into (potentially) non-zero Wilson Coe�cients. Indeed, accounting for the possibility
of N -dependent IR vertices is well-motivated not only by the observation of non-zero light
neutrino masses, but also by deeper theoretical concerns about the ability to embed the SM
enhanced by three Majorana neutrinos into a quantum theory of gravity [5–8], as well as a
host of experimental anomalies in short-baseline neutrino oscillation experiments dating back
to results from the Los Alamos Liquid Scintillator Neutrino Detector (LSND) — see e.g. [9]
for a recent review on sterile neutrino physics. As a result, significant theoretical interest has
developed around (2): building upon earlier results in [10–13], a complete operator basis up
to d = 9 is now available from [4], as are matching and renormalization group (RGE) analyses
at tree and one-loop accuracy [14, 15], along with numerous phenomenological studies at low
and high energies (see e.g. [15–26]).

Concurrent to growing interest and developments with the ⌫SMEFT, recent progress has
also been made in understanding the mathematical behavior associated to arbitrarily high

2
Note that N is the standard right-handed (RH), four-component neutrino spinor sometimes denoted by

NR in the literature (see e.g. [3]). We have removed the R subscript for clarity of notation, and for consistency

with the final results of [4]. Also, N
c
⌘ CN

T
.

2

Renormalizable mass terms for neutrinos

A number of longstanding anomalies in 
neutrino oscillation physics (LSND, MiniBooNE, 
MicroBooNE?)

Potential dark matter candidate (see talk from 
P. Di Bari later this week)
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⌫SMEFT Operator Counting

Mass Dimension 5 6 7 8 9 10 11

nf = 1
4 113 110 1316 1918 21540 37354

2 29 80 323 1358 6084 25392

nf = 2
14 1037 1226 14008 41720 435452 1191386

8 343 894 4205 30102 160805 820964

nf = 3
30 4659 5748 65207 334400 3513704 11347838

18 1614 4206 20400 243944 1421263 7875572

Table 2: Operator counting up to mass dimension 11 in the ⌫SMEFT with one, two, and
three flavors nf , assuming that the number of sterile neutrino flavors is equal to the number
of SM fermion flavors. This table is generated with ECO [38] and can be trivially extended to
higher mass dimensions. Note that our counting on the top row, for a given number of flavors,
includes both the operators of the traditional SMEFT as well as those with N dependence,
while the counting on the second row only includes the number of novelN -dependent operators
at said mass dimension. From this one sees that at nf = 1 (3) we obtain 84 (3045) independent
SMEFT operators at mass dimension six, in line with standard counting schemes.

2 geo⌫SMEFT Composite Operator Forms

Constructing the geo⌫SMEFT amounts to imposing the geometric factorization of (4) on the
traditional formulation of the ⌫SMEFT Lagrangian,

L⌫SMEFT
!
⌘

X

i

Gi (I, A,�, ...) fi , (6)

and so our principal task is to identify the Gi and fi in this theory. In this Section we approach
the latter composite operator forms fi, recalling that [27]

• whilst a geometric formulation of an EFT is possible regardless of operator basis, the
exact analytic forms of the fi and corresponding Gi can take on a basis dependence.

• a finite list of fi can only be found for two- and three-point fi, where a ‘point’ can
constitute a field-strength tensor Xµ⌫ , a fermion  , a Higgs-derivative term D

µ
�, or a

fermion-derivative term D
µ
 . This is due to the failure of integration-by-parts identities

to reduce out higher-derivative operators acting on (n > 3)-point functions.

With this in mind we will construct a geometric formulation of the two- and three-point
⌫SMEFT that is consistent with the operator basis presented in [4] up to d = 9, which is
simultaneously consistent with the output of a Hilbert Series calculation.3. Our notation for

3
We have explicitly checked that the number of operators presented in [4] is consistent with Table 2. For

example, [4] finds that there are N (nf ) = nf/72 (16651n
5
f + 327n

4
f + 64519n

3
f � 1335n

2
f + 17182nf + 432)

operators in the ⌫SMEFT at d = 9, which yields {N (1),N (2),N (3)} = {1358, 30102, 243944}.

4

The !SMEFT

Table calculated with ECO!  
[2004.09521]

Complete Dim 9 basis from Li et al. 
[2105.09329]

[JT, 2208.11139]

See reviews in (e.g.) 
[Kopp, 2109.00767] 

[Dasgupta & Kopp, 2106.05913]
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The geo!SMEFT @ 2 and 3 pts.

⌫SMEFT Operator Counting

Mass Dimension 5 6 7 8 9 10 11

nf = 1
4 113 110 1316 1918 21540 37354

2 29 80 323 1358 6084 25392

nf = 2
14 1037 1226 14008 41720 435452 1191386

8 343 894 4205 30102 160805 820964

nf = 3
30 4659 5748 65207 334400 3513704 11347838

18 1614 4206 20400 243944 1421263 7875572

Table 2: Operator counting up to mass dimension 11 in the ⌫SMEFT with one, two, and
three flavors nf , assuming that the number of sterile neutrino flavors is equal to the number
of SM fermion flavors. This table is generated with ECO [38] and can be trivially extended to
higher mass dimensions. Note that our counting on the top row, for a given number of flavors,
includes both the operators of the traditional SMEFT as well as those with N dependence,
while the counting on the second row only includes the number of novelN -dependent operators
at said mass dimension. From this one sees that at nf = 1 (3) we obtain 84 (3045) independent
SMEFT operators at mass dimension six, in line with standard counting schemes.

2 geo⌫SMEFT Composite Operator Forms

Constructing the geo⌫SMEFT amounts to imposing the geometric factorization of (4) on the
traditional formulation of the ⌫SMEFT Lagrangian,

L⌫SMEFT
!
⌘

X

i

Gi (I, A,�, ...) fi , (6)

and so our principal task is to identify the Gi and fi in this theory. In this Section we approach
the latter composite operator forms fi, recalling that [27]

• whilst a geometric formulation of an EFT is possible regardless of operator basis, the
exact analytic forms of the fi and corresponding Gi can take on a basis dependence.

• a finite list of fi can only be found for two- and three-point fi, where a ‘point’ can
constitute a field-strength tensor Xµ⌫ , a fermion  , a Higgs-derivative term D

µ
�, or a

fermion-derivative term D
µ
 . This is due to the failure of integration-by-parts identities

to reduce out higher-derivative operators acting on (n > 3)-point functions.

With this in mind we will construct a geometric formulation of the two- and three-point
⌫SMEFT that is consistent with the operator basis presented in [4] up to d = 9, which is
simultaneously consistent with the output of a Hilbert Series calculation.3. Our notation for

3
We have explicitly checked that the number of operators presented in [4] is consistent with Table 2. For

example, [4] finds that there are N (nf ) = nf/72 (16651n
5
f + 327n

4
f + 64519n

3
f � 1335n

2
f + 17182nf + 432)

operators in the ⌫SMEFT at d = 9, which yields {N (1),N (2),N (3)} = {1358, 30102, 243944}.

4

2.1 Enumerating Two- and Three-Point Functions

As stated above we aim to enumerate the finite set of two- and three-point composite operator
forms fi of the geo⌫SMEFT, where a ‘point’ can a priori be a fermion  , a field-strength tensor,
a Higgs-derivative term, or a fermion-derivative term:4

(Dµ
�)I =
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⌫
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Furthermore, we are only interested in identifying operators that are novel with respect to the
geoSMEFT, and so we only need to identify functions whose fi have an explicit dependence
on the sterile gauge-singlet N . Finally, given that N is a Lorentz spinor, the relevant fi must
come with at least two fermion-dependent points, since Gi only has scalar field dependence.

Considering these simple constraints, one can rapidly enumerate the two- and three-point
composite operators fi that fulfill them, finding

• a Yukawa operator of the form YN(�)N `,

• a Majorana mass operator of the form ⌘N(�)N N
c,

• dipole-type operators of the form d 1 2(�) 1 �µ⌫  2 W
µ⌫ with  1 2 2 {N`, eN

c
, NN

c
},

• single-derivative operators of the form L N(�) (Dµ
�) 1 �µ  2 with  1 2 2 {eN,NN, `CN},

as well as hermitian-conjugate combinations of said fields, when relevant. We now study the
saturation of the fi listed above by utilizing techniques embedded in the Hilbert Series (HS),
and the novel (automated) HS generator ECO [38]. ECO is a FORM [39,40] program that exploits
the Molien-Weyl formula for computing HS, and which speeds up the computation by orders of
magnitude in comparison to prior similar approaches (see e.g. [41–43]). It has built-in support
for counting EFT operators with (B)SM particle content and SM gauge symmetries, as well
as additional gauge or global U(1) symmetries as defined by the user. For example, we have
computed the ECO counting of ⌫SMEFT operators up to d = 11 and nf = nl = 3 in Table 2.5

If the field-space connections associated to the two- and three-point operators enumerated
above are truly defined at all-orders in vT/⇤, one must demonstrate that the number of
independent operators (accounting for all flavor and gauge indices) constituting the composite
operator forms fi saturate at a finite value in mass dimension. We have shown that this is

4
Following [27, 30], the �A matrices are electroweak symmetry generators written in a four-dimensional

real representation, and their tilded notation (and that of the Levi-Civita tensors ✏BC) implies that a gauge-

coupling has been absorbed into the definition — see Appendix A for details. T
A

are the Gell-Mann matrices

of QCD, 2T
±

= �1 ± i�2 and T3 = �3/2 are isospin generators composed of Pauli matrices �{1,2,3}, and

Q = �3/2+Y is the electric charge of the specified fermion in terms of its hypercharge Y , given in Table 1.
5
Whilst trivial, we are unaware of any counting of ⌫SMEFT operators up to this mass dimension present

in the literature. Note that generating the nf = 3 counting of 11347838 d = 11 ⌫SMEFT operators required

only 1.57 seconds of computing time on a standard laptop (!)
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Furthermore, we are only interested in identifying operators that are novel with respect to the
geoSMEFT, and so we only need to identify functions whose fi have an explicit dependence
on the sterile gauge-singlet N . Finally, given that N is a Lorentz spinor, the relevant fi must
come with at least two fermion-dependent points, since Gi only has scalar field dependence.

Considering these simple constraints, one can rapidly enumerate the two- and three-point
composite operators fi that fulfill them, finding

• a Yukawa operator of the form YN(�)N `,

• a Majorana mass operator of the form ⌘N(�)N N
c,

• dipole-type operators of the form d 1 2(�) 1 �µ⌫  2 W
µ⌫ with  1 2 2 {N`, eN

c
, NN

c
},

• single-derivative operators of the form L N(�) (Dµ
�) 1 �µ  2 with  1 2 2 {eN,NN, `CN},

as well as hermitian-conjugate combinations of said fields, when relevant. We now study the
saturation of the fi listed above by utilizing techniques embedded in the Hilbert Series (HS),
and the novel (automated) HS generator ECO [38]. ECO is a FORM [39,40] program that exploits
the Molien-Weyl formula for computing HS, and which speeds up the computation by orders of
magnitude in comparison to prior similar approaches (see e.g. [41–43]). It has built-in support
for counting EFT operators with (B)SM particle content and SM gauge symmetries, as well
as additional gauge or global U(1) symmetries as defined by the user. For example, we have
computed the ECO counting of ⌫SMEFT operators up to d = 11 and nf = nl = 3 in Table 2.5

If the field-space connections associated to the two- and three-point operators enumerated
above are truly defined at all-orders in vT/⇤, one must demonstrate that the number of
independent operators (accounting for all flavor and gauge indices) constituting the composite
operator forms fi saturate at a finite value in mass dimension. We have shown that this is

4
Following [27, 30], the �A matrices are electroweak symmetry generators written in a four-dimensional

real representation, and their tilded notation (and that of the Levi-Civita tensors ✏BC) implies that a gauge-

coupling has been absorbed into the definition — see Appendix A for details. T
A

are the Gell-Mann matrices

of QCD, 2T
±

= �1 ± i�2 and T3 = �3/2 are isospin generators composed of Pauli matrices �{1,2,3}, and

Q = �3/2+Y is the electric charge of the specified fermion in terms of its hypercharge Y , given in Table 1.
5
Whilst trivial, we are unaware of any counting of ⌫SMEFT operators up to this mass dimension present

in the literature. Note that generating the nf = 3 counting of 11347838 d = 11 ⌫SMEFT operators required

only 1.57 seconds of computing time on a standard laptop (!)

6

2+  eachψN-dependence2-3 pt. interactions

One quickly arrives at the list of field-space connections and composite operator forms:

[JT, 2208.11139]
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Operator saturation in vT /Λ

3.1 Mass-Type Operators

The Yukawa-like field-space connection YN defined above is given by

YN(�)pr = �H̃
†(�I) [YN ]

†
pr
+ H̃

†(�I)
1X

n=0

C̃
(6+2n)
NH
pr

✓
�
2

2

◆n+1

(28)

in its closed-form, all-orders expression. One observes that the leading contribution to YN(�)
is from the ⌫SM Yukawa operator given in (3), and that H̃†(�) remains in its (complex) two-
component doublet form (as opposed to a four-component real vector �I), since it must still
be contracted with the SU(2)L doublet ` in the composite operator form factored out of this
expression in the geo(⌫)SMEFT formalism. On the other hand, the infinite tower of H†

H

dressings has been contracted and converted to the real coordinates of the Higgs field space.

Similarly, the LNV Majorana mass field-space connection ⌘N(�) is given by

⌘N(�)pr = �
1

2
[MN ]pr +

1X

n=0

C̃
(5+2n)
NN
pr

✓
�
2

2

◆n+1

(29)

where we have kept the factor of 1/2, due to the Majorana nature of the mass matrix appearing
at leading order, in the renormalizable term.

3.2 Dipole-Type Operators

There are three dipole-like composite operator forms appearing in Table 3, with the first
a coupling between {N, `,W

µ⌫
}, the second between {e,N

c
,W

µ⌫
}, and the third between

{N,N
c
,W

µ⌫
}. The associated field-space connections are respectively given by
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for the even connection, and
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for the odd connections. Unlike the Yukawa and Majorana connections of Section 3.1, it’s
clear that these dipole-like connections have support only at the non-renormalizable level,
with the earliest contribution coming at d = 5 for the RH connection dNN(�). One also
clearly observes the structure associated to two di↵erent operator types contributing to the
saturation of dNN(�) and dN`(�), discussed in Section 2 and visible in Table 3.

11

dN`(�)N �µ⌫ `Wµ⌫

At mass dimension six there are contributions to the first dipole operator from both B and
W

a couplings,
h
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�
, (15)

while, beginning at mass dimension 8, additional couplings to the SU(2)L bosons are allowed
via operators of the form

h
Q
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N`W2
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�
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That two additional sets of composite operator forms, accounting for novel couplings to W
a

(but with di↵erent SU(2)L contractions), enter at dimension eight and beyond explains the
jump in counting in Table 3 between d0 and d0 + 2 by a factor of 3/2. For example, for
nf = nl = 3, the Wa boson couplings contribute 18 operators (including Hermitian conjugate
structures) at d = 6 and 36 operators at d = 8 and beyond, while the B-field couplings
contribute 18 operators at all even mass dimensions starting at d = 6.

LeN(�) (D
µ
�) e�µ N

The operator saturation for this derivative operator occurs immediately in mass dimension,
as the sole contributors are from operators of the form

h
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⌘
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and their hermitian conjugates, which contribute at mass dimension six and above.

LNN(�) (D
µ
�)N�µN

The saturation for this set of derivative operators is again immediate in mass dimension,
following from ⌫SMEFT operators of the form
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=
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which generate n
2
f
contributions.

2.3 Saturation in vT/⇤: Odd-Dimensional Operators

⌘N(�)N N
c

The LNV connection ⌘N(�) is a complex symmetric matrix in flavor space, and so there are
fewer degrees of freedom (operators) of the form

h
Q

(5+2n)
NN

i
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=
�
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†
H
�n+1 �

NpN
c

r

�
(19)

in comparison to Yukawas, namely nf (1 + nf )/2 (again ⇥2 to account for operators / N cN),
although, as with the Yukawas, operator saturation occurs immediately in mass dimension.
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d=6+

d=8+

Wa:  18 operators 
B:  18 operators

Wa:  18 operators 
B:  0 operators

It works!

{
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ODD Ops

geo⌫SMEFT Composite Operator Saturation

Mass Dimension d0 d0 + 2 d0 + 4 d0 + 6 d0 + 8

YN(�)N` + h.c. 2nf · nl 2nf · nl 2nf · nl 2nf · nl 2nf · nl

dN`(�)N �µ⌫ `W
µ⌫ + h.c. 4nf · nl 6nf · nl 6nf · nl 6nf · nl 6nf · nl

LeN(�) (Dµ
�) e �µ N + h.c. 2nf · nl 2nf · nl 2nf · nl 2nf · nl 2nf · nl

LNN(�) (Dµ
�)N�µN n

2
f

n
2
f

n
2
f

n
2
f

n
2
f

⌘N(�)NN
c + h.c. (nf + n

2
f
) (nf + n

2
f
) (nf + n

2
f
) (nf + n

2
f
) (nf + n

2
f
)

deN(�) e �µ⌫ N
c
W

µ⌫ + h.c. 2nf · nl 2nf · nl 2nf · nl 2nf · nl 2nf · nl

dNN(�)N�µ⌫N
c
W
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2(nf + n

2
f
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2
f
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2
f
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2
f
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2
f
)

L`N(�) (Dµ
�) `C �µ N + h.c. 4nf · nl 4nf · nl 4nf · nl 4nf · nl 4nf · nl

Table 3: Saturation of composite geo⌫SMEFT operators in mass dimension, for arbitrary
numbers of sterile neutrino flavors nf and SU(2)L lepton doublet flavors nl. For the Yukawa and
LNV mass operators the relevant starting dimension is d0 = 4 (including the Majorana mass
matrix), while the dipole and derivative-type operators turn on at varying mass dimensions:
d0(dNN) = 5, d0(dN`, LeN , LNN) = 6, d0(deN , L`N) = 7. The table is organized into even- and
odd-dimensional fi.

indeed the case for all of the functions defined in Section 2.1, with the results presented in
Table 3 for mass dimensions up to d0+8, where d0 is the mass dimension where the composite
operator first appears in the ⌫SMEFT. Note that in what follows we begin the counting of
the operators contributing to a given connection at the first order they appear in the non-
renormalizable OPE, but in Section 3 we will include any renormalizable contributions as well,
for completeness.

2.2 Saturation in vT/⇤: Even-Dimensional Operators

YN(�)N `

One observes that, as expected, the Yukawa operators of the form
h
Q

(6+2n)
NH

i

pr

=
�
H

†
H
�n+1

H̃
† �
Np`r

�
(14)

saturate immediately in the 1/⇤ expansion as a function of the number of independent coef-
ficients in the p⇥ r flavor matrix: nf · nl (⇥2 to account for the Hermitian conjugate matrix
/ `N).

7

Again confirmed using ECO!

[JT, 2208.11139]
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3.1 Mass-Type Operators

The Yukawa-like field-space connection YN defined above is given by
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in its closed-form, all-orders expression. One observes that the leading contribution to YN(�)
is from the ⌫SM Yukawa operator given in (3), and that H̃†(�) remains in its (complex) two-
component doublet form (as opposed to a four-component real vector �I), since it must still
be contracted with the SU(2)L doublet ` in the composite operator form factored out of this
expression in the geo(⌫)SMEFT formalism. On the other hand, the infinite tower of H†

H

dressings has been contracted and converted to the real coordinates of the Higgs field space.

Similarly, the LNV Majorana mass field-space connection ⌘N(�) is given by
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where we have kept the factor of 1/2, due to the Majorana nature of the mass matrix appearing
at leading order, in the renormalizable term.

3.2 Dipole-Type Operators
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for the odd connections. Unlike the Yukawa and Majorana connections of Section 3.1, it’s
clear that these dipole-like connections have support only at the non-renormalizable level,
with the earliest contribution coming at d = 5 for the RH connection dNN(�). One also
clearly observes the structure associated to two di↵erent operator types contributing to the
saturation of dNN(�) and dN`(�), discussed in Section 2 and visible in Table 3.
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in its closed-form, all-orders expression. One observes that the leading contribution to YN(�)
is from the ⌫SM Yukawa operator given in (3), and that H̃†(�) remains in its (complex) two-
component doublet form (as opposed to a four-component real vector �I), since it must still
be contracted with the SU(2)L doublet ` in the composite operator form factored out of this
expression in the geo(⌫)SMEFT formalism. On the other hand, the infinite tower of H†
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dressings has been contracted and converted to the real coordinates of the Higgs field space.
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where we have kept the factor of 1/2, due to the Majorana nature of the mass matrix appearing
at leading order, in the renormalizable term.
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saturation of dNN(�) and dN`(�), discussed in Section 2 and visible in Table 3.
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for the odd connections. Unlike the Yukawa and Majorana connections of Section 3.1, it’s
clear that these dipole-like connections have support only at the non-renormalizable level,
with the earliest contribution coming at d = 5 for the RH connection dNN(�). One also
clearly observes the structure associated to two di↵erent operator types contributing to the
saturation of dNN(�) and dN`(�), discussed in Section 2 and visible in Table 3.
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3.3 Derivative-Type Operators

Distinguishing both sub-classes of operators associated to L`N(�), there are four additional
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for the odd connections, which are again all fundamentally non-renormalizable objects whose
support begins only at d = 6 or d = 7 in the 1/⇤ expansion of the ⌫SMEFT.

Summary Comments

We have presented a complete list of field-space connections Gi associated to the novel (N -
dependent) two- and three-point interactions introduced in the ⌫SMEFT. As is clear in
their expressions above, these objects are defined at all-orders in the vT/⇤ expansion of the
⌫SMEFT’s Lagrangian (2), and can be (if desired) trivially expanded to any fixed-order in
said expansion as may be required for phenomenology. Upon H(�) acquiring its vev, the Gi

reduce to a number and emissions of the physical Higgs field h. Some additional comments
are in order:

• The Gi can be understood as defining geometries on the field spaces formed by the
composite operators presented in Section 2 — the projection to a ‘flat’ space amounts
to sending C ! 0, i.e. a projection to the renormalizable ⌫SMEFT of (2).

• Given their all-orders definition, the Gi can be understood to absorb all the (otherwise
arbitrary) Wilson coe�cients C present into a single object, thereby e↵ectively reducing
the number of free parameters in the EFT, at least at tree level. However, realistic
phenomenology requires an understanding of the RG structure of an EFT, as is known
for (e.g.) the d = 6 SMEFT [44–46]. How the Gi defined above and in [27] behave under
RG evolution — and critically whether or not an all-vT/⇤-orders structure is preserved
under said RGE — remains an open question in the literature.
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Dipole-Type Connections

Derivative-Type Connections
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Field-space connections [JT, 2208.11139]
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What I want to know…

what do these connections look like under Renormalization Group 
evolution? Is all -orders behavior preserved?vT /Λ

what kind of geometries do these connections describe, besides the 
Higgs and gauge connections, which are metrics?  Furthermore, what 
more can we learn about EFTs / calculating with them as a result?

All represent interesting points of research in this highly novel class 
of geometric EFTs!

These composite operators and connections define the tree-level geo!SMEFT, with all 
of the same benefits as the geoSMEFT, BUT…

what kinds of higher-order calculations & fits are most motivated by 
this formalism, and the ambiguities it helps resolve?

what do (e.g.) unitarity constraints look like and mean in a geometric 
context?



Outline 

15

Towards Phenomenology 
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that may appear. In order to extract the former, all one needs to do is take the variation of
the connection with respect to the physical (external) higgs field ĥ, and then the expectation
value of the resulting object:

F(O(Gi fi)) /

⌧
�Gi

�ĥ

�
, (33)

with the LHS colloquially denoting ‘the Feynman rule associated to the Lagrangian operator
Oi = Gifi.’ The simplest such objects are those where the Higgs dependence lies exclusively in
the connections Gi, and where the momentum-dependence is trivial, e.g. the Majorana-mass
and Yukawa-like interactions in (29)-(28). For these couplings the all-orders Feynman rule is
just an all-orders vertex function:9
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c

r
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v
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, (34)
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⌧
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�
= i

p
h
44

p
2

Y
†
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� i

p
h
44

p
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1X
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(2n+ 3)
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C̃
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pr

v
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, (35)
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p

h
44M

D

N,pr
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� i

p
h
44

p
2

1X

n=0

(2n+ 2)

2n+1
C̃

(6+2n)
NH
pr

v
2n+2
T

, (36)

where the first term in (35) is simply the renormalizable Yukawa coupling from (3) and
the vev vT is defined as the minimum of the tree-level Higgs potentital in the (all-orders)

geo(⌫)SMEFT. The Dirac mass matrix M
D

N
in (36) is simply the expectation value of the

all-orders Yukawa connection, M
D

N
⌘ hYN(�)i. Observe that the convention in (35) ((36)) is

analogous to the geoSMEFT Yukawa rules convention found in [27] ( [37]).
A priori, with (34)-(36) (and its conjugate vertex) one can begin computing certain all-

vT/⇤-orders amplitudes, e.g. for the tree-level h ! N` decay, or portions of the one-loop
self-energy correction to the N propagator. However, extreme care must be taken when
considering the Feynman rules of interacting Majorana fields due to additional subtleties
in their associated Wick contractions with respect to purely Dirac particles. A consistent
formalism is presented in [59,60], which introduces the notion of a fermion flow, in addition to
the standard fermion number flow considered when only Dirac particles interact. Furthermore,
one must also take care when considering the implicit all-orders definitions of the Lagrangian

parameters present in (35), e.g. M
D

N
. For example, calculating amplitudes with definite flavors

(e.g. e vs. µ) requires knowledge of the fermion-mass-eigenstate basis and its associated flavor
transformations, i.e. the PMNS matrix controlling leptonic charged currents. We will discuss
the former issue in future work, and briefly outline the challenges to treating neutrino flavor
geometrically in the next Section.

9
Recall that the mass-eigenstate Higgs coordinates are given by (9), and that SSB is realized by expanding

�4 around the vev, �4 ! �4 + vT .
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Calculate (e.g.) all- -orders, tree-level Higgs decays, .vT /Λ h → ℓN

The simplest are operators with trivial momentum dependence, e.g. mass-type operators:

All- -orders Feynman rulesvT /Λ

G_i:  all-orders scalar vertices 

f_i:  momentum dependence 

Geometric EFTs permit the derivation of all- -orders Feynman Rules ab initio:vT /Λ

[JT, 2208.11139]

A Feynman rules

Following [1], we derive Feynman rules from the Lagrangian in Eq. (1).
The suggested technique for computing a given diagram is to choose a conventional “fermion flow”

line, drawn as a red arrow here below. This flow is completely arbitrary and the value of a given
diagram is independent of its choice.

For the propagators the momentum is assumed to flow from left to right.

l�

Np

H̃: Ó = ´i!p�PL

l�

Np

H̃: Ò = ´ip!T q�pPL “ ´i!p�PL

l�

Np

H̃ Ó = ´ip!:q�pPR “ ´i!˚
p�
PR

l�

Np
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p�
PR

Ñ
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=
i

{p

–
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= ´ i
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N
More N-dependent processes can and should be pursued in this 
formalism!
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Neutrino masses @ tree level

4.1 Neutrino Mass Eigenstates and Flavor Structures

The connections and operator forms enumerated in Sections 2-3 can be rotated to/from the
mass-eigenstate basis of the weak gauge and/or Higgs bosons via (8), while rotating to the
fermion mass-eigenstate basis, necessary for flavored phenomenology, introduces additional
physical rotations into the Lagrangian. It is well known that (again see [9]) this basis change
mixes active and sterile neutrino fields even at the renormalizable level, such that the gauge
singlet can participate in weak interactions via its admixtures in active mass eigenstates. The
situation is even more complex in the geo(⌫)SMEFT.

Specifically, organizing the operators above that contribute to the neutrino mass sector in
the broken electroweak phase of the theory gives contributions of the form

Lmass = �
1

2

�
⌫
c

L
N
�
·

 
h⌘`(�)i hY
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hYN(�)i h⌘N(�)i
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N
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!
+ h.c. ⌘ �

1

2
nM⌫ n+ h.c. , (37)

where we have used ⌫
c

L
N

c = N⌫L and condensed flavor indices, such that
�
⌫
c

L
, N
�
is an

(n` + nf )-dimensional row vector in flavor space, where n` (nf ) is again the number of SU(2)L
doublet ` (SU(2)L singlet N) generations in the theory. Here the brackets hi indicate that
the expectation value of the Higgs field has been taken in all of the field-space connections
contributing to the tree-level mass terms. The YN(�) and ⌘N(�) objects are defined in (28)
and (29) respectively, and we have also introduced a novel ‘Weinberg Connection’ ⌘`(�) in the
(1,1) entry of the flavor matrix in (37). This object is the field-space connection built from
the application of scalar dressings to the operator in (1), i.e. the all-orders generalization of
the d = 5 Weinberg operator, and it has not yet been formally defined in the literature.10 We
do so via the following variation of the Lagrangian:

⌘`(�)pr ⌘
�LSMEFT

�(`c
p
`r)

���
L(↵,�,..)!0

=
1X

n=0


H̃

†(�I)H̃
?(�J) C̃

(5+2n)
``
pr

�✓
�
2

2

◆n

, (38)

which obviously identities `c` as the relevant composite two-point fermion bilinear operator
in the unbroken (geo)SMEFT, and where in this convention each Higgs doublet is SU(2)L-
contracted with a lepton doublet in said bilinear. There is also of course a Hermitian conjugate
expression.

Returning to the issue of flavor, we recall that (37) is readily diagonalized by a unitary
transformation Un on the neutrino fields,

U
†
n
M⌫ Un ⌘ m⌫ = diag

⇣
m⌫1 , ...,m⌫nl

,mN1 , ...,mNnf

⌘
, (39)

which amounts to a rotation to the neutrino mass-eigenstate basis of the Lagrangian. The
mass eigenvalues appearing on the RHS of (39), and the mixing angles and CP-violating
phases implicit in Un, a priori exclusively depend on the connections appearing in (37). In
the spirit of writing down said Lagrangian parameters at all-orders in vT/⇤, one goal in
the development of a complete tree-level geo⌫SMEFT should be their analytic derivation,
which is achievable via invariant techniques along the lines of those presented in [32], which

10
I thank Michael Trott for helpful discussions on this point.
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How can these mass eigenvalues, mixing angles and phases be written at all  orders?vT /Λ
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1 Introduction and Motivation

Neutrino physics represents an ideal sector for probing novel interactions Beyond-the-Standard
Model (BSM). After all, the very presence of non-zero neutrino masses and Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixings, as unambiguously inferred from global oscillation exper-
iments (cf. [1]), requires the introduction of operators beyond those furnished by the (renor-
malizable) SM Lagrangian. For example, upon allowing for an operator-product-expansion
(OPE) in non-renormalizable interactions, the SM E↵ective Field Theory (SMEFT) can eas-
ily generate a Majorana neutrino mass term via the dimension-five Weinberg Operator [2]
Q5,

LSMEFT ⌘ LSM +
X

i

C̃iQi = LSM +
1

2⇤


C 5

pr

⇣
H̃

†
`p

⌘T

C
⇣
H̃

†
`r

⌘
+ h.c.

�
+O(1/⇤2) + ... , (1)

upon electroweak symmetry breaking, when the scalar Higgs field H acquires a vacuum expec-
tation value (VEV) vT ⌘

p
2hH†Hi. Here Ci represent unknown Wilson Coe�cients (with

p, r flavor labels) that parameterize the infrared (IR) e↵ects on local contact interactions Qi

coming from unspecified, decoupled ultraviolet (UV) dynamics propagating at an arbitrary
new physics scale ⇤, with vT/⇤ << 1. C is the charge conjugation matrix and H̃ is given
in terms of the Levi-Civita tensor ✏, H̃j ⌘ ✏jkH

†k.1 The SMEFT is therefore composed of
all (non-)renormalizable operators Q

(d) of mass dimension d, invariant under spacetime and

1
Note that our convention for ✏ is ✏

12
= �✏

21
= ✏21 = �✏12 = �1.

1

As with the SMEFT, the neutrino mass sector can be reorganized as follows:ν

 is simply the `Weinberg connection’  associated to LH neutrino masses in the (geo)SMEFT: ηℓ(ϕ)

 can readily be diagonalized with a unitary transformation on n vectors:ℒmass

Flavor Invariants! [2107.03951] JT, M. Trott

[JT, 2208.11139]
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which holds for matrices that are diagonalized via unitary field transformations. Generalized
expressions for adjoint matrices diagonalized by bi-unitary transformations can also be found.
Both are derived directly from the Cayley-Hamilton identity for 3⇥ 3 matrices [23].

Invariants

A core observation of this work is that the structure of the flavour invariants is the same regardless
of the mass dimension considered in the (geo)SM(EFT). This can be seen clearly in (8), where
one notes that the addition of higher-order SMEFT operators simply results in an all-orders
reparameterization of each individual matrix element of the Hermitian objects Y, which compose
the polynomial invariants. Hence we can freely form (18)-(20) with explicit dependence on the
geoSMEFT’s Hermitian Yukawa coupling,

Yrp =
h
2

 
YriY

?

pi
�

1X

n0

f(n0)YriC̃
(2n0)
ip

�

1X

n

f(n)C̃(2n),?
ir
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?
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C̃
(2n0)
ip

!
, (22)

where h ⌘ (
p
h
44
)(
p
h
44
)?, f(n) = 2n�3

2n�2 , and analogously for f(n0). We observe that (22)
represents the fundamental BSM object in this formalism.

Quark Masses

Proceeding to the extraction of the quark Yukawa eigenvalues y2, we solve the system of equations
in (18), finding

y
2
i
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3 u

⇣
I
2
1 � 3 Î3 + (�2)�1/3

I1  u + (�2)�2/3
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, (23)
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u
) (24)

for the up-quark Yukawa eigenvalues, where the  u parameter is given by

 u =

✓
�2 I31 + 9 I1Î3 � 9 Î6 + 3

q
�3 I21 Î

2
3 + 12 Î33 + 4 I31 Î6 � 18 I1Î3Î6 + 9 Î26

◆1/3

. (25)

Recall that by definition the functions y2 and I1,3,6 are � 0, and of course y
2 is also real. While

certain individual expressions on the RHS of these equations are imaginary, we have checked
that the eigenvalues are in fact real. Note also that the system of equations in (18) permits
six di↵erent solutions, corresponding to the six di↵erent possible mass hierarchies for yu,c,t. The
unmixed mass invariants remain constant under the transposition of any two flavour-eigenstate
indices, e.g. I1 = I1(i $ j). However, by definition, one recognizes the up quark as the lightest
generation, the top as the heaviest, and the charm as the intermediate,

y
2
u
⌘ min{y2

i
, y

2
j
, y

2
k
} , y

2
c
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, y

2
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} . (26)
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[2107.03951]

Unmixed invariants can be solved to obtain exact formulae for Yukawa couplings / masses:

Valid for up-quark masses.  
Send I1,3,6 to I2,4,8 for down 

quark masses.

[1507.00328]
[0907.4763]

The Hilbert Series associated to Yukawa couplings transforming under  transformations 
can be utilized to enumerate a basis of 11 flavor invariants for (geo)SM(EFT).

U(3)QL

13

The Hilbert series H(q) = h(q, q) is

H(q) =
1

(1 − q2)2(1 − q4)3
. (75)

In this example, p = 5 (four masses and one mixing an-
gle, see Table I), dim V = 16, since there are four 2 × 2
matrices, dN = 0, and dD = 16. The number of denom-
inator factors is the number of parameters, and Knop’s
theorem gives 16 ≥ 16− 0 ≥ 5, with the upper bound an
equality.
The denominator factors in Eq. (75) show that there

are two generators of degree two, and three of degree
four, which agrees with Eq. (72).
If one started with XU and XD as the basic objects,

then dimV = 8. In this case, the Hilbert series is given by
replacing q2 → q in Eq. (75), since we now count powers
of XU , XD rather than mU ,mD, so dN = 0, dD = 8 and
Knop’s inequality becomes 8 ≥ 8− 0 ≥ 5.

B. ng = 3

For an arbitrary 3× 3 matrix A, the Cayley-Hamilton
theorem states that

A3 = A2 〈A〉 − 1

2
A
[

〈A〉2 −
〈

A2
〉

]

+
1

6

[

〈A〉3 − 3
〈

A2
〉

〈A〉+ 2
〈

A3
〉

]

11. (76)

Taking the trace of both sides gives the trivial result
〈

A3
〉

=
〈

A3
〉

. Multiplying by A and taking the trace
gives

〈

A4
〉

=
1

6
〈A〉4 − 〈A〉2

〈

A2
〉

+
4

3

〈

A3
〉

〈A〉+ 1

2

〈

A2
〉2

,

(77)

so that 〈An〉, n ≥ 4 can be rewritten in terms of 〈A〉,
〈A2〉, and 〈A3〉.
Thus, the invariants involving XU alone are I2,0 =

〈XU 〉, I4,0 = 〈XU
2〉 and I6,0 = 〈XU

3〉, and invariants
involving XD alone are I0,2 = 〈XD〉, I0,4 = 〈XD

2〉 and
I0,6 = 〈XD

3〉, all of which are CP even.
Invariants containing both XU and XD are of the form

Eq. (70), but now with ri = 1, 2 and si = 1, 2, so that
one has traces of products of XU , X2

U , XD, X2
D. This re-

striction still leads to an infinite number of invariants.
However, many of these invariants are not independent.

For arbitrary 3 × 3 matrices A, B and C, one has the
identity

0 = 〈A〉2 〈B〉 〈C〉 − 〈BC〉 〈A〉2 − 2 〈AB〉 〈A〉 〈C〉
−2 〈AC〉 〈A〉 〈B〉+ 2 〈ABC〉 〈A〉+ 2 〈ACB〉 〈A〉
−
〈

A2
〉

〈B〉 〈C〉+ 2 〈AB〉 〈AC〉+
〈

A2
〉

〈BC〉
+2 〈C〉

〈

A2B
〉

+ 2 〈B〉
〈

A2C
〉

− 2
〈

A2BC
〉

−2
〈

A2CB
〉

− 2 〈ABAC〉 (78)
which can be derived by substituting A → A+B+C into
Eq. (77), and picking out the order A2BC terms. This
identity eliminates 〈ABAC〉, i.e. traces where the same
matrix is repeated, so that in invariants Eq. (70), XU ,
XU

2, XD and XD
2 can each occur at most once. For

example, 〈XU . . . XU . . .〉 can be replaced by
〈

X2
U . . .

〉

,
and

〈

X2
U . . . X2

U . . .
〉

can be replaced by
〈

X4
U . . .

〉

, which
can then be eliminated using Eq. (76).
Writing out all of the possibilities gives the basic quark

invariants for ng = 3 quark generations. There are 11
CP -even invariants, ten of which are

I2,0 = 〈XU 〉 ,
I0,2 = 〈XD〉 ,
I4,0 = 〈XU

2〉 ,
I2,2 = 〈XUXD〉 ,
I0,4 = 〈XD

2〉 ,
I6,0 = 〈XU

3〉 ,
I4,2 = 〈XU

2XD〉 ,
I2,4 = 〈XUXD

2〉 ,
I0,6 = 〈XD

3〉 ,
I4,4 = 〈XU

2XD
2〉 , (79)

and one CP -odd invariant

I(−)
6,6 = 〈XU

2XD
2XUXD〉 − 〈XD

2XU
2XDXU 〉 .

(80)

The eleventh CP -even invariant is

I(+)
6,6 = 〈XU

2XD
2XUXD〉+ 〈XD

2XU
2XDXU 〉 .

(81)

All the invariants in the quark sector can be written as
polynomials in these basic invariants.
The multi-graded and one-variable Hilbert series are

h(u, d) =
1 + u6d6

(1− u2)(1− u4)(1 − u6)(1 − d2)(1 − d4)(1 − d6)(1 − u2d2)(1 − u4d2)(1− u2d4)(1− u4d4)
,

H(q) = h(q, q) =
1 + q12

(1− q2)2(1− q4)3(1− q6)4(1− q8)
, (82)

3.3 Applicability to other BSM Scenarios

Given (23)-(32), it is interesting to note when they do (and do not) apply. Indeed, the formalism
is in general complete when (18)-(20) are su�cient to extract all of the flavour parameters of
the low-energy theory. As described above, these are determined by analyzing the global flavour
group ring CGF , based on the transformation properties of Y  in (17). Hence (23)-(32) hold in any
theory where (17) represents the generic transformation properties of the Dirac Yukawa/mass
matrices under GF , such that Y  

Y
 †

! U
†
Y
 
Y
 †

U under global flavour transformations U 2

U(3)QL
, including theories where Y  or M originate from ultraviolet dynamics [22]. Of course,

if Y  
Y
 † respects these transformation properties, but there are additional sources of flavour

violation in the infrared spectrum, (18)-(20) will be incomplete as there are just enough invariants
to uniquely determine the 10 (13) flavour parameters of the quark (quark + charged lepton)
Yukawa sector. More invariants would be required to extract the values of parameters associated
to the additional flavour violation.

For academic purposes we also consider the case when global flavour rotations are not family-
universal, i.e. when

{Yu,Yd} ! {Y0
u
, Y0

d
} = {U

u †
�

Yu U
u

�
, U

d †
�

Yd U
d

�
} with U

d

�
6= U

u

�
. (33)

Such a situation may be conceivable in the broken electroweak phase, e.g. Here we observe that
(18) (which we denote Îmass), and therefore (23)-(24), still hold as basis-independent expressions,
since Îmass ! Î

0
mass = Îmass due to the cyclic property of the Trace. However, (19)-(20) do not

exhibit this invariance generically. This is clear, for example, in Î5:

Î
0
5 = tr (Y0

u
Y0
d
) = tr

�
U

u †
�

Yu U
u

�
U

d †
�

Yd U
d

�

�
6= Î5 . (34)

This implies that predictions for CKM mixing parameters in such theories will not hold. We
have checked that these statements are true by generating random unitary transformations
U
 

�
numerically and constructing (33), where y

2
i
, ✓ij and � are also generated randomly. We

compare the values computed with (23)-(32) to those extracted numerically, and indeed confirm
that while the Yukawa/mass eigenvalues are in perfect agreement with the randomly drawn
inputs, the mixing parameters are not. On the other hand, we now give two examples from the
literature where our formulae apply exactly.8

An e↵ective theory of flavour in the ultraviolet

Our formalism can be used to analytically or numerically compute the mass, mixing, and CP-
violating parameters predicted from typical high-energy EFTs of flavour (e.g. Froggatt-Nielsen
models [35]), where some ultraviolet dynamics at a scale ⇤F breaks a flavour symmetry GF ,
yielding specifically textured infrared Yukawa couplings. As an example we consider the quark
sector of the non-Abelian ‘universal texture zero’ (UTZ) model of [36]. Here the high-energy

8
Note that we do not present these models in the context of a matching calculation to the (geo)SMEFT, but

rather as example UV constructions with BSM field and symmetry content remaining in the spectrum — our

goal is to show that our model-independent formulae from above can be used to study the Dirac flavour sector

of specific models in the literature, and as a result we only give relevant details to that end below.
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Abstract

We report a set of exact formulae for computing Dirac masses, mixings, and CP-violation

parameter(s) from 3⇥3 Yukawa matrices Y valid when Y Y
†
! U

†
Y Y

†
U under global

U(3)QL
flavour symmetry transformations U . The results apply to the Standard Model

E↵ective Field Theory (SMEFT) and its ‘geometric’ realization (geoSMEFT). We thereby

complete, in the Dirac flavour sector, the catalogue of geoSMEFT parameters derived at

all orders in the

p
2hH†Hi/⇤ expansion. The formalism is basis-independent, and can

be applied to models with decoupled ultraviolet flavour dynamics, as well as to models

whose infrared dynamics are not minimally flavour violating. We highlight these points

with explicit examples and, as a further demonstration of the formalism’s utility, we derive

expressions for the renormalization group flow of quark masses, mixings, and CP-violation

at all mass dimension and perturbative loop orders in the (geo)SM(EFT) and beyond.

(e.g.)

J
H
E
P
1
1
(
2
0
2
1
)
0
0
9

this case θ → θC , where θC is the renowned (physical) Cabibbo angle [20] describing the
dominant CKM mixing between first and second quark generations. While (3.3) is valid at
all-orders in the geoSMEFT expansion in vT /Λ, there is clearly a basis dependence to the
expressions which is undesirable when comparing with experiment. Furthermore, when
three fermion generations are present, obtaining analogous expressions for y2i , θij , and
δ becomes intractable if approached with standard diagonalization techniques as above,
regardless of concerns over the basis-dependence of the results.

3.1 Approach with flavour invariants
To circumvent these issues we will instead employ the (rephasing and weak-basis) invariant
theory developed in [21–34]. While we leave the details of the invariant theory to these
prior references, we recall that flavour invariants are objects that do not change under field
redefinitions corresponding to unitary transformations of SM fermions under the global
GF ∼ U(3)5 flavour symmetry. Such transformations correspond to basis changes of the
Yukawa connections,4

Y u −→ U †
QL

Y u UuR , Y d −→ U †
QL

Y d UdR , (3.4)

which, as argued above, are the fundamental objects encoding the mass and mixing param-
eters of the theory. Polynomials of Y ψ define a group ring C when the linear combinations
of all possible products of the generators Y ψ (with complex coefficients) are formed. The
GF -invariant ring CGF is that set of polynomials unchanged under the action GF (cf. (3.4)),
and it can be shown that CGF is finitely generated. A central result of [22] is an explicit
representation of said generators, denoted Ii (and henceforth referred to simply as ‘invari-
ants’), for the quark sector of the SM with both two and three fermion generations. Here
we extend this analysis to the geoSMEFT, and further use the invariants to extract our
desired formulae.

In the case of three fermion generations, Hilbert Series techniques lead one to conclude
that there are 11 polynomially independent invariants Ii [22]. In what follows we will
actually use the representation and notation given in [23] to present Ii. Here, after defining
the Hermitian combination Y Y † ≡ Y, a complete set of 3D quark-sector invariants are
reported as

I1 ≡ tr (Yu) , Î3 ≡ tr (adjYu) , Î6 ≡ tr (Yu adjYu) = 3 detYu ,

I2 ≡ tr (Yd) , Î4 ≡ tr (adjYd) , Î8 ≡ tr (Yd adjYd) = 3 detYd , (3.5)

for invariants ‘unmixed’ between up and down sectors, and

Î5 ≡ tr(YuYd) , Î7 ≡ tr(adjYuYd) , Î9 ≡ tr(Yu adjYd) , Î10 ≡ tr(adjYu adjYd) , (3.6)

for real, mixed invariants. Note that it is natural to consider Yu and Yd when considering
flavour symmetry violating effects as these two invariants are not simultaneously diagonal-
izable. This is why in meson mixing, for example, flavour violation is always proportional

4We focus only on the quark sector from this point forward. Additional discussion regarding extensions
to leptons will be given in section 5.
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Furthermore, the expressions for the down-quark mass-eigenvalues are analogous to (23)-(24),
replacing

{I1, Î3, Î6} �! {I2, Î4, Î8} (27)

which, when implemented, results also in the notation change  u �!  d in the final equations.
The beauty of (23)-(24) is that their RHS can be calculated in any arbitrary flavour basis, whilst
the LHS are always the mass eigenvalues (up to the Higgs vev).

CKM Parameters

Given the Yukawa/mass eigenvalues at all orders, one can then move to the four real CKM
parameters, which can be obtained by solving the system of equations implied by Î5,7,9,10,11. We
will solve (19) for |Vcd|

2, |Vcs|
2, |Vtd|

2, and |Vts|
2, and then use the unitarity constraints of the

CKM matrix to uniquely determine its remaining matrix elements in terms of the invariants
Î5,7,9,10,11. We then have all of the information required to determine the three mixing angles
sij, which upon using the final I�11 invariant will give us the phase �. Critically, we observe that
(19) does not permit multiple solutions for |Vij|

2.
Proceeding along these lines, it is straightforward to derive the following compact expressions

for the mixing angles sij:
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2

4
�Î10 � y

2
b
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Î7 ��+

ds
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uc
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⌘
� y

2
u
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Î9 + y

2
b

⇣
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2
b
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� y

2
d
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2
s
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⌘

��
bd
��
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��
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��

ut

3

5

1/2

, (28)
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s
)
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1/2

(29)
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1/2

,

(30)

which are given in terms of the Yukawa eigenvalues y2
i
and the di↵erence/sum parameters �±

ij

defined by
�±

ij
⌘ y

2
i
± y

2
j
. (31)

Given the expressions in (23)-(24) for y2
i
, one then has the desired final expressions entirely in

terms of the flavour-invariants Ii. Note that, by definition, these angles lie in the first quadrant,
0  sij 

⇡

2 . Finally, one can use I
�
11, along with (28)-(30), to derive that

s� =
4

3
I
�
11

h
��

tc
��

tu
��

cu
��

bs
��

bd
��

sd
s12s13s23

�
1� s

2
23

�1/2 �
1� s

2
12

�1/2 �
1� s

2
13

�i�1

. (32)

As I�11 is not guaranteed to be � 0, one sees that (32) uniquely pins down the sign of �. These
expressions therefore complete the list of quark flavour parameters in the (geo)SM(EFT); (23)-
(32) and their renormalization group flow (cf. (43)-(47) in Section 4) represent the core results
of this work.
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Furthermore, the expressions for the down-quark mass-eigenvalues are analogous to (23)-(24),
replacing

{I1, Î3, Î6} �! {I2, Î4, Î8} (27)

which, when implemented, results also in the notation change  u �!  d in the final equations.
The beauty of (23)-(24) is that their RHS can be calculated in any arbitrary flavour basis, whilst
the LHS are always the mass eigenvalues (up to the Higgs vev).

CKM Parameters

Given the Yukawa/mass eigenvalues at all orders, one can then move to the four real CKM
parameters, which can be obtained by solving the system of equations implied by Î5,7,9,10,11. We
will solve (19) for |Vcd|

2, |Vcs|
2, |Vtd|

2, and |Vts|
2, and then use the unitarity constraints of the

CKM matrix to uniquely determine its remaining matrix elements in terms of the invariants
Î5,7,9,10,11. We then have all of the information required to determine the three mixing angles
sij, which upon using the final I�11 invariant will give us the phase �. Critically, we observe that
(19) does not permit multiple solutions for |Vij|

2.
Proceeding along these lines, it is straightforward to derive the following compact expressions

for the mixing angles sij:
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which are given in terms of the Yukawa eigenvalues y2
i
and the di↵erence/sum parameters �±

ij

defined by
�±

ij
⌘ y

2
i
± y

2
j
. (31)

Given the expressions in (23)-(24) for y2
i
, one then has the desired final expressions entirely in

terms of the flavour-invariants Ii. Note that, by definition, these angles lie in the first quadrant,
0  sij 

⇡

2 . Finally, one can use I
�
11, along with (28)-(30), to derive that
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As I�11 is not guaranteed to be � 0, one sees that (32) uniquely pins down the sign of �. These
expressions therefore complete the list of quark flavour parameters in the (geo)SM(EFT); (23)-
(32) and their renormalization group flow (cf. (43)-(47) in Section 4) represent the core results
of this work.
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which are given in terms of the Yukawa eigenvalues y2
i
and the di↵erence/sum parameters �±

ij

defined by
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j
. (31)

Given the expressions in (23)-(24) for y2
i
, one then has the desired final expressions entirely in

terms of the flavour-invariants Ii. Note that, by definition, these angles lie in the first quadrant,
0  sij 
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As I�11 is not guaranteed to be � 0, one sees that (32) uniquely pins down the sign of �. These
expressions therefore complete the list of quark flavour parameters in the (geo)SM(EFT); (23)-
(32) and their renormalization group flow (cf. (43)-(47) in Section 4) represent the core results
of this work.
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Î10 + y2

u
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which are given in terms of the Yukawa eigenvalues y2
i
and the di↵erence/sum parameters �±

ij

defined by
�±

ij
⌘ y

2
i
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2
j
. (31)

Given the expressions in (23)-(24) for y2
i
, one then has the desired final expressions entirely in

terms of the flavour-invariants Ii. Note that, by definition, these angles lie in the first quadrant,
0  sij 

⇡

2 . Finally, one can use I
�
11, along with (28)-(30), to derive that
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As I�11 is not guaranteed to be � 0, one sees that (32) uniquely pins down the sign of �. These
expressions therefore complete the list of quark flavour parameters in the (geo)SM(EFT); (23)-
(32) and their renormalization group flow (cf. (43)-(47) in Section 4) represent the core results
of this work.
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All-orders formulae: CKM parameters
[2107.03951]

Here one notices the proportionality to the Jarlskog as well!

Similarly, the mixed invariants (not shown) give predictions for (CKM) mixing angles:

When combined with a CP-odd 11th invariant, one also can derive the Dirac CP-violating 
phase (and its sign!)

Furthermore, the expressions for the down-quark mass-eigenvalues are analogous to (23)-(24),
replacing

{I1, Î3, Î6} �! {I2, Î4, Î8} (27)

which, when implemented, results also in the notation change  u �!  d in the final equations.
The beauty of (23)-(24) is that their RHS can be calculated in any arbitrary flavour basis, whilst
the LHS are always the mass eigenvalues (up to the Higgs vev).

CKM Parameters

Given the Yukawa/mass eigenvalues at all orders, one can then move to the four real CKM
parameters, which can be obtained by solving the system of equations implied by Î5,7,9,10,11. We
will solve (19) for |Vcd|

2, |Vcs|
2, |Vtd|

2, and |Vts|
2, and then use the unitarity constraints of the

CKM matrix to uniquely determine its remaining matrix elements in terms of the invariants
Î5,7,9,10,11. We then have all of the information required to determine the three mixing angles
sij, which upon using the final I�11 invariant will give us the phase �. Critically, we observe that
(19) does not permit multiple solutions for |Vij|

2.
Proceeding along these lines, it is straightforward to derive the following compact expressions

for the mixing angles sij:
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�Î5 +�+

ct�
+
ds

⌘
+ y

2
u
�+

ct�
+
ds

⌘⌘

��
ct

⇣
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which are given in terms of the Yukawa eigenvalues y2
i
and the di↵erence/sum parameters �±

ij

defined by
�±

ij
⌘ y

2
i
± y

2
j
. (31)

Given the expressions in (23)-(24) for y2
i
, one then has the desired final expressions entirely in

terms of the flavour-invariants Ii. Note that, by definition, these angles lie in the first quadrant,
0  sij 

⇡

2 . Finally, one can use I
�
11, along with (28)-(30), to derive that
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As I�11 is not guaranteed to be � 0, one sees that (32) uniquely pins down the sign of �. These
expressions therefore complete the list of quark flavour parameters in the (geo)SM(EFT); (23)-
(32) and their renormalization group flow (cf. (43)-(47) in Section 4) represent the core results
of this work.
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Applications 

Lagrangian is given as an OPE of non-renormalizable interactions between SM fields and heavy
scalars {✓i,⌃, S},
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where the labels indicate a specific family sector, f 2 {u, d, e, ⌫}, and whose terms are invariant
under the SM gauge symmetries and GF ' � (27) due to the triplet (anti-triplet) � (27) charge
assignments of the SM multiplets (flavons).9 Upon {✓} developing vevs in specific directions of
flavour-space (and with specific scales {v}), the UTZ Lagrangian in (35) populates Dirac mass
matrices of the form

M
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for all Dirac fermions (u, d, ...), where the free parameters {a, b, �, �}f are associated to ultraviolet
dynamics, and where we have removed two unphysical phases according to the discussion in [37].
This object is then the only information required to form the invariants in (18)-(19), and therefore
also the mass and mixing formulae in (23)-(32), which yield the physical flavour parameters. We
focus on the quark sector of the model, and input the best-fit values for the unconstrained
ultraviolet inputs {a, b, �, �}u,d from [36] and compute, finding

mu

mt

= 7.16 · 10�6
,

mc

mt

= 0.0027 ,
md

mb

= 0.00090 ,
ms

mb

= 0.020 , (37)

for the mass eigenvalues (note that the Higgs vev is already encoded in the numerical values for
the ultraviolet parameters) and

s12 = 0.226, s23 = 0.0191, s13 = 0.0042, s� = 0.5609, (38)

for the mixing angles and Dirac phase, in perfect agreement with the numerical values extracted
in [36], up to O(1/M4

f
). Extending the analysis to higher-order operators in (35) is straightfor-

ward and no more complicated.

On models with light leptoquarks

As examples of theories with non-minimal flavour violation in the infrared, we consider models
incorporating leptoquarks, exotic scalars that couple SM SU(2)L doublet quark and lepton fields,
e.g.

L � y
LL

pr
Q

C

L,p
⇥3 LL,r + z

LL

pr
Q

C

L,p
⇥†

3 QL,r + h.c. , (39)

where we have given illustrative operators for a scalar triplet leptoquark ⇥3 which transforms
as ⇥3 ⇠ (3̄,3, 1/3) under GSM , and where all gauge/internal index contractions are implied.10

9
The Higgs field is a trivial flavour singlet, as are the BSM ⌃ and S fields, with the latter helpful for shaping

the couplings and the former associated to Grand Unified symmetry breaking. See [36] for further details of the

model’s implementation, including its scalar potential.
10
For a somewhat comprehensive review of leptoquark models and basic phenomenology, see [38].
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[ Effective operators ]

23

✤ In the IR, we can build effective mass matrices with higher dimensional operators:

✤ In the UV, each vertex is part of the full Lagrangian (messengers A integrated out):

✤ Hence by assigning the messengers to trivial singlets, one can form family symmetry 
invariants:
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LY = �ye ĒL� eR � yd Q̄L� dR � yu Q̄L�
c
uR

(2)

LY = �ye
vp
2
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LY = �ye ĒL� eR � yd Q̄L� dR � yu Q̄L�
c
uR

(2)

LY = �ye
vp
2
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Fields  q,e,⌫  
c
q,e,⌫ H5 ⌃ S ✓3 ✓23 ✓123 ✓ ✓X

�(27) 3 3 100 100 100 3̄ 3̄ 3̄ 3̄ 3

ZN 0 0 0 2 -1 0 -1 2 0 x

TABLE I: Fields and their family symmetry assignments. The field ✓X only plays a role in the vacuum alignment. Hence the
only requirement of its ZN charge is that it be assigned so that the field does not contribute significantly to the fermionic mass
matrices – we have therefore left it generic.

level, there are no contractions involving the non-trivial singlets of �(27).4 The di↵erence between the down quark
and charged lepton matrices can be derived from an underlying GUT structure. As an example of this consider the
e↵ective Lagrangian of the form

L
eff
a,mass =  i
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where a = u, d, e and

h✓3i = v3(0, 0, 1), h✓23i = v23(0, 1, 1)/
p
2, h✓123i = v123(1, 1,�1)/

p
3 (II.4)

The restricted form of eq(II.3) is determined by a simple ZN shaping symmetry under which the fields with non-zero
ZN are shown in Table I, along with the full symmetry assignments of our model. The field S is ZN charged and
indirectly a↵ects the Majorana terms such that the UTZ is preserved (see Section III). The field ⌃ is associated with
the breaking of the underlying GUT with a vev / B�L+ TR

3 . It implements the Georgi-Jarlskog relation [37] with
re/rd = �3 for  = 0. For the case  = 2, plus domination by the RH messengers, it gives re/rd = 3. Since the sign
is irrelevant both cases are viable. Here we concentrate on the case  = 0 which gives r⌫ = �1 and ru/rd = 1. We
note that, although we do not go into the details of the GUT breaking, we checked it can proceed as normal from an
underlying SO(10) down to the SM gauge group. The reasons for this are that the H5 field that breaks SO(10) to
the Pati-Salam group is neutral under the ZN and that, although ⌃ has a non-trivial ZN charge, it can obtain a VEV
from non-holomorphic terms in the potential that are traces of the (ZN invariant) combination ⌃⌃†, which arise due
to SUSY breaking, similarly to the terms responsible for the alignment of the familon VEVs discussed in more detail
in Appendix A. Finally, the Mi,a are the heavy masses of the mediators that have been integrated out when forming
the e↵ective Lagrangian. There is a subtlety in that at least the top Yukawa coupling should not be suppressed and
to do this one must take ✓3/M3 large, a known issue in this type of model [39]. This is the case if ✓3 is the dominant
contribution to the messenger mass, and we assume here that this applies to the u, d and e sectors. An alternative
that solves this issue is through the use of Higgs mediators as described in [40], although this is beyond the scope of
the present paper as it requires an entirely di↵erent set of superfields.

B. Mass matrix parameters and messenger masses

The parameters of eq(II.1) in the (2,3) block are given by

✏2a =
h✓23i2h⌃i

M3
23,a

.
M2

3,a

h✓3i2
(II.5)

Referring to the ZN charges of the fields as Q, if the Q = 0/Q = �1 mediator mass ratio M3,a
M23,a

is smaller in the

up sector than in the down sector, one will have ✏u < ✏d. Of course equality of the down quark and charged lepton
matrix elements in the (1,2), (2,1), and (3,3) positions requires that the expansion parameters be the same in the two
sectors. This is consistent with an underlying spontaneously broken SU(2)R symmetry because the down quarks and
leptons are both TR,3 = �1/2 states and, in SUSY, both acquire their mass from the same Higgs doublet, Hd.

Here we consider the case that the messengers carry quark and lepton quantum numbers. For the messengers
carrying left-handed quantum number, SU(2)L requires the up and down messenger masses should be equal. Thus

4 This structure is found in orbifold string compactifications [38].
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Lagrangian is given as an OPE of non-renormalizable interactions between SM fields and heavy
scalars {✓i,⌃, S},
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where the labels indicate a specific family sector, f 2 {u, d, e, ⌫}, and whose terms are invariant
under the SM gauge symmetries and GF ' � (27) due to the triplet (anti-triplet) � (27) charge
assignments of the SM multiplets (flavons).9 Upon {✓} developing vevs in specific directions of
flavour-space (and with specific scales {v}), the UTZ Lagrangian in (35) populates Dirac mass
matrices of the form
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for all Dirac fermions (u, d, ...), where the free parameters {a, b, �, �}f are associated to ultraviolet
dynamics, and where we have removed two unphysical phases according to the discussion in [37].
This object is then the only information required to form the invariants in (18)-(19), and therefore
also the mass and mixing formulae in (23)-(32), which yield the physical flavour parameters. We
focus on the quark sector of the model, and input the best-fit values for the unconstrained
ultraviolet inputs {a, b, �, �}u,d from [36] and compute, finding

mu

mt

= 7.16 · 10�6
,

mc

mt

= 0.0027 ,
md

mb

= 0.00090 ,
ms

mb

= 0.020 , (37)

for the mass eigenvalues (note that the Higgs vev is already encoded in the numerical values for
the ultraviolet parameters) and

s12 = 0.226, s23 = 0.0191, s13 = 0.0042, s� = 0.5609, (38)

for the mixing angles and Dirac phase, in perfect agreement with the numerical values extracted
in [36], up to O(1/M4

f
). Extending the analysis to higher-order operators in (35) is straightfor-

ward and no more complicated.

On models with light leptoquarks

As examples of theories with non-minimal flavour violation in the infrared, we consider models
incorporating leptoquarks, exotic scalars that couple SM SU(2)L doublet quark and lepton fields,
e.g.
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3 QL,r + h.c. , (39)

where we have given illustrative operators for a scalar triplet leptoquark ⇥3 which transforms
as ⇥3 ⇠ (3̄,3, 1/3) under GSM , and where all gauge/internal index contractions are implied.10

9
The Higgs field is a trivial flavour singlet, as are the BSM ⌃ and S fields, with the latter helpful for shaping

the couplings and the former associated to Grand Unified symmetry breaking. See [36] for further details of the

model’s implementation, including its scalar potential.
10
For a somewhat comprehensive review of leptoquark models and basic phenomenology, see [38].
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✅
currently 

working on 
an MCMC fit 
to the UTZ!

Proof-in-principle fits 
yield good 

agreement with 
global flavor data.

Formulae can (e.g.) be used in higher-order fits, or to derive RGE for fermionic mass and mixing in novel ways:

Can also be used in flavored model building, including objects with explicit BSM states (e.g. scalar flavons or 
leptoquarks).  A nice example is the UTZ model:
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and analogously for  d using (27). One notes that (42) is given entirely in terms of the RGE of
the flavour invariants themselves. Here ẋ ⌘ µ dx/dµ. Using (42), one can also derive the RGE
for the Yukawa eigenvalues, finding
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as well as the RGE for the mixing angles sij,

ṡ13 =
1

2

2

4� P13

s13 �
�
bd
��

bs
��

cu
��

ut

� s13

X

(ij)2 s1

�̇�
ij

��
ij

3

5 , (44)

ṡ23 =
1

2

"�
��

tuP
a

23 � s
2
23 �

�
ct P

b

23

�

s23 D23
+ s23

 
�̇�
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��
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�
�̇�

ct

��
ct

!#
, (45)

ṡ12 =
1

2

"
P

a

12

s12D12
� s12

 
�̇�

ds

��
ds

+��
ds

P
b

12

D12

!#
, (46)

where, in the equation for ṡ23, the index set s1 is s1 = {(bs), (bd), (cu), (ut)}, and the denominator
functions Dij are given in (28)-(30), defining s

2
ij
⌘ Nij/Dij. The remaining product functions

Pij appearing in (44)-(46) are tedious but algebraically simple expressions, and we give them in
Appendix A for completeness. Finally, one can derive a compact expression for the RGE of the
Dirac phase �,

ṡ� = s�

2

4 İ
�
11

I
�
11

�

X

(ij)2 s2

�̇�
ij

��
ij

� ṡ12
(1� 2 s212)

s12c
2
12

� ṡ23
(1� 2 s223)

s23c
2
23

� ṡ13
(1� 3 s213)

s13c
2
13

3

5 , (47)

which depends on (46). Here the index set s2 is over the mass-di↵erences appearing on the RHS
of (32), s2 = {(tc), (tu), (cu), (bs), (bd), (sd)}.
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with only a single derivative operator. Note also that we have been careful to indicate when
the derivatives are of the squared ˙(y2

i
) or quartic ˙(y4

i
) = 2y2

i

˙(y2
i
) Yukawa eigenvalues, and it is of

course clear that �̇±
ij
= ˙(y2

i
)± ˙(y2

j
).

A.2 One-Loop RGE for Ii

The RGE equations for Îi were derived, for MFV theories, in [23] at one- and two-loop perturba-
tive order. We have used the one-loop expressions in the sample numerical calculation performed
in Section 4.1, and so we report the results from [23]:

µ
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dµ
' 2a0I1 + 2a1

✓
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3
I
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3Î6 �

I1Î3
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Î7 � I2Î3 +
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3
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µ
dÎ9
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3
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I1Î9

3

!
,

µ
dÎ10
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� Î3Î8
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�
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dµ
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�
11 , (48)

where the a and b parameters are defined as

a0 =
3

8⇡2

✓
I1 + I2 +

I1 � I2

2ng

◆
� 2

↵s

⇡
, a1 =

3

16⇡2
, a2 = �

3

16⇡2
,
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with only a single derivative operator. Note also that we have been careful to indicate when
the derivatives are of the squared ˙(y2

i
) or quartic ˙(y4

i
) = 2y2

i

˙(y2
i
) Yukawa eigenvalues, and it is of

course clear that �̇±
ij
= ˙(y2

i
)± ˙(y2

j
).

A.2 One-Loop RGE for Ii

The RGE equations for Îi were derived, for MFV theories, in [23] at one- and two-loop perturba-
tive order. We have used the one-loop expressions in the sample numerical calculation performed
in Section 4.1, and so we report the results from [23]:
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I1Î3

3

!
� 2a2
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!
,
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µ
dÎ7
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' (4a0 + 2b0) Î7 + (2a1 � 2b2)

 
I1Î7

3
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!
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!
,
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dÎ8
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µ
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!
,
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3
� Î3Î8

!
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�
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where the a and b parameters are defined as

a0 =
3

8⇡2

✓
I1 + I2 +

I1 � I2

2ng

◆
� 2

↵s

⇡
, a1 =

3

16⇡2
, a2 = �

3

16⇡2
,
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b0 =
3

8⇡2

✓
I1 + I2 +

I2 � I1

2ng

◆
� 2

↵s

⇡
, b1 =

3

16⇡2
, b2 = �

3

16⇡2
, (49)

which depend on the strong coupling constant ↵s and the number of generations ng. Note that
the expressions in (48) - (49) neglect subdominant electroweak corrections.
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Invariants in the neutrino sector

4.1 Neutrino Mass Eigenstates and Flavor Structures

The connections and operator forms enumerated in Sections 2-3 can be rotated to/from the
mass-eigenstate basis of the weak gauge and/or Higgs bosons via (8), while rotating to the
fermion mass-eigenstate basis, necessary for flavored phenomenology, introduces additional
physical rotations into the Lagrangian. It is well known that (again see [9]) this basis change
mixes active and sterile neutrino fields even at the renormalizable level, such that the gauge
singlet can participate in weak interactions via its admixtures in active mass eigenstates. The
situation is even more complex in the geo(⌫)SMEFT.

Specifically, organizing the operators above that contribute to the neutrino mass sector in
the broken electroweak phase of the theory gives contributions of the form

Lmass = �
1

2

�
⌫
c

L
N
�
·

 
h⌘`(�)i hY

T

N
(�)i

hYN(�)i h⌘N(�)i

!
·

 
⌫L

N
c

!
+ h.c. ⌘ �

1

2
nM⌫ n+ h.c. , (37)

where we have used ⌫
c

L
N

c = N⌫L and condensed flavor indices, such that
�
⌫
c

L
, N
�
is an

(n` + nf )-dimensional row vector in flavor space, where n` (nf ) is again the number of SU(2)L
doublet ` (SU(2)L singlet N) generations in the theory. Here the brackets hi indicate that
the expectation value of the Higgs field has been taken in all of the field-space connections
contributing to the tree-level mass terms. The YN(�) and ⌘N(�) objects are defined in (28)
and (29) respectively, and we have also introduced a novel ‘Weinberg Connection’ ⌘`(�) in the
(1,1) entry of the flavor matrix in (37). This object is the field-space connection built from
the application of scalar dressings to the operator in (1), i.e. the all-orders generalization of
the d = 5 Weinberg operator, and it has not yet been formally defined in the literature.10 We
do so via the following variation of the Lagrangian:

⌘`(�)pr ⌘
�LSMEFT

�(`c
p
`r)

���
L(↵,�,..)!0

=
1X

n=0


H̃

†(�I)H̃
?(�J) C̃

(5+2n)
``
pr

�✓
�
2

2

◆n

, (38)

which obviously identities `c` as the relevant composite two-point fermion bilinear operator
in the unbroken (geo)SMEFT, and where in this convention each Higgs doublet is SU(2)L-
contracted with a lepton doublet in said bilinear. There is also of course a Hermitian conjugate
expression.

Returning to the issue of flavor, we recall that (37) is readily diagonalized by a unitary
transformation Un on the neutrino fields,

U
†
n
M⌫ Un ⌘ m⌫ = diag

⇣
m⌫1 , ...,m⌫nl

,mN1 , ...,mNnf

⌘
, (39)

which amounts to a rotation to the neutrino mass-eigenstate basis of the Lagrangian. The
mass eigenvalues appearing on the RHS of (39), and the mixing angles and CP-violating
phases implicit in Un, a priori exclusively depend on the connections appearing in (37). In
the spirit of writing down said Lagrangian parameters at all-orders in vT/⇤, one goal in
the development of a complete tree-level geo⌫SMEFT should be their analytic derivation,
which is achievable via invariant techniques along the lines of those presented in [32], which

10
I thank Michael Trott for helpful discussions on this point.
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A minimal basis of invariants for the nf = 3 seesaw is not known!  WIP

No LNV:  ηℓ(ϕ) = ηN(ϕ) = 0 ✅

Treatable with (geo)SM(EFT) technologies presented in [2107.03951] (analogous to quarks).
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ones up to degree twelve, which are sufficient for the de-
nominator of the Hilbert series (and hence to determine
the parameters) are:

I2,0 = 〈XE〉 = 〈mE
†mE〉 ,

I0,2 = 〈X5〉 = 〈m5
∗m5〉 ,

I4,0 = 〈XE
2〉 = 〈

(

mE
†mE

)2〉 ,
I2,2 = 〈XEX5〉 = 〈mE

†mEm5
∗m5〉 ,

I0,4 = 〈X5
2〉 = 〈(m5

∗m5)
2〉 ,

I6,0 = 〈XE
3〉 = 〈

(

mE
†mE

)3〉 ,

I ′4,2 = 〈XE
2X5〉 = 〈

(

mE
†mE

)2
m5

∗m5〉 ,
I4,2 = 〈m5

∗ XE
T m5 XE〉

= 〈m5
∗ mE

TmE
∗ m5 mE

†mE〉 ,
I2,4 = 〈XEX5

2〉 = 〈mE
†mE (m5

∗m5)
2〉 ,

I0,6 = 〈X5
3〉 = 〈(m5

∗m5)
3〉 ,
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T m5 XE
2〉
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TmE
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(
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†mE
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2〉
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∗ XE
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2 〉
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I(±)
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∗ m5 XE
2 〉

± 〈m5
∗ m5 m5

∗ (XE
T )2m5 XE

2〉

= 〈m5
∗
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mE
TmE

∗
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m5 m5
∗ m5

(

mE
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)2〉

± 〈m5
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∗
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mE
†mE

)2〉 .
(114)

The multi-graded Hilbert series is

h(y, z) =
N

D
,

N = −y24z18 − 2y20z14 − 2y20z12 − y20z10 − 2y18z14 − 3y18z12 − y18z10 − 3y16z14 − 3y16z12 − 3y16z10 − y16z8

−y16z6 − y14z14 − y14z12 − y14z10 − 2y14z8 − y14z6 − y12z14 + y12z4 + y10z12 + 2y10z10 + y10z8 + y10z6

+y10z4 + y8z12 + y8z10 + 3y8z8 + 3y8z6 + 3y8z4 + y6z8 + 3y6z6 + 2y6z4 + y4z8 + 2y4z6 + 2y4z4 + 1,

D =
(

1− y2
) (

1− y4
) (

1− y6
) (

1− z2
) (

1− z4
) (

1− z6
) (

1− y2z2
) (

1− y4z2
)2 (

1− y2z4
) (

1− y6z2
)

×
(

1− y4z4
) (

1− y8z2
)

, (115)

where y counts powers of mE and z counts powers of m5. The single-variable series H(q) = h(q, q) is

H(q) =
1 + q6 + 2q8 + 4q10 + 8q12 + 7q14 + 9q16 + 10q18 + 9q20 + 7q22 + 8q24 + 4q26 + 2q28 + q30 + q36

(1− q2)2 (1− q4)3 (1− q6)4 (1− q8)2 (1− q10)
. (116)

The number of denominator factors p = 12 is equal to
the number of parameters, and dN = 36 and dD = 66.
The number of variables is dimV = 30, because we have
one 3 × 3 matrix with 9 independent entries, one 3 × 3
symmetric matrix with 6 independent entries, and their
complex conjugates. Knop’s inequality is 30 ≥ 66− 36 ≥
12, and the upper bound is an equality. Note that the
numerator is palindromic. The 12 parameters consist of 3
charged lepton masses, 3 Majorana light neutrino masses,
3 angles and 3 phases.

The Hilbert series Eq. (116) has a complicated numer-
ator, which shows that the structure of the invariant ring
is highly non-trivial. From the denominator of Eq. (116),
we see that there are two generators of degree two, three

of degree four, four of degree six, two of degree eight, and
one of degree 10, which can be multiplied freely, with no
relations. These account for most of the invariants in
Eq. (114), but there remains one CP -even invariant each
of degrees 6, 10, 12, and one CP -odd invariant each of
degrees 8, 10, 12. These contribute q6 + q8 + 2q10 +2q12

to the numerator in Eq. (116). The coefficient of q8 in
the numerator of Eq. (116) is 2. Where does the other
degree-eight invariant not in Eq. (114) come from? The
degree-six invariant that corresponds to the numerator
factor q6 can be multiplied by either of the two degree
invariants, I2,0 or I0,2, to give two additional degree-8 in-
variants. One of these can be written as a polynomial in
lower order invariants; the other survives. One can con-

(geo)SMEFT:  ηN(ϕ) = )N(ϕ) = 0 ✅

Invariants from [0907.4763] and parameters from [2107.06274].  Extension to all- -orders trivial. vT /Λ

Dynamical seesaw model:  ηℓ(ϕ) = 0
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both of degree two, and the invariants of higher order
are given by multiplying together arbitrary powers of I1
and I2. The product

(

1 + I1 + I21 + . . .
) (

1 + I2 + I22 + . . .
)

(47)

gives each invariant once, which leads to the Hilbert series

H(q) =
(

1 + q2 + q4 + . . .
) (

1 + q2 + q4 + . . .
)

=
1

(1− q2)2
, (48)

in agreement with Eq. (46).
In the general case of a semisimple Lie group, it is

known that H(q) has the rational form

H(q) =
N(q)

D(q)
, (49)

where the numerator N(q) and denominator D(q) are
polynomials. Furthermore, the numerator is of degree
dN and is of the form

N(q) = 1 + c1q + . . . cdN−1q
dN−1 + qdN (50)

where the coefficients are non-negative, cr ≥ 0, and N(q)
is palindromic, i.e.

N(q) = qdNN(1/q). (51)

The denominator takes the form

D(q) =
p
∏

r=1

(1 − qdr), (52)

and is of degree dD =
∑

r dr. The number of denomina-
tor factors p is equal to the number of parameters. The
number of parameters is defined as the minimal codi-
mension of an orbit, and agrees with the usual physics
usage of the term. Model I has p = 2 parameters, be-
cause we start with four objects m1, m2, m∗

1 and m∗
2

(or equivalently, the real and imaginary parts of m1 and
m2), and have two phase redefinitions Eq. (43), which
eliminates two variables. In other words, one can always
make a phase redefinition to make m1 and m2 real and
non-negative, and these are the two independent param-
eters. In our example, N(q) = 1, d1 = d2 = 2 and the
number of denominator factors is two. The number of
denominator factors p is equal to the number of param-
eters.
There is a theorem due to Knop [31] which says that

dimV ≥ dD − dN ≥ p (53)

where dimV is the dimension of the vector space on
which the group transformations act; dD and dN are the
degrees of the denominator and numerator; and p is the
number of parameters. In most cases, the upper bound
is an equality, but not always. (We will see an example
for the quark invariants involving only the U -quark mass

matrix.) In Model I, the vector space basis ism1,m∗
1, m2,

m∗
2, so dim V = 4, p = 2, dN = 0 and dD =

∑

dr = 4,
and we see that Knop’s theorem gives 4 ≥ 4−0 ≥ 2, with
an equality for the upper bound.
One also can construct a multi-graded Hilbert series.

Let cr1r2r3r4 be the number of invariants of order r1 in
m1, order r2 in m∗

1, order r3 in m2, and order r4 in m∗
2.

Then

h(q1, q2, q3, q4) =
∑

cr1r2r3r4q
r1
1 qr22 qr33 qr44

=
1

(1− q1q2)(1− q3q4)
, (54)

and the usual Hilbert series is H(q) = h(q, q, q, q). The
multi-graded series gives more information about the
structure of the invariants. However, it is important
to remember that the results quoted above for H(q),
Eqs. (49)–(53), do not hold in general for the multi-
graded case.

C. Model II

Consider a theory with couplings m1 and m2 with
charges one and two, respectively, under a G = U(1)
symmetry,

m1 → eiφm1, m2 → e2iφm2 . (55)

The ring of invariant polynomials C[m1,m∗
1,m2,m∗

2]
U(1)

is generated by the four basic invariants I1 = m1m∗
1, I2 =

m2m∗
2, I3 = m2m∗2

1 and I4 = m∗
2m

2
1. These generators,

however, are not all independent, since I3I4 = I21I2, so
that C[m1,m∗

1,m2,m∗
2]

U(1) is not a free ring generated
by I1−4.
It is straightforward to show that the multi-graded

Hilbert series is

h(q1, q2, q3, q4) =
1− q21q

2
2q3q4

(1 − q1q2)(1 − q3q4)(1 − q3q22)(1 − q4q21)
,

(56)

where q1, q2, q3 and q4 count powers of m1, m∗
1, m2 and

m∗
2, respectively.
The denominator of the multi-graded Hilbert series is

generated by the invariants I1−4, whereas the numerator
compensates for the fact that I3I4 and I21I2 count as
only one invariant at order q21q

2
2q3q4, rather than two,

because I3I4 = I21I2. The numerator of the multi-graded
Hilbert series does not have the special properties of the
numerator of the Hilbert series H(q) discussed in the
previous example.
In this example, dimV = 4, dimG = 1, and there are

three parameters since the phase transformation Eq. (55)
eliminates one of the original four real variables inm1 and
m2. The Hilbert series H(q) = h(q, q, q, q) is

H(q) =
1 + q3

(1− q2)2(1 − q3)
, (57)
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2. Lepton Invariants

The Hilbert series of a general theory is defined to be

H(t) =
∞
∑

r=0

crt
r, (2.1)

where cr is the number of invariants of degree r and c0 = 1. Thus, the Hilbert series

determines the number and degree of all flavor invariants. A general Hilbert series H(t)

is of the form H(t) = N(t)/D(t), where the numerator N(t) and the denominator D(t) of

the Hilbert series are polynomials in t. For the see-saw theory with three generations of

leptons, the Molien-Weyl formula can be written as:

H(t) =
1

(3!)2

3
∏

k=1

∮

dzk
2πizk

3
∏

l=1

∮

dwl

2πiwl

∏

i<k

(zi − zk)
2
∏

j<l

(wj − wl)
2 ×

PE
[

3
∑

i,j

zi
zj
t2 +

3
∑

i,j

(

zi
wj

+
wi

zj

)

t+
3
∑

i≤j

(

wiwj +
1

wiwj

)

t
]

. (2.2)

The numerator of the Hilbert series computed with the formula above is

N(t) = 1 + t4 + 5t6 + 9t8 + 22t10 + 61t12 + 126t14 + 273t16 + 552t18 + 1038t20

+1880t22 + 3293t24 + 5441t26 + 8712t28 + 13417t30 + 19867t32 + 28414t34 + 39351t36

+52604t38 + 68220t40 + 85783t42 + 104588t44 + 123852t46 + 142559t48 + 159328t50

+173201t52 + 183138t54 + 188232t56 + 188232t58 + 183138t60 + 173201t62 + 159328t64

+142559t66 + 123852t68 + 104588t70 + 85783t72 + 68220t74 + 52604t76 + 39351t78

+28414t80 + 19867t82 + 13417t84 + 8712t86 + 5441t88 + 3293t90 + 1880t92 + 1038t94

+552t96 + 273t98 + 126t100 + 61t102 + 22t104 + 9t106 + 5t108 + t110 + t114, (2.3)

which is of degree dN = 114 and palindromic, i.e. tdNN(1/t) = N(t). The denominator is

D(t) =
(

1− t2
)3 (

1− t4
)4 (

1− t6
)4 (

1− t8
)2 (

1− t10
)2 (

1− t12
)3 (

1− t14
)2 (

1− t16
)

,

(2.4)

which is of degree dD = 162. The plethystic logarithm of this Hilbert series can be written

as:

PL[H(t)] = 3t2 + 5t4 + 9t6 + 10t8 + 19t10 + 40t12 + 66t14 + 92t16 + 70t18 −O(t20)

(2.5)

There are three mass matrices in the lepton sector of the see-saw model, mν , mE and M ,

and their complex conjugates mν
†, mE

† and M † = M∗. The Dirac mass matrix of the light

neutrinos mν and the mass matrix of the charged leptons mE are complex 3× 3 matrices,

whereas the Majorana mass matrix of the heavy singlet neutrinos is a complex symmetric

3 × 3 matrix. Thus, the dimension of the vector space on which the flavor symmetry

– 3 –
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Hilbert Series from [1010.3161], but 
highly non-trivial!

Progress on invariants from Yu et al., see 
e.g. [2107.11928] for nf = 2 scenario.

Parameters unknown (to my 
knowledge), as is….
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Summary and outlook

To that end, one can construct basis-independent, all-orders flavor formalisms by 
combining invariant theory with geometric EFT technologies.  WIP

THANK YOU! 

Phenomenological applications to (e.g.) fits of neutrino mass and mixing can and should 
be explored, as should the deeper theoretical questions exposed by geometric 
factorization.  WIP

We have presented the first-ever geometric SMEFT by identifying and deriving its 
composite operators & field-space connections under geometric refactorization.

ν

These objects describe geometries in the field spaces of the SMEFT.  Amongst many 
benefits, they permit the derivation of all- -orders Feynman Rules at the outset of 
an amplitude calculation.  We have shown two such rules.

ν
vT /Λ

Our goal is to explore  geo SMEFT formalism & phenomenology.  One desirable 
ingredient is an all- -orders neutrino flavor formalism.  WIP

ν
vT /Λ
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Basis of invariants for quarks

references, we recall that flavour invariants are objects that do not change under field redefinitions
corresponding to unitary transformations of SM fermions under the global GF ⇠ U(3)5 flavour
symmetry. Such transformations correspond to basis changes of the Yukawa connections,4

Y
u
�! U

†
QL

Y
u
UuR

, Y
d
�! U

†
QL

Y
d
UdR

, (17)

which, as argued above, are the fundamental objects encoding the mass and mixing parameters
of the theory. Polynomials of Y  define a group ring C when the linear combinations of all
possible products of the generators Y  (with complex coe�cients) are formed. The GF -invariant
ring CGF is that set of polynomials unchanged under the action GF (cf. (17)), and it can be
shown that CGF is finitely generated. A central result of [22] is an explicit representation of said
generators, denoted Ii (and henceforth referred to simply as ‘invariants’), for the quark sector
of the SM with both two and three fermion generations. Here we extend this analysis to the
geoSMEFT, and further use the invariants to extract our desired formulae.

In the case of three fermion generations, Hilbert Series techniques lead one to conclude that
there are 11 polynomially independent invariants Ii [22]. In what follows we will actually use
the representation and notation given in [23] to present Ii. Here, after defining the Hermitian
combination Y Y

†
⌘ Y, a complete set of 3D quark-sector invariants are reported as

I1 ⌘ tr (Yu) , Î3 ⌘ tr (adjYu) , Î6 ⌘ tr (Yu adjYu) = 3 detYu ,

I2 ⌘ tr (Yd) , Î4 ⌘ tr (adjYd) , Î8 ⌘ tr (Yd adjYd) = 3 detYd , (18)

for invariants ‘unmixed’ between up and down sectors, and

Î5 ⌘ tr (Yu Yd) , Î7 ⌘ tr (adjYu Yd) , Î9 ⌘ tr (Yu adjYd) , Î10 ⌘ tr (adjYu adjYd) , (19)

for real, mixed invariants. Note that it is natural to consider Yu and Yd when considering flavour
symmetry violating e↵ects as these two invariants are not simultaneously diagonalizable. This
is why in meson mixing, for example, flavour violation is always proportional to such invariants.
One notes that (18) contains all of the information required to extract the Yukawa eigenvalues.
On the other hand, (19) know about the overlap between up and down sectors, and are therefore
functions of the mixing elements Uu,d

ij
. As there are four invariants, this is su�cient to extract the

four independent elements of the (unitary) CKM mixing matrix. The expressions in (18)-(19)
are all CP-even and � 0. Additionally there is the complex, CP-Odd invariant

I
�
11 = �

3i

8
det [Yu,Yd] , (20)

which is proportional to the Jarlskog determinant [26]. This invariant will therefore be necessary
for completely determining the sign of the Dirac CP-violating phase below.

Note that, in the above expressions, adjY are the adjoint matrices5 satisfying Y adjY = detY,
i.e.

adjY = Y2
� tr [Y]Y +

1

2

�
tr2 [Y]� tr

⇥
Y2
⇤�

1 , (21)

4
We focus only on the quark sector from this point forward. Additional discussion regarding extensions to

leptons will be given in Section 5.
5
These matrices are adjoint under the SU(3)QL quark flavour subgroup of the global U(3)

5
SM flavour

symmetry, i.e. U(3)
5
� U(3)

3
/U(1)B ⇠ SU(3)QL ⇥ U(3)uR ⇥ U(3)dR , with U(1)B global baryon number.
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� U(3)
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which holds for matrices that are diagonalized via unitary field transformations. Generalized
expressions for adjoint matrices diagonalized by bi-unitary transformations can also be found.
Both are derived directly from the Cayley-Hamilton identity for 3⇥ 3 matrices [23].

Invariants

A core observation of this work is that the structure of the flavour invariants is the same regardless
of the mass dimension considered in the (geo)SM(EFT). This can be seen clearly in (8), where
one notes that the addition of higher-order SMEFT operators simply results in an all-orders
reparameterization of each individual matrix element of the Hermitian objects Y, which compose
the polynomial invariants. Hence we can freely form (18)-(20) with explicit dependence on the
geoSMEFT’s Hermitian Yukawa coupling,

Yrp =
h
2

 
YriY

?

pi
�

1X

n0

f(n0)YriC̃
(2n0)
ip

�

1X

n

f(n)C̃(2n),?
ir

Y
?

pi
+

1X

n,n0

f(n)f(n0)C̃(2n),?
ir

C̃
(2n0)
ip

!
, (22)

where h ⌘ (
p
h
44
)(
p
h
44
)?, f(n) = 2n�3

2n�2 , and analogously for f(n0). We observe that (22)
represents the fundamental BSM object in this formalism.

Quark Masses

Proceeding to the extraction of the quark Yukawa eigenvalues y2, we solve the system of equations
in (18), finding

y
2
i
=

(�2)1/3

3 u

⇣
I
2
1 � 3 Î3 + (�2)�1/3

I1  u + (�2)�2/3
 

2
u

⌘
, (23)

y
2
j,k

=
1

12 u

((�2)4/3 I
2
1 � 3 · (�2)4/3 Î3 + 4 I1  u

⌥  u

vuut
24
⇣
I
2
1 � 3 Î3

⌘
+

6 · (�2)5/3
⇣
I
2
1 � 3 Î3

⌘2

 2
u

� 3 · (�2)4/3  2
u
+ (�2)2/3  2

u
) (24)

for the up-quark Yukawa eigenvalues, where the  u parameter is given by

 u =

✓
�2 I31 + 9 I1Î3 � 9 Î6 + 3

q
�3 I21 Î

2
3 + 12 Î33 + 4 I31 Î6 � 18 I1Î3Î6 + 9 Î26

◆1/3

. (25)

Recall that by definition the functions y2 and I1,3,6 are � 0, and of course y
2 is also real. While

certain individual expressions on the RHS of these equations are imaginary, we have checked
that the eigenvalues are in fact real. Note also that the system of equations in (18) permits
six di↵erent solutions, corresponding to the six di↵erent possible mass hierarchies for yu,c,t. The
unmixed mass invariants remain constant under the transposition of any two flavour-eigenstate
indices, e.g. I1 = I1(i $ j). However, by definition, one recognizes the up quark as the lightest
generation, the top as the heaviest, and the charm as the intermediate,

y
2
u
⌘ min{y2

i
, y

2
j
, y

2
k
} , y

2
c
⌘ mid{y2

i
, y

2
j
, y

2
k
} y

2
t
⌘ max{y2

i
, y

2
j
, y

2
k
} . (26)
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proportional to to the Jarlskog 
Invariant J!

The fundamental geoSMEFT object we can construct at all-orders is then given by

A set of 11 invariants can be found to fully parameterize the theory, including six ‘unmixed’ I

as well as four ‘mixed’ I, relevant for extracting information about the CKM (overlap) matrix

and finally one mixed, CP-odd invariant relevant to pinning down the overall sign of CP violation:

13

The Hilbert series H(q) = h(q, q) is

H(q) =
1

(1 − q2)2(1 − q4)3
. (75)

In this example, p = 5 (four masses and one mixing an-
gle, see Table I), dim V = 16, since there are four 2 × 2
matrices, dN = 0, and dD = 16. The number of denom-
inator factors is the number of parameters, and Knop’s
theorem gives 16 ≥ 16− 0 ≥ 5, with the upper bound an
equality.
The denominator factors in Eq. (75) show that there

are two generators of degree two, and three of degree
four, which agrees with Eq. (72).
If one started with XU and XD as the basic objects,

then dimV = 8. In this case, the Hilbert series is given by
replacing q2 → q in Eq. (75), since we now count powers
of XU , XD rather than mU ,mD, so dN = 0, dD = 8 and
Knop’s inequality becomes 8 ≥ 8− 0 ≥ 5.

B. ng = 3

For an arbitrary 3× 3 matrix A, the Cayley-Hamilton
theorem states that

A3 = A2 〈A〉 − 1

2
A
[

〈A〉2 −
〈

A2
〉

]

+
1

6

[

〈A〉3 − 3
〈

A2
〉

〈A〉+ 2
〈

A3
〉

]

11. (76)

Taking the trace of both sides gives the trivial result
〈

A3
〉

=
〈

A3
〉

. Multiplying by A and taking the trace
gives

〈

A4
〉

=
1

6
〈A〉4 − 〈A〉2

〈

A2
〉

+
4

3

〈

A3
〉

〈A〉+ 1

2

〈

A2
〉2

,

(77)

so that 〈An〉, n ≥ 4 can be rewritten in terms of 〈A〉,
〈A2〉, and 〈A3〉.
Thus, the invariants involving XU alone are I2,0 =

〈XU 〉, I4,0 = 〈XU
2〉 and I6,0 = 〈XU

3〉, and invariants
involving XD alone are I0,2 = 〈XD〉, I0,4 = 〈XD

2〉 and
I0,6 = 〈XD

3〉, all of which are CP even.
Invariants containing both XU and XD are of the form

Eq. (70), but now with ri = 1, 2 and si = 1, 2, so that
one has traces of products of XU , X2

U , XD, X2
D. This re-

striction still leads to an infinite number of invariants.
However, many of these invariants are not independent.

For arbitrary 3 × 3 matrices A, B and C, one has the
identity

0 = 〈A〉2 〈B〉 〈C〉 − 〈BC〉 〈A〉2 − 2 〈AB〉 〈A〉 〈C〉
−2 〈AC〉 〈A〉 〈B〉+ 2 〈ABC〉 〈A〉+ 2 〈ACB〉 〈A〉
−
〈

A2
〉

〈B〉 〈C〉+ 2 〈AB〉 〈AC〉+
〈

A2
〉

〈BC〉
+2 〈C〉

〈

A2B
〉

+ 2 〈B〉
〈

A2C
〉

− 2
〈

A2BC
〉

−2
〈

A2CB
〉

− 2 〈ABAC〉 (78)
which can be derived by substituting A → A+B+C into
Eq. (77), and picking out the order A2BC terms. This
identity eliminates 〈ABAC〉, i.e. traces where the same
matrix is repeated, so that in invariants Eq. (70), XU ,
XU

2, XD and XD
2 can each occur at most once. For

example, 〈XU . . . XU . . .〉 can be replaced by
〈

X2
U . . .

〉

,
and

〈

X2
U . . . X2

U . . .
〉

can be replaced by
〈

X4
U . . .

〉

, which
can then be eliminated using Eq. (76).
Writing out all of the possibilities gives the basic quark

invariants for ng = 3 quark generations. There are 11
CP -even invariants, ten of which are

I2,0 = 〈XU 〉 ,
I0,2 = 〈XD〉 ,
I4,0 = 〈XU

2〉 ,
I2,2 = 〈XUXD〉 ,
I0,4 = 〈XD

2〉 ,
I6,0 = 〈XU

3〉 ,
I4,2 = 〈XU

2XD〉 ,
I2,4 = 〈XUXD

2〉 ,
I0,6 = 〈XD

3〉 ,
I4,4 = 〈XU

2XD
2〉 , (79)

and one CP -odd invariant

I(−)
6,6 = 〈XU

2XD
2XUXD〉 − 〈XD

2XU
2XDXU 〉 .

(80)

The eleventh CP -even invariant is

I(+)
6,6 = 〈XU

2XD
2XUXD〉+ 〈XD

2XU
2XDXU 〉 .

(81)

All the invariants in the quark sector can be written as
polynomials in these basic invariants.
The multi-graded and one-variable Hilbert series are

h(u, d) =
1 + u6d6

(1− u2)(1− u4)(1 − u6)(1 − d2)(1 − d4)(1 − d6)(1 − u2d2)(1 − u4d2)(1− u2d4)(1− u4d4)
,

H(q) = h(q, q) =
1 + q12

(1− q2)2(1− q4)3(1− q6)4(1− q8)
, (82)

3.3 Applicability to other BSM Scenarios

Given (23)-(32), it is interesting to note when they do (and do not) apply. Indeed, the formalism
is in general complete when (18)-(20) are su�cient to extract all of the flavour parameters of
the low-energy theory. As described above, these are determined by analyzing the global flavour
group ring CGF , based on the transformation properties of Y  in (17). Hence (23)-(32) hold in any
theory where (17) represents the generic transformation properties of the Dirac Yukawa/mass
matrices under GF , such that Y  

Y
 †

! U
†
Y
 
Y
 †

U under global flavour transformations U 2

U(3)QL
, including theories where Y  or M originate from ultraviolet dynamics [22]. Of course,

if Y  
Y
 † respects these transformation properties, but there are additional sources of flavour

violation in the infrared spectrum, (18)-(20) will be incomplete as there are just enough invariants
to uniquely determine the 10 (13) flavour parameters of the quark (quark + charged lepton)
Yukawa sector. More invariants would be required to extract the values of parameters associated
to the additional flavour violation.

For academic purposes we also consider the case when global flavour rotations are not family-
universal, i.e. when

{Yu,Yd} ! {Y0
u
, Y0

d
} = {U

u †
�

Yu U
u

�
, U

d †
�

Yd U
d

�
} with U

d

�
6= U

u

�
. (33)

Such a situation may be conceivable in the broken electroweak phase, e.g. Here we observe that
(18) (which we denote Îmass), and therefore (23)-(24), still hold as basis-independent expressions,
since Îmass ! Î

0
mass = Îmass due to the cyclic property of the Trace. However, (19)-(20) do not

exhibit this invariance generically. This is clear, for example, in Î5:

Î
0
5 = tr (Y0

u
Y0
d
) = tr

�
U

u †
�

Yu U
u

�
U

d †
�

Yd U
d

�

�
6= Î5 . (34)

This implies that predictions for CKM mixing parameters in such theories will not hold. We
have checked that these statements are true by generating random unitary transformations
U
 

�
numerically and constructing (33), where y

2
i
, ✓ij and � are also generated randomly. We

compare the values computed with (23)-(32) to those extracted numerically, and indeed confirm
that while the Yukawa/mass eigenvalues are in perfect agreement with the randomly drawn
inputs, the mixing parameters are not. On the other hand, we now give two examples from the
literature where our formulae apply exactly.8

An e↵ective theory of flavour in the ultraviolet

Our formalism can be used to analytically or numerically compute the mass, mixing, and CP-
violating parameters predicted from typical high-energy EFTs of flavour (e.g. Froggatt-Nielsen
models [35]), where some ultraviolet dynamics at a scale ⇤F breaks a flavour symmetry GF ,
yielding specifically textured infrared Yukawa couplings. As an example we consider the quark
sector of the non-Abelian ‘universal texture zero’ (UTZ) model of [36]. Here the high-energy

8
Note that we do not present these models in the context of a matching calculation to the (geo)SMEFT, but

rather as example UV constructions with BSM field and symmetry content remaining in the spectrum — our

goal is to show that our model-independent formulae from above can be used to study the Dirac flavour sector

of specific models in the literature, and as a result we only give relevant details to that end below.
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Abstract

We report a set of exact formulae for computing Dirac masses, mixings, and CP-violation

parameter(s) from 3⇥3 Yukawa matrices Y valid when Y Y
†
! U

†
Y Y

†
U under global

U(3)QL
flavour symmetry transformations U . The results apply to the Standard Model

E↵ective Field Theory (SMEFT) and its ‘geometric’ realization (geoSMEFT). We thereby

complete, in the Dirac flavour sector, the catalogue of geoSMEFT parameters derived at

all orders in the

p
2hH†Hi/⇤ expansion. The formalism is basis-independent, and can

be applied to models with decoupled ultraviolet flavour dynamics, as well as to models

whose infrared dynamics are not minimally flavour violating. We highlight these points

with explicit examples and, as a further demonstration of the formalism’s utility, we derive

expressions for the renormalization group flow of quark masses, mixings, and CP-violation

at all mass dimension and perturbative loop orders in the (geo)SM(EFT) and beyond.

references, we recall that flavour invariants are objects that do not change under field redefinitions
corresponding to unitary transformations of SM fermions under the global GF ⇠ U(3)5 flavour
symmetry. Such transformations correspond to basis changes of the Yukawa connections,4

Y
u
�! U

†
QL

Y
u
UuR

, Y
d
�! U

†
QL

Y
d
UdR

, (17)

which, as argued above, are the fundamental objects encoding the mass and mixing parameters
of the theory. Polynomials of Y  define a group ring C when the linear combinations of all
possible products of the generators Y  (with complex coe�cients) are formed. The GF -invariant
ring CGF is that set of polynomials unchanged under the action GF (cf. (17)), and it can be
shown that CGF is finitely generated. A central result of [22] is an explicit representation of said
generators, denoted Ii (and henceforth referred to simply as ‘invariants’), for the quark sector
of the SM with both two and three fermion generations. Here we extend this analysis to the
geoSMEFT, and further use the invariants to extract our desired formulae.

In the case of three fermion generations, Hilbert Series techniques lead one to conclude that
there are 11 polynomially independent invariants Ii [22]. In what follows we will actually use
the representation and notation given in [23] to present Ii. Here, after defining the Hermitian
combination Y Y

†
⌘ Y, a complete set of 3D quark-sector invariants are reported as

I1 ⌘ tr (Yu) , Î3 ⌘ tr (adjYu) , Î6 ⌘ tr (Yu adjYu) = 3 detYu ,

I2 ⌘ tr (Yd) , Î4 ⌘ tr (adjYd) , Î8 ⌘ tr (Yd adjYd) = 3 detYd , (18)

for invariants ‘unmixed’ between up and down sectors, and

Î5 ⌘ tr (Yu Yd) , Î7 ⌘ tr (adjYu Yd) , Î9 ⌘ tr (Yu adjYd) , Î10 ⌘ tr (adjYu adjYd) , (19)

for real, mixed invariants. Note that it is natural to consider Yu and Yd when considering flavour
symmetry violating e↵ects as these two invariants are not simultaneously diagonalizable. This
is why in meson mixing, for example, flavour violation is always proportional to such invariants.
One notes that (18) contains all of the information required to extract the Yukawa eigenvalues.
On the other hand, (19) know about the overlap between up and down sectors, and are therefore
functions of the mixing elements Uu,d

ij
. As there are four invariants, this is su�cient to extract the

four independent elements of the (unitary) CKM mixing matrix. The expressions in (18)-(19)
are all CP-even and � 0. Additionally there is the complex, CP-Odd invariant

I
�
11 = �

3i

8
det [Yu,Yd] , (20)

which is proportional to the Jarlskog determinant [26]. This invariant will therefore be necessary
for completely determining the sign of the Dirac CP-violating phase below.

Note that, in the above expressions, adjY are the adjoint matrices5 satisfying Y adjY = detY,
i.e.

adjY = Y2
� tr [Y]Y +

1

2

�
tr2 [Y]� tr

⇥
Y2
⇤�

1 , (21)

4
We focus only on the quark sector from this point forward. Additional discussion regarding extensions to

leptons will be given in Section 5.
5
These matrices are adjoint under the SU(3)QL quark flavour subgroup of the global U(3)

5
SM flavour

symmetry, i.e. U(3)
5
� U(3)

3
/U(1)B ⇠ SU(3)QL ⇥ U(3)uR ⇥ U(3)dR , with U(1)B global baryon number.

6

Do you know how to 
write y2(Y), θ(Y), 

δ(Y)?

Calculate invariants under U(3)! Structure given by (known) Hilbert Series!


