Correspondence of topological classification between quantum graph extra dimension and topological matter

Tomonori INOUE (Kobe University, Japan)

Makoto Sakamoto (Kobe Univ.) Masatoshi Sato (YITP, Japan) Inori Ueba (NIT, Tomakomai Col., Japan)

Based on arXiv:2204.03834 [hep-th]

"Corfu 2022: Workshop on Standard Model and Beyond," Corfu, Greece, Sept. 5, 2022

Talk Plan

Introduction

- Quantum graph
- Classification of topological matter
- Setup
- Results
- Summary and Discussion

Talk Plan

Introduction

- Quantum graph
- Classification of topological matter
- Setup

Results

Summary and Discussion

Quantum graph and B.C.

Quantum mechanical system on onedim. circuits consisting of lines and vertices

Quantum graph and B.C.

Quantum mechanical system on onedim. circuits consisting of lines and vertices

Current conservation in this system

 $j_1 + j_2 = j_3 + j_4$

Quantum graph and B.C.

Quantum mechanical system on onedim. circuits consisting of lines and vertices

Current conservation in this system

$$j_1 + j_2 = j_3 + j_4$$

Appropriate boundary conditions at the vertices

Altland-Zirnbauer classification

Classification of Hamiltonian in free fermion systems according to 10 symmetries

[Altland and Zirnbauer, Phys. Rev. B55 (1997) 1142.]

Altland-Zirnbauer classification

Classification of Hamiltonian in free fermion systems according to 10 symmetries

[Altland and Zirnbauer, Phys. Rev. B55 (1997) 1142.]

Hamiltonian: $H^2 = 1$, $H^{\dagger} = H$

Time reversal sym.Particle-hole sym.Chiral sym. $THT^{-1} = H$ $CHC^{-1} = -H$ $\Gamma H \Gamma^{-1} = -H$ $(T^2 = \pm 1)$ $(C^2 = \pm 1)$ $(\Gamma = T \times C, \Gamma^2 = 1)$

Can be classified into 10 classes by combining 3 symmetries

Altland-Zirnbauer classification

Classification of Hamiltonian in free fermion systems according to 10 symmetries

[Altland and Zirnbauer, Phys. Rev. B55 (1997) 1142.]

Hamiltonian: $H^2 = 1$, $H^{\dagger} = H$

Time reversal sym.Particle-hole sym.Chiral sym. $THT^{-1} = H$ $CHC^{-1} = -H$ $\Gamma H \Gamma^{-1} = -H$ $(T^2 = \pm 1)$ $(C^2 = \pm 1)$ $(\Gamma = T \times C, \Gamma^2 = 1)$

Can be classified into 10 classes by combining 3 symmetries Each classes are characterized by a zero-th homotopy of the classification space of *H*.

 $\mathbb{Z}, \mathbb{Z}_2, \mathbb{Z}\mathbb{Z}, \mathbb{O}$

Altland-Zirnbauer classification

Classification of Hamiltonian in free fermion systems according to 10 symmetries

[Altland and Zirnbauer, Phys. Rev. B55 (1997) 1142.]

Hamiltonian: $H^2 = 1$, $H^{\dagger} = H$

Time reversal sym.Particle-hole sym.Chiral sym. $THT^{-1} = H$ $CHC^{-1} = -H$ $\Gamma H \Gamma^{-1} = -H$ $(T^2 = \pm 1)$ $(C^2 = \pm 1)$ $(\Gamma = T \times C, \Gamma^2 = 1)$

Can be classified into 10 classes by combining 3 symmetries Each classes are characterized by a zero-th homotopy of the classification space of *H*.

$$\mathbb{Z}, \mathbb{Z}_2, \mathbb{Z}, \mathbb{C}$$

Goals of this talk

Talk Plan

Introduction

- Quantum graph
- Classification of topological matter

Setup

Results

Summary and Discussion

Setup

Action of 5d Dirac free fermion

$$S = \int d^4x \sum_{a=1}^N \int_{L_{a-1}+\varepsilon}^{L_{a-\varepsilon}} dy \ \overline{\Psi}(x,y) [i\gamma^{\mu}\partial_{\mu} + i\gamma^{y}\partial_{y} + M] \Psi(x,y)$$

4-dim Minkowski spacetime (x^μ) + Quantum graph (y)

= 5-dim spacetime

of segments (N)
= even

Setup

4-dim Minkowski spacetime (x^µ) + Quantum graph (y)

= 5-dim spacetime

of segments (N)
= even

Action of 5d Dirac free fermion

$$S = \int d^4x \sum_{a=1}^N \int_{L_{a-1}+\varepsilon}^{L_{a-\varepsilon}} dy \ \overline{\Psi}(x,y) [i\gamma^{\mu}\partial_{\mu} + i\gamma^{\nu}\partial_{\nu} + M] \Psi(x,y)$$

Kaluza-Klein expansion

$$\Psi(x, y) = \sum_{n=0}^{\infty} \sum_{i} \left[\psi_{\mathrm{R},n}^{(i)}(x) f_n^{(i)}(y) + \psi_{\mathrm{L},n}^{(i)}(x) g_n^{(i)}(y) \right]$$

$$\gamma^5 \psi_{\mathrm{R/L},n}^{(i)} = \psi_{\mathrm{R/L},n}^{(i)}$$

1/1

Diagrammatic meaning of KK expansion

$$m_{1} \psi_{\mathbf{R},n}^{(i)}, f_{n}^{(i)} \psi_{\mathbf{L},n}^{(i)}, g_{n}^{(i)}$$

$$\vdots$$

$$m_{1} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0} \mathbf{0}$$

B.C. in this setup

Quantum system

Dirac fermion on 4+1 dim.

(4: 4d Minkowski spacetime, 1: quantum graph)

B.C. in this setup

Quantum system

Dirac fermion on 4+1 dim.

(4: 4d Minkowski spacetime, 1: quantum graph)

Current conservation

$$\sum_{a=1}^{N} j(L_{a-1} + \varepsilon) = \sum_{a=1}^{N} j(L_a - \varepsilon)$$

$$j(x, y) = \overline{\psi}(x, y)\gamma^5\psi(x, y)$$
y: quantum graph

B.C. in this setup

Quantum system

Dirac fermion on 4+1 dim.

(4: 4d Minkowski spacetime, 1: quantum graph)

Current conservation

$$\sum_{a=1}^{N} j(L_{a-1} + \varepsilon) = \sum_{a=1}^{N} j(L_a - \varepsilon)$$

$$j(x, y) = \overline{\psi}(x, y)\gamma^5\psi(x, y)$$

y: quantum graph

Boundary conditions

$$(1_{2N} - U_{\rm B})\overrightarrow{F} = \overrightarrow{0}$$

$$(1_{2N} + U_{\rm B})\overrightarrow{G} = \overrightarrow{0}$$

$$\vec{F} \equiv \begin{pmatrix} f(L_0 + \varepsilon) \\ f(L_1 - \varepsilon) \\ \vdots \\ f(L_N - \varepsilon) \end{pmatrix}, \quad \vec{G} \equiv \begin{pmatrix} g(L_0 + \varepsilon) \\ -g(L_1 - \varepsilon) \\ \vdots \\ -g(L_N - \varepsilon) \end{pmatrix}$$

$$U_{\rm A} \in U(2N), \quad U_{\rm B}^2 = 1_{2N}$$

The boundary conditions are characterized by the parameters of U(2N) with $U^2=I_{2N}$.

Boundary condition (B.C.)

We can classify into 2N+1 classes that do not transfer for continuous deformation. ($:: U_B \in U(2N)$ with $U_B^2 = 1_{2N}$)

Boundary condition (B.C.)

We can classify into 2N+1 classes that do not transfer for continuous deformation. ($:: U_B \in U(2N)$ with $U_B^2 = 1_{2N}$)

$$U_{\rm B} = V \begin{pmatrix} 1_{2N-k} & 0\\ 0 & -1_k \end{pmatrix} V^{\dagger}, \quad V \in U(2N) \quad k = 0, 1, \cdots, 2N$$

Boundary condition (B.C.)

We can classify into 2N+1 classes that do not transfer for continuous deformation. ($:: U_B \in U(2N)$ with $U_B^2 = 1_{2N}$)

$$U_{\rm B} = V \begin{pmatrix} 1_{2N-k} & 0\\ 0 & -1_k \end{pmatrix} V^{\dagger}, \quad V \in U(2N) \quad k = 0, 1, \cdots, 2N$$

Witten index

$$N_f - N_g = N - k$$

fo, go : zero-energy state

[J. Phy. A 52 (2019) 455401]

Boundary condition (B.C.)

We can classify into 2N+1 classes that do not transfer for continuous deformation. ($:: U_B \in U(2N)$ with $U_B^2 = 1_{2N}$)

$$U_{\rm B} = V \begin{pmatrix} 1_{2N-k} & 0 \\ 0 & -1_k \end{pmatrix} V^{\dagger}, \quad V \in U(2N) \quad k = 0, 1, \cdots, 2N$$

Witten index

 $N_f - N_g = N - k$

f₀, **g**₀ : zero-energy state [J. Phy. A 52 (2019) 455401]

Interesting features

- Multiple degeneracy in zero energy state
- N-k is topological invariants in the space of boundary conditions.

Boundary condition (B.C.)

We can classify into 2N+1 classes that do not transfer for continuous deformation. ($:: U_B \in U(2N)$ with $U_B^2 = 1_{2N}$)

$$U_{\rm B} = V \begin{pmatrix} 1_{2N-k} & 0 \\ 0 & -1_k \end{pmatrix} V^{\dagger}, \quad V \in U(2N) \quad k = 0, 1, \cdots, 2N$$

Witten index

 $N_f - N_g = N - k$

f₀, **g**₀ : zero-energy state [J. Phy. A 52 (2019) 455401]

Interesting features

- Multiple degeneracy in zero energy state
- N-k is topological invariants in the space of boundary conditions.
 - It is called "Witten index".

Symmetries in this model

Time-reversal (T²=±1)

$$\begin{split} \Psi(x, y) &\xrightarrow{T} \Psi^{T}(x, y) = U_{T} \Psi^{*}(x, y) \\ f_{n}^{(i)}(y) &\xrightarrow{T} f_{n}^{(i)*}(y), \quad g_{n}^{(i)}(y) \xrightarrow{T} g_{n}^{(i)*}(y) \\ U_{T} \gamma^{A} U_{T}^{-1} &= \begin{cases} (\gamma^{0})^{*} & (A = 0) \\ -(\gamma^{i})^{*} & (i \neq 0) \end{cases} \end{split}$$

Charge conjugation (C²=±1)

$$\begin{split} \Psi(x,y) &\stackrel{C}{\to} \Psi^{C}(x,y) = CP_{y}\overline{\Psi}^{\top}(x,y) \\ f_{n}^{(i)}(y) &\stackrel{C}{\to} g_{n}^{(i)*}(\tilde{y}), \quad g_{n}^{(i)}(y) \stackrel{C}{\to} f_{n}^{(i)*}(\tilde{y}) \\ C(\gamma^{A})^{\top}C^{-1} &= \begin{cases} -\gamma^{\mu} & (\mu = 0,...,3) \\ \gamma^{y} & (A = y) \end{cases} \end{split}$$

Parity transformation (P²=1)

$$\begin{split} \Psi(x,y) &\xrightarrow{P} \Psi^{P}(x,y) = \gamma^{0} \mathscr{P}_{y} \Psi(x,y) \\ f_{n}^{(i)}(y) &\xrightarrow{P} g_{n}^{(i)}(\tilde{y}), \quad g_{n}^{(i)}(y) \xrightarrow{P} f_{n}^{(i)}(\tilde{y}) \end{split}$$

Transformations in y-direction

Talk Plan

Introduction

- Quantum graph
- Classification of topological matter

Setup

Results

Summary and Discussion

Result (1)

Correspondence to AZ classes

AZ classes

• Setup

gapped free-fermion system $H^2 = 1, \quad H^{\dagger} = H$

• Classification of H $THT^{-1} = H$ $(T^2 = \pm 1)$ $CHC^{-1} = -H$ $(C^2 = \pm 1)$

 $\Gamma H \Gamma^{-1} = - H \quad (\Gamma^2 = 1)$

classified into 10 classes

Quantity that characterizes
 the class

Topological number π_0

Our model

• Setup

Dirac fermion on quantum graph extra dimension model

$$U_{\rm B}^2 = 1, \quad U_{\rm B}^{\dagger} = U_{\rm B}$$

- Classification of U_B $\hat{T}U_B\hat{T}^{-1} = U_B \quad (\hat{T}^2 = \pm 1)$ $\hat{C}U_B\hat{C}^{-1} = -U_B \quad (\hat{C}^2 = \pm 1)$ $\hat{\Gamma}U_B\hat{\Gamma}^{-1} = -U_B \quad (\hat{\Gamma}^2 = 1)$ (+ symmetry in y-direction)
 - Quantity that characterizes the class
 Witten index or parity of the chiral zero-mode

 $U_{\rm B} = V \begin{pmatrix} 1_{2N-k} & 0\\ 0 & -1_k \end{pmatrix} V^{\dagger}$

26

Summary and Discussion

Summary

• We show the correspondence between quantum graph extra dimension model and topological classification of matter (AZ classification).

Discussion

 We investigate the correspondence in real condensed matter system (superfluid ³He-A phase which could reproduce 2-dim Minkowski + quantum graph).

Buck up slides

Application to various areas

Applicable to various research areas

This because graphs have fascinating structures arising from boundary conditions.

B.C. in simple example

Quantum System

Free scaler particle in one-dim.

Current conservation

$$j(-\varepsilon) = j(+\varepsilon)$$

$$j(y) = -i \left[\varphi^* \varphi'(y) - \varphi'^* \varphi(y) \right]$$

Boundary conditions (B.C.)

$$(1_{2} - U)\Phi + iL_{0}(1_{2} + U)\Phi' = 0$$

$$\Phi \equiv \begin{pmatrix} \varphi(+\varepsilon) \\ \varphi(-\varepsilon) \end{pmatrix}, \quad \Phi' \equiv \begin{pmatrix} \varphi'(+\varepsilon) \\ -\varphi'(-\varepsilon) \end{pmatrix}$$

$$U = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in U(2)$$

The boundary conditions are characterized by the parameters of U(2).

Derivation of B.C.

$$\begin{array}{c} j(-\varepsilon) & j(+\varepsilon) \\ \hline 0 \\ \end{array}$$

$$j(y) = -i \left[\varphi^* \varphi'(y) - \varphi'^* \varphi(y) \right]$$

$$\Phi \equiv \begin{pmatrix} \varphi(+\varepsilon) \\ \varphi(-\varepsilon) \end{pmatrix}, \quad \Phi' \equiv \begin{pmatrix} \varphi'(+\varepsilon) \\ -\varphi'(-\varepsilon) \end{pmatrix}$$

Rewriting the current conservation raw

$$j(-\varepsilon) = j(+\varepsilon)$$
$$\iff |\Phi - iL_0\Phi'|^2 = |\Phi + iL_0\Phi'|^2$$

(L₀: parameter for dimension matching)

Two complex vectors with equal length can be connected by a unitary transformation.

$$\iff \Phi - iL_0\Phi' = U(\Phi + iL_0\Phi')$$

$$(1_2 - U)\Phi + iL_0(1_2 + U)\Phi' = 0$$

(*)The boundary conditions can be parameterized by $U \in U(2)$.

Specific B.C. (1)

The boundary conditions are characterized by the parameters of U(2).

Specific B.C. (2)

The boundary conditions are characterized by the parameters of U(2).

Perspective on SUSY quantum mechanics

Zero-mode in SUSY QM

Witten index

$$\Delta_W = \left(\text{ \# of } |0,+\rangle \right) - \left(\text{ \# of } |0,-\rangle \right)$$

Zero-mode of 5d Dirac fermion

Observable particle at SM energy scale =generation of fermion flavor

Details of calculation

T (T²=+1) symmetric class

$$\Psi(x, y) \xrightarrow{T} \Psi^{T}(x, y) = U_{T}\Psi^{*}(x, y)$$
$$U_{T}\gamma^{A}U_{T}^{-1} = \begin{cases} (\gamma^{0})^{*} & (A = 0) \\ -(\gamma^{i})^{*} & (i \neq 0) \end{cases}$$

substituting KK expansion

$$\begin{split} &\sum_{n=0}^{\infty} \left[\psi_{\mathrm{R},n}^{(i)}(x) f_{n}^{(i)}(y) + \psi_{\mathrm{L},n}^{(i)}(x) g_{n}^{(i)}(y) \right] \\ &\stackrel{T}{\to} U_{T} K \sum_{n=0}^{\infty} \left[\psi_{\mathrm{R},n}^{(i)}(x) f_{n}^{(i)}(y) + \psi_{\mathrm{L},n}^{(i)}(x) g_{n}^{(i)}(y) \right] \\ &= \sum_{n=0}^{\infty} \left[U_{T} \psi_{\mathrm{R},n}^{(i)*}(x) f_{n}^{(i)*}(y) + U_{T} \psi_{\mathrm{L},n}^{(i)}(x) g_{n}^{(i)*}(y) \right] \\ &\stackrel{}{\longrightarrow} \begin{cases} \psi_{\mathrm{R}/\mathrm{L},n}^{(i)}(x) \stackrel{T}{\to} U_{T} \psi_{\mathrm{R}/\mathrm{L},n}^{(i)*}(x) \\ f_{n}^{(i)}(y) \stackrel{T}{\to} f_{n}^{(i)*}(y), \quad g_{n}^{(i)}(y) \stackrel{T}{\to} g_{n}^{(i)*}(y) \end{cases} \end{split}$$

transformation of mode function

$$\overrightarrow{F} \xrightarrow{T} \overrightarrow{F}^*, \quad \overrightarrow{G} \xrightarrow{T} \overrightarrow{G}^*$$

Boundary conditions to be satisfied by the transformed mode function

$$(1_{2N} - U_{\rm B})\vec{F}^* = \vec{0}$$
$$(1_{2N} + U_{\rm B})\vec{G}^* = \vec{0}$$

Boundary conditions before transformation

$$(1_{2N} - U_{\rm B})\overrightarrow{F} = \overrightarrow{0}$$
$$(1_{2N} + U_{\rm B})\overrightarrow{G} = \overrightarrow{0}$$
$$(U_{\rm B} \in U(2N), \quad U_{\rm B}^2 = 1_{2N})$$

$$\therefore U_{\rm B}^* = U_{\rm B}, \quad KU_{\rm B}K^{-1} = U_{\rm B}$$

AZ $THT^{-1} = H \quad (H^2 = 1)$

Details of " $Z_2 = parity of N_R$ "

Correspondence of Z₂ class (BDI, D)

If C²=+1 symmetry is present, the massive modes need to be 4-fold degenerate.

