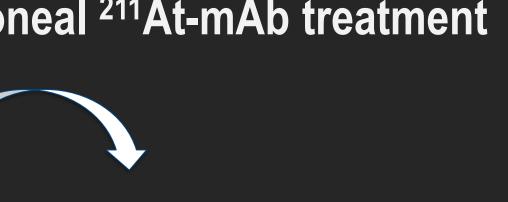
Gothenburg: Intraperitoneal ²¹¹At-mAb treatment

The vector

- Murine MX-35 (Sloan-Kettering Institute)
- •Recognize, membrane sodium transporter (NaPi2b)
- •F(ab')₂ fragments in Phase I study
- >90% of human epithelial ovarian cancers

A phase-I biodistribution and pharmacokinetic study


INCLUSION CRITERIA

- Histological confirmed ovarian adenocarcinoma
- Intra peritoneal recurrency following platinum/taxane based chemotherapy
- Treated by secondline to complete or good partial remission
- Normal baseline blood, liver, kidney, thyroid laboratory results
- Perfomance status of 2 or better
- Written informed consent prior to trial procedures.

EXCLUSION CRITERIA

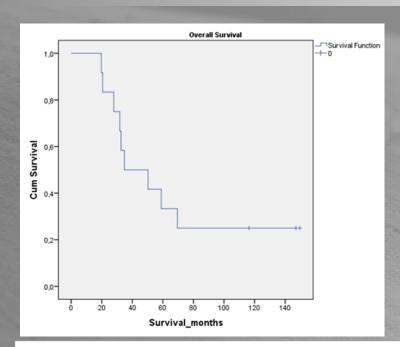
- Active parenchymal disease, (i.e. FIGO IV)
- Prescence of symptomatic extra abdominal met
- Significant heart disease /arrythmias
- Concomittant serious illnesses, infection, bleeding
- Chronic inflammatory disease
- Treated with chemo or immunotherapy within 4w
- Previously recieved a murine antibody

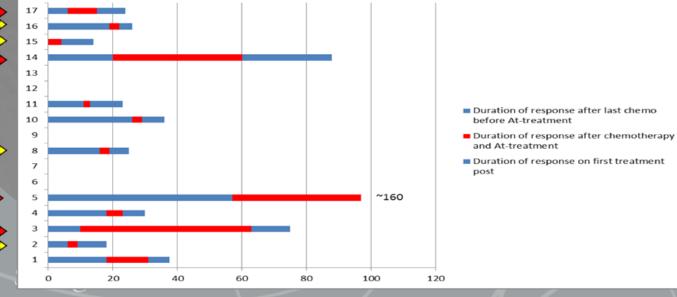
Gothenburg: Intraperitoneal ²¹¹At-mAb treatment

Clinical phase I trial

- J Nucl Med. 2019; 60:1073-1079
- J Nucl Med 2009; 50:1153-60

Modelling and dosimetry


- J Nucl Med. 2018; 59:646-651
- J Nucl Med, 2016; 57:594-600
- Int J Radiation Oncol Biol Phys, 2015; 93:569-576


Patient-specific dosimetry

	Conc. of IP	Administered	Absorbed dose [mGy]				
	infusion	activity	Red bone			Urinary bladder	
Patient No.	[MBq L ⁻¹]	[MBq]	marrow	Thyroid	Peritoneum	epithelium	
P10	180	295	17	490	2300	80	
P11	203	334	29	91	2800	300	
P12	215	355	44	1200	2500	480	

Clinical outcomes

Time to progression post-211At	Survival (years)	Time on chemo post- ²¹¹ At	Nb of lines [§] post-	Admin. total activity	Activity concentration MBq/L	Approx. Specific Activity (nb ²¹¹ At/mAb)	Effective dose (Sv)
(months)		(months)	-	(MBq)	The same of the		4 - 65
14.1	1.7	6.5	2	34	22	1/2400	0.3
4.0*	4.1	43	6	48	24	1/1400	0.3
54†	12.3‡	28	6	40	20	1/1800	0.3
5.1	5.7	46	10	42	21	1/700	0.3
N.A†	12.1‡			92	46	1/2100	0.6
3.3*	2.6	22	4	103	47	1/1800	0.6
4.0	2.3	26	6	119	101	1/1500	1.3
3.0	2.7	21	5	83	73	1/2300	0.9
41.3†	9.6‡	22	5	65	53	1/2900	0.7
5.0*	2.9	14	2	297	180	1/500	2.3
3.7*	1.6	14	3	333	203	1/200	2.6
9.6†	4.8	36	6	355	215	1/200	2.8

Single cell	200μ	m sphere	300μm sphere			
dose (Gy)	10Gy isodepth(µm)	Vol(%) >10Gy	10Gy isodepth(µm)	Vol(%) >10Gy		
4.5	88	99.8	72	86		
7.0	88	99.8	73	86		
5.5	85	99.7	72	86		
9.9	82	99.4	72	86		
6.0	100	100.0	85	92		
6.9	100	100.0	85	92		
9.2	100	100.0	98	96		
6.0	100	100.0	95	95		
4.7	100	100.0	88	93		
24.6	100	100.0	101	97		
45.1	100	100.0	97	96		
52.2	100	100.0	97	96		

The relevance of calculating long term risk

An adjuvant treatment to a curative treatment

Enables an informed risk-benefit analysis

Risk of adjuvant TAT vs risk of not giving adjuvant treatment

Estimating risk

• Effective dose (Sv) with $W_r=20$ for α -particles

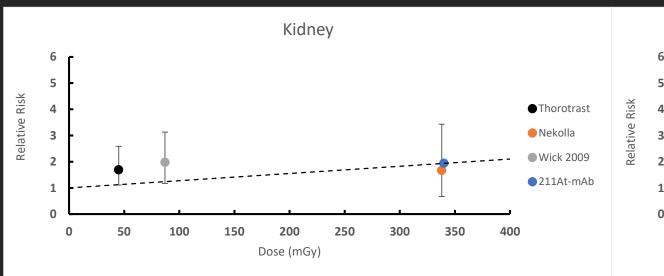
Correlating excess induced cancers with dose (Gy) from α-emitters

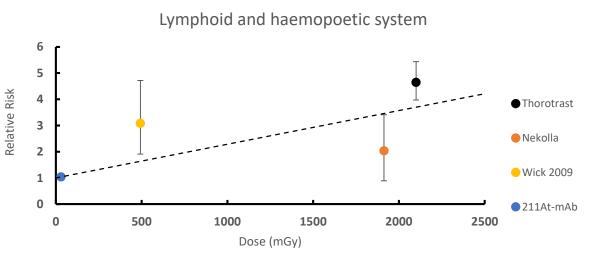
Absorbed dose and Effective dose estimate

	Abs. dose from α-particles [mGy]		Abs. dose from photons [mGy]			Tissue	Contribution to
		Extrapolation of	Source: IP	Source:		weighting	effective dose
Tissues	Clinical data	preclinical data	fluid	Circulation	Sum	factor w _T	[mSv]
Breasts	20		0.10	0.06	0.15	0.12	48
Colon		33	1.31	0.10	1.41	0.12	79
Lungs	130	(150)	0.34	0.09	0.44	0.12	312
RBM	30		0.54	0.07	0.61	0.12	72
Stomach		192	1.39	0.10	1.49	0.12	461
Liver	50	(31)	1.25	0.09	1.34	0.04	40
Oesophagus	55				0.08	0.04	44
Thyroid	595	(977)	0.01	0.07	0.08	0.04	476
Urine Bladder	276		0.91	0.10	1.01	0.04	221
Bone surfaces	55*		0.70	0.22	0.92	0.01	11
Brain	55*		<0.01	0.08	0.08	0.01	11
Salivary glands		180			0.08	0.01	36
Skin	55*		0.08	0.04	0.12	0.01	11
Adrenals			1.95	0.10	2.05		
Gall bladder§				0.10			
Heart [§]	70	(60)	0.87	0.10	0.97		
Kidneys⁵	84	(97)	1.42	0.09	1.51		
Pancreas [§]			5.64	0.11	5.74	0.12	132
Muscle⁵		18	0.49	0.07	0.57		
Small intestine§		45	2.33	0.10	2.43		
Spleen [§]		58	0.72	0.09	0.82		
Thymus⁵			0.12	0.09	0.21		

Methods – Inclusion criteria for studies

- Long time data for exposure to α-emitters
- Must include on an organ basis:
 - a measure of risk i.e. Standardized Incidence Ratio, Standardized Mortality Ratio or a control group.
 - dose (Gy) or activity that can be used to calculate the dose.
- 7 Thorotrast¹ (²³²Th) studies and 3 ²²⁴Ra² studies were suitable
- 1. Becker 2008, Travis 2003 (incidence + mortality), Dos Santos Silva 2003, Mori 1999 (mortality + autopsy), Kido 1999
- 2. Nekolla 2010, Wick 1999, Wick 2009


Methods


- Pooling data to reduce statistical uncertainty
- Calculating dose³ for studies where only activity is given
- Plotting Risk vs Dose using least squares method
- Using cancer mortality data⁴ for a typical patient to estimate excess risk

- 3. Radiat Environ Biophys (2002)41:173–178, Radiat Res (1993)135:244-248, Health Phys (1978)35:113-121
- 4. Global cancer observatory, Estimated number of new cases in 2018 worldwide, 2016 Nordic countries

Results

- Error bars represent a statistical confidence interval of 95%
- Dose⁵ for ²¹¹At-mAb treatment plotted for comparison

5. Int J Radiat Oncol Biol Phys (2015)93:569-76

Conclusions

Large uncertainties in both dosimetry and risk ratios

It's the best available estimate of long term risk

Necessary for Risk-Benefit analysis for therapies with curative intent

ESTIMATION OF LONG-TERM RISKS FOR CANCER INDUCTION FOLLOWING ADJUVANT TARGETED ALPHA THERAPY WITH CURATIVE INTENT

ERIK LEIDERMARK¹, ANDREAS HALLQVIST^{1,3}, EMMA ANEHEIM^{1,2}, TOM BÄCK², MIA JOHANSSON^{1,3}, RAGNAR HULTBORN³, LARS JACOBSSON², STURE LINDEGREN², STIG PALM², AND PER ALBERTSSON^{1,3}

¹SAHLGRENSKA UNIVERSITY HOSPITAL, GOTHENBURG, SWEDEN

²DEPARTMENT OF RADIATION PHYSICS, INSTITUTE OF CLINICAL SCIENCES, SAHLGRENSKA ACADEMY, UNIVERSITY OF GOTHENBURG, GOTHENBURG, SWEDEN.

3DEPARTMENT OF ONCOLOGY, INSTITUTE OF CLINICAL SCIENCES, SAHLGRENSKA ACADEMY, UNIVERSITY OF GOTHENBURG, GOTHENBURG, SWEDEN