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40th anniversaries

I 1982–2022: The 40th anniversary of the Corfu
workshops: Many happy returns!

I 1982–2022: The 40th anniversary of the Parisi-Sourlas
paper that implied that SUSY is an inevitable property
of any physical system, in equilibrium with a bath of
fluctuations: There’s, still, a lot to understand (in
particular how to evade obstructions for D > 2)!
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Noisy SUSY

Since its invention/discovery, SUSY seems to be considered
an optional feature of natural phenomena;
is there any way in which it might be understood as an
inevitable feature of natural phenomena?
Forty years ago G. Parisi and N. Sourlas, in “Supersymmetric
field theories and stochastic differential equations”, Nucl.
Phys. B206 (1982) 321
made the case that supersymmetry is an inevitable property
of a physical system in equilibrium with a bath of
fluctuations.
A key role is played by a quantity introduced, some years
previously, by H. Nicolai–within the context of
supersymmetric theories–and known, since, as “the Nicolai
map”.
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The story of a physical system and its
fluctuations

The description of the properties of a physical system relies
on two distinct, but equally important, groups: The
dynamical degrees of freedom, that describe the “classical”
dynamics and their superpartners, that can resolve the
fluctuations, with which they are in equilibrium.
These are (some of) their stories. . .
The story starts with the noise. . .
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The noise fields

They are defined by their partition function. For white noise,
this means

Z =

∫
[DηI (x)] e−

∫
dDx 1

2

ηI (x)ηJ (x)δIJ

σ2 ≡ 1

by definition of the measure.
This expression is equivalent to

〈ηI (x)〉 = 0
〈ηI (x)ηJ(x ′)〉 = σ2δIJδ(x − x ′)

and the other correlation functions are given by Wick’s
theorem.
We may choose units such that σ = 1.
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The physical meaning of the noise

I σ2 = ~ : The bath describes quantum fluctuations.

I σ2 = kBT : The bath describes thermal fluctuations.

I σ2 = strength of the disorder: (Annealed) Disordered
systems.

A non-trivial issue concerns combining different baths.
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From noise to dynamical fields

Now we must provide a map between the noise fields and
putative dynamical fields.
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The dynamics

Let us consider N scalar fields, φI ,

ηI (x) ≡ σµIJ∂µφJ +
∂W

∂φI

where µ = 1, 2, . . . ,D and I , J = 1, 2, . . . ,N.
This was introduced by H. Nicolai in 1980, for Wess–Zumino
models, and is known, since, as the “Nicolai map”.
For the moment, D and N can take any integer values and
the σµIJ are, just, required to be real.
If we interpret this relation–as did Parisi and Sourlas–as an
injunction to realize a change of variables in the partition
function for the noise, however, we notice something quite
interesting. . .
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Changing variables

If we perform the change of variables in the partition
function, we find

Z = 1 =

∫
[DφI ]

∣∣∣∣det δηIδφJ

∣∣∣∣ e−S[φI ]

and we notice that, absent anomalies, the value of the
integral does not change. Therefore the absolute value of
the determinant describes all of the fluctuations of the
action of the scalars, S [φI ].
Now we can write∣∣∣∣det δηIδφJ

∣∣∣∣ = e−iθdetdet
δηI
δφJ

=

e−iθdet
∫

[DψI ][DχI ] e
∫

dDx ψI

{
σµIJ∂µ+ ∂2W

∂φI ∂φJ

}
χJ
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From the point of view of the (super)partners

Z = 1 =

∫
[DφI ][DψI ][DχI ] e

−iθdet ×

e
−S[φI ]+

∫
dDx ψI

{
σµIJ∂µ+ ∂2W

∂φI ∂φJ

}
χJ

This expression can be understood in two, equivalent, ways:

I The fluctuations of the scalars are described by the
action of the anticommuting fields–along with the phase
of the determinant!

I The fluctuations of the anticommuting fields, in
interaction with the scalars, are described by the phase
of the determinant, along with the action of the scalars.
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From the point of view of the (super)partners

Said differently:
The anticommuting fields resolve the bath of fluctuations,
with which the scalars are in equilibrium, as do the scalars
for the anticommuting fields, when they are part of a
supermultiplet.
It is in this way that the no-go theorem pertaining, in
particular, to Bell’s inequalities can be evaded; this was, in
fact, noted by P. G. O. Freund, already, in 1981 in the paper
“Fermionic hidden variables and EPR correlations”, Phys.
Rev. D24 (1981) 1526.
Curiously, this idea wasn’t followed up–nor was the relation
to the work of Parisi and Sourlas, after it appeared,
investigated further. . .



Introduction

The idea

How the idea
works

Conclusions and
outlook

Worldvolume and target space fermions

If we expand the action for the scalars, we will find that
there are two cases of particular interest:

I The σµIJ commute. Then the anticommuting fields are
not target space fermions, they’re worldvolume
fermions; this is relevant for particle models.

I The σµIJ generate a Clifford algebra,

{σµ, σν} = 2δµν

Then the anticommuting fields are target space
fermions. This is the case relevant for particle physics.
N.B. We are working in Euclidian signature; this means
that the σµ realize a Majorana representation iff
D ≡ 2mod 8.
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Doubling

If D ≡/ 2mod 8, (e.g. D = 3 or D = 4 spacetime dimensions)
then the σµIJ have imaginary entries, therefore, in the map,

ηI = σµIJ∂µφJ +
∂W

∂φI

the RHS is complex, so the LHS must be, too. Therefore,
we must introduce the complex conjugate:

η†I = σµJI∂µφ
†
J +

(
∂W

∂φI

)†
(since the σµ are Hermitian) and the partition function for
the noise fields is, now,

Z = 1 =

∫
[DηI ][Dη

†
I ] e−

∫
dDx

ηI (x)ηJ (x)†δIJ

σ2
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Testing the idea in practice
The question is, whether the fluctuations of the scalars can
reproduce the absolute value of the determinant, i.e. the
Jacobian between the scalars and the noise fields. This can
be answered by computing the correlation functions of the
noise fields, ηI [φ], (resp. ηI [φ, φ

†], ηI [φ, φ
†]†), sampled with

the action of the scalars, i.e. with the measure

[DφI ] e
−S[φI ]

(resp. for the generalization, when D ≡/ 2mod 8) and
checking that

〈ηI (φ(x))〉 ?
= 0〈

(ηI (x)− 〈ηI (x)〉)
(
ηJ(x ′)−

〈
ηJ(x ′)

〉)〉 ?
= constδIJδ(x − x ′)

and the higher order correlators of the ηI should be given by
Wick’s theorem.
Any significant deviation is the signal for the appearance of
anomalies.
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Tests

I For probability distributions, these identities do have
anomalies, that can be understood (cf.
arXiv:1302.2361[hep-th]). In addition, while the
Jacobian does do the job expected of it, it can’t be
generated by the fluctuations, since the identities aren’t
satisfied.

I For a non-relativistic particle, these identities do not
show anomalies–the identities are satisfied to numerical
precision and up to lattice artifacts (cf.
arXiv:1405.0820[hep-th]).

I For two dimensional scalar field theories, these identities
do not show anomalies, either (cf.
arXiv:1712.07045[hep-th]).
Work for the cases D = 3 and D = 4 is ongoing–the
simulations take considerably more time. . .
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How about gauge theories?

Gauge theories, with compact gauge group, can be described
by scalar fields, taking values on the group manifold. The
“natural” noise distribution isn’t a Gaussian, with ultra–local
2–point function, but uniform over the group manifold.
This has been studied on the lattice, through the so-called
“trivializing maps”, introduced by Lüscher. These are,
indeed, the avatars of the Nicolai map for the group
manifolds.
However their construction is, still, work in progress.
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Abelian gauge theories

For abelian gauge fields it’s possible to take a shortcut (in
Lorenz–Feynman gauge):

ηI = σµIJ∂µφJ

ξI = σµIJ∇µϕJ +
∂W

∂ϕI

ξ†I = σµJI [∇µϕJ ]† +

(
∂W

∂ϕI

)†
∇µ ≡ ∂µ − iqAµ ≡ ∂µ − iqφµ

where
φµ ≡ φI ≡ Aµ

and q is the charge of the matter fields under the gauge field.
Here ϕI are the scalar superpartners of the fermions of the
hypermultiplet(s).
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The partition function for (S)QED

Z =

∫
[DηI ][DξI ][Dξ

†
I ]︸ ︷︷ ︸

[DhI ]

e
−

∫
dDx

{
1
2
ηI ηJδ

IJ+ξI ξ
†
J δ

IJ
}

= 1 =

∫
[DφI ][DϕI ][Dϕ

†
I ]︸ ︷︷ ︸

[DΦI ]

∣∣∣∣det δhIδΦJ

∣∣∣∣ e−S[φI ,ϕI ,ϕ
†
I ]

The fermions are “hidden” in the determinant and “emerge”
upon introducing it in the exponent.
For D = 4, we must double the degrees of freedom
correspondingly.
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Conclusions and Outlook

Any field theory (and that includes particle models, in the
path integral formalism), whose fields take all possible real
values, can be understood as providing a mapping between
white noise fields and commuting fields; the anticommuting
fields “emerge” from the Jacobian. The relation between the
commuting and anticommuting fields is that they are
superpartners. This is extended supersymmetry.
The superpartners may be thought of as “BSM” particles;
but, in fact, they are part of the SM, since they resolve the
quantum fluctuations of the fields of the SM!
That’s the essence of the proposal of Parisi and Sourlas; and
the way to understand it, in practice, is by computing the
identities that should be satisfied by the Nicolai map.
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Conclusions and Outlook

Beware of “false prophets”, however!
The position, xµ(τ) and the spin, ψµ(τ), of the spinning
relativistic particle are related by target space SUSY;
however they don’t resolve the fluctuations of the other!
The fluctuations of the position are different anticommuting
fields, say χµ(τ), and the fluctuations of the spin define a
different commuting fields, φµ(τ).
Of course they are all related–and how is an interesting
exercise to solve. . .
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Conclusions and Outlook

Consequences for the Standard Model:

I One scalar field is a semi-classical property, relevant
within perturbation theory; in a relativistic field theory,
it’s not possible to describe, fully, the fluctuations of
just one scalar field; there are, inevitably, more-in D = 4
the least number is 8, which leads to, at least, two
“Higgs-like” scalars (the other scalars becoming, for
example, the longitudinal polarization states of gauge
bosons).

I Flavor (non-)universality can be straightforwardly
accommodated, since the fermion determinant doesn’t,
inevitably, “factorize” over the flavors. How it does is of
interest to spell out.

I Chiral fermions can be described using the domain–wall
construction, that leads to “partial” SUSY breaking to
N = 1 on the brane.
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Conclusions and Outlook

Another issue of practical significance is that, insofar as the
absolute value of the determinant–that describes the
contribution of the fermions–is generated by the fluctuations,
this means that it is possible, in principle, to express
fermionic correlators in terms of the correlators of their
bosonic superpartners, sampled using the bosonic action,
which is much easier to do, than the fermionic action. This
remains to be spelled out for practical applications.
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Conclusions and Outlook

There’s a “natural” way to understand the relevance of
SUSY for any field theory and the SM, in particular. There’s,
still, considerable work to be done to understand how this
approach can be realized for non-abelian gauge theories and
how this can lead to search strategies in real experiments.
However SUSY isn’t an optional property of Nature (or of
the SM) but an inevitable part of it.
It’s necessary to learn how to see it. How it can be realized
can be quite unexpected (recall that the quarks cancel the
gauge anomalies of the leptons and vice versa!)
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Conclusions and Outlook

All theories are supersymmetric.
Some theories are born supersymmetric;
some become supersymmetric;
some have supersymmetry thrust upon them...
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