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Introduction

Physical systems with matrix variables X with U(N) symmetry
are ubiquitous in gauge-string duality : IKKT model, BFSS
matrix model, N = 4 SYM with U(N) gauge symmetry for
AdS5/CFT4.

One of the lessons : Representation theory methods are very
useful in understanding the map between large composite CFT
operators in the CFT4 and giant gravitons, LLM geometries etc.
in AdS5 × S5

Corley, Jevicki, Ramgoolam, “Exact correlators of giant gravitons from dual N=4 SYM” 2001

Lin, Lunin and Maldacena, “Bubbling AdS space and 1/2 BPS geometries,” 2004

Berenstein, “Toy model of AdS/CFT” 2004

Examples Det(X ) : More generally composite operators OR(X )
labelled by Young diagrams.



Introduction

Underlying mathematical questions :

I Matrix X of size N.

I Classify polynomial functions of X i
j , of degree k , which are

invariant under X → UXU†.

I Invariant functions are multi-traces : for k = 2 we have
tr(X2), tr(X)tr(X). The Young-diagram-labelled operators are
OR(X ) which are linear combinations of multi-traces.

Remark: The multi-trace basis and the Young diagram basis can be
understood in a way that admits generalisation when we consider
physical problems where the invariance

X → UXU† U is a general matrix in U(N)

is replaced by

X → UσXU†σ Uσ matrix in the natural representation of σ ∈ SN

X i
j → Xσ(i)

σ(j)



Trace basis of U(N) invariants as
equivalence classes of permutation tensors

The trace basis can be understood as follows. To get U(N) invariants
we must contract upper with lower indices - in any order. Pick a
permutation σ ∈ Sk

Oτ (X ) =
∑

ii ,i2,··· ,ik

X i1
iτ(1)

X i2
iτ(2)
· · ·X ik

iτ(k)

=
∑

ii ,··· ,ik

∑
ji ,··· ,jk

X i1
j1 · · ·X

ik
jk δ

j1
iτ(1)
· · · δjk

iτ(k)

τ ∈ Sk defines an operator on

τ : V⊗k
N → V⊗k

N

Oτ (X ) =
∑
~i,~j

X i1
j1 · · ·X

ik
jk (τ)j1,··· ,jk

i1···ik

= trV⊗k
N

(X⊗kτ)

The bosonic nature of X means that for any γ ∈ Sk , we have

Oσ(X ) = Oγσγ−1



σ form a basis for the group algebra C(Sk ). For elements of
A ∈ C(Sk ) :

A =
∑
σ

aσ σ

we define

OA(X ) =
∑
σ

aσOσ(X )



Example at n = 3 :

X i1
i1

X i2
i2

X i3
i3

= (tr(X))3

X i1
i2

X i2
i1

X i3
i3

= (trX2)(trX)

X i1
i2

X i2
i3

X i3
i1

= (trX)3

3 observables ; 3 conjugacy classes in S3 :

(1)(2)(3)
(1,2)(3); (2,3)(1); (1,3)(2)
(1,2,3), (1,3,2)



Large N factorisation

Two-point functions of invariants comes from free field limit of the
CFT4. It is also a property of 2-point functions in complex matrix
model with Gaussian action. Nice formula follows easily from the
index-free tensor operators description of invariant functions :

Z =

∫
[dX ]e−

1
2 tr(XX†)

〈Oσ1 (X )Oσ2 (X †)〉 =
∑

γ,σ3∈Sk

δ(σ1γσ2γ
−1σ3)NCσ3

An important property of the trace basis ( for AdS/CFT) is large N
factorisation follows

〈Ôσ1 (X )Ôσ2 (X †)〉 = δ[σ1],[σ2] + order 1/N



Trace-like basis of SN invariants as
equivalence classes of partition algebra tensors

Od (X ) =
∑

ii ,··· ,ik

∑
ji ,··· ,jk

X i1
j1 · · ·X

ik
jk (d)j1,··· ,jk

i1,··· ,ik

= trV⊗k
N

(X⊗k d)

d is one of a set of basis elements of the partition algebra Pk (N) :

Manifest symmetry of matrix models /Hamiltonians :
U(N)→ SN

Hidden symmetry organising observables :
∞⊕

k=0

C(Sk )→
∞⊕

k=0

Pk (N)

Equivalence by Sk permutations due to bosonic nature of X as before
:

Od (X ) = Oγdγ−1 for all γ ∈ Sk



Young Diagram basis of U(N) invariants and Sk characters

There is Young diagram basis for 1-matrix U(N) gauge
invariants which are linear combinations of the permutation
basis operators

OR(X ) =
1
n!

∑
σ∈Sk

χR(σ)Oσ(X )

where the weights χR(σ) are characters of Sn element σ in irrep
of n associated with Young diagram R.



Young Diagram basis of U(N) invariants and Schur-Weyl duality

OR(X ) =
∑
~i;~j

(PR)j1···jk
i1,··· ,ik X i1

j1
· · ·X ik

jk

PR is a projector in C(Sk ) :

PR ∼
∑
σ∈Sk

χR(σ)σ

Give a basis for the centre of C(Sk ).

Number of Young diagrams R with k boxes equals the number
of cycle structures for permutations in Sk .

In the half-BPS sector the Young diagram basis is exactly
orthogonal in the CFT4 inner product :

〈OR(X )OS(X †)〉 = δRSfR

Can understand the formula and the orthogonality using
Schur-Weyl duality.



Understanding OR(X ) using Schur-Weyl duality
The upper indices of X⊗k transform as V⊗k

N and the lower
indices as V̄⊗k

N

V⊗k
N =

⊕
R`n

l(R)≤N

V U(N)
R ⊗ V Sk

R

There is a basis for V⊗k
N

|R,MR〉 ⊗ |R,mR〉 ≡ |R,MR,mR〉

Multiplicities of irreps of the group of interest are controlled by
the representation theory of the hidden symmetry.

Clebsch-Gordan coefficients

〈i1, · · · , ik |R,MR,mR〉 = C i1,··· ,ik
R,MR ,mR

Construction of OR(X ) using SW duality :

OR(X ) =
∑

~i,~j,R,MR ,mR

C j1,··· ,jk
MR ,mR

CR,MR ,mR
i1,··· ,ik X i1

j1
· · ·X ik

jk



Outline
Holographic and many-body-quantum-physics features of
permutation invariance in matrix quantum mechanics.

Part I : Standard matrix harmonic oscillator and its permutation
invariant sector. Properties of partition algebra Pk (N) : the
geometrical basis and the representation theory basis. Large N
factorisation. Orthogonal basis using rep theory.
Part IIA : The general (11-parameter) permutation invariant harmonic
oscillator.
Part IIB: Dynamically in the spectrum, separating the permutation
invariant states using Casimir Hamiltonians. Large N simplifications
using Pk (N).
Part IIC : Realization of quantum many body scars in a permutation
invariant setting.



Simplest Matrix SHO
Hamiltonian has U(N) symmetry and therefore SN symmetry.
Look at all states ( not just the U(N) invariant states ) and
within the full Hilbert space, describe the SN invariant sector.
Lagrangian :

L0 =
1
2

(
N∑

i,j=1

∂tXij∂tXij − XijXij

)

Hamiltonian:

H0 =
N∑

i,j=1

(a†)i
ja

i
j ,



Simplest Matrix SHO
The degree k subspace is given by

H(k) ∼= SpanC {(a†)
i1
j1
. . . (a†)ik

jk
|0〉},

T (ei1 ⊗ ei2 ⊗ . . .⊗ eik ) =
N∑

j1,j2,...,jk =1

T j1...jk
i1...ik

ej1 ⊗ ej2 ⊗ . . .⊗ ejk .

a general state |T 〉 ∈ H(k) can be written as a trace

|T 〉 = TrV⊗k
N

(T (a†)⊗k )|0〉 =
∑

i1,...,ik
j1,...,jk

T j1...jk
i1...ik

(a†)i1
j1
. . . (a†)ik

jk
|0〉,



Exchange action in tensor space V⊗k
N :

Lτ (ei1 ⊗ · · · ⊗ eik ) = ei
τ−1(1)

⊗ · · · ⊗ ei
τ−1(k)

Exchange symmetry of state-tensors T

LτTLτ−1 = T , ∀τ ∈ Sk ,

Dimension of space of oscillator states at degree k :

DimH(k) =

(
N2 + k − 1

k

)
=

N2(N2 + 1) . . . (N2 + k − 1)

k !
.



Now impose the invariance under the SN action on the indices
(which label a basis of VN )

EndSN×Sk
(V⊗k

N ) =

SpanC{T ∈ End(V⊗k
N ) : L(σ)TL(σ−1) = LτTL

τ−1 = T , ∀σ ∈ SN , τ ∈ Sk}.

The condition :

L(σ)TL(σ−1) = T
=⇒ L(σ)T = TL(σ)

=⇒ T = d ∈ Pk (N)
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Multiplication of partition algebra diagrams
Let dπ and dπ′ be two diagrams in Pk (N). The composition
dπ′′ = dπdπ′ is constructed by placing dπ above dπ′ and
identifying the bottom vertices of dπ with the top vertices of dπ′ .
The diagram is simplified by following the edges connecting the
bottom vertices of dπ′ to the top vertices of dπ. Any connected
components within the middle rows are removed and we
multiply by Nc , where c is the number of these complete blocks
removed. For example,

= N and = ,

where the factor of N in the first equation comes from removing
the middle component at vertex 1 and 2.



Bosonic symmetry→ sub-algebra of Pk (N).
The exchange symmetry Sk leads to

d ∼ γdγ−1

This leads to sub-algebra SPk (N) of Pk (N).

[d ] =
1
k !

∑
τ∈Sk

γdγ−1



Schur-Weyl basis and Representation basis

V⊗k
N =

⊕
Λ1∈YS(k)

V SN
Λ1
⊗ V Pk (N)

Λ1

Pk (N) ∼= EndSN (V⊗k
N ) ∼=

⊕
Λ1∈YS(k)

V Pk (N)
Λ1

⊗ V Pk (N)
Λ1

QΛ1
αβ =

B(2k)∑
i=1

Dim(V SN
Λ1

)DΛ1
βα((b∗i )T )bi .

This is an associative algebra generalisation of :

QR
ij =

dR

|G|
∑
g∈G

DR
ji (g)g−1

The equation (1) is derived in the representation theory
literature :
Ram, Dissertation, Chapter 1, Representation theory (available
online)
Halverson and Ram, “Partition algebras” 2004



Representation basis : projecting to Sk invariants

QΛ1
Λ2,µν

=
∑
α,β,p

QΛ1
αβBPk (N)→C[Sk ]

Λ1,α→Λ2,p;µ BPk (N)→C[Sk ]
Λ1,β→Λ2,p;ν ,

These ways of thinking about SN invariant polynomials of
degree k lead to two useful ways of counting the dimension of
the SN invariant subspace of the oscillator Hilbert space :

Dim(N, k) =
1

D!k !

∑
σ∈SD

∑
τ∈Sk

k∏
i=1

(
∑
l|i

lCl(σ))2Ci (τ)

=
1

D!k !

∑
p`D

∑
q`k

D!∏D
j=1 jpj pj !

k∏
i=1

k !

iqi qi !

∑
l|i

lpl

2qi

In terms of rep theory multiplicities related to Q :

Dim(N, k) =
∑

Λ1`N;Λ2`k

Mult(V⊗k
N ,V SN

Λ1
⊗ V Sk

Λ2
)2



Large N factorisation of PIMOs in matrix quantum mechanics

For d1,d2 ∈ PkN

〈0|Od1(a)Od2(a†)|0〉 =
∑
γ∈Sk1

Tr
V
⊗k2
N

(γ−1dT
1 γd2)

=

{
1 + O(1/

√
N) if [d1] = [d2],

0 + O(1/
√

N) otherwise.



Exact orthogonality of representation basis
Define SD invariant states using the representation basis :

|QΛ1
Λ2,µν
〉 = TrV⊗k

N
(QΛ1

Λ2,µν
(a†)⊗k )

They are exactly orthogonal :

〈QΛ1
Λ2,µν

| QΛ′1
Λ′2,µ

′ν′〉 = k !δΛ1Λ′1δΛ2Λ′2
δνν′DimV SN

Λ1
DimV Sk

Λ2
δµµ′



Part II-A : General permutation invariant matrix harmonic oscillator
A matrix quantum mechanics with more general potential is
described by the Lagrangian

L =
1
2

N∑
i,j=1

∂tXij∂tXij −
1
2

V (X ).

The general quadratic SN (permutation) invariant potential
defines the general permutation invariant matrix oscillator

V (Xij) = V (Xσ(i)σ(j)).

There are 11 different quadratic invariants.



Part II-A : Permutation invariants and graphs - quadratic invariants
There is also a graph description of the invariants (closely
related to the partition algebra diagrams)

∑
i

M2
ii

∑
i,j

M2
ij

∑
i,j

MijMji
∑
i,j

MiiMjj
∑
i,j

MiiMij
∑
i,j

MijMjj

∑
i,j 6=k

MijMjk
∑

i,j 6=k
MijMik

∑
i,j 6=k

MijMkj
∑

i,j 6=k
MijMkk

∑
i,j,k,l

MijMkl

Figure: SD invariant functions and corresponding graphs illustrated
for the 11 quadratic invariants



Part II-A : Quadratic invariants using representation theory
and solving the matrix harmonic oscillator

Decomposing Xij ∼ VN ⊗ VN in terms of irreps :

VN ⊗ VN
∼= 2V SN

[N] ⊕ 3V SN
[N−1,1] ⊕ V SN

[N−2,2] ⊕ V SN
[N−2,1,1],

X Λ,α
a =

∑
i,j

CΛ,α
a,ij Xij .



In the representation basis the potential has a simple form,

V (X ) =
∑

Λ,α,β,a

X Λ,α
a gΛ

αβX Λ,β
a ,

Hamiltonian can be written in terms of decoupled oscillators
after diagoanlising the low-dimensional coupling matrices :

H =
∑
Λ,α,a

ωΛ
α(A†)Λ,α

a AΛ,α
a .

Z (β) = TrH e−βH

Write x = e−β

Z (β) =
1

(1− xω
[N]
1 )(1− xω

[N]
2 )

1

(1− xω
[N−1,1]
1 )N−1(1− xω

[N−1,1]
2 )N−1(1− xω

[N−1,1]
3 )N−1

×

1

(1− xω[N−2,2]
)(N−1)(N−2)/2(1− xω[N−2,1,1]

)N(N−3)/2
.



Part II-B : Dynamically separating the invariant states

In the matrix HOs - there is no separation of the SN invariant
states from the remaining states. SN action is the adjoint one :

X → MσXMσ−1

Equivalently

Xij → Xσ(i)σ(j)

Can construct Hamiltonians which produce a separation - using
Casimirs of this SN action. These are elements in the centre of
the group algebra C(SN), e.g. sum of all permutations in a fixed
conjugacy class.

T2 =
n∑

i 6=j=1

(ij)



Part II-B : Dynamically separating the invariant states

In the k -oscillator subspace this acts as∑
ij

(ij)⊗2k

The eigenvalues are known from SN group theory.
Schur-Weyl duality implies that these operators can be written
as sums of elements in P2k (N).
The explicit computation of the QΛ1

Λ2,µ,ν
basis of the invariant

states can be done using eigenvalue equations in the partition
algebra Pk (N). (Good programmes for working with partition
algebras in SAGE).



E HK + HresHK

0

K

(a)

E

(b)

Figure: The figure illustrates the type of spectra that can be
engineered using the algebraic Hamiltonians discussed in this
section. Blue lines correspond to states that are invariant under the
adjoint action of SN . Black lines are non-invariant states.



Part II-C : Quantum many-body scars

( Quantum many-body scars are of active interest in theoretical
condensed matter + Klebanov and collaborators - see refs. in
the paper )
Non-trivial collective states in a complex quantum system (not
an integrable model) show periodic behaviour. This has been
modelled - in symmetry-based mechanicsm - as follows.
A Hamiltonian H such that for all states |d〉 ∈ Hinv

H|d〉 ∈ Hinv,

and the time-evolution of |d〉 using H is periodic.



Construct a total Hamiltonian

Htot = H + Hs

The new term will completely break the symmetry of H, but is
required to satisfy

Hs|d〉 = 0 for all |d〉 ∈ Hinv.

This ensures that time-evolution of |d〉 using Htot is equivalent
to time-evolution using H, which was periodic by construction.



H|ei〉 = Ei |ei〉

The state |d〉 exhibits revival with periodicity T if the quantum
fidelity (return probability)

f (t) = |〈d |e−iHt |d〉|2

satisfies f (mT ) = 1 for m = 0,1, . . . .



Expanding |d〉 in the eigenbasis

|d〉 =
∑

i

di |ei〉

and computing f (t) gives

f (t) =
∑
i,j

|di |2|dj |2e−i(Ei−Ej )t .

If all energy differences ∆Eij = Ei −Ej have a greatest common
divisor E , that is

∆Eij = Ei − Ej = E(εi − εj)

and εi − εj is an integer for all i , j , then f (mT ) = 1 for T = 2π/E .



Hσ = (1− Ad(σ−1))hσ(1− Ad(σ)),

Partition algebras give a description of the invariant Hilbert
space (irrespective of the Hamiltonian) . Can be used to
classify invariant Hamiltonians H.
Can realize the symmetry-based mechanism with SN symmetry
in matrix systems.
The matrix oscillators a†ij can be viewed as creating bosons on
sites of a square lattice labelled by (i , j). Combining this
interpretation with the above mechanism, we get deformations
of Hubbard model which realise quantum many-body scars.



Conclusions

Summary : Focused on Matrix quantum mechanics here, with
motivations from holography. And found some features we have
seen in algebraic approaches to matrix systems with continous
symmetries, or of interest in TCMP :
I Large N factorisation (in trace-like basis).
I Orthogonal bases labelled by representation theory data (

for general permutation invariant sector of simplest matrix
HO)

I Casimir Hamiltonians - algebraic degeneracies.
I Realisations of quantum many-body scars (QMBS).



We can also do permutation invariant matrix models
(zero-dimensional). The 13-parameter Gaussian model has
been applied to real world ensembles of matrices ( coming from
natural language data) to find approximate Gaussianity in
language.
Kartsaklis, Ramgoolam, Sadrzadeh, “Linguistic Matrix Theory,” Annales de linstitut Henri Poincare D (AIHPD) ,
vol. 6, 2019

Ramgoolam, Sadrzadeh, Sword, “Gaussianity and typicality in matrix distributional semantics,”

arXiv:1912.10839v1 [hep-th] ; AIHPD Vol 9, 2022

Future: Computational/analytic approaches to correlators in
Gaussian matrix models + perturbations.
Future: Orthogonal bases for the general 11-parameter matrix
Harmonic oscillator.
Future : computational/analytic appraoched to the scar models
...


