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 Modular invariance in closed strings: a modular transformation mixes the entire spectrum of states up.  


As UV/IR mixed as a theory could be, yet the usual assumption is the opposite — “String theory just 

provides a UV-completion to a Wilsonian EFT”.

How can these both be true?!!  

Need to understand how EFT and RG running emerge in string theory 

Expect no ambiguity — e.g. there can be no RG “scheme” in a UV-complete theory - is there a 

“correct” scheme we should be using? 

It will have profound implications for naturalness. 

Motivation: suppose I declare that I never want to use an EFT but want to 
live within string theory — what happens? 



Motivation: suppose I declare that I never want to use an EFT but want to 
live within string theory — what happens? 
Mainly focus on the well trodden path of 1-loop gauge coupling 
corrections in this talk (but at the end we will see that the discussion 
applies to the entire theory including the Higgs                      ) 
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This talk: 

• Functional RG (FRG) approach to renormalisation in a particle theory

• Towards the same approach in strings: the unregulated case

• The UV complete (stringy) version of RG: the regulated case 

• Higgs potential and naturalness

• Conclusions: a string naturalness condition

Mainly focus on the well trodden path of 1-loop gauge coupling 
corrections in this talk (but at the end we will see that the discussion 
applies to the entire theory including the Higgs) 



Let’s begin by considering a version of Functional RG. According to Kadanoff and Wilson, running of 
couplings emerges because we have to integrate out all modes smaller than our lattice:

1. Background: RG in particle theory

Too small to be described by 
fluctuations on the lattice 

Larger modes can be 
described by the lattice so 
belong in the EFT at this scale



In practice we do this by including only the small modes in the one-loop integral: e.g. consider …

�(p2) =
1

p2 +m2
=

Z 1

0
dt e�t(p2+m2)

Vacuum polarization diagram (in Schwinger worldline formalism): Feynman;	Abbot;

Affleck,	Alvarez,	Manton;

Bern,	Kosower;

Strassler;	

Schmidt,	Schubert	



The unregulated case: we see there is a UV divergence for everyone and an IR one for massless states: 
Indeed substitute 

In practice we do this by including only the small modes in the one-loop integral: e.g. consider …

and assume external momenta near to on-shell 

Vacuum polarization diagram (in Schwinger worldline formalism):



In practice we do this by including only the small modes in the one-loop integral: e.g. consider …

one loop beta function coefficient:

The unregulated case: we see there is a UV divergence for everyone and an IR one for massless states: 
Indeed substitute and assume external momenta near to on-shell 

Vacuum polarization diagram (in Schwinger worldline formalism):



According to Wilson we should truncate the large size loops: add an IR regulator 

The result is a logarithmic dependence on the energy scale for any states lighter than it: of course 
the UV is still divergent so we traditionally decide to ignore all the UV crap by doing this …

where                 looks like …

0

0



2. Towards the same FRG approach in closed string theory:  
The unregulated case
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The full action therefore combines the bosonic and supersymmetric actions. In the conformal and

light-cone gauges
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T

2

∫

d2σ
(

ηab∂aX
j∂bX

j + iΨ
j

+ρ
a∂aΨ

j
+ + iλ

J

−ρ
a∂aλ

J
−

)

(6.3)

where J= 1 . . .16 counts the complex right-moving fermions, and j= 1 . . .8 counts the left-moving

transverse degrees of freedom. It is not hard to see that the appropriate constraint equations Tab =

Ga = 0 must be the sum of the bosonic contribution from the right movers and the supersymmetric

contribution from the left movers.

The technique of constructing the string models with all the additional degrees of freedom

expressed as world-sheet fermions is known as the fermionic formulation. It was developed in

refs.[7, 8, 9]. In this discussion I shall use the notation of ref.[8]. It is important to realize that the

consistent models in 10-D are of course independent of the formalism (i.e. fermionic or bosonic)

used to derive them. The fermionic formulation can also be used to develop 4-D models and this

in fact was the point of the original papers. There it gives a slightly unusual viewpoint for model

building; it disgards the geometrical interpretation of the 4-D models as compactified 10-D models,

and regards the world-sheet fermions simply as extra degrees of freedom thrown in to cancel the

conformal anomaly. Later I shall return to the 4-D models in this formalism, but for the moment

let us concentrate on our task of finding the consistent models in 10 dimensions.

6.1 Modular Invariance - the tool to tell us which models are consistent

We now turn to the question that I alluded to at the end of the previous section, namely how

to determine the consistent models. The trick is to start doing some perturbation theory. If we go

to complicated enough diagrams, some putative model will give inconsistent answers (for example

more than one answer for the same physical amplitude) whereupon it can be discarded. In fact

we only need to go as far as vacuum→vacuum amplitudes (one loop partition functions) with no
vertex operators to determine all the consistent 10 dimensional models. The relevant diagram are

shown below.

Z0= trivial Z1 Constrains model Z2..Minor additional constraints

r

r

1

2

The reason that the one loop diagram is so constraining is that it must be modular invariant.

Consider the one loop diagram for a particular shape (i.e. given by the length of the two cycles)

of torus. First recall that going to the conformal gauge (γab = eφηab) leaves a Weyl invariance in

the metric (since there is no φ dependence). This allows one by a suitable rescaling to go to a flat

metric. Now consider the integration region itself: this is now planar, so the world sheet integral is

over the region shown in the diagram

29

The equivalent of the Schwinger parameter are the two parameters describing torus radii: 

Thanks to conformal symmetry can be mapped to 
parallelogram in complex plane, with single parameter        , 
but theory invariant under modular transformations:

⌧
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The torus is defined by two complex parameters

z= z+ τ1n+ τ2m (6.4)

where n,m are integers. Lines with strokes are identified. But we can still use the Weyl invariance

to get rid of one of the parameters. i.e. z→ λ z is still a symmetry of the 2D theory and we can

reduce it to

z= z+2πn+2πmτ (6.5)

so that any point is defined by the coordinates σ1,σ2 ∈ (0,2π] where z = σ1+ τσ2. The param-

eter τ defining the torus is called the Teichmüller parameter: it should not be confused with the

world-sheet coordinate τ . There is an additional invariance under large reparameterizations. Any

reparameterization that describes the same torus has to be moded out to avoid over-counting.

τ → τ+1 redefines torus :

τ

0 1

τ+1

τ →−1/τ swops σ1 and σ2 and just reorients torus

These two transformation generate the modular group, PSL(2,Z)

τ →
aτ+b

cτ+d
a,b,c,d ∈ Z ; ad−bc= 1 (6.6)

For a particular value of τ we get a corresponding Z1(τ). The total one loop partition function

then requires us to integrate over all independent values of this parameter

Z1 =
∫

C

d2τ

Im(τ)2
Z1(τ) (6.7)

where C is the fundamental region (i.e. the region of τ left after moding out the modular transfor-

mations). The measure of the integration renders the integration modular invariant, and so in order

to make sense our integrand should itself be modular invariant.

Exercise: using the transformations above show that dτdτ/Im(τ)2 is modular invariant.

30



F

IR

UV

⌧
Fundamental domain F

So then we have to integrate over all inequivalent tori, i.e. over      , and we will find that the 
imaginary part of        plays the role of the Schwinger parameter (overall torus volume): 

⌧ = ⌧1 + i⌧2

⌧
⌧



Counts physical (level matched) states weighted 
by statistics at each level  

q = e2⇡i⌧

F

The identification of Schwinger parameter is clear at large imaginary tau: the one-loop integral must 
be of the general form :

for some operator        that encapsulates the vertex operators. But at large tau2, the tau1 integral just 
projects onto the physical states of the low energy particle theory … 

So we can infer the operator required        by modular completing the particle Schwinger integral:

where	

SAA,	Dienes	and	Nutracati,	to	appear



Before we regulate it, let’s discuss the UV/IR mixing: First note that according to Wilson these 
unregulated integrals simply give terms in the effective action: i.e. the deep IR. 

There is an astonishing identity for these due to Rankin, Selberg (1939-40) and Zagier (1981) … let

i.e. precisely the integrand that appears for the entire tower of just the physical states. Then …

When X=1 for example this matches the known relation for the cosmological constant:

1) This is an IR fixed point for the cosmological constant (that corresponds to the UV limit of g).  
2) Note that in other words before we even think about RG we know where the theory will end up!!

Rankin,	(1939),	Selberg	(1940),	Zagier	(1981)


Angelantonj,	Cardella,	Elitzur,	and	Rabinovici	


Angelantonj,	Florakis,	and	Pioline

Dienes,	1994



The incredible fact that this infinite supertrace is finite can then be put down to the fact that the 
“particle partition function” …  … behaves as follows in the UV (i.e. as                  ):

g(⌧2) ⇠ ⌧�1
2 Str (e�⌧2M

2

) �! c0

Dienes showed in 1994 that the above property is due to Misaligned SUSY, which ensures that 
Str(1)=0 even though there is no level by level cancellation and the nett (Boson-Fermion) numbers of 
states in each level are completely crazy!



The incredible fact that this infinite supertrace is finite can then be put down to the fact that the 
“particle partition function” …  … behaves as follows in the UV (i.e. as                  ):

g(⌧2) ⇠ ⌧�1
2 Str (e�⌧2M

2

) �! c0

Dienes,	Misaligned	SUSY,	1994

Dienes,	Moshe,	Myers	1995

Dienes showed in 1994 that the above property is due to Misaligned SUSY, which ensures that 
Str(1)=0 even though there is no level by level cancellation and the nett (Boson-Fermion) numbers of 
states in each level are completely crazy!



3. The UV complete (stringy) version of RG:  
The regulated case

bI(µ) =
Z

F
dµG(µ, ⌧, ⌧)F (⌧, ⌧)

Again need a “Wilsonian” regulator, to introduce an IR cut-off around EVERY cusp  G :

d2⌧

⌧22• a) Is itself a modular function

• b) Should look roughly like this ….  G

⌧2

⌧⇤2 = 1/(↵0µ2)

G = 1

• c) As our goal is to write everything as supertraces which ultimately means an integral over 
the critical strip …This only makes sense if actually all the cusps are crushed                                                  
equally. In other words: all the cusps are equivalent IR cusps, implying…


⌧⇤2 ⌘ 1/⌧⇤2 =) G(µ, ⌧, ⌧) = G(M2
s /µ, ⌧, ⌧)

b

b

b b

b

b

b



We modify a (geometrically derived) cut-off function of Costas et al       
(Kiritsis, Kounnas, Petropoulos, Rizos)

• Take the circle partition function with radius defined by parameter                               :                             


• Then a suitable cut-off function that obeys all the required properties is …


bG(a, ⌧) = 2a2

1 + 2a2
@

@a
(Zcirc(2a, ⌧)� Zcirc(a, ⌧))

=) ⌧⇤2 = 1/2a2µ2(a) =
2a2

↵0
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Results for gauge coupling: 

where

Evaluate                                                                       by unfolding against                         gives 

 … and then take the required derivatives in a …

The correction we want is 

SAA,	Dienes	`21



1) EFT behaviour emerges at the required scale …

b

Contribution from every massive state running up from its 
mass with the log from pile-up of Bessels  (Paris)

Contribution from absolutely massless states

Two point functions and higgs mass

renormalization
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The corrections makes the theory run in the EFT. If there are no massless 
states charged under the gauge symmetry it has an IR fixed point 
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hence we find the following picture for gauge coupling: 

Two point functions and higgs mass

renormalization
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2) Comparison with famous case of large volume 2d thresholds …

• Moduli dependence of string threshold corrections for 2D compactifications

• DKL and traditionally simply match to the EFT, so lose mod.inv and all UV completeness, and 

not able to get running nor emergence of the EFT …

• Nevertheless the moduli dependence should be in the coupling corrections … we find …

it indeed emerges in the deep-IR value of the running …

and also in the deep dual-IR running …

… but it never really disappears at any scale … (no power law running)

b

b

b

c.f.	Angelantonj,	Florakis,	Tsulaia
Dixon,	Louis,	Kaplunovsky



The meaning of the turn-over?

Momentum modes that are 
too small to be described by 
fluctuations on the lattice 

Larger modes can be 
described by the lattice so 
belong in the EFT at this scale

Extended “winding” modes 
too small to be described by 
fluctuations on the lattice 



The cosmological constant is similar infinite sum of Bessel functions, but it has the 
following magical behaviour with emergent Coleman-Weinberg potentials … 


4. The Higgs potential and naturalness 

This is a fully UV complete effective potential which holds for any modular invariant theory.

Below the mass of all states (that couple to the Higgs) they do not contribute to the running.

At some intermediate energy scale the result is a sum over all states as if they had all logarithmically 
run up from their mass. 

SAA,	Dienes	`21



log

logarithmic/
power-law

running

lightest

EFT approx.

deep
IR

"turnaround"
region

EFT
region

"dip"
region

dual EFT
region

dual "dip"
region dual

deep IR
(the most UV possible)

SAA,	Dienes	`21



loglightest

EFT approx.

Log or power law running

5. Conclusions

• We have developed formalism for RG and extracting EFT within fully UV complete theory


• A modular invariant regulator provides a natural “Wilsonian energy cut-off” and a definition of 
RG scale. Gives meaning where the EFT fails, and retains the predictivity of the UV complete 
theory.


• Results rendered as infinite sums of particle Bessel function contributions


• Operators such as the gauge couplings and Higgs mass can be thought of as “running” to its 
predetermined IR value (fixed point): this is actually both a UV and IR asymptote as it should be.    


• Recovers famous old results but importantly there is only log running (even for the Higgs mass).


• Relevant for many old and new pheno ideas: e.g. a stringy naturalness (Veltman) condition:

Str @2
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