

Muon g-2 in SUSY with and without stable neutralinos

M. Chakraborti, J. S. Kim, S. Iwamoto, K. Sakurai Based on JHEP 08 (2022) 124; https://doi.org/10.1007/JHEP08(2022)124

R. Masełek Corfu Summer Institute 2022/09/05

Work supported by NCN SONATA BIS 7 GRANT (2017/26/E/ST2/00135) and NCN BEETHOVEN GRANT (2016/23/G/ST2/04301) and NCN PRELUDIUM20 (2021/41/N/ST2/00972)

Rafał Masełek

$$a_{\mu}^{\exp} - a_{\mu}^{\text{theo}} \simeq (25 \pm 6) \times 10$$

[Muon g-2, Phys. Rev. Lett. 126, 141801] [T. Aoyama et al., Phys. Rep. 887, 1 (2020)]

[L. Lellouch, Moriond 2022 EW]

Motivation

- Many BSM scenarios can explain the (g-2)_{\mu} anomaly Leptoquarks, Z', 2HDM, axion, ...
- Supersymmetry is particularly motivated, because it offers: Coupling Unification, Radiative EWSB, Baryogenesis, DM, ...
- However, simple SUSY scenarios are heavily constrained by existing experimental results...
 - Which SUSY scenarios are phenomenologically viable?
 - R. Masełek Corfu Summer Institute 2022/09/05

Can phenomenologically viable SUSY explain $(g-2)_{\mu}$?

MSSM

R. Masełek Corfu Summer Institute 2022/09/05

stable $\tilde{\chi}_1^0$ Can phenomenologically viable SUSY explain $(g-2)_{\mu}$? DM constraints

R. Masełek Corfu Summer Institute 2022/09/05

MSSM unstable $\tilde{\chi}_1^0$ stable $\tilde{\chi}_1^0$ Can phenomenologically viable SUSY explain $(g-2)_{\mu}$? **RPV DM constraints GMSB**

R. Masełek Corfu Summer Institute 2022/09/05

Muon g-2 ATLAS/CMS MSSM unstable $\tilde{\chi}_1^0$ stable $\tilde{\chi}_1^0$ Can phenomenologically viable SUSY explain $(g-2)_{\mu}$? **RPV DM constraints GMSB** XENON1T/PANDA/LZ/ARGO ...

 $(g-2)_{\mu}$ viable parameters Muon g-2 ATLAS/CMS **MSSM** unstable $\tilde{\chi}_1^0$ stable $\tilde{\chi}_1^0$ Can phenomenologically viable SUSY explain $(g-2)_{\mu}$? DM constraints GMSB RPV XENON1T/PANDA/LZ/ARGO ... 2D parameter planes R. Masełek Corfu Summer Institute 2022/09/05

WHL

BHL

BHR

BLR

WHL

 $\otimes M_2$: Wino mass

μ: Higgsino mass

øt

R. Masełek Corfu Summer Institute 2022/09/05

 $\otimes m_{\tilde{l}_{p}}$: right-handed slepton mass

 $\otimes m_{\tilde{l}}$: left-handed slepton mass

$$\tan\beta \equiv \langle H_u \rangle / \langle H_d \rangle$$

«vacuum (meta-)stability

WHL

BHL

 $(g-2)_{\mu}$ in MSSM has a tension with: **DM** Direct Detection consequence of stable neutralino (Bino-like) DM overproduction lepton + large ETmiss @ LHC Vacuum stability (for BLR) What changes if neutralino is unstable?

R. Masełek Corfu Summer Institute 2022/09/05

BHR

BLR

R-parity viol
$$W_{\text{RPV}} = \lambda_{ijk}^{"} U_i^c D_j^c D_k^c + \lambda_{ijk}$$

Simultaneous violation of both B and L leads to a rapid proton decay
We introduce only UDD operator with $\lambda_{112}'' \neq 0$ $p^+ \begin{cases} d \\ u \\ u \\ u \\ u \end{cases}$ Simultaneous violation decay
We introduce only UDD operator with $\lambda_{112}'' \neq 0$ $p^+ \begin{cases} d \\ u \\ u \\ u \end{bmatrix}$ We introduce only UDD operator with $\lambda_{112}'' \neq 0$ $p^+ \begin{cases} d \\ u \\ u \\ u \end{bmatrix}$ Simultaneous violation decay

ation scenario

 $K_{ik}L_{i}L_{j}E_{k}^{c} + \lambda_{ijk}^{\prime}L_{i}Q_{j}D_{k}^{c} + \kappa_{i}L_{i}H_{u}$

No missing energy, but multi-jet

In GMSB, light gravitino LSP is motivated by naturallness

We assume almost massless gravitino LSP ($m_{\tilde{G}} \leq 1$ GeV)

 $(g-2)_{\mu}$ doesn't change much wrt. MSSM

If neutralino is NLSP then totally excluded -> slepton/ sneutrino/stau NLSP

GMSB scenario

W/HO,X $\tilde{\tau}_1/\tilde{\nu}$

400

methodology

Morskie Oko, Tatra, Poland

Analysis

- 1. Select one of the 4 loop diagrams (WHL, BHL, BHR, BLR) 2. Take 3 relevant masses to be O(100GeV) and other 2 very large 3. Then the diagram dominates $\Delta a_{\mu}^{\rm SUSY}$
- 4. Vary 2 masses and relate/fix the third -> 2D plane scan

MC simulations

 $M_1, M_2, \mu, m_{\tilde{l}_I}, m_{\tilde{l}_B}, \tan\beta$

List of all recasted LHC analyses

Name	E/TeV	$\mathcal{L}/\mathrm{fb}^{-1}$	Description
atlas_1604_01306	13	3.2	Monophoton
atlas_1605_09318	13	3.3	3 b-jets + 0.1 lepton + MET
atlas_1609_01599	13	36	Monophoton
atlas_1704_03848	13	36	Monophoton
atlas_conf_2015_082	13	3.2	2 leptons (Z) + jets + MET
atlas_conf_2016_013	13	3.2	1 lepton + jets (4 tops, VVL quarks)
atlas_conf_2016_050	13	13.3	1 lepton + (b) jets + MET
atlas_conf_2016_054	13	13.3	1 lepton + (b) jets + MET
atlas_conf_2016_076	13	13.3	2 lepton + jets + MET
atlas_conf_2016_096	13	13.3	Multi-lepton + MET
atlas_conf_2017_060	13	36	Monojet
atlas_conf_2016_066	13	13.3	Photons, jets and MET
atlas_1712_08119	13	36	soft leptons (compressed EWKinos)
atlas_1712_02332	13	36	squarks and gluinos, 0 lepton, 2-6 jets
atlas_1709_04183	13	36	Jets + MET (stops)
atlas_1802_03158	13	36	search for GMSB with photons
atlas_1708_07875	13	36	EWKino search with taus and MET
atlas_1706_03731	13	36	Multilepton + Jets + MET (RPC and RPV)
atlas_1908_08215	13	36	2 leptons + MET (EWKinos)
atlas_1909_08457	13	139	SS lepton + MET (squark, gluino)
atlas_conf_2019_040	13	139	Jets + MET (squark, gluino)
atlas_conf_2019_020	13	139	3 leptons (EWKino)
atlas_1803_02762	13	36	2 or 3 leptons (EWKino)
atlas_conf_2018_041	13	80	Multi-b-jets (stops, sbottoms)
atlas_2101_01629	13	139	1 lepton + jets + MET
atlas_conf_2020_048	13	139	Monojet
atlas_2004_14060	13	139	$t\bar{t} + MET$
atlas_1908_03122	13	139	Higgs bosons $+ b$ -jets $+ MET$
atlas_2103_11684	13	139	4 or more leptons (RPV, GMSB)
atlas_2106_09609	13	139	Multijets + leptons (RPV)
atlas_1911_06660	13	139	Search for Direct Stau Production
Nama	F/T _o V	$C/\mathfrak{g}_{n}-1$	Description

Name	E/TeV	$\mathcal{L}/\text{fb}^{-1}$	Description
$cms_pas_sus_15_011$	13	2.2	2 leptons + jets + MET
cms_sus_16_039	13	35.9	electrowekinos in multilepton final state
cms_sus_16_025	13	12.9	electroweakino and stop compressed spectra
cms_sus_16_048	13	35.9	two soft opposite sign leptons

Name	E/TeV	$\mathcal{L}/\mathrm{fb}^{-1}$	Description
atlas_1308_1841	8	20.3	$0 \text{ lepton } + \ge 7 \text{ jets } + \text{MET}$
atlas_1308_2631	8	20.1	0 leptons + 2 b-jets + MET
atlas_1402_7029	8	20.3	3 leptons + MET (chargino+neutralino)
atlas_1403_4853	8	20.3	2 leptons + MET (direct stop)
atlas_1403_5222	8	20.3	stop production with Z boson and b-jets
atlas_1404_2500	8	20.3	Same sign dilepton or 3 lepton
atlas_1405_7875	8	20.3	0 lepton + 2-6 jets + MET
atlas_1407_0583	8	20.3	ATLAS, 1 lepton + (b-)jets + MET (stop)
atlas_1407_0608	8	20.3	Monojet or charm jet (stop)
atlas_1411_1559	8	20.3	monophoton plus MET
atlas_1501_07110	8	20.3	1 lepton + 125 GeV Higgs + MET
atlas_1502_01518	8	20.3	Monojet + MET
atlas_1503_03290	8	20.3	2 leptons + jets + MET
atlas_1506_08616	8	20.3	di-lepton and 2b-jets + lepton
atlas_1507_05493	8	20.3	photonic signatures of gauge-mediated SUSY
atlas_conf_2012_104	8	20.3	$1 \text{ lepton } + \ge 4 \text{ jets } + \text{MET}$
atlas_conf_2013_024	8	20.3	0 leptons + 6 (2 b-) jets + MET
atlas_conf_2013_049	8	20.3	2 leptons + MET
atlas_conf_2013_061	8	20.3	$0-1 \text{ leptons } + \ge 3 \text{ b-jets } + \text{MET}$
atlas_conf_2013_089	8	20.3	2 leptons (razor)
atlas_conf_2015_004	8	20.3	invisible Higgs decay in VBF
atlas_1403_5294	8	20.3	2 leptons + MET, (SUSY electroweak)
atlas_higg_2013_03	8	20.3	2 leptons + MET, (invisible Higgs)
atlas_1502_05686	8	20.3	search for massive sparticles decaying to many

Name	$E/{\rm TeV}$	$\mathcal{L}/\mathrm{fb}^{-1}$	Description
cms_1303_2985	8	11.7	α_T + b-jets
cms_1408_3583	8	19.7	monojet + MET
cms_1502_06031	8	19.4	2 leptons, jets, MET (only on-Z)
$cms_{1504_{03198}}$	8	19.7	1 lepton, \geq 3 jets, \geq 1 b-jet, MET (DM + 2 t
$cms_sus_13_016$	8	19.5	OS lepton 3+ b-tags

Y
jets
5
(ap)
(op)

results

Beach in Dębki, Poland

compressed mass spectrum

MSSM, WHL_{μ}

MSSM, WHL_{μ}

MSSM, WHL $_{\mu}$

MSSM, WHL_{μ}

Whole $(g-2)_{\mu}$ relevant region will be probed in the near future!

R. Masełek Corfu Summer Institute 2022/09/05

MSSM, BLR

compressed mass spectrum (stau coannihilation)

vacuum stability condition

 $\left| m_{\tilde{\ell}_{LR}}^2 \right| \leq \left[1.01 \times 10^2 \,\text{GeV}\sqrt{m_{\tilde{\ell}_L} m_{\tilde{\ell}_R}} + 1.01 \times 10^2 \,\text{GeV}(m_{\tilde{\ell}_L} + 1.03m_{\tilde{\ell}_R}) - 2.27 \times 10^4 \,\text{GeV}^2 + \frac{2.97 \times 10^6 \,\text{GeV}^3}{m_{\tilde{\ell}_L} + m_{\tilde{\ell}_R}} - 1.14 \times 10^8 \,\text{GeV}^4 \left(\frac{1}{m_{\tilde{\ell}_L}^2} + \frac{0.983}{m_{\tilde{\ell}_R}^2} \right) \right]$

[Kitahara, Yoshinaga 13]; [Endo, Hamaguchi, Kitahara, Yoshinaga 13]

CMS |+|-[2012.08600]

DM overproduction due to Bino-like LSP

MSSM with stable neutralino

MSSM with stable neutralino

GMSB with slepton/sneutrino/stau NLPS

Summary

There is a 4.2 σ discrepancy for $(g-2)_{\mu}$ between experiment and SM prediction SUSY can explain $(g-2)_{\mu}$, but: $\tilde{\chi}_1^0$ is LSP and stable \implies constraint from large E_T^{miss} $|\mu| \approx M_1 (M_2) \implies \text{constraint from DM-DD experiments}$ \otimes slepton and Bino are light \implies DM overproduction If $\tilde{\chi}_1^0$ is not stable LSP, DM constraints go away, and LHC signature changes: $\otimes RPV$ with UDD \implies LHC constraints from multijet + lepton \otimes Gravitino LSP with $\tilde{\chi}_1^0$ NLSP \implies (g-2)_µ region excluded by $\gamma + E_T^{\text{miss}}$ channel \otimes Gravitino LSP with $\tilde{l}/\tilde{\nu}/\tilde{\tau}$ NLSP \implies LHC constraints from soft lepton/tau R. Masełek Corfu Summer Institute 2022/09/05

Thank you for attention!

r.maselek@uw.edu.pl

Dolina Chochołowska, Pola photo by Piotr Kałuża

Backup slides

We need very light BSM particles OR enhancement from coupling

 $\Delta a_{\mu}^{\rm BSM} \sim \Delta a_{\mu}^{\rm SM, EW}$

R. Masełek Corfu Summer Institute 2022/09/05

Tension between experiment and white paper SM calculations

 $a_{\mu}^{exp} - a_{\mu}^{SM} = (25 \pm 6) \times 10^{-10} \sim \mathcal{O}\left(\Delta a_{\mu}^{\text{SM,EW}}\right)$

$$V \cdot \left(\frac{m_W^2}{m_{BSM}^2}\right) \cdot \text{coupling}$$

 $\Delta a_{\mu}^{\rm SUSY} = \Delta a_{\mu}^{\rm WHL} + \Delta a_{\mu}^{\rm BHL} + \Delta a_{\mu}^{\rm BHR} + \Delta a_{\mu}^{\rm BLR}$

$$\Delta a_{\mu}^{\text{WHL}}(M_2, \mu, m_{\tilde{l}_L}) = + \frac{\alpha_W}{8\pi} \frac{m_{\mu}^2}{\mu M_2} \tan\beta \cdot f_{\text{WHL}}(\mathbf{m})$$

$$\Delta a_{\mu}^{\text{BHL}}(M_1, \mu, m_{\tilde{l}_L}) = + \frac{\alpha_Y}{8\pi} \frac{m_{\mu}^2}{\mu M_1} \tan \beta \cdot f_{\text{BHL}}(\mathbf{m})$$

$$\Delta a_{\mu}^{\text{BHR}}(M_{1}, \mu, m_{\tilde{l}_{R}}) = -\frac{\alpha_{Y}}{8\pi} \frac{m_{\mu}^{2}}{\mu M_{1}} \tan \beta \cdot f_{\text{BHR}}(\mathbf{m})$$

ino-Higgsino mixing leads to a section for DM Direct detection
$$\tilde{\chi}_{1}^{0} - h_{-} - h_{-}$$

Constraints on staus:

the second charge breaking vacuum: $m_{\tilde{\tau}_1}^2 > 0$ \otimes LEP bound: $m_{\tilde{\tau}_1} > 81.9$ GeV stau LSP: $m_{\tilde{\tau}_1} > m_{\tilde{\gamma}_1^0}$ vacuum (meta-)stability [Kitahara, Yoshinga 13]

 $\Delta a_{\mu}^{\text{SUSY}} = \Delta a_{\mu}^{\text{WHL}} + \Delta a_{\mu}^{\text{BHL}} + \Delta a_{\mu}^{\text{BHR}} + \Delta a_{\mu}^{\text{BLR}}$

$$(M_1, m_{\tilde{l}_L}, m_{\tilde{l}_R}; \mu) = + \frac{\alpha_Y}{4\pi} m_{\mu}^2 \frac{\mu M_1}{m_{\tilde{\mu}_L}^2 m_{\tilde{\mu}_R}^2} \tan \beta \cdot f_{\text{BLR}}(\mu)$$

large μ needed

Stau mass squared becomes too small or even negative!

Parameter planes definition

name	axes	range [TeV]	other parameters	ta
\mathbf{WHL}_{μ}	(M_2,μ)	([0.2, 4], [0.2, 4])	$ ilde{m}_{l_{ m L}} = \min(M_2, \mu) + 20 { m GeV}, \ \ M_1 = ilde{m}_{l_{ m R}} = 10 { m TeV}$	
\mathbf{WHL}_L	$(M_2, \tilde{m}_{l_{ m L}})$	([0.2, 4], [0.2, 2])	$\mu = \min(M_2, \tilde{m}_{l_{ m L}}) - 20 { m GeV}, \ M_1 = \tilde{m}_{l_{ m R}} = 10 { m TeV}$	
\mathbf{BHL}_{μ}	(M_1,μ)	([0.12, 0.6], [0.12, 0.35])	$ ilde{m}_{l_{ m L}} = \min(M_1, \mu) + 20 { m GeV}, \ \ M_2 = ilde{m}_{l_{ m R}} = 10 { m TeV}$	
\mathbf{BHL}_L	$(M_1, \tilde{m}_{l_{ m L}})$	([0.12, 0.8], [0.14, 0.22])	$\mu = \min(M_1, \tilde{m}_{l_{ m L}}) - 20 { m GeV}, \ M_2 = \tilde{m}_{l_{ m R}} = 10 { m TeV}$	
\mathbf{BHR}_{μ}	$ (M_1, \mu)$	([0.12, 0.7], [0.12, 0.7])	$\tilde{m}_{l_{\mathrm{R}}} = \min(M_1, \mu) + 20 \mathrm{GeV}, \ M_2 = \tilde{m}_{l_{\mathrm{L}}} = 10 \mathrm{TeV}$	
\mathbf{BHR}_L	$(M_1, \tilde{m}_{l_{\mathrm{R}}})$	([0.12, 0.8], [0.14, 0.25])	$-\mu = \min(M_1, \tilde{m}_{l_{\mathrm{R}}}) - 20 \mathrm{GeV}, \ M_2 = \tilde{m}_{l_{\mathrm{L}}} = 10 \mathrm{TeV}$	
\mathbf{BLR}_{50}	$ $ $(ilde{m}_{l_{ m L}}, ilde{m}_{l_{ m R}})$	([0.15, 0.6], [0.12, 1.2])	$M_1 = m_{ ilde{ au}_1} - 20{ m GeV}, \ \ \mu = \mu_{ m max}, \ \ M_2 = 10{ m TeV}$	
\mathbf{BLR}_{10}	$\mid (ilde{m}_{l_{ m L}}, ilde{m}_{l_{ m R}})$	([0.15, 0.6], [0.12, 1.2])	$M_1 = m_{ ilde{ au}_1} - 20 { m GeV}, \ \ \mu = \mu_{ m max}, \ \ M_2 = 10 { m TeV}$	

Table 1: The parameter planes and choices of the other parameters. μ_{max} is defined as the maximum value allowed by the vacuum stability constraint.

For GMSB we modify the planes to ensure that slepton/stau/sneutrino is the NLSP.

ATLAS DT [2201.02472] **CMS |+|**- [2004.05153] XENON1T [1805.12562]

ATLAS soft-| [1911.12606] **CMS** |+|- [2004.05153] XENON1T [1805.12562]

R. Masełek Corfu Summer Institute 2022/09/05

CMS multilepton [1709.05406] ATLAS multijet+l [2106.09609]

ATLAS soft-[[1712.08119] ATLAS $\tau^+\tau^-$ [1911.06660]

CMS multilepton [1709.05406] **ATLAS multijet+l** [2106.09609]

XENON1T [1805.12562]

CMS multilepton [1709.05406]

ATLAS $\tau^+\tau^-$ [1911.06660]

LEP stau mass bond

CMS |+|- [2004.05153] XENON1T [1805.12562]

MSSM

R. Masełek Corfu Summer Institute 2022/09/05

CMS multilepton [1709.05406]

RP\

LEP stau mass bond

CMS |+|- [2004.05153] XENON1T [1805.12562]

R. Masełek Corfu Summer Institute 2022/09/05

CMS multilepton [1709.05406]

ATLAS soft-| [1911.12606] **CMS** |+|- [2004.05153] XENON1T [1805.12562]

MSSM

R. Masełek Corfu Summer Institute 2022/09/05

CMS multilepton ^[1709.05406] ATLAS multijet+l [2106.09609]

ATLAS soft-| [1911.12606] **CMS** |+|- [2004.05153] **XENON1T** [1805.12562]

CMS |+|- [2004.05153]

XENON1T [1805.12562]

MSSM

R. Masełek Corfu Summer Institute 2022/09/05

CMS multilepton ^[1709.05406]

m_t (TeV)

 $m_{\tilde{G}} = \frac{F_X}{\sqrt{3}M_{\rm PL}}, \quad M_3 = \frac{\alpha_3}{4\pi} \frac{F_X}{M_{\rm mess}}$ $m_{\tilde{t}}$ $m_{\tilde{G}} = \sim 10 \,\mathrm{eV} \,\cdot$ 10 TeV / 10 TeV

Wino, Higgsino NLSP

Gravitino LSP

Gravitino LSP with slepton NLSP

WHL plane:

 $(M_2 \text{ vs } \mu) \text{ with } \tilde{m}_{l_1} = \min(M_2, \mu) + 20 \text{ GeV} =$

BHL plane:

 $(M_1 \text{ vs } \mu) \text{ with } \tilde{m}_{l_L} = \min(M_1, \mu) + 20 \text{ GeV} =$

BHR plane:

 $(M_1 \text{ vs } \mu) \text{ with } \tilde{m}_{l_R} = \min(M_1, |\mu|) + 20 \text{ GeV} =$

BLR plane:

 $(\tilde{m}_{l_L} \text{ vs } \tilde{m}_{l_R}) \text{ with } M_1 = m_{\tilde{\tau}_1} - 20 \text{ GeV} \implies M_1 = m_{\tilde{\tau}_1} + 20 \text{ GeV}$

$$\Rightarrow m_{l_R} = \min(M_1, \mu) - 20 \,\text{GeV} \qquad \left\{ \tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R \,\text{NLSP} \right\}$$

50