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Motivations
I It is natural generalisation of the Poisson sigma model; PSM is a topological

2-dim field theory, important for many reasons:
First introduced [Ikeda ’94, Scallet-Strobl ’94] in relation with two-dimensional field
theories with non-trivial target space, e.g. gauge and gravity models, gauged
WZW models
It provides a relation with deformation quantization and path-integral
approach to Kontsevich star product [Cattaneo-Felder ’99]

it provides interesting strings backgrounds
it exhibits QM dynamics on the boundary
it possesses dynamical generalizations by adding a metric tensor on the target
space

I Jacobi manifolds share some features of twisted Poisson manifolds
Twisted PSM are relevant for the same reasons as above; specifically, they
provide non-associative generalization of deformation quantization and entail a
WZW extension of the action functional

I It is interesting to compare twisted PSM with the natural JSM induced by
the Jacobi structure: they result to be different models

JSM may bring to deformation quantisation of Jacobi manifolds
Noteworthy cases: Contact and Locally Conformal Symplectic (LCS)
manifolds are two main classes of Jacobi manifolds, with Poisson, symplectic
and GCS as special cases;
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The PSM action
I It is a two-dimensional, topological field theory with target space a Poisson

manifold (M,Π)

S =
∫

Σ

[
ηi ∧dX i +

1
2

Πij (X )ηi ∧ηj

]
, i , j = 1, . . . ,dimM

the fields X : Σ→M, η ∈ Ω1(Σ,X ∗(T ∗M)), dX ∈ Ω1(Σ,X ∗(TM))
In local coordinates (t,u) on Σ dX i = ∂µX

iduµ , ηi = ηi µdu
µ

I EOM’s
dX i + Πij (X )ηj = 0,

dηi +
1
2

∂iΠ
jk(X )ηj ∧ηk = 0

consistency of the two requires [Π,Π]ijkS = Πil∂lΠ
jk + cycl{ijk}= 0

if ∂ Σ 6= 0 b.c. needed, η |∂ Σ = 0
I the model is invariant under diffeos of the source space
I If the target space is symplectic, the auxiliary fields ηi can be integrated

away, resulting in a second order action, S =
∫

Σ ωij dX
i ∧dX j

This corresponds to a topological action with B-field coinciding with the
symplectic two-form
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The Hamiltonian setting

From the Lagrangian,

L(X ,ζ ;β ) =
∫
I
du
[
−ζi Ẋ

i + βi

(
X ′i + Πij (X )ζj

)]
with Σ = R× [0,1] t ∈ R, u ∈ [0,1]. βi = ηti , ζi = ηui , Ẋ = ∂tX , X ′ = ∂uX

I X i and −ζi are conjugate variables with PB {X i ,ζj}= δ i
j δ (u−u′)

I πβ = 0 primary constraint
I X ′i + Πij (X )ζj = 0 secondary constraint
I the Hamiltonian

Hβ =−
∫
I
duβi

[
X ′i + Πij (X )ζj

]
is itself a pure constraint
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Gauge invariance

I The model is Diff invariant. The infinitesimal generators are the Hamiltonian
vector fields associated with Hβ by the canonical Poisson bracket

ξβ = {Hβ , ·}=
∫

du

(
Ẋ i δ

δX i
+ ζ̇i

δ

δζi

)
,

with Ẋ i =−Πijβj , ζ̇i = ∂uβi −∂iΠ
jkζjβk . But their algebra only closes if

one allows β = β (u,X (u)) =⇒
I The algebra {Hβ} closes under PB’s

{Hβ ,Hβ̃
}= H

[β ,β̃ ]

• with [β , β̃ ] = d〈β ,Π(β̃ )〉− iΠ(β)d β̃ + i
Π(β̃)

dβ the Koszul bracket [Koszul ’85]

(or Gerstenhaber) for β ∈Ω1(M)–> Ω(M) is BV algebra
• it satisfies Jacobi identity provided Π is a Poisson tensor. 〈 , 〉 is the natural

pairing between T ∗M and TM. ⇒
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I the map β → Hβ is a Lie algebra homomorphism, the Hamiltonian
constraints are first class and the Hamiltonian vector fields generate gauge
transformations.

I The reduced phase space of the model is defined in the usual way as the
quotient C = P/G , where G is the gauge group, P the (infinite-dim)
constrained phase space

I It can be proven [Cattaneo’01] that the reduced phase space is a
finite-dimensional manifold of dimension 2dim(M).
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H-twisted Poisson structure [Mylonas-Schupp-Szabo ’12, Ikeda-Strobl ’20]

It is defined by a skew-symmetric bi-vector field Π with non-vanishing Schouten
brackets

[Π,Π]S := 2〈Π⊗Π⊗Π,H〉 (?)

This defines the three-form H as a kind of inverse of the three-vector field [Π,Π]S
if Π is non degenerate

The H-twisted Poisson Sigma model is a generalization of PSM by adding a WZW
term:

S =
∫

Σ=∂N

[
ηi ∧dX i +

1
2

Πij (X )ηi ∧ηj

]
+
∫
N
X ∗(H)

i , j = 1, ...dimM and X is extended to X : N →M. The EOM’s

dX i + Πij (X )ηj = 0,

dηi +
1
2

(
∂iΠ

jk(X )ηj ∧ηk +HijkdX
j ∧dX k

)
= 0

Consistency of the two now is assured by (?) being satisfied
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Jacobi brackets

Jacobi brackets [Lichnerowicz’78] on F (M) generalise Poisson brackets
I they are defined by (Λ,E ), Λ a bi-vector field, E Reeb vector field

{f ,g}J = Λ(df ,dg) + f (Eg)−g(Ef ), with

• [Λ,Λ]S = 2E ∧Λ, LEΛ = 0,
• Jacobi identity holds for J, not for Λ
• Leibniz rule is violated −→ {f ,gh}J = {f ,g}Jh+g{f ,h}J+gh(Ef )
• E = 0 corresponds to Poisson brackets

I two main classes of Jacobi manifolds: contact (odd dims) and LCS (even
dims)

I generic ones admit foliations with contact and/or LCS leaves [Vaisman]
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LCS and Contact manifolds [Marle, Vaisman]

I LCS manifolds are even-dim manifolds with a non-degenerate two-form
ω ∈ Ω2(M) locally equivalent to a symplectic form ξ ; i.e.
• ω = e−f ξ , f ∈ C∞(Ui )
• dω =−α ∧ω (α = df locally)
• The global structures (Λ,E), are uniquely defined in terms of (α,ω)

ιEω =−α, ιΛ(γ)ω =−γ, γ ∈Ω1(M)

[Globally conformal symplectic and symplectic manifolds are particular cases of
LCS]

I Contact manifolds are odd-dim manifolds, dimM = 2n+1, with a contact
one-form, ϑ and a volume form Ω s.t.

ϑ ∧ (dϑ)n = Ω

• The global structure (Λ,E) is uniquely fixed by

ιE (ϑ ∧ (dϑ)n) = (dϑ)n ιΛ (ϑ ∧ (dϑ)n) = nϑ ∧ (dϑ)n−1

[In dimM = 3 =⇒ ιEϑ = 1, ιEdϑ = 0, Λ(ϑ) = 0, Λ(dϑ) = 1]
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Poissonization [Lichnerowicz]

Given a Jacobi manifold (M,Λ,E ) the manifold M×R may be given a
one-parameter family of homogeneous Poisson structures

Π = e−τ (Λ +
∂

∂τ
∧E ), τ ∈ R

(homogeneous: L∂τ
Π =−Π) This allows for definition of Hamiltonian vector fields:

Xf := π∗(X
Π
eτ f )|τ=0

where XΠ
eτ f is the Hamiltonian vector field associated with the Poisson bracket on

M×R and π : M×R→M the projection map
This yields, for any function f ∈F (M)

Xf = Λ(df , ·) + fE

The map f → Xf is homomorphism of Lie algebras, [Xf ,Xg ] = X{f ,g}J , where the
bracket [·, ·] is the standard Lie bracket of vector fields
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The action
The Jacobi sigma model with source space a two-dimensional manifold Σ with
boundary ∂ Σ and target space (M,Λ,E ) is defined by the action functional

S [X ,(η ,λ )] =
∫

Σ

[
ηi ∧dX i +

1
2

Λij (X )ηi ∧ηj−E i (X )ηi ∧λ

]
with boundary condition η|∂Σ

= 0
I field configurations: (X ,(η ,λ )) X : Σ→M the base map,

(η ,λ ) ∈ Ω1(Σ,X ∗(J1M))

[ J1M = T ∗M⊕R the 1-jet bundle of real functions on M]
I Sections of J1M are isomorphic to the algebra of one-forms

{eτ (α + fdτ)|α ∈ Ω1(M), f ∈ C∞(M),τ ∈ R} ⊆ Ω1(M×R)

closed with respect to the Koszul bracket of the Poissonised manifold
Vaisman’00

Important difference: new auxiliary field, λ , which is a one-form on the source
manifold Σ but a scalar on the Jacobi manifold. It is needed in order to take into
account the Reeb field E [J is not a bi-vector field]
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Hamiltonian approach
In local coordinates t ∈ R, u ∈ [0,1] for Σ = R× [0,1]

dX = Ẋ dt +X ′du, η = βdt + ζdu, λ = λtdt + λudu,
the Lagrangian becomes

L =
∫
I
du
[
−Ẋ i

ζi + βi

(
X
′i + Λij

ζj −E i
λu

)
+ λt

(
E i

ζi

)]
λt ,λu scalar fields, Ẋ ,X ′ and β ,ζ carrying and extra index on (the pull-back of)
M
The b.c. η∂ Σ = 0 results in β∂ Σ = 0 and no b.c. for λ =⇒

H =−
∫
I
duβi

(
X
′i + Λij

ζj −E i
λu

)
+ λt

(
E i

ζi

)

I −ζi ,X
i conjugate variables with canonical PB

I πβi
,πλt

,πλu
primary constraints

I Gβi
= X ′i + Λijζj −E iλu, Gλt

= E iζi , Gλu
= E iβi secondary constraints
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The Poisson algebra of Constraints

I The matrix {φk ,φk ′} has finite, non-zero rank =⇒ there are second class
constraints

I The rank is not maximal =⇒ there are first class constraints
Second class: πλu

,πβm
,Gλu

,Gβm
[ E = E ∂m has been chosen]

All other are first class =⇒ A combination of these yields gauge
transformations

K (βa,λt ,at ,aβa
) =

∫
duλtGλt

+ βaGβa
+atπλt

+aβa
πβa

, a = 1, . . . ,m−1

and βa,λt ,at ,aβa
are gauge parameters

I Primary constraints may be ignored in computing the algebra of gauge
generators because their PB’s are strongly zero.
Similarly to the Poisson sigma model, the algebra will only close on-shell

=⇒ In order to obtain a closed algebra off-shell, gauge parameters have to be
functions of the fields βa = βa(u,X (u)),λt = λt(u,X (u))
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The Poisson algebra of gauge generators
One gets for K (β ,λt) =

∫
duβcGβc

+ λtGλt
c = 1, ...,m−1

{K (β ,λt),K (β̃ , λ̃t)}=
∫

dudu′
[
Gβc

(
βaβ̃b∂cΛba + Λaj (β̃a∂jβc −βa∂j β̃c)

+E (λ̃t∂mβc −λt∂mβ̃c)
)

+Gλt

(
βaβ̃bΛab + Λaj (β̃a∂jλt −βa∂j λ̃t) +E (λ̃t∂mλt − λ̃t∂mλ̃t)

)]
which is possible to rearrange as

{K(β ,λt ),K(β̃ ,λ̃t )
}=−K

[(β ,λt ),(β̃ ,λ̃t )]

with [(β ,λt),(β̃ , λ̃t)] a generalisation of the Koszul bracket to Jacobi manifolds
[Kerbrat’93,Vaisman’00] [T ∗M now replaced byJ1M]

[(α, f ),(β ,g)] = (γ,h)

γ = LΛ(α)β −LΛ(β )α−d(Λ(α,β ))−d
(
fLEβ −gLEα−α(E )β + β (E )α

)
h = {f ,g}J −Λ(df −α,dg −β )
Jacobi identity holds, provided the manifold is Jacobi.
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Results

There are first and second class constraints
First class constraints generate gauge transformations
The algebra of gauge transformations is closed if we allow for a generalisation
of the Koszul bracket for gauge parameters

Further results and perspectives
The reduced phase space C is finite-dim, with dimC = 2dimM−2
The auxiliary fields may be integrated out
A dynamical extension of the model is possible, yielding a string sigma model
action with metric and B field
Quantization along the lines of H-twisted Poisson structures
Analyse the geometry of reduced phase space
Models building for specific target spaces, both LCS and contact mflds
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