On the old and new muon g-2 puzzles

Paride Paradisi

University of Padova and INFN

Workshop on the SM and Beyond Corfu Summer Institute 2022 - 5/09/2022

1 "Old muon g-2 puzzle" (pre BMW 2021)

- Possible new physics interpretations
- Leptonic g-2, EDMs & LFV interrelationship

2 "New muon g-2 puzzle" (post BMW 2021)

Possible new physics interpretations

3 Conclusions and future prospects

Experimental status

• April 7th 2021: Muon g – 2 experiment at FNAL confirms BNL!

 a_{μ}^{EXP} = (116592089 ± 63) X 10⁻¹¹ [0.54ppm] BNL E821 a_{μ}^{EXP} = (116592040 ± 54) X 10⁻¹¹ [0.46ppm] FNAL E989 Run 1 a_{μ}^{EXP} = (116592061 ± 41) X 10⁻¹¹ [0.35ppm] WA

- FNAL aims at 16×10^{-11} . First 4 runs completed, 5th in progress.
- Muon g 2 proposal at J-PARC: Phase-1 with similar BNL precision.

New Physics for the muon g - 2: at which scale?

• Δa_{μ} discrepancy at \sim 4.2 σ level:

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 v^2} \approx 2 \times 10^{-9}$

- ▶ NP is at the weak scale ($\Lambda \approx \nu$) and weakly coupled to SM particles.*
- $\blacktriangleright\,$ NP is very light (A \lesssim 1 GeV) and feebly coupled to SM particles.
- ▶ NP is very heavy ($\Lambda \gg \nu$) and strongly coupled to SM particles.

*Favoured by the *hierarchy problem* and by a WIMP DM candidate but disfavoured by the LEP and LHC bounds (supersymmetry being the most prominent example).

[For a through compilation of models, see Athron, Balazs, Jacob, Kotlarski, Stockinger, Stockinger-Kim, '21.]

$\Lambda \approx v$: SUSY and the muon (g - 2)

Figure: LHC Run 2 bounds on SUSY scenario for the muon g - 2 anomaly for tan $\beta = 40$. Orange (yellow) regions satisfy the muon g - 2 anomaly at the 1σ (2σ) level [Endo et al., '20].

Paride Paradisi (University of Padova and INFN)

$\Lambda \lesssim$ 1 GeV: Axion-like Particles and the muon (g-2)

Axion-like Particle effective Lagrangian

$$\mathcal{L} = e^2 C_{\gamma\gamma} rac{a}{\Lambda} F_{\mu
u} \tilde{F}^{\mu
u} + rac{c_{\mu\mu}}{2} rac{\partial^{
u} a}{\Lambda} \bar{\mu} \gamma_{
u} \gamma_5 \mu$$

Figure: Contributions of a scalar 's' and a pseudoscalar 'a' ALP to the $(g-2)_{\ell}$.

[Marciano, Masiero, PP, Passera '16]

[Cornella, P.P., Sumensari '19]

Figure: Δa_{μ} regions favoured at 68% (red), 95% (orange) and 99% (yellow) CL. Gray regions are excluded by the BaBar search $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$ [Bauer, Neubert, Thamm, '17]

$$\Delta a_{\mu} = \frac{m_{\mu}^2}{\Lambda^2} \left[\frac{12\alpha^3}{\pi} C_{\gamma\gamma}^2 \ln^2 \frac{\Lambda^2}{m_{\mu}^2} - \frac{(c_{\mu\mu})^2}{16\pi^2} h_1 \left(\frac{m_a^2}{m_{\mu}^2} \right) - \frac{2\alpha}{\pi} c_{\mu\mu} C_{\gamma\gamma} \ln \frac{\Lambda^2}{m_{\mu}^2} \right]$$

SMEFT Lagrangian relevant for Δa_ℓ

$$\mathcal{L} = \sum_{V=B,W} \frac{C_{eV}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) H V_{\mu\nu} + \sum_{q=c,t} \frac{C_T^{\ell q}}{\Lambda^2} (\bar{\ell}_L \sigma_{\mu\nu} e_R) (\overline{Q}_L \sigma^{\mu\nu} q_R) + h.c.$$

$$\Delta a_{\ell} \simeq \frac{4m_{\ell}^2}{e\Lambda^2} \frac{v}{m_{\ell}} \left(C_{e\gamma}^{\ell} - \frac{3\alpha}{2\pi} \frac{c_W^2 - s_W^2}{s_W c_W} C_{eZ}^{\ell} \log \frac{\Lambda}{m_Z} \right) - \sum_{q=c,t} \frac{4m_{\ell}^2}{\pi^2} \frac{m_q}{m_{\ell}} \frac{C_T^{\ell q}}{\Lambda^2} \log \frac{\Lambda}{m_q}$$

$$\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{250 \text{ TeV}}{\Lambda}\right)^2 |C_{\theta\gamma}^{\mu}| \qquad \qquad \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{50 \text{ TeV}}{\Lambda}\right)^2 |C_{\thetaZ}^{\mu}| \\ \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{100 \text{ TeV}}{\Lambda}\right)^2 |C_{T}^{\mu t}| \qquad \qquad \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{10 \text{ TeV}}{\Lambda}\right)^2 |C_{T}^{\mu c}|$$

▶ Strongly coupled NP: $C_{T}^{\mu t} \sim g_{\rm NP}^{2}/16\pi^{2} \lesssim 1$ implying $\Lambda \lesssim few x 100$ TeV, beyond the direct production reach of any foreseen collider.

[Buttazzo and P.P., '20]

Paride Paradisi (University of Padova and INFN)

On the old and new muon g-2 puzzles

SMEFT Lagrangian relevant for Δa_ℓ

Figure: Connection between the Feynman diagrams for leptonic *g*-2 (upper row) and high-energy scattering processes (lower row) within the SMEFT: $H = v + h/\sqrt{2}$

$$\Delta a_{\mu} \sim \frac{m_{\mu}v}{\Lambda^2} C_{eV,T} \quad \iff \quad \sigma_{\mu\mu\to f} \sim \frac{s}{\Lambda^4} |C_{eV,T}|^2 \quad (f = e\gamma, eZ, q\bar{q})$$

• At high energy $\sigma_{\mu\mu\to f}$ can compete with Δa_{μ} to test the very same NP!

Paride Paradisi (University of Padova and INFN)

Figure: 95% C.L. reach on Δa_{μ} , as well as on the muon EDM d_{μ} , as a function of \sqrt{s} from various processes for the reference integrated luminosity $\mathcal{L} = (\sqrt{s}/10 \text{ TeV})^2 \times 10 \text{ ab}^{-1}$.

• NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \boldsymbol{e} \frac{\boldsymbol{m}_{\ell}}{2} \left(\bar{\ell}_{\boldsymbol{R}} \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'} \ell_{\boldsymbol{L}}' + \bar{\ell}_{\boldsymbol{L}}' \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'}^{\star} \ell_{\boldsymbol{R}} \right) \boldsymbol{F}^{\mu\nu} \qquad \ell, \ell' = \boldsymbol{e}, \mu, \tau \,,$$

Branching ratios of $\ell
ightarrow \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right).$$

• Δa_{ℓ} and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{e} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

• "Naive scaling": a broad class of NP theories contributes to Δa_{ℓ} and d_{ℓ} as

$$\frac{\Delta a_{\ell}}{\Delta a_{\ell'}} = \frac{m_{\ell}^2}{m_{\ell'}^2}, \qquad \qquad \frac{d_{\ell}}{d_{\ell'}} = \frac{m_{\ell}}{m_{\ell'}}$$

Model-independent predictions

•
$${
m BR}(\ell_i o \ell_j \gamma)$$
 vs. $(m{g}-m{2})_\mu$

$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2 \\ \mathrm{BR}(\tau \to \mu\gamma) &\approx 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\mu\tau}}{10^{-2}}\right)^2 \end{aligned}$$

• EDMs vs.
$$(g-2)_{\mu}$$

$$\begin{array}{ll} d_e &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 10^{-29} \left(\frac{\phi_e^{PV}}{10^{-5}}\right) \ e \ \mathrm{cm} \,, \\ \\ d_\mu &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 2\times 10^{-22} \ \phi_\mu^{CPV} \ e \ \mathrm{cm} \,, \end{array}$$

• Main messages:

- $\Delta a_{\mu} pprox (3 \pm 1) imes 10^{-9}$ requires a nearly flavor and CP conserving NP
- **Large effects in the muon EDM** $d_{\mu} \sim 10^{-22} \ e \ {
 m cm}$ are still allowed!

[Giudice, P.P., & Passera, '12, Isidori et al., '22]

• a_{μ} from WP20 (w/o BMWc lattice result)

	[Colangelo EPS-HEP2021	proceeding
Contribution	Value ×10 ¹¹	References
Experiment (E821)	116 592 089(63)	Ref. [3]
Experiment (FNAL)	116 592 040(54)	Ref. [1]
Experiment (World-Average)	116 592 061(41)	
HVP LO (e^+e^-)	6931(40)	Refs. [6–11]
HVP NLO (e^+e^-)	-98.3(7)	Ref. [11]
HVP NNLO (e^+e^-)	12.4(1)	Ref. [12]
HVP LO (lattice, udsc)	7116(184)	Refs. [13-21]
HLbL (phenomenology)	92(19)	Refs. [22-34]
HLbL NLO (phenomenology)	2(1)	Ref. [35]
HLbL (lattice, uds)	79(35)	Ref. [36]
HLbL (phenomenology + lattice)	90(17)	
QED	116 584 718.931(104)	Refs. [37, 38]
Electroweak	153.6(1.0)	Refs. [39, 40]
HVP $(e^+e^-, LO + NLO + NNLO)$	6845(40)	
HLbL (phenomenology + lattice + M	NLO) 92(18)	
Total SM Value	116 591 810(43)	
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	251(59)	

HVP LO is the bottle-neck of the SM prediction

HLO contribution from $e^+e^- ightarrow hadrons$

Paride Paradisi (University of Padova and INFN)

HLO contribution from lattice QCD

Great progress also in lattice QCD, where spacetime is modeled as a discrete grid of points. The BMW collaboration reached a 0.8% precision!

a_µ^{HLO} = 7075(23)_{stat}(50)_{syst} [55]_{tot} x 10⁻¹¹

2-2.50 tension with the "data-driven" evaluations. ş

Borsanyi et al (BMWc), Nature 2021

"new puzzle": if BMW is correct, the "old" g-2 discrepancy (4.2 σ) would be basically gone

be however, this brings in a new tension with e^+e^- data (2.2 σ)

Here, NP in $\sigma_{had}(e^+e^- \rightarrow hadrons)$ such that

[LDL, Masiero, Paradisi, Passera 2112.08312]

- $|. (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}} \approx (a_{\mu}^{\text{HVP}})_{\text{EXP}}$
- 2. the approximate agreement between BMW and EXP is not spoiled
- 3. w/o a direct contribution a_{μ}^{NP} (i.e. NP not in muons)

Consequences of the BMW result

- Can Δa_{μ} be due to missing contributions in $\sigma(e^+e^- \rightarrow had)$?
 - An upward shift of $\sigma(s)$ also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$ defined by:

$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta \alpha(M_Z) - \Delta \alpha_{\rm had}^{(5)}(M_Z) - \Delta \alpha_{\rm top}(M_Z)}$$
$$a_{\mu}^{\rm HLO} \simeq \frac{m_{\mu}^2}{12\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\sigma(s)}{s} \,, \qquad \Delta \alpha_{\rm had}^{(5)} = \frac{M_Z^2}{4\pi\alpha^2} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\sigma(s)}{M_Z^2 - s}$$
$$\operatorname{Im} \operatorname{MOO} \sim \left| \operatorname{MOO} \right|^2 \sim \sigma(e^+e^- \to \gamma^* \to \operatorname{hadrons})$$

- A change in $\sigma(e^+e^- \rightarrow had)$ is strongly disfavoured by:
 - **EW-fit for** $\sqrt{s} \gtrsim 1$ GeV [Marciano, Passera, Sirlin, '08, Keshavarzi, Marciano, Passera, Sirlin, '20, Crivellin, Hoferichter, Manzari, Montull, '20]. A shift of $\sigma(e^+e^- \rightarrow had)$ to accomodate the Δa_{μ} anomaly would necessarely require new physics to show up in the EW-fit!
- A check of the BMW results by other lattice QCD (LQCD) coll. is worth.
- LQCD coll. should provide $\Delta \alpha_{had}^{LQCD}$ to be compared with $\Delta \alpha_{had}^{e^+e^-}$.

Light New Physics in $\sigma_{ m had}$

• Light new physics inducing a sub-GeV modification of $\sigma_{\rm had}$ is the only possibility

2. NP coupled only to hadrons

FSR effects due to NP should be included into $\sigma_{had}(s)$, not easy to be accounted for... (depend on exp. cuts and mass of NP)

however, we know that in the QED case

$$(a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{FSR}} \approx 50 \times 10^{-11} \longrightarrow |(a_{\mu}^{\text{HVP}})_{\text{BMW}} - (a_{\mu}^{\text{HVP}})_{e^+e^-}^{\text{WP20}}| \approx 150 \times 10^{-11}$$

Paride Paradisi (University of Padova and INFN)

3. NP coupled both to hadrons and electrons

ightarrow a positive sift on $(a_{\mu}^{
m HVP})_{e^+e^-}$ requires $\Delta\sigma_{
m had}^{
m NP} < 0$ (negative interference)

• Requirements:

a light spin-1 mediator with vector couplings to first generation SM fermions

$$\mathcal{L}_{Z'} \supset (g_V^e \, \overline{e} \gamma^\mu e + g_V^q \, \overline{q} \gamma^\mu q) Z'_\mu \qquad q = u, d \qquad m_{Z'} \lesssim 1 \text{ GeV}$$

• It can be shown that (neglecting iso-spin breaking corrections due to NP)

$$\frac{\sigma_{\pi\pi}^{\rm SM+NP}}{\sigma_{\pi\pi}^{\rm SM}} = \left| 1 + \frac{g_V^e(g_V^u - g_V^d)}{e^2} \frac{s}{s - m_{Z'}^2 + im_{Z'}\Gamma_{Z'}} \right|^2$$

I. Semi-leptonic processes

 $e^+e^-
ightarrow qar{q}\,$ has been measured with per-cent accuracy at LEP-II

$$\frac{\sigma_{qq}^{\text{SMANP}}}{\sigma_{qq}^{\text{SM}}} \approx 1 + 2 \frac{g_V^e g_q^Q}{e^2 Q_q} \qquad \longrightarrow \qquad |g_V^e g_V^q| \lesssim 4.6 \cdot 10^{-4} |Q_q| \qquad (\epsilon \lesssim 3.3 \cdot 10^{-3})$$

- 2. Leptonic processes
 - for $m_{Z'} \lesssim 0.3 \text{ GeV} (Z' \rightarrow e^+e^- \text{ is the main decay mode})$

 $e^+e^-
ightarrow \gamma Z'$ @ BaBar $ightarrow g_V^e \lesssim 2 \cdot 10^{-4}$

3. Iso-spin breaking observables

charged vs. neutral pion mass^2 difference $\Delta m^2 = m_{\pi^+}^2 - m_{\pi^0}^2$

$$(\Delta m^2)_{Z'} \sim \frac{(g_V^u - g_V^d)^2}{(4\pi)^2} \Lambda_{\chi}^2 \qquad (\Lambda_{\chi} \approx 1 \text{ GeV})$$

 \longrightarrow g_V^u

 $|g_V^u - g_V^d| \lesssim 0.06$ [Rescaling lattice QCD calculation of Frezzotti et al 2112.01066]

At least two independent bounds prevent to solve the "new muon g-2 puzzle"!

Outlook

- The muon g 2 represents the most longstanding hint of New Physics now, thanks to the E989 experiment at FNAL, growing to 4.2σ .
- LQCD results by the BMWc weaken the muon g − 2 discrepancy to 1.6σ but they are in tension with the EW-fit and e⁺e⁻ → hadrons experimental data:
 - The MUonE experiment can provide an independent measure of $\Delta \alpha_{had}$ which is not contaminated by new physics effects [Masiero, P.P. & Passera, '20].
- Both heavy New Physics ($\nu \lesssim \Lambda \lesssim 100 \text{ TeV}$) and ligh New Physics ($\Lambda \lesssim 1 \text{GeV}$) scenarios have the potential to account for the muon g-2 anomaly.
 - Different scenarios can be disentangled by dedicated searches at running or future experiments such as Belle II and a high-energy Muon Collider.
- If the muon g 2 anomaly will survive, we expect relevant enhancements in leptonic EDMs (especially in the muon EDM) and LFV physics.
- Testing New Physics effects in the electron g 2 at the 10^{-13} is not too far! This will bring a_e to play a pivotal role in probing New Physics in the leptonic sector.

Message: an exciting Physics program is in progress at the Intensity Frontier!

Backup slides

Experimental status of the muon EDM

[Crivellin, Hoferichter & Schmidt-Wellenburg, '18]

$$d_\mu ~~\simeq~~ \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 2 imes 10^{-22} ~\phi_\mu^{\scriptscriptstyle CPV} ~~ e~{
m cm}\,,$$

[Giudice, PP & Passera, '12]

Longstanding muon g – 2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 v^2} \approx 2 \times 10^{-9}$

Testing the muon g - 2 anomaly through the electron g - 2

$$\frac{\Delta a_e}{\Delta a_\mu} = \frac{m_e^2}{m_\mu^2} \qquad \Longleftrightarrow \qquad \Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) 0.7 \times 10^{-13}$$

► a_{θ} has never played a role in testing NP effects. From $a_{\theta}^{\text{SM}}(\alpha) = a_{\theta}^{\text{EXP}}$, we extract α which was is the most precise value of α up to 2018!

- The situation has now changed thanks to th. and exp. progresses.
- \triangleright α can be extracted from atomic physics and a_e used to perform NP tests!

[Giudice, P.P, & Passera, '12]

• Status of Δa_e as of 2012

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -9.2 (8.1) \times 10^{-13},$$

$$\delta a_e \times 10^{13}: \quad (0.6)_{\text{QED4}}, \quad (0.4)_{\text{QED5}}, \quad (0.2)_{\text{HAD}}, \quad (7.6)_{\delta\alpha}, \quad (2.8)_{\delta a} \stackrel{\text{EXP}}{=}.$$

- > The errors from QED4 and QED5 will be reduced soon to 0.1×10^{-13} [Kinoshita]
- We expect a reduction of δa_e^{EXP} to a part in 10⁻¹³ (or better). [Gabrielse]
- Work is also in progress for a significant reduction of $\delta \alpha$. [Nez]
- Status of Δa_e as of 2018: 2.4σ discrepancy [Parker et al., Science, '18]

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}}(\alpha_{\text{Berkeley}}) = -8.8 (3.6) \times 10^{-13}$$

$$\delta a_e \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (2.3)_{\delta \alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}.$$

Status of Δa_e as of 2020: 1.6σ discrepancy [Morel et al., Nature, '20]

$$\Delta a_{e} = a_{e}^{\text{EXP}} - a_{e}^{\text{SM}}(\alpha_{\text{LKB2020}}) = 4.8 (3.0) \times 10^{-13}$$

$$\delta a_{e} \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (0.9)_{\delta\alpha}, \quad (2.8)_{\delta a_{e}^{\text{EXP}}}.$$

• $\Delta a_e \lesssim 10^{-13}$ is not too far! This will bring a_e to play a pivotal role in probing new physics in the leptonic sector. [Giudice, P.P. & Passera, '12]

Paride Paradisi (University of Padova and INFN)

• Vector form factor (VFF) defined via

$$\langle \pi^{\pm}(p')|J_{\rm em}^{\mu}(0)|\pi^{\pm}(p)\rangle = \pm (p'+p)^{\mu}F_{\pi}^{V}(q^{2}) \qquad \qquad J_{\rm em}^{\mu} = \frac{2}{3}\overline{u}\gamma^{\mu}u - \frac{1}{3}\overline{d}\gamma^{\mu}d$$

$$q = p' - p$$

Using iso-spin and C invariance

$$\langle \pi^{\pm} | J^{\mu}_{\rm em} | \pi^{\pm} \rangle = \langle \pi^{\pm} | \overline{u} \gamma^{\mu} u | \pi^{\pm} \rangle = - \langle \pi^{\pm} | \overline{d} \gamma^{\mu} d | \pi^{\pm} \rangle$$

we can cast the matrix element of the Z' quark current in terms of the VFF

$$\langle \pi^{\pm}(p')|J_{Z'}^{\mu}(0)|\pi^{\pm}(p)\rangle = \pm (p'+p)^{\mu}F_{\pi}^{V}(q^{2})(g_{V}^{u}-g_{V}^{d}) \qquad \qquad J_{Z'}^{\mu} = g_{V}^{u}\overline{u}\gamma^{\mu}u + g_{V}^{d}\overline{d}\gamma^{\mu}dz_{V}^{\mu$$

$$\frac{\sigma_{\pi\pi}^{\rm SM+NP}}{\sigma_{\pi\pi}^{\rm SM}} = \left| 1 + \frac{g_V^e(g_V^u - g_V^d)}{e^2} \frac{s}{s - m_{Z'}^2 + im_{Z'}\Gamma_{Z'}} \right|^2$$

NP in Bhabha scattering?

• What if the measurement of the KLOE luminosity is affected by NP ?

[Darmé, Grilli di Cortona, Nardi 2112.09139]

$$\sigma_{
m had} \propto N_{
m had}/{\cal L}_{e^+e^-}$$

$$\sigma_{\rm had} \to \sigma_{\rm had}(1+\delta_R)$$

$$a_{\mu}^{\rm LO,HVP} \rightarrow a_{\mu}^{\rm LO,HVP} \left(1 + \delta_R\right)$$

Figure 3. Parameter range compatible at 2σ with the experimental measurement of Δa_{μ} (green region) resulting from a redetermination of the KLOE luminosity, for $\alpha_D =$ $0.5 \ m_{2D} = 0.95 m_{P} a$ and $m_{\chi_1} = 2.5 \text{ MeV}$. In the blue region the KLOE and BaBar results for σ_{bad} are brought into agreement at 2σ . The red region corresponds to a shift of the KLOE measurement in tension with BaBar (and with the other experiments) at more than 2σ .