Supersymmetric AdS_3 vacua and holography

Niall T. Macpherson

Santiago de Compostela

September 9, 2022

- A. Legramandi, G. Lo Monaco, NTM, arXiv:2012.10507 [hep-th],
- NTM, A. Ramirez, arXiv:22xx.xxxx[hep-th],
- Y. Lozano, NTM, C. Nunez, A. Ramirez, arXiv:1908.09851[hep-th], arXiv:1909.09636[hep-th], arXiv:1909.10510[hep-th], arXiv:1909.11669[hep-th],

Holography and the Swampland,

Corfu Summer Institute, 2022

Motivation

- AdS₃ solutions play an important role in string theory
 - Black string near horizons, relation to lower dim black-holes, micro-state counting
 - Dual to two dimensional conformal field theories through AdS_3/CFT_2 correspondence
- Canonical example D1-D5 near horizon, small $\mathcal{N} = (4, 4)$

$$AdS_3 \times S^3 \times CY_2 \quad \longleftrightarrow \quad SPO(CY_2) + \dots$$

- Significant progress in understanding tensionless limit (also for large $\mathcal{N} = (4, 4)$ SPO(S¹ × S³)) [Eberhardt-Gaberdiel-Gopakumar-Li...]

- AdS₃/CFT₂ most promising avenue to exploit and study the correspondence
 - Better understanding of how to quantise strings on AdS_3 generically [Maldacena-Ooguri-...]
 - CFT₂ under greater control than higher dimensional counter parts
- But has been little systematic effort to classify and construct AdS_3 vacua of string theory
 - Maximal SUSY cases not even all known!
- Aim to redress this with a view towards holography

- Supersymmetric AdS₃ vacua
 - Brief review on their construction
- All $\mathcal{N} = (8,0)$ vacua
 - Relation to Chern-Simons matter theories
- $\mathfrak{osp}(n|2)$ vacua for n > 4
 - Evidence for (6,0) and (5,0) SCFTs
- Small $\mathcal{N} = (4,0)$ vacua
 - Conformal CY₂ class and dual linear quivers

Supersymmetric AdS_3 vacua

- An AdS₃ string vacua is a solution of d=10,11 supergravity decomposing a warped AdS₃×M_{7,8}
 - For d = 10 type IIA/IIB, bosonic fields

$$ds^{2} = e^{2A} ds^{2} (AdS_{3}) + ds^{2} (M_{7}), \quad H = e^{3A} h_{0} vol(AdS_{3}) + H_{3},$$

$$F = f_{\pm} + e^{3A} vol(AdS_{3}) \wedge \star_{7} \lambda f_{\pm}$$

where (A, f_{\pm}, H_3) and dilaton Φ are AdS₃ independent $(d(e^{3A}h_0) = 0)$

- For d = 11, M-theory, bosonic fields

$$ds^2 = e^{2A} ds^2 (AdS_3) + ds^2 (M_8), \quad G_4 = e^{3A} vol(AdS_3) \wedge F_1 + F_4.$$

- For a true string vacuum M_{7/8} should be compact (or more generally bounded)
 Holographic duals to CFT₂ should be thus.
- In this talk by vacua I simply mean SO(2,2) invariant.

- This weaker definition includes holographic dual to conformal defects in higher dim CFTs.

- Want supersymmetric solutions, but many ways to achieve this for AdS_3
 - i.e many d = 2 superconformal algebras can live on boundary of AdS₃

Supersymmetric AdS_3 vacua: $\mathcal{N} = 1$ and G-structures

• Type II AdS₃ solutions support two MW spinors. Both $\mathcal{N} = (1,0)$ or $\mathcal{N} = (0,1)$

$$\epsilon_{1} = \zeta \otimes \theta_{+} \otimes \chi_{1}, \quad \epsilon_{2} = \zeta \otimes \theta_{\mp} \otimes \chi_{2}, \qquad \zeta : \underbrace{\nabla_{\mu} \zeta_{\pm} = \pm \frac{m}{2} \gamma_{\mu} \zeta_{\pm}}_{\mathbf{2 \text{ of } \mathfrak{sl}(2)_{\pm} \subset \mathfrak{so}(2,2)}}$$

SUSY preservation defined in terms of bi-spinor on M₇

$$\chi_1 \otimes \chi_2^{\dagger} = \frac{1}{8} \sum_{n=1}^7 \frac{1}{n!} \chi_2^{\dagger} \gamma_{a_n \dots a_1} \chi_1 \gamma^{a_1 \dots a_n} = \cos \theta (\Psi_+ + i \Psi_-)$$

• Necessary and sufficient condition purely geometric - RR flux output not input [Dibitetto-Lo Monaco-Passias-Petri-Tomasiello], [NTM-Tomasiello]

$$e^{3A}h_0 = 2me^{2A}\sin\theta, \quad d(e^{2A}\sin\theta) = 0, \ d_{H_3}(e^{3A-\Phi}\cos\theta\Psi_{\pm}) \mp 2me^{2A-\Phi}\cos\theta\Psi_{\mp} = \frac{e^{3A}}{8}\star_7\lambda(f_{\pm}),$$

$$d_{H_3}(e^{2A-\Phi}\cos\theta\Psi_{\mp}) = \pm \frac{1}{8}e^{2A}\sin\theta f_{\pm}, \qquad e^A(\Psi_{\mp}, \ f_{\pm})_7 = \mp \frac{m}{2}e^{-\Phi}\cos\theta \text{vol}(M_7),$$

- Two spinors may be decomposed in common basis $||V||^2 = ||\chi||^2 = 1$ $\chi_1 = ||\chi_1||\chi,$ $\chi_2 = ||\chi_2||(\cos \alpha + i \sin \alpha \psi)\chi \Rightarrow \Psi_{+/-} = \frac{1}{8} \begin{cases} \operatorname{Re}(e^{i\alpha}e^{-iJ_2} - \Omega_3 \wedge V), \\ \operatorname{Im}(e^{i\alpha}e^{-iJ_2} \wedge V + \Omega_3) \end{cases}$
- SU(3)-structure (J_2, Ω_3) unless $\alpha = 0$, then G₂-structure, 3-form

Supersymmetric AdS₃ vacua: 2d superconformal algebras

- Rich variety of superconformal algebras \mathcal{SCA} exists for d = 2.
 - Direct sums of chiral algebras $\mathcal{SCA} = \mathcal{SCA}_+ \oplus \mathcal{SCA}_-$, preserving $\mathcal{N} = (n_+, n_-)$.
- (Simple) SCA_{\pm} are classified [Fradkin-Linetsky] in terms of their bosonic part:

and a rep of \mathfrak{g} , ρ , which supercurrents transform in.

• Those embeddable into $d = 10, 11 \text{ AdS}_3$ supergravity are [Beck-Gran-Gutowski-Papadopoulos]

n_{\pm}	\mathcal{SCA}_{\pm}	g	ρ	comment
n	$\mathfrak{osp}(n 2)$	$\mathfrak{so}(n)$	n	Series
2n, n > 2	$\mathfrak{su}(1,1 n)$	$\mathfrak{su}(n)\oplus\mathfrak{u}(1)$	$\mathbf{n} \oplus \overline{\mathbf{n}}$	Series
8	$\mathfrak{osp}^*(4 4)$	$\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)$	(4, 2)	unique for $M_{7/8}$
8	$\mathfrak{f}(4)$	$\mathfrak{spin}(7)$	8	unique
7	$\mathfrak{g}(3)$	\mathfrak{g}_2	7	unique
4	$\mathfrak{d}(2,1,lpha)$	$\mathfrak{su}(2)\oplus\mathfrak{su}(2)$	(2, 2)	Large $\mathcal{N} = 4$
4	$\mathfrak{su}(1,1 2)/\mathfrak{u}(1)$	$\mathfrak{su}(2)$	$2\oplus\overline{2}$	Small $\mathcal{N} = 4$

- Many more possibilities than higher dim cases, intimately related to Virasoro algebra. - $c.f \text{ CFT}_3$ which has just $\mathfrak{osp}(n|4)$
- For AdS₃ $\mathcal{N} = (n, 8 n)$ is maximal, 4 ways to realise just $\mathcal{N} = (8, 0)$

Supersymmetric AdS_3 vacua: Realising specific SCA_{\pm}

• $\mathcal{N} = (n, 0)$ AdS₃ vacua schematically realises $\mathcal{SCA}_+(n, \mathfrak{g}, \rho)$ as

$$\epsilon = \sum_{I=1}^{n} \underbrace{\zeta_{+}^{I}}_{\mathfrak{sl}(2)_{+}} \otimes \chi^{I}, \qquad \underbrace{\mathcal{L}_{K^{a}}(\mathfrak{g})\chi^{I} = \left[T_{a}(\mathfrak{g},\rho)\right]^{I}_{J}\chi^{J}}_{(\mathfrak{g},\rho) \text{ data}}$$

 $0 = \mathcal{L}_{K^a}(\mathfrak{g})(\text{bosonic fields}), \quad [T_a, T_b] = f_{abc}T_c, \quad [K_a, K_b] = f_{abc}K_c$

• ζ_{+}^{I} formed of AdS₃ Killing spinors $\nabla_{\mu}\zeta_{+} = +\frac{m}{2}\gamma_{\mu}\zeta_{+}$,

- In many cases problem is largely an exercise in group theory
 - i.e. what $M_{7,8}$ can support \mathfrak{g} with spinors in (\mathfrak{g}, ρ) ?
- In high SUSY cases doing this carefully leaves not much left to be solved for with your favorite technique.
- SUSY implied by single $\mathcal{N} = (1,0)$ sub-sector and action of \mathfrak{g}
 - allows one to apply existing low SUSY classifications to extended SUSY.

•
$$\mathcal{N} = (n_+, n_-)$$
 works analogously $\epsilon = \zeta_+^I \otimes \chi_+^I + \zeta_-^j \otimes \chi_-^j$

- But also need
$$\mathcal{L}_{K(g_-)}\chi^I_+ = \mathcal{L}_{K(g_+)}\chi^i_- = 0$$

8 / 22

All $\mathcal{N} = (8,0)$ solutions in 10 and 11 dimensions

A. Legramandi, G. Lo Monaco, NTM

9/22

All $\mathcal{N} = (8,0)$ vacua in 10 and 11 dimensions

• Possible $\mathcal{N} = (8,0)$ SCAs are the following

Superconformal algebra	\mathfrak{g}_R	ρ
$\mathfrak{osp}(8 2)$	$\mathfrak{so}(8)$	8
$\mathfrak{f}(4)$	$\mathfrak{spin}(7)$	8_{s}
$\mathfrak{su}(1,1 4)$	$\mathfrak{su}(4) \oplus \mathfrak{u}(1)$ $\mathfrak{sp}(2) \oplus \mathfrak{sp}(1)$	$\mathbf{4_{-1}} \oplus \mathbf{\overline{4_1}}$
$\mathfrak{osp}(4^* 4)$	$\mathfrak{sp}(2)\oplus\mathfrak{sp}(1)$	(4, 2)

R-symmetries need large manifold, the problem of finding all solutions is tractable.
 - ds²(M_{7/8}) = ds²(M_g) + ds²(M_{co-dim}), dim(M_{co-dim}) is small.

• Considering only products of group spaces the (minimal) possibilities are

$$M_{\mathfrak{g}_R} = S^7, S^6, S^5 \times S^1, S^4 \times S^2$$

- These can all be realised by simply classifying $AdS_3 \times S^4$ solutions in 10 and 11d
- However, to find all solutions we must also consider all possible fiber bundles
 - Here we are greatly aided by the restriction that $\dim(M_{\mathfrak{g}}) \leq 8$
 - It turns out the only additional possibilities are 3 squashing* of the 7-sphere preserving

$$U(4)$$
, $Spin(7)$, $SP(2) \times SP(1)$

• Solved for M_{co-dim} data with existing geometric conditions for $\mathcal{N} = 1 \text{ AdS}_3$ [Martelli-Sparks,Dibitetto-Lo Monaco-Passias-Petri-Tomasiello]

All $\mathcal{N} = (8,0)$ solutions in 10 and 11 dimensions

• Summary of $\mathcal{N} = (8, 0)$ solutions

Geometry	Algebra	Supergravity	Comment
$AdS_4 \times S^7$	$\mathfrak{osp}(8 2)$	M-theory	locally higher dim AdS
$\operatorname{AdS}_3 \times \widehat{\operatorname{S}}^7 \times I$	$\mathfrak{f}(4)$	M-theory	conformal defect
$AdS_3 \times S^6 \times I$	$\mathfrak{f}(4)$	IIA	[Dibitetto-Lo Monaco-Passias-Petri-Tomasiello]
$\mathrm{AdS}_3 \times \widehat{\mathrm{S}}^7 \times I$	$\mathfrak{su}(1,1 4)$	M theory	conformal defect
$AdS_5 \times S^5$	$\mathfrak{su}(1,1 4)$	IIB	locally higher dim AdS
$\operatorname{AdS}_3 \times \widehat{\operatorname{S}}^7 \times I$	$\mathfrak{osp}(4^* 4)$	M-theory	conformal defect
$\mathrm{AdS}_7/\mathbb{Z}_k \times \mathrm{S}^4$	$\mathfrak{osp}(4^* 4)$	M-theory	locally higher dim AdS
$AdS_3 \times S^4 \times S^2 \times I$	$\mathfrak{osp}(4^* 4)$	IIA	reduction of former

• Here \widehat{S}^7 indicates a squshing of the 7-sphere

- Several solutions are simply the embedding of AdS₃ into higher dim AdS spaces
 or related to this via orbifolds and dimensional reduction.
- Exception is $AdS_3 \times S^6 \times I$ sol [Dibitetto-Lo Monaco-Passias-Petri-Tomasiello]
- More interestingly we find 3 new solutions in d = 11 on squashed 7-spheres!
- It turns out that no $\mathcal{N} = (8,0)$ solution has a compact internal space
 - disappointing for AdS_3/CFT_2
- But new solutions do have attractive AdS/CFT interpretation

• U(4) preserving squashed S⁷, $dV^0 = 2J^0$ are U(4) invariants

$$\frac{ds^2}{L^2} = \overbrace{\cosh^2(2r)ds^2(\operatorname{AdS}_3) + dr^2}^{\operatorname{AdS}_4, \operatorname{radius } 2} + ds^2(\mathbb{CP}^3) + \tanh^2(2r)(V^0)^2,$$
$$G = 6 \tanh(2r)\operatorname{vol}(\operatorname{AdS}_3) \wedge dr - \frac{2L^2}{\cosh(2r)}J^0 \wedge J^0 - \frac{2L^2\sinh(2r)}{\cosh^2(2r)}dr \wedge V^0 \wedge J^0$$

- Regular zero at r = 0 AdS₄×S⁷ at $r = \infty$
- Dual to $\mathfrak{su}(1,1|4)$ surface defect in $\mathcal{N} = 8$ Chern-Simons matter theory
- Spin(7) preserving squashed * S⁷, $d\Phi^0 = 4 \star_7 \Phi^0$ Spin(7) invariants

$$ds^{2} = \frac{L^{2}}{\cos^{2}(r/2)\sin^{4/3}(r/2)} \left((5+3\cos r)ds^{2}(\mathrm{AdS}_{3}) + \frac{9}{4}\frac{\sin^{4}(r/2)}{5+3\cos r}dr^{2} + \frac{9}{2}\sin^{2}r\,ds^{2}(\mathrm{S}^{7}) \right) ,$$

$$G = -L^{3}\frac{(5+3\cos r)(1+7\cos r)}{2\sqrt{2}\sin^{3}(r/2)\cos^{4}(r/2)} \mathrm{vol}(\mathrm{AdS}_{3}) \wedge dr + 54\sqrt{2}L^{3}\,d\left(\cos(r/2)\Phi^{0}\right)$$

- Interpolates between O2 plane on AdS_3 and $AdS_4 \times S^7$ $\mathfrak{f}(4)$ conformal defect dual.
 - In above could use any weak G₂ or SE₇ manifold, less SUSY
 - 3rd defect on $SP(2) \times SP(1)$ preserving squshed S⁷. Most complicated, still closed form.

$\mathfrak{osp}(n|2)$ for n > 4

NTM-Ramirez

◆□ → ◆ □ → ◆ ■ → ◆ ■ → ○ へ (~ 13 / 22

$\mathfrak{osp}(n|2)$: Generalities

• $\mathfrak{osp}(n|2)$: (n,0) SCA with $\mathfrak{g} = \mathfrak{so}(n)$ and $\rho = \mathbf{n}$ [Bershadsky,Knizhnik]:

- Central charge:
$$c = \frac{k}{2} \frac{n^2 + 6k - 10}{k + n - 3}$$

- Free field realisation: 1 free scalar, n real fermions, $\mathfrak{so}(n)$ current algebra [Mathieu]
- n = 1, 2 are the unique (1, 0) and (2, 0) SCA's, see talk of Achilleas Passias
- n = 3 releasable with oribifolds of $AdS_3 \times S^3 \times S^3 \times S^1$ also with $S^{2,3}$ fibered over $S^{2,3}$. [Eberhardt-Zadeh], [Legramandi-NTM].
- n = 4 is simply a special case of Large (4, 0): $\mathfrak{d}(2|1; \alpha = 1) = \mathfrak{osp}(4|2)$

- ie D1-D5 + D1-D5 near horizon with $N_{D1}^{(1)}N_{D5}^{(1)} = N_{D1}^{(2)}N_{D5}^{(2)}$

- n = 8,7 are locally the same and unique, is only orbifolds of $AdS_4 \times S^7$ available.
- What remains is n = 5, 6, have very recently found
 - (6,0) with SO(6) R-symmetry necessitates \mathbb{CP}^3 (c.f AdS₄ × \mathbb{CP}^3)
 - Can break SO(6) to SO(5) by squashing ${\rm S}^2\to \mathbb{CP}^3\to {\rm S}^4$ and realise (5,0)

- \mathbb{CP}^3 can appear with a U(1) fibered over it, only works in d = 11, simply the lift of IIA cases with no U(1) fiber.

- Sufficient ansatz is $AdS_3 \times \mathbb{CP}^3$ foliated over an interval.

14 / 22

 $\mathfrak{osp}(n|2)$: Local solutions n = 5, 6

- \mathbb{CP}^3 : SO(6) inv J_2 , SO(5) inv (\tilde{J}_2, Ω_3) define two SU(3)-structures
 - $dJ_2 = 0, \ d\tilde{J}_2 = 4\text{Re}\Omega_3, \ d\text{Im}\Omega_3 = (J_2 \wedge J_2 + 3\tilde{J}_2 \wedge \tilde{J}_2), \ 2J_2 \wedge \tilde{J}_2 = J_2 \wedge J_2 + \tilde{J}_2 \wedge \tilde{J}_2$
 - Sufficient to construct 2 SO(6) and 4 SO(5) spinors starting from Killing spinor on S^7
 - Can then construct d = 7 spinors and exploit (1, 0) G-structure conditions.
- No solutions in IIB. Local $\mathcal{N} = (5,0)$ IIA solutions defined by just u(r), h(r)

$$\frac{ds^2}{L^2} = \frac{hu}{\sqrt{\Delta}} ds^2 (\text{AdS}_3) + \frac{\sqrt{\Delta}}{4} \bigg[\underbrace{\frac{2}{uh''} ds^2 (\text{S}^4) + \frac{2}{2h'u' + uh''}}_{\text{Squashed } \mathbb{CP}^3} \underbrace{\frac{Fibered \, \text{S}^*}{(Dy_i)^2}}_{\text{Squashed } \mathbb{CP}^3} + \frac{1}{hu} dr^2 \bigg], \quad e^{-\Phi} = \frac{Lh'' \sqrt{2h'u' + uh''}}{\sqrt{2}\Delta^{\frac{1}{4}}},$$

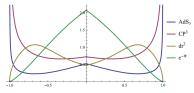
$$H = L^2 d \left[\left(r - \frac{uh' + hu'}{2h'u' + uh''} \right) (-J_2 + \tilde{J}_2) + \left(r - \frac{uh' - hu'}{uh''} \right) (J_2 + \tilde{J}_2) \right], \quad \Delta = 2hh''u^2 - (uh' - hu')^2$$

- F_0, F_2, F_4 non trivial, solutions governed by 2 ODEs
 - SUSY demands: $u^{\prime\prime}=0$ globally, u= constant implies enhancement to $\mathcal{N}=(6,0)$
 - BI's: Romans mass defined as $F_0 = -h'''$, $c.f \operatorname{AdS}_7$ in massive IIA
- Locally $h \mathcal{O}(3)$ polynomial, ie $h = c_2 + c_4 r + c_6 r^2 + c_8 r^3$
 - up to normalisation c_p are the Page charges of colour Dp branes
- Globally h''' can be discontinuous \Rightarrow D8 sources: $dF_0 \sim \Delta c_8 \delta(r_{\beta} r_0)_{\pm}$

15/22

$\mathfrak{osp}(n|2)$: Global solutions n = 5, 6

- Can glue local solutions together with D8 branes, supersymmetric at fixed loci along r
 - requires $B_2 \rightarrow B_2 + \Delta B_2$ which induces shifts in Page charges as D8s are crossed
- Domain of r defined by upper/lower local solutions, have identified
 - (6,0): Local D8/O8, O2 and AdS₄ × \mathbb{CP}^3 ($F_0 = 0$ is locally this)
 - (5,0): D6, O6, O2 and regular zero
- Can construct duals to CFT₃, but also duals to $\frac{1}{2}$ BPS defects in $\mathcal{N} = 6$ CSM theories
- Simplest (6,0) sol: $-a \le r \le a$ bounded between D8/O8s, glued with D8s at r = 0,



- But generically can glue arbitrary $r \in [a_{l-1}, a_l]$ cells together with D8s
 - Suggestive of new (6,0) and (5,0), quiver SCFTs
 - CFT side appears undeveloped, but AdS/CFT suggests such constructions exist $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Small $\mathcal{N} = (4,0)$ vacua

Lozano-NTM-Nunez-Ramirez

Small $\mathcal{N} = (4, 0)$: Conformal CY₂ solutions

- Interesting case is small $\mathcal{N} = (4, 0)$: $\mathfrak{g} = \mathfrak{su}(2), \ \rho = \mathbf{2} \oplus \overline{\mathbf{2}}$
 - Black string near horizons, relation to 5d black-holes and micro-state counting
- In recent years have classified $AdS_3 \times S^2 \times M_4$ solutions in type II
 - Assume SUSY imposes no necessary isometries in M₄
 - Local form of 2 SU(2)-structure classes in IIA, 2 Identity-structure cases in IIB known $_{\rm [NTM-Ramirez]}$
 - Many options for solutions, allow me to focus on one.
- IIA conformal CY₂ class: $h_8(\rho), u(\rho), h_4(\rho, CY_2), u' = \partial_{\rho} u$

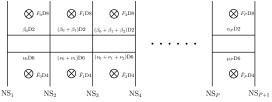
$$ds^{2} = \frac{u}{\sqrt{h_{4}h_{8}}} \left(ds^{2} (\mathrm{AdS}_{3}) + \frac{1}{4\Delta} ds^{2} (\mathrm{S}^{2}) \right) + \sqrt{\frac{h_{4}}{h_{8}}} ds^{2} (\mathrm{CY}_{2}) + \frac{\sqrt{h_{4}h_{8}}}{u} d\rho^{2},$$
$$e^{-\Phi} = h_{8}^{\frac{5}{4}} h_{4}^{\frac{1}{4}} u^{-\frac{1}{2}} \sqrt{\Delta}, \quad H = \frac{1}{2} d \left(-\rho + \frac{uu'}{4h_{4}h_{8}\Delta} \right) \mathrm{Vol}(\mathrm{S}^{2}) + \frac{d\rho}{h_{8}} \wedge \mathcal{F}, \quad \Delta = 1 + \frac{(u')^{2}}{4h_{4}h_{8}}$$

• $(F_0 = h'_8, F_2, F_4)$ non trivial. SUSY demands: u'' = 0, $\star_4 \mathcal{F} + \mathcal{F} = 0$

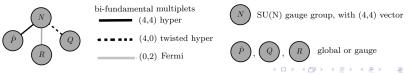
- BI's away form sources: $h_8'' = 0$, $\frac{h_8}{u} \nabla_{CY_2}^2 h_4 + h_4'' + \frac{1}{h_8^3} |\mathcal{F}|^2 = 0$, $d\mathcal{F} = 0$
- Assume symmetries of CY₂ preserved $\Rightarrow \mathcal{F} = 0$ and $(h_8(\rho), h_4(\rho))$ piecewise linear
 - Discontinuous $(h'_8, h'_4) \Rightarrow (D8, D4)$ sources: $\partial^2_{\rho} h_{8,4} \sim \sum_i Q_i^{8,4} \underbrace{\delta}_{\rho} (\rho \rho_i^{8,4})_{i=1}$

Small $\mathcal{N} = (4, 0)$: CFT matching

- Can glue arbitrarily many local solutions together with these D4s and D8s
 - Must arrange for the space to be bounded between regular zero or physical singularity.
 - Continuity of NS sector constrains $Q_i^{8,4}$ and Page charges (color branes) between them.
- We are essentially describing a Hanany-Witten brane setup of the form



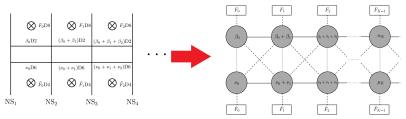
- Suggests a dual description in terms of linear quivers.
- Small $\mathcal{N}=(4,0)$ SCFTs realised as the IR fixed points of flows from weakly coupled quivers in UV
- Such UV quivers may be constructed in terms of blocks of the form



19/22

Small $\mathcal{N} = (4, 0)$: CFT matching

• From the Hanany-Witten brane setup one can read off corresponding quiver



- Cancellation of gauge anomalies at $\alpha_k \Rightarrow F_{k-1} = \nu_{k-1} \nu_k$
 - Condition reproduced by imposing continuity of NS sector in gravity!
- An important test of a duality is to confirm the central charges match. On the CFT side can use small SCA and R-symmetry anomaly to establish

$$c_{cft} = 6(n_{\rm hyp} - n_{\rm vec})$$

which can be read off the quiver.

• In gravity, the holographic central charge is

$$c_{hol} = \frac{3}{\pi} \int_0^{2\pi(P+1)} h_8(\rho) h_4(\rho) d\rho$$

• These quantities do indeed match in the limit that it makes sense to compare them! -ie Large ranks and long quivers, making the gravity side (mostly) weakly coupled.

Conclusions

- Much progress on classification of AdS₃ vacua with extended SUSY
 - Many AdS/CFT avenues to explore
- $\mathcal{N} = (8,0)$ solutions now all known!
 - Non compact, but include duals to defects in Chern-Simmons matter theories
 - Should be able to compute full KK spectra, spin(2) sector under way
- Have constructed backgrounds realising $\mathfrak{osp}(n|2)$ SCA's for n > 4
 - In the process of constructing duals to (6,0) and (5,0) linear quivers
 - Conspicuously absent from CFT literature, can make interesting predictions
- Dual geometry/quiver pairs already constructed for small (4,0)
 - Part of a small corner of 1 of 4 classes, expect many other things possible
- Many interesting things left to attack for AdS_3/CFT_2
 - Only other maximal case completely classified is Large $\mathcal{N} = (4, 4)$ [D'Hoker et-al], [NTM]
 - All $\mathcal{N} = (n 8, n)$ desired: small $\mathcal{N} = (4, 4)$ next on the list
 - Status of large (4,0) still mostly unknown, expect a fair bit more is possible

Thank you

◆□ → < 団 → < 臣 → < 臣 → < 臣 → ○ < ○ 22 / 22