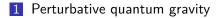
Markus B. Fröb

Institut für Theoretische Physik, Universität Leipzig, Germany

19. September 2022



- 3 Non-commutative coordinates
- 4 Conclusion and outlook

Perturbative quantum gravity

Perturbative quantum gravity

Perturbative quantum gravity

Perturbative quantum gravity (1/2)

- Study gravity $S = S_G + S_M$ with $S_G = \frac{1}{16\pi G_N} \int (R 2\Lambda) \sqrt{-g} d^4x$ and S_M matter action perturbatively around a given background
- Metric decomposition $g_{\mu
 u} = g^{(0)}_{\mu
 u} + h_{\mu
 u}$
- Linear approximation: Gravitational action $S_{\rm G}$ to second order in perturbation $h_{\mu\nu}$, matter action $S_{\rm M}$ to linear order
- Straightforward example: One-loop quantum corrections to Newtonian potential of free particle in flat space background

•
$$V(r) = -\frac{Gm}{r} \left[1 + \frac{[1 + \frac{5}{4}(1 - 6\xi)^2]N_0 + 6N_{1/2} + 12N_1}{45\pi} \frac{\ell_{\text{Pl}}^2}{r^2} \right]$$

- $\ell_{\rm Pl} = \sqrt{\hbar G_{\rm N}/c^3}$: Planck length, N_s : number of particles of spin *s*, ξ : non-minimal scalar coupling
- Various methods for calculation, via effective action: MBF 1607.03129

Perturbative quantum gravity

Perturbative quantum gravity (2/2)

- Infinitesimal coordinate transformation $x^{\mu} \rightarrow \tilde{x}^{\mu} = x^{\mu} + \xi^{\mu}$ $(\delta x^{\mu} = \xi^{\mu})$ gives gauge transformation $\delta A = \mathcal{L}_{\xi} A$
- If A⁽⁰⁾ = 0, then at linear order δA⁽¹⁾ = L_ξA⁽⁰⁾ = 0, but at higher orders gauge-dependent since A⁽¹⁾ ≠ 0 in general
- Stewart–Walker lemma: if δA⁽ⁿ⁺¹⁾ = 0, then A⁽ⁿ⁾ is a linear combination of δ's with constant coefficients
- Perturbative diffeo's lead to gauge transformations of $h_{\mu\nu}$, which can be seen as spin-2 field on the background:

 $\delta_\xi h_{\mu
u} =
abla^{(0)}_\mu \xi_
u +
abla^{(0)}_
u \xi_
\mu + \cdots$, with $abla^{(0)}$ background derivative

- (Non-local) decomposition of metric perturbation at linear order: $h_{\mu\nu} = h_{\mu\nu}^{\text{inv}} + \mathcal{L}_Z g_{\mu\nu}^{(0)}$ with $\delta h_{\mu\nu}^{\text{inv}} = 0$ and $\delta Z^{\mu} = \xi^{\mu}$ (e.g., Bardeen variables)
- Newtonian potential $V(r) = \frac{1}{2} \langle h_{00}^{\text{inv}}(x) \rangle$

Relational observables

Relational observables (1/2)

- Let there be given 4 fields X^(μ)[g, φ,...] depending on field content, transforming under diffeo's as scalars: δX^(μ) = ξ^ρ∂_ρX^(μ), and their background value X^(μ)₀
- Expand X^(µ) = X^(µ)₀ + X^(µ)₁ + ... in perturbation theory and invert to obtain X^(µ)₀[X] ⇒ transforms inversely to a scalar
- Invariant observable A(χ) is given by evaluating a field A at the position X₀^(μ), holding X^(μ) fixed
- ⇒ Relational observables: the $X^{(\mu)}$ are configuration-dependent coordinates, $\mathcal{A}(\chi)$ is the value of A provided that $\chi^{\mu} = X^{(\mu)}$, and by evaluating at $X_0^{(\mu)}$ we interpret \mathcal{A} as field on background
- Generic spacetime: use curvature scalars for the $X^{(\mu)}$
- Add scalar fields by hand (Brown–Kuchař dust), but this changes the dynamics
 Giesel et al. 2003.13729

Relational observables (2/2)

- Cosmology (FLRW): only 1 scalar field (inflaton ϕ), but we need 4
- Minkowski/de Sitter: no scalar field at all
- First complete solution in cosmology: Since background spatial coordinates are harmonic $\triangle x^i = 0$, define $X^{(i)}(x)$ as harmonic coordinates for the full Laplacian $\triangle_{g,\phi}$ on constant-inflaton hypersurfaces $\phi = \text{const}$ Brunetti et al. 1605.02573
- Generalisations to flat space, to causal harmonic coordinates in cosmology, to geodesic lightcone coordinates MBF, Lima 2108.11960 and references therein
- Invariant metric perturbation $\mathcal{H}_{\mu\nu}(X) = \frac{\partial x^{\alpha}}{\partial X^{\mu}} \frac{\partial x^{\beta}}{\partial X^{\nu}} g_{\alpha\beta}(x(X)) \eta_{\mu\nu}$, holding X fixed. First order: $\mathcal{H}_{\mu\nu} = h_{\mu\nu} - 2g_{\rho(\mu}^{(0)}\partial_{\nu)}X_{(1)}^{(\rho)} + \dots$
- Gauge-invariant graviton corrections to Newton potential, to Hubble rate in inflation, ... MBF et al. 2109.09753, MBF 1806.11124, Lima 2007.04995, ...

-Non-commutative coordinates

Non-commutative coordinates

Non-commutative coordinates (1/4)

- In flat space: generalised harmonic coordinates $abla^2 X^{(\mu)} = 0$
- First order: $X_{(1)}^{(\mu)}(x) = \int G(x,y) \left[\partial_{\nu} h^{\mu\nu} \frac{1}{2} \partial^{\mu} h \right](y) d^4y$
- Green's function of the flat d'Alembertian $\partial^2 G(x, y) = \delta^4(x y)$
- Classical theory: retarded Green's function, quantum theory: Feynman propagator
- Since quantised h_{µν} has non-trivial commutator, also the field-dependent coordinates X^(µ) have!
- Linear theory: $\left[X_1^{(\mu)}, X_1^{(\nu)}\right] = \left\langle \left[X_1^{(\mu)}, X_1^{(\nu)}\right] \right\rangle \mathbb{1}$
- Graviton propagator: $G^{\mathsf{F}}_{\mu\nu\rho\sigma}(x,x') = \left(2\eta_{\mu(\rho}\eta_{\sigma)\nu} - \eta_{\mu\nu}\eta_{\rho\sigma}\right)G^{\mathsf{F}}(x,x')$

• Scalar propagator: $G^{\mathsf{F}}(x, x') = -\int \frac{\mathrm{e}^{\mathrm{i} p(x-x')}}{p^2 - \mathrm{i}0} \frac{\mathrm{d}^4 p}{(2\pi)^4}$

Non-commutative coordinates (2/4)

- Possible IR divergence due to integration over infinite space-time related: Higuchi 0809.1255, Higuchi Lee 0903.3881
- Solution: in-in formalism (= Schwinger-Keldysh formalism = closed-time-path formalism) computes true expectation values
- Instead of simple time integration computing in-out matrix elements, add backward part of time contour
- If all fields are on forward ("+") contour: time-ordered (Feynman) expectation values, all fields on backward ("-") contour: anti-time-ordered (Dyson), mixed: Wightman functions
- Change also coordinates $(H^{\mu} = \partial_{\nu} h^{\mu\nu} \frac{1}{2} \partial^{\mu} h)$: $X_1^{+(\mu)}(x) = \int G^{++}(x, y) H^{\mu}_+(y) d^4y - \int G^{+-}(x, y) H^{\mu}_-(y) d^4y,$ $X_1^{-(\mu)}(x) = \int G^{-+}(x, y) H^{\mu}_+(y) d^4y - \int G^{--}(x, y) H^{\mu}_-(y) d^4y$

Non-commutative coordinates (3/4)

- Classical limit: both time contours coincide, and both $X_1^{+(\mu)}(x)$ and $X_1^{-(\mu)}(x) \to X_1^{(\mu)}(x) = \int G_{\text{ret}}(x, y) H^{\mu}(y) d^4y$
- \blacksquare Quantum theory: IR divergence is avoided by choosing adiabatic interacting vacuum $|\Omega\rangle$
- Practically: choose initial time $t^{\pm} \to -\infty(1 \pm i\epsilon)$ with $\epsilon > 0$ and take limit $\epsilon \to 0$ after integration $\begin{bmatrix} X_1^{(\mu)}(x), X_1^{(\nu)}(x') \end{bmatrix} = \int \frac{i\eta^{\mu\nu}}{2|\mathbf{p}|^3} \begin{bmatrix} \cos[|\mathbf{p}|(t-t')] |\mathbf{p}|(t-t') \sin[|\mathbf{p}|(t-t')] \end{bmatrix} e^{i\mathbf{p}(\mathbf{x}-\mathbf{x}')} \frac{d^3\mathbf{p}}{(2\pi)^3} \mathbb{1}$ $= -i\frac{\eta^{\mu\nu}}{8\pi} \operatorname{sgn}(t-t')\Theta[-(x-x')^2] \mathbb{1}$
- Fully Lorentz-invariant result: commutator vanishes for spacelike separations, is constant for timelike separations

Non-commutative coordinates (4/4)

Since background coordinates x^{μ} commute, we have for the full field-dependent coordinates $X^{\mu} = x^{\mu} + \sqrt{16\pi}\ell_{\mathsf{Pl}}X_{1}^{(\mu)}(x) + \mathcal{O}(\ell_{\mathsf{Pl}}^{2})$ the commutator

•
$$[X^{\mu}, Y^{\nu}] = -2i\ell_{\mathsf{Pl}}^2 \eta^{\mu\nu} \operatorname{sgn}(X^0 - Y^0)\Theta[-(X - Y)^2] + \mathcal{O}(\ell_{\mathsf{Pl}}^3)$$

- Most general form of possible commutator: [X^μ, Y^ν] = iθ^{μν}(X, Y) with θ^{μν}(X, Y) = −θ^{νμ}(Y, X)
- Well-known NC: $\theta^{\mu\nu} = -\theta^{\nu\mu} = \text{const, our NC: symmetry in indices, antisymmetry from sgn function}$
- Standard deviation formula $\Delta_A \Delta_B \geq \frac{1}{2} |\langle [A, B] \rangle|$ leads to generalised uncertainty principle $\Delta_X \Delta_Y \geq \ell_{\mathsf{Pl}}^2 \Theta[-(X - Y)^2]$: measurements of coordinates with timelike separation are uncertain with standard deviation of Planck length, measurement with spacelike separation can be exact

└─ Conclusion and outlook

Conclusion and outlook

- To define invariant observables in (perturbative) quantum gravity, one needs field-dependent coordinates
- These coordinates are non-commutative, and their commutator follows from standard effective quantum field theory techniques
- Non-commutativity is not constant and Lorentz-invariant, standard deviation for coordinate measurements is Planck length $\ell_{Pl} = \sqrt{G_N}$
- Future work: higher orders in l_{PI}, different backgrounds (de Sitter space, ...), observational signatures

Conclusion and outlook

Thank you for your attention

Questions?

Reference: M. B. Fröb, A. Much, K. Papadopoulos, Non-commutative Geometry from Perturbative Quantum Gravity, arXiv:2207.03345

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — project nos. 415803368 and 406116891 within the Research Training Group RTG 2522/1.