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Poisson gauge theories: motivation and definition.

e Non-commutative deformations of space-time may be char-
acterised by the Kontsevich star product of functions on the
space-time,

i
f*g=f-g+§{f,g}+..- ,
vvhere_’_che Poisson bracket is associated with the Poisson bivec-
tor ©Y,
{f.g} = ©Y(2)8;f g
e Our aim is to construct the noncommutative gauge theory,
requiring compatibility of the gauge algebra with space-time
noncommutativity, namely infinitesimal gauge transformations
should close the non-commutative algebra,
[5f7 5g]Aj = 5—i[f,g]*Aj7 f,g € C®¥(M).

The commutative limit has to reproduce standard abelian gauge
transformations,

|| A; = 0;f.
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Poisson gauge theories: motivation and definition.

e In my review I follow the lines of [Kuprivanov, Vitale’ 2020].
For the sake of simplicity we work in the semi-classical approx-
imation, therefore, star commutators

[fogls = frxg—gxf=i{f,g}+ ...,
will be replaced by imaginary unit times the Poisson brackets.

e In this approximation, the full non-commutative algebra of
gauge transformations defines the Poisson gauge algebra,

e If the Poisson bivector ©% is constant, the required deformed
gauge transformation can be easily constructed,

5]CcanAj — ajf ‘|‘ {Aj, f}can-



General construction: gauge transformations.

e For non-constant Poisson bivectors ©% the deformed gauge
transformation can be defined in the following way

0pA; = vj(z, A)orf +{Aj, f}.

e In this formula the matrix ~ satisfies the first master equation,
VO — Y] + ©7' 9 — Mo —~j8,07F =0,
0

oy = im ~) = &7,
A 8Al @—)O,yz v

e One can check by a direct calculation, that these deformed
gauge transformations, indeed, close the required noncommu-
tative Poisson gauge algebra and exhibit the correct commu-

tative limit,

lim o6rA;
@I—>O J<%
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General construction: field strength.

e [ he deformed field strength has to transform in a covariant
way, and reproduce correctly the commutative limit,

0rFay = {Fabr [}

Gl)ig’]O Fab &,,Ab — 8bAa .

e Such a field strength was constructed in [Kupriyanov'2021] in
the following way,

Fap = p5(x, A) pi (2, A) (VL0 Aq — V4 01 Ac + {Ac, Ag})

e [ he matrix p, which appears in this formula, has to obey the
second master equation,

. , L . . 0
W Oupy + padar] + 7 0p, =0, 4= A
and it has to reduce to the identity matrix at the commutative

limit,

lim p=1.
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General construction: covariant derivative and dynamics.

e For any field ¥ (x), which transforms in a covariant way,

5f¢ .= {faw}a

the covariant derivative has to transform properly,

0f (Da) = {Da?, [},

and it has to exhibit a correct commutative limit,

li D —_— i
oo a¥ = Gt

e [ he expression for the deformed covariant derivative was pre-
sented in [Kuprivanov'2021], as follows,

Datp = pg (VO + {Aa, ¥}) -

e [ he deformed covariant derivative and the deformed field strength
allow to write down gauge-covariant equations of motion,

D F® =0, 5 (Da]-"ab) = {D,FY, f1.



Svymplectic geometric interpretation of the construction.

e Now I follow the logic of [Kupriyvanov, Szabo’ 2022]. Extending

the Poisson structure from M to T*M,

{z",2)} = ©Y(a), {z,p;} = i(z,p), {pipj} =0,
we define the symplectic embedding.

e We also introduce a set of the constraints in this extended

space,

Cba(x7p> ::pa_Aa(x), a=1,...n.

e [ he Jacobi identity on the extended symplectic space is equiv-

alent to the first master equation,

VIOAf — AFoiy] + @0 — OFay] — Aot =0, 8=

The deformed gauge transformation, introduced before, can
be represented as a simple Poisson bracket on the extended

symplectic space,

5]3'14& — {f, CDCL}CD:O .



Svymplectic geometric interpretation of the construction.

e Now I switch to [Kuprivanov, Kurkov, Vitale’ 2022]. Per-
forming a transformation in the basis of the constraints, we

construct the new constraints,

®q(z,p) — Polx,p) = py'(x,p) Palz,p),
where p is a non-degenerate matrix. In particular,
CDZL pu— O, @ Cba — O .

e [ he deformed field strength and the deformed covariant deriva-
tive can be represented as simple Poisson brackets in the ex-

tended symplectic space,

Fap = {CD;, cD?)}CID’ZO ) Dqyp = {wv CDZL}(D’:O .
e [ he gauge covariance condition,

5f]:ab = {Fu [}
IS equivalent to the second master equation,

V0ol + Pudyi + O, =0, 8, =



Lie algebraic noncommutativities and the universal solution.

e Consider a class of Poisson bivectors, which are linear in co-
ordinates,

@ab — gbwc.

The constants fgb satisfy the Jacobi identity,
. , ”
FRUEE + fl R 4 pal g =0,
therefore these constant can be seen as the structure con-
stants of a Lie algebra.

e In [Kupriyanov, Szabo' 2022] a special solution of the first
master equation was presented in terms of a single matrix-
valued function, which is valid for all Poisson bivectors of the
Lie algebraic type.

e Introducing the matrix,
[A]2 = —ifeb Aq,
we can represent this universal solution as follows

— (A P P P
v(A) = G(A), G(p) := 5 T 5cots.
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Lie algebraic noncommutativities and the universal solution.

e AIlso the second master equation exhibits the universal solution
for p, expressed as a matrix valued function of the same matrix
variable [Kupriyanov, Kurkov, Vitale'2022],

[A)e = —if"Aa.

e [ he explicit expression reads:

. el? — 1
p(A) = F(A), F(p)= e

e [ he universal solutions for v and p exhibit a simple connection,

p_l =~—iA.
Using the universal solutions for v and p we can build the
Poisson gauge model completely: we know both the gauge-
covariant equations of motion, and the deformed gauge trans-
formations, which close the Poisson gauge algebra.
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Lie algebraic noncommutativities and the universal solution.

e The Poisson bivector, which corresponds to the (generalised)
k-Minkowski noncommutativity, is defined in the following way,
QY = 2(w'a? — wix').
The corresponding structure constants read

f]ij = Q(wi% = wj5,i) :

e We calculated the universal solutions [Kupriyanov, Kurkov, Vi-
tale’2022]:

l—(w-A)—(w-A)coth(w-A) |
wAj,
w- A

i A
w'Aj.

’7;'(14) = (w . A) [1 + coth (w ) A)] 5;', +

' e2wA) 1 14 2(w-A) — e2wA)
i(A) = 5
P (4) 2(w-A) T 2(w - A)2
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Arbitrariness and Seiberg-Witten maps.

e [ he solutions for ~, presented above,

”Y;(A) = (w-A)[1+ coth(w-A)] 5§+ 1—(w-A)— E:u-.j)coth (w- A)

are different [Kupriyvanov, Kurkov,Vitale'2021]

{
wAj,

) = [V14 @ )2+ (@ )] o o Ao

e [ he solutions for p, presented above,

LA) e2(wA) _ 1 si g LT 2(w-A) - e2(w-A) i
. p— B w -,
P 2(w-A) 2(w - A)2 J
also differ from the ones, obtained in the previous studies,

Vit A2+ @A) 4
V14 (- 4)?

P = W1+ (@ )%+ (- )| 8-
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Arbitrariness and Seiberg-Witten maps.

e For any invertible field redefinition A — A(A), the quantities

9A,

() = (wi(A)-) =

A,

HA,

A=A(A) A=A(A)
are again the solutions of the master equations. The matrices
~v and p define one more Poisson model for the same Poisson
bivector ©.

e [ he infinitesimal gauge transformation of the new model read,
6pAa = 7(A) 0if 4+ {Aa, f}.
Upon the field redefinition the gauge orbits are mapped onto
the gauge orbits,

A(A45;A) = A(A) +5,A(A).

Therefore the invertible field redefinition can be seen as the
Seiberg-Witten map between the two models.
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Arbitrariness and Seiberg-Witten maps.

‘The universal solutions,
1-(w-A) = (w-Acoth(w-4) ,

Yi(A) = (w-A)[1+ coth(w- A)]& + - A
. B e2wA) _ 1 Z_ 142(w-A) — o2(wA) 7;
and the previous solutions,
) = 14w A)2 4 (0 A)| 6 — wF A,
~ : : 14+ (w-A4)?2+ (w-A)
k A = 1 A 2 . A 5k_ \/ kAa’
pa( ) _\/ + (w ) + (w )_ a \/1 T (w . A)2 w

are connected through the following Seiberg-Witten map:

sinh(w - A)
A = A —
CLJA ¢ “ wA

T arcsinh (w-A) -
A, = resinh (w- 4) 4

a -
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Summary.

e For a given Poisson bivector ©, defining the noncommutativ-
ity, the Poisson gauge model is completely determined by the
matrices v and p, which solve the two master equations.

e We completed the symplectic geometric description of the
Poisson gauge models in terms of symplectic embeddings and
constraints in the extended symplectic space.

e \We obtained the universal solution of the second master equa-
tion, which is valid for any noncommutativity of the Lie alge-
braic type.

e Invertible field redefinitions give rise to new solutions of the
master equations. All the outcoming Poisson gauge models
are connected with each other through Seiberg-Witten maps.
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Bonus ##1: comments on the Lagrangian formulation.

e Using the deformed field strength F, discussed before, we can
construct the gauge-covariant Lagrangian density,

L= —%]—"ab]-“ab, §iLg ={L, f}.
e Introducing the weigh-function u(xz), we get,
p(x)d L = total derivative, <« <,u(:v) @lk(ac)) = 0.
The gauge-invariant action reads,
S=/dnaz,u(a:)£, 6¢/S=0.

e [ he “natural” equations of motion, introduced before, are
non-Lagrangian,

58 55]%#55&

GA’ 0Aq 0 A

However, if §;©%(z) = 0, the “natural” and the Euler-Lagrange
eguations are equivalent:

05

E =DaF?,  BS[Al: &=
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Bonus #2: comments on the (deformed) Bianchi identity.

e [ he second pair of Maxwell equations, i.e. the Bianchi iden-
tity,

8anc —+ CyC|(abC) = 0, Fop, = 8aAb — 8bAa,
exhibits its deformed version in the Poisson gauge theory.

e This deformed version is highly counterintuitive [Kupriyanov'2021],

Do (Foe) — Fad Bbde Feec — (Kap® — Kpg©) Fee + cycl(abe) =0,

(p_l)d( oy (A) = axpl(A)) (p71)
pa(A) A (A) (O (e, p)) o (P71) -

Bye(A)

Kabe(A)

e However, using the symplectic geometric construction, dis-
cussed before, this equation can be presented in the short
form [Kupriyanov, Kurkov, Vitale'2022],

{Pr, {P}, DL} r—0 + cycl(abe) = 0.
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