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Universitat de València and IFIC (CSIC-UVEG)

in collaboration with R. Fioresi (Università di Bologna)
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1. Introduction

The Grassmannian of 2-planes in C4, G (2, 4) is the complexified
conformal space in dimension 4: the complexified conformal group
SL(4,C) acts on it and it is the conformal compactification of the
complexifed Minkowski space M4.
This is not true over the reals: the conformal group is SU(2, 2)
and the corresponding homogeoneous space is not a Grassmannian.
We will always talk about the complexified versions of our objects
without stating it. Passing to the real picture is done by
constructing a conjugation whose set of fixed points is the correct
real form. We will not deal with this issue here.



Introduction

The space C4 in G (2, 4) is the twistor space. To convince
ourselves, the subgroup of SL(4,C)(

x 0
Tx y

)
, det x · det y = 1

is the Poincaré group times dilations, with action on the big cell of
G (2, 4)

t −−−−→ ytx−1 + T ,

where

t =
3∑

µ=0

zµσµ =

(
z0 + z3 z1 − iz2

z1 + iz2 z0 + z3

)
.



Introduction

Conformal theory
restriction bigcell−−−−−−−−−−−−−→ Broken symmetry theory

Conformal space ←−−−−−−−−−−−−
compactification

Minkowski space .

Penrose belived at the beginning that through twistors one could
introduce an indeterminacy principle in spacetime, since points are
not fundamental quantities. This proved not to be the case.
Twistor theory still describes classical spacetime and the
indeterminacy must be introduced by hand.



Introduction

We will do that by substituting the conformal group by its
quantum group counterpart SLq(4,C) and quantizing the
homogeneous space to a suitably defined Gq(2, 4).

By restricting to the Minkowski space, we will be ble to give an
explicit star product for this deformation. The star product
corresponds to choose an ordering rule for the generators.

The process is non trivial, involves a lot of calculations and the
result is not a ‘nice’ formula. But it is one of the few examples of
explicit star product.

The Poisson bracket is quadratic in the generators, not like other
deformations whose Poisson bracket is linear. This deformation has
other properties that make it worthy to study. For example, it is
better behaved under symmetries and it has a deformed Lorentz
subgroup acting on it, property that is absent in the linear
deformations.



Introduction

This picture carries over to the super setting. The superconformal
group is then SL(4|1). We have two kinds of Minkowski
superspaces:

I Chiral (antichiral) superspace, which corresponds to the super
Grassmannian G (2|0, 4|1). Superfields:

Φ(xµ, θα) = φ(x) + θψ(x) + θθF (x) ,

α = 1, 2 and µ = 0, . . . 4. θα is a Weyl spinor, with definite
chirality. This is an intrinsically complex super space, since θα

does not have complex conjugate.



Introduction

I Real superspace, which corresponds to the super flag
Fl(2|0, 2|1, 4|1) ⊂ G (2|0, 4|1)× G (2|1, 4|1). Superfields:

Φ(xµ, θα, θ̄α̇) =φ(x) + θψ(x) + θ̄ψ̄(x)+

θθm(x) + θ̄θ̄n(x) + θσµθ̄Aµ(x)+

θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄F (x).

with α, α̇ = 1, 2, and with µ = 0, 1, 2, 3
On this super space one can impose a reality condition. For
larger number N of supersymmetries the number of
component fields is too big and it is difficult to impose
suitable covariant constraints.



Introduction

Our goal is to give a deformation of G (2|0, 4|1) in line with the
quantum supergroup SLq(4|1) and choose an ordering rule to
produce and explicit super star product.



2. The classical picture

We consider the supergroup 1

SL(4|1) =

{(
gij γi5
γ5j g55

)
, i , j = 1, . . . 4

}
.

An element of the supergrassmannian G (2|0, 4|1) is a plane, that
is, the span of two even vectors

π = (a, b) =


a1 b1
a2 b2
a3 b3
a4 b4
α5 β5


that can be chosen up to the right action of GL(2,C).

1This can be understood better in terms of the functor of points.



2. The classical picture
G (2|0, 4|1) is a projective supervariety, embedded in

P6|4 = P
(∧2(C4|1)

)
via the super Plücker embedding

π = (a, b) =


a1 b1
a2 b2
a3 b3
a4 b4
α5 β5

→ a ∧ b .

As in the non super case, the image of this map is a projective
supervariety given in terms of generators and homogeneous
relations

q12q34 − q13q24 + q14q23 = 0, (classical Plücker relation)

qijλk − qikλj + qjkλi = 0, 1 ≤ i < j < k ≤ 4

λiλj = a55qij 1 ≤ i < j ≤ 4

λia55 = 0 a255 = 0 .



The classical picture

These relations are the super Plücker relations and the ideal
generated by them in the (super)commutative free algebra is
denoted by IP .

We consider now the first two rows of the supergroup element and
construct the quantities

dij = gi1gj2 − gi2gj1, σi = g1iγ52 − g2iγ51, a = γ51γ52 .

They satisfy the super Plücker relations and no other independent
relations.

In this way one retrieves the algebra C[qij , λi , a55]/IP of the super
Plücker embedding as a subalgebra of SL(4|1).



The classical picture

We invert d12 = det

(
a1 b1
a2 b2

)
, that is, we add an extra even

generator, d−112 , satisfying the relation d−112 d12 = 1. Then we can
reduce to the standard form

1 0
0 1
t31 t32
t41 t42
τ51 τ52

 ,

with t31 t32
t41 t42
τ51 τ52

 =

−d23 d13
−d24 d14
σ1 σ2

 d−112 .



The classical picture

The (super)commutative algebra C[tij , τi ] is the coordinate algebra
of the big cell, which is isomorphic to C4|2. Since it has the correct
action of the super Poincaré subgroup, x 0 0

Tx y yη
dτ 0 d

 I
t
σ

 ≈
 I
y(t + ησ)x−1 + T

d(σ + τ)x−1


it can be identified with the Minkowski superspace.



3. The deformation

Cervantes, Fioresi, Ll. 2011
Manin’s relations.

In order to construct the quantum matrix superalgebra Mq(r |s),
we start with generators (

zr×r ξr×s
ξs×r zs×s

)
. (1)

It is convenient to have a common notation for even and odd
variables.

aij =


zij 1 ≤ i , j ≤ r , or r + 1 ≤ i , j ≤ r + s,

ξij 1 ≤ i ≤ r , r + 1 ≤ j ≤ r + s, or

r + 1 ≤ i ≤ r + s, 1 ≤ j ≤ r .



The deformation

Then, the ideal IM of the free algebra over Cq := C[q, q−1] is
generated by the commutation relations:

aijail = (−1)π(aij )π(ail )q(−1)
p(i)+1

ailaij , for j < l

aijakj = (−1)π(aij )π(akj )q(−1)
p(j)+1

akjaij , for i < k

aijakl = (−1)π(aij )π(akl )aklaij , for i < k , j > l

or i > k, j < l

aijakl − (−1)π(aij )π(akl )aklaij = (−1)π(aij )π(akl )(q−1 − q)akjail ,

for i < k , j < l



Demanding that the quantum Berezinian is 1 we obtain the Hopf
algebra SLq(r |s).

Quantum twistor superspace
These commutation relations are required to have a coaction of
the quantum supermatrices Mq(r |s) on the affine quantum
superspace Aq(r |s) defined by generators xi , i = 1, . . . r + s.

xixj = q−1(−1)p(i)p(j)xjxi for i < j .

For r = 4 and s = 1 this is what we call the quantum twistor
superspace.



The deformation

Definition
The quantum super Grassmannian Grq := Grq(2|0, 4|1) is the
subalgebra of SLq(4|2) generated by the elements

Dij := ai1aj2 − q−1ai2aj1 Di5 := ai1a52 − q−1ai2a51

D55 := a51a52, with 1 ≤ i < j ≤ 4 .

We want to give a presentation of this subalgebra in terms of
generators and relations.

All we have to do is to compute the commutation relations among
the generators above and find the deformation of the super Plücker
relations (!).



The deformation

Commutation relations.

I i , j , k , l are not all distinct and Dij , Dkl are not both odd:

DijDkl = q−1DklDij , (i , j) < (k , l), 1 ≤ i , j , k, l ≤ 5 . (2)

I i , j , k, l are all distinct and Dij , Dkl are not both odd:

DijDkl = q−2DklDij , 1 ≤ i < j < k < l ≤ 5,

DijDkl = q−2DklDij − (q−1 − q)DikDjl , 1 ≤ i < k < j < l ≤ 5,

DijDkl = DklDij , 1 ≤ i < k < l < j ≤ 5.

I Commutations with D55 or involving two odd elements:

DijD55 = q−2D55Dij ,

Di5Dj5 = −q−1Dj5Di5 − (q−1 − q)DijD55 = −qDj5Di5

Di5D55 = D55Di5 = 0.



The deformation

Quantum super Plücker relations.

D12D34 − q−1D13D24 + q−2D14D23 = 0,

DijDk5 − q−1DikDj5 + q−2Di5Djk = 0, 1 ≤ i < j < k ≤ 4,

Di5Dj5 = qDijD55, 1 ≤ i < j ≤ 4.

We also prove that these are all the relations that they satisfy, so
the free algebra in Dij ,Di5,D55 modulo the ideal IQ generated by
the above commutation relations and the quantum super Plücker
relations

C〈Dij ,Di5,D55〉/IQ ,

is a presentation of the quantum Grassmannian Gq(2|0, 4|1).
Also, the corresponding coaction of the quantum supergroup!



The deformation

As for the classical case, we can define a quantum super Poincaré
group as the subgroup of SLq(4|1) generated by the elements
(formally as in the classical case) x 0 0

Tx y yη
dτ 0 d

 =

 x 0 0
Tx y yη
τ̃x 0 d

 .

x , y and d are invertible.
It is convenient to make the change of variables dτ = τ̃x .
One can compute the commutation relations of these generators
inside SLq(4|1). What is crucial is to compute the commutation
relations of T and τ̃ , which represent the (even and odd)
translations. This will be our model for the quantum Minkowski
superspace.



The deformation

Definition
The complexified quantum Minkowski superspace is the free
algebra in six generators

t̂41, t̂42, t̂31 and t̂32, (even)

τ̂51, τ̂52 (odd)

satisfying the commutation relations

t̂42t̂41 = q−1t̂41t̂42,

t̂31t̂41 = q−1t̂41t̂31,

t̂32t̂41 = t̂41t̂32 + (q−1 − q)t̂42t̂31,

t̂31t̂42 = t̂42t̂31,

t̂32t̂42 = q−1t̂42t̂32,

t̂32t̂31 = q−1t̂31t̂32 ,



The deformation

which would be the commutation relations defining the non super
quantum Minkowski space, together with

τ̂51τ̂52 = −q−1τ̂52τ̂51
t̂31τ̂51 = q−1τ̂51t̂31 t̂32τ̂52 = q−1τ̂52t̂32

t̂41τ̂51 = q−1τ̂51t̂41, t̂42τ̂52 = q−1τ̂52t̂42

t̂31τ̂52 = τ̂52t̂31 t̂41τ̂52 = τ̂52t̂41

t̂32τ̂51 − τ̂51t̂32 = (q − q−1)t̂31τ̂52 t̂42τ̂51 − τ̂51t̂42 = (q − q−1)t̂41τ̂52

These are a subalgebra of the quantum supermatrices Mq(2|1).
There is a well defined coaction of the quantum Poincaré
supergroup on this algebra that reduces to the standard coaction
of the non super case when q = 1.



4. The star product

Cervantes, Fioresi, Nadal, Ll. 2011
We first give the star product in the non super case (we put all the
fermionic generators to 0). In order to do that we choose an
ordering rule among the generators. We denote as t41, t42, t31, t32
the classical generators of the free commutative algebra
Cq[t41, t42, t31, t32]. One can prove that the map

Cq[t41, t42, t31, t32]
Q0−−−−→ Cq〈t̂41, t̂42, t31, t̂32〉/ICR0

ta41t
b
42t

c
31t

d
32 −−−−→ t̂a41t̂

b
42t̂

c
31t̂

d
32

(3)

a, b, c, d = 0, 1, 2, 3, . . . is a Cq-module isomorphism (so it has an
inverse). Then the star product is an associative, non commutative
product on Cq[t41, t42, t31, t32]:

f ?0 g := Q−10 (Q0(f )Q0(g)) , f , g ∈ Cq[t41, t42, t31, t32]) .



The star product

What is non trivial is to reorder Q0(f )Q0(g) to compute Q−0 1. We
give here the result on two arbitrary monomials. First we define
certain quantities by a recursion rule. For k,m, n = 0, 1, 2, 3, . . .

Fk(q,m, n) = βk(q,m)
k−1∏
l=0

F (q, n−l) with F (q, n) =

(
1

q2n−1
− q

)
and βk(q,m) is defined by the recursive relation

β0(q,m) = βm(q,m) = 1, and

βk(q,m + 1) = βk−1(q,m) + βk(q,m)q−2k .

Moreover, βk(q,m) = 0 if k < 0 or if k > m.



The star product

Then we have for the star product of two monomials:

(ta41t
b
42t

c
31t

d
32) ?0 (tm41t

n
42t

p
31t

r
32) = q−mc−mb−nd−dpta+m

41 tb+n
42 tc+p

31 td+r
32 +

µ=min(d ,m)∑
k=1

q−(m−k)c−(m−k)b−n(d−k)−p(d−k)Fk(q, d ,m)·

ta+m−k
41 tb+k+n

42 tc+k+p
31 td−k+r

32 .

The first order in h, q = eh, antisymmetrized, is the Poisson
bracket:

{f , g}0 =t41t31(∂41f ∂31g − ∂41g∂31f ) + t42t41(∂41f ∂42g − ∂41g∂42f )+

t32t42(∂42f ∂32g − ∂42g∂32f ) + t32t31(∂31f ∂32g − ∂31g∂32f )+

2t42t31(∂41f ∂32g − ∂41g∂32f ) .



The star product

We have expressed the Poisson bracket in terms of derivatives in
spite that the star product formula was given for polynomials. One
can prove that at each order in h there exists a bidifferential
operator, that reproduces the same result on the polynomials.
But a differential operator is characterized by its action on
polynomials, so the star product extends to C∞ functions.



The star product

In terms of the standard variables of Minkowski space

z0 =
1

2
(t31 + t42), z1 =

1

2
(t32 + t41),

z2 =
i

2
(t32 − t41), z3 =

1

2
(t31 − t42) ,

the Poisson bracket becomes

{f , g}0 =i
( (

(z0)2 − (z3)2
)

(∂1f ∂2g − ∂1g∂2f )

z0z1(∂0f ∂2g − ∂0g∂2f )− z0z2(∂0f ∂1g−
∂0g∂1f )− z1z3(∂2f ∂3g − ∂2g∂3f )+

z2z3(∂1f ∂3g − ∂1g∂3f )
)
.



5. The super star product

Fioresi, Ll. 2021
The super star product is a bit more involved because of the signs
that appear when interchanging odd variables. Nevertheless it can
be put in terms of the standard star product.

The ordering that we chose is, for a, b, c , d = 0, 1, 2, . . . and
e, f = 0, 1, the module isomorphism

Cq[τ51, τ52, t41, t42, t31, t32]
Q−−−−→ Cq[τ̂51, τ̂52, t̂41, t̂42, t̂31, t̂32]

τ e51τ
f
52t

a
41t

b
42t

c
31t

d
32 −−−−→ τ̂ e51τ̂

f
52t̂

a
41t̂

b
42t̂

c
31t̂

d
32 .

In order to simplify the notation we define

T (a, b, c, d) = ta41t
b
42t

c
31t

d
32 ,

so we will multiply monomials of the type τ e51τ
f
52T (a, b, c , d). Then



The super star product

τ e51τ
f
52T (a, b, c , d) ? τu51τ

v
52T (m, n, p, r) =

δu0δv0τ
e
51τ

f
52 T (a, b, c , d) ?0 T (m, n, p, r)+

δu0δv1

(
q−(a+b+d)τ e51τ

f+1
52 T (a, b, c , d) ?0 T (m, n, p, r)

)
δu1δv0

(
(−1)f qf−a−cτ e+1

51 τ f52 T (a, b, c , d) ?0 T (m, n, p, r)+

q−c(q − q−2b+1)τ e51τ
f+1
52 T (a + 1, b − 1, c , d) ?0 T (m, n, p, r)+

q−b(q − q−2d+1)τ e51τ
f+1
52 T (a, b, c + 1, d − 1) ?0 T (m, n, p, r)

)
+

δu1δv1

(
(−1)f q−2a−b−c−d+f τ e+1

51 τ f+1
52 T (a, b, c , d) ?0 T (m, n, p, r)+

q−(a+b+c+d)(q − q−2b+1)τ e51τ
f
52 T (a + 1, b − 1, c , d) ?0 T (m, n, p, r)+

q−a−2b−d+1(q − q−2d+1)τ e51τ
f
52 T (a, b, c + 1, d − 1) ?0 T (m, n, p, r)

)
,



The super Poisson bracket
The term of order 1 in h in the above star product will give, upon
antisymmetrization the super Poisson bracket. We denote by S1
this term and by C1 the same term in the non super star product.
We also denote:

RA = τ e52τ
f
51t

a
41t

b
42t

c
31t

d
32, RM = τu52τ

v
51t

m
41t

n
42t

r
31t

p
32 .

Then

S1(RA,RM) = C1(RA,RM)+

(−t41∂t41 − t42∂t42 − t32∂t32)RA · τ52∂τ52RM+

(τ52∂τ52 − t41∂t41 − t31∂t31)RA · τ51∂τ51RM .

As we can see, it can be put in terms of bidifferential operators.
Presumably this happens at all orders in h.



6. Conclusions

I We have displayed a deformation of the N = 1 chiral
conformal superspace that has a good behaviour with respect
to symmetries like the quantum conformal supergroup and, in
particular, the quantum Poincaré supergroup inside the
conformal one. This deformation is given in terms of
generators and relations and exploits the projectivity of the
Grassmannian G (2|0, 4|1).

I One can define a big cell that, as in the classical case, plays
the role of the quantum Minkowski superspace, with a
quantum Poincaré supergroup acting on it.

I Restricting to the big cell it is possible to express this
deformation in a more concrete way, in terms of a normal
ordering and an induced star product.



Conclusions

I The Poisson bracket associated to this deformation is
quadratic in the standard coordinates of the Minkowski
superspace. This is different from other deformations of the
Minkowski space, perhaps better known, that are linear.

I Because its symmetry properties, it will be worth to study, at
least to first order in h the effect that this non commutativity
could have in the description of field theories, even
supersymmetric ones.


