

Corfu Summer Institute

Hellphig School and Warkshops on Elementary Particle Physics and Gravity

August 28 - September 8 2022

Workshop on the Standard Model and Beyond

Searches for additional Higgs bosons in ATLAS

Ljiljana Morvaj On behalf of the ATLAS collaboration

Introduction

- Is h(125 GeV) THE Higgs boson or A Higgs boson?
- Extended Higgs sectors common to many Beyond-the-Standard-Model (BSM) theories
 - > E.g. SUSY, dark matter, axions, baryogenesis models ...
 - > Searches often interpreted in the context of **2HDMs**, but always also have **model-independent limits**

 Will show some of the most recent ATLAS results with the full Run 2 dataset corresponding to 139 fb⁻¹

$WH(\rightarrow WW)$

- Production in association with W-boson
 - Interesting in scenarios with reduced fermionic couplings
 - Effective 2HDM Langrangian terms with heavy H couplings to SM W-bosons:

$$\mathcal{L}_{HWW}^{(4)} = \rho_H g m_W H W^{\mu} W_{\mu}$$

$$\mathcal{L}_{HWW}^{(6)} = \rho_H g m_W \frac{f_W}{2\Lambda^2} \left(W_{\mu\nu}^+ W^{-\mu} \partial^{\nu} H + h.c. \right) - \rho_H g m_W \frac{f_{WW}}{\Lambda^2} W_{\mu\nu}^+ W^{-\mu\nu} H$$

• Select events with:

```
> 2 same-sign (SS) leptons (e,µ)
```

- $\succ E_T^{miss}$
- Either 2 small radius jets (resolved) or 1 largeradius (merged) jet, consistent with W mass

 $\rho_{H} = \sin(\beta - \alpha)$ in 2HDM models f_{W} , $f_{ww} =$ anomalous coupling to W

$WH(\rightarrow WW)$

ATLAS-CONF-2022-033

Production in association with W-boson

- Interesting in scenarios with reduced fermionic couplings
- Effective 2HDM Langrangian terms with heavy H couplings to SM W-bosons:

$$\begin{aligned} \mathcal{L}_{HWW}^{(4)} &= \rho_H g m_W H W^{\mu} W_{\mu} \\ \mathcal{L}_{HWW}^{(6)} &= \rho_H g m_W \frac{f_W}{2\Lambda^2} \left(W_{\mu\nu}^+ W^{-\mu} \partial^{\nu} H + h.c. \right) - \rho_H g m_W \frac{f_{WW}}{\Lambda^2} W_{\mu\nu}^+ W^{-\mu\nu} H \end{aligned}$$

• Select events with:

```
> 2 same-sign (SS) leptons (e,µ)
```

 $\succ E_T^{miss}$

- Either 2 small radius jets (resolved) or 1 largeradius (merged) jet, consistent with W mass
- Main discriminant: effective mass (m_{eff}) = scalar sum of p_Ts of all the objects in the event

$WH(\rightarrow WW)$

- Simultaneous binned maximum-likelihood (ML) fit in m_{eff} in SRs and in total yield in CRs
 - > Normalization of dominant backgrounds (WZ+jets & WW+jets) constrained in CRs
- No significant excess observed
- Interpretation in terms of BSM HVV couplings of the effective 2HDM Langrangian $\rho_{\mu} = \sin(\beta \cdot \alpha) \ln 2HDM \mod \beta$

ATLAS-CONF-2022-43

- Heavy H decaying to 2 SM-like h decaying to bb
- Three channels (0L, 1L, 2L), depending on the W/Z decay mode
- Discriminant: m_{hh} / m_{Zhh}
 - mass resolution improved (up to factor 4) by scaling the *b*-jet momenta for each h with the measured m_{bb}/125 GeV

ATLAS-CONF-2022-43

- Heavy H decaying to 2 SM-like h decaying to bb
- Three channels (0L, 1L, 2L), depending on the W/Z decay mode
- Discriminant: m_{hh} / m_{Zhh}
 - mass resolution improved (up to factor 4) by scaling the *b*-jet momenta for each h with the measured m_{bb}/125 GeV

- Boosted decision trees (BDT) discriminant trained for each channel & each signal model
 - \succ Mass requirement on m_{hh} (30-220 GeV wide) before the fit to BDT distributions
 - > ML fit to BDT distributions in the SRs to extract the results
- Most significant excess in A→ ZH channel (m_A, m_H) = (420, 320) GeV local (global) 3.8σ (2.8σ) for large-width (LW) A
 For NW: 3.6 (11.6)σ local (global) at (m_A, m_H)= (800, 300) GeV

- Look for gluon-gluon fusion (ggA) and bb associated (bbA) A-boson production
- SRs categorised according to the number of leptons (0ℓ or 2ℓ) and b-jets (1b, 2b or ≥3b)
 - ➢ Both resolved and merged h→bb decays considered

- Discriminating variables:
 - $\succ m_{T,Zh} \text{ in 0e channel } m_{T,Vh} = \sqrt{\left(E_{T,h} + E_T^{\text{miss}}\right)^2 \left(\vec{p}_{T,h} + \vec{E}_T^{\text{miss}}\right)^2}$
 - $\succ m_{Zh}$ in 28 channel
 - \succ p_{bb} rescaled by $m_{bb}/125$ GeV to improve the resolution
- Binned ML fits on $m_{T,Zh}/m_{Zh}$ performed over SRs & CRs

2207.00230

X

- Model-independent limits on $\sigma \times Br$ (combined $0\ell+2\ell$)
 - > The largest deviation from the SM expectation found at **500 GeV in ggA** search corresponding to a significance of **2.1** σ (1.1 σ) **local** (global) (1.6 σ local for bbA)

- Model-independent limits on $\sigma \times Br$ (combined $0\ell+2\ell$)
 - > The largest deviation from the SM expectation found at **500 GeV in ggA** search corresponding to a significance of **2.1** σ (1.1 σ) **local** (global) (1.6 σ for bbA)
- 2D likelihood scan for various m_A to determine the compatibility for different σ_{bbA} & σ_{ggA} contributions

- Interpretation for various 2HDM types
 - > tanß controls ggA vs bbA contributions
 - \succ Limits vary along m_A depending the cross section and the preferred A-decay mode

$H \rightarrow leptons + b-jets$

- General 2HDM (g2HDM) featuring a heavy scalar with flavor-changing decays (FCNH)
 - > Consider tt, tc & tu couplings
- Giving rise to interesting topologies sensitive to new physics
 - > 3-top signature
 - Same-sign (SS) top production (t⁺t⁺)
- First to target BSM production leading to three-top final states and the first to probe the g2HDM
- Multiple leptons (e & μ) and b-jets in the final state + charge asymmetry

Events separated into 3 SR categories depending on the vs = 13 TeV, 139 fb⁻¹ g2HDM 10⁴ Post-Fit

10

> SS2 ℓ > 31

number of leptons:

>48

- Further split based on *e* charge (++ or --)
- Categorized into 5 possible g2HDM production and decay modes based on the Deep Neural Network (DNN) output

$H \rightarrow leptons + b-jets$

ATLAS-CONF-2022-39

$H \rightarrow leptons + b-jets$

- ML fit performed across all the SRs & CRs categories
- Signal summed into 1 template and limits set for different coupling choices
- Mild excess observed corresponding to a local significance of 2.81 σ for $m_{\text{H}}\text{=}1~\text{TeV}$

Charged Higgs

$H^{\pm} \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$

arXiv:2207.03925

- Fermiophobic heavy H from Georgi-Machacek model that couples to W & Z bosons
 - Produced in VBF
 - > Fully leptonic channel sensitive in spite of low Br due to lower SM backgrounds
- Use artificial neural networks (ANN) to select signal-enriched regions

At least 2 VBF jets $m_{jj} > 100 \text{ GeV}$ Veto events with *b*-tagged jets ANN Output > 0.82 Exactly 3 *Loose* leptons

$H^{\pm} \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$

arXiv:2207.03925

- WZ invariant mass (m_{wz}) as discriminating variable
 - > The longitudinal $p_z(v)$ estimated by constraining $v\ell$ system to m_W
 - > Simultaneous ML fit of binned m_{WZ} in SR & CRs
- Local (global) significance of 2.8σ (1.6 σ) at 375 GeV

s/a

s/a

Н

 Z_d

Low-mass Higgs = m(X)<125 GeV

h(125) → aa → 4ℓ/2b2µ/4b/2µ2τ....

 Z_d

 Z_d

JHEP 03 (2022) 041

$H(125) \rightarrow XX/ZX \rightarrow 4\ell$

- Br(H \rightarrow BSM) up to 12% allowed based on current measurements (<u>Nature (2022)</u>)
- Hidden sector particles could couple preferentially (only?) to the SM H
 Exotic Higgs decays could be a portal to new physics!
- 2 benchmark models
 - > Dark photons $Z_d U(1)_d$ spontaneously broken by **dark Higgs** s
 - Singlet scalar from 2HDM+S

$H(125) \rightarrow ZX/XX \rightarrow 4\ell$

- Main discriminant: dilepton invariant mass
- Dominant backgrounds (H \rightarrow ZZ* & ZZ*) estimated from the simulation and validated in the CRs
- No events observed in the 1-15 GeV mass range, consistent with the background prediction

JHEP 03 (2022) 041

$H(125) \rightarrow ZX/XX \rightarrow 4\ell$

Low mass $X \rightarrow \gamma \gamma$

- Search for a generic resonance in γγ spectrum 10-70 GeV
- Challenges at low mass:
 - Need to cover the mass region below the trigger energy threshold of 22 GeV
 - Select close-by $\gamma\gamma$ pairs (boosted against a jet): $p_T^{\gamma\gamma}$ > 50 GeV
 - \succ More complex background fit around the turn-on region at 20 GeV
- Most significant deviation from the background observed at 19.4 GeV

> Local (global) significance 3.05σ (1.48 σ)

ATLAS-CONF-2022-01

Low mass $X \rightarrow \gamma \gamma$

- Interpretation for axion-like particles (ALPs)
 - Heavy-colored states generating ALP-gauge bosons coupling are multi-TeV & inaccessible at the LHC
 - > Lower limit on the ALP decay constant f_a ($\sigma^*Br \sim 1/f_a^2$)
 - Covers previously unexplored phase space!

Summary

- Looking for additional Higgs bosons (or more generally additional scalars) in many different final states/production mechanisms
 - Probing so-far unconstrained phase space
- Many searches performed in an model-independent way
 - Can be easily re-interpreted
- No significant deviations from the SM prediction observed
- More results with the full 139 fb⁻¹ of Run 2 in preparation

Backup

Exotic h(125) decays summary

• Model independent limits on $Br(H \rightarrow aa/Za \rightarrow XXYY)$

L. Morvaj

Exotic h(125) decays summary

h→bb+MET, h→Za→lljj

Phys. Rev. Lett. 125 (2020) 221802

Phys. Rev. Lett. 122 (2019) 231801

Analysis	\sqrt{s}	Int. luminosity	Observed	Expected
${\rm Run}\ 2\ {\rm VBF}$	$13 { m TeV}$	$36.1 { m ~fb^{-1}}$	0.37	$0.28^{+0.11}_{-0.08}$
Run 2 $Z({\rm lep})H$	$13 { m TeV}$	36.1 fb^{-1}	0.67	$0.39\substack{+0.17\\-0.11}$
Run 2 $V(had)H$	$13 { m TeV}$	$36.1 { m ~fb^{-1}}$	0.83	$0.58^{+0.23}_{-0.16}$
Run 2 Comb.	$13 { m TeV}$	$36.1 { m ~fb^{-1}}$	0.38	$0.21_{-0.06}^{+0.08}$
Run 1 Comb.	$7,8~{ m TeV}$	4.7, 20.3 fb ⁻¹	0.25	$0.27\substack{+0.10 \\ -0.08}$
Run $1+2$ Comb.	$7, 8, 13 { m ~TeV}$	$4.7, 20.3, 36.1 \text{ fb}^{-1}$	0.26	$0.17\substack{+0.07 \\ -0.05}$

ATLAS-CONF-2022-43

$H \rightarrow leptons + b-jets$

that they could be responsible for higher $\hat{\lambda}_{t\bar{t}}$ observed ttW & 4t yields

 $H \rightarrow leptons + b-jets$

 Measured ttW normalization factor consistent with previous ttW & 4t measurements

Benchmark couplings for optimization chosen so

$$\rho_{tt} = 0.4 \text{ and } \rho_{tq} = 0.2$$

 $\hat{\lambda}_{t\bar{t}W} = 1.50 \pm 0.14$

ATLAS-CONF-2022-39

ATLAS-CONF-2022-39 $H \rightarrow leptons + b-jets$

Limits set on H mass and parity violating SUSY models motivated by flavor anomalies and $(g-2)_{u}$

•

E

ATLAS Simulation Preliminary

2	2	0	7	•	0	0	2	3	0	

b

Variable	Resolved	Merged	
	Com	mon selection	JUIIIII
Number of ista	$\geq 2 \text{ small-} \mathbf{R} \text{ jets } (0, 2\text{-lep.})$	≥ 1 large- <i>R</i> jet	
Number of jets	2 or 3 small- <i>R</i> jets (1-lep.)	\geq 1 VR track-jets (matched to leading large- <i>R</i> jet) ^{‡‡}	
Leading jet $p_{\rm T}$ [GeV]	> 45	> 250	
m_h [GeV]	110-140 (0,1-lep.), 100-145 (2-lep.)	75–145	
	0-le	pton selection	
E ^{miss} [GeV]	> 150	> 200	
S _T [GeV]	> 150 (120*)	_	
$\Delta \phi_{jj}$	$< 7\pi/9$	_	
$p_{\rm T}^{\rm miss}$ [GeV]		> 60	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$		$<\pi/2$	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$		~الالللللا	
min $\left[\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small}-R \mathrm{jet})\right]$	$> \pi/9$ (2 or 3)		
$N_{\tau_{\text{bad}}}$		$0 \ (\le 1^{**})$	
TRA	(> 9	if $m_{Vh} < 240 \text{GeV}$,	JUUUUU/
$E_{\mathrm{T}}^{\mathrm{miss}}$ significance $\mathcal S$	$> 6.6 + 0.01 \cdot m_{Vh}$	if 240 GeV $\leq m_{Vh} < 700$ GeV,	
	> 13.6	if $m_{Vh} > 700 \text{GeV}$,	
	l-le	pton selection	
Leading lepton $p_{\rm T}$ [GeV]	> 27	> 27	
$E_{\rm T}^{\rm miss}$ [GeV]	$> 40 (80^{T})$	> 100	
$p_{\mathrm{T},W}$ [GeV]	> max $ 150, 710 - (3.3 \cdot 10^5 \text{ GeV})/m_{Vh} $	$> \max \left[150, \ 394 \cdot \log(m_{Vh}/(1 \text{ GeV})) - 2350 \right]$	
m _{T,W} [GeV]		< 300	
$\Delta R(\ell,h)$		> 2.0	
	2-le	pton selection	
Leading lepton $p_{\rm T}$ [GeV]	> 27	> 27	
Subleading lepton $p_{\rm T}$ [GeV]	> 20	> 25	
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [\sqrt{{ m GeV}}]$	< 1.15 + 8>	$(10^{-3} \cdot m_{Vh}/(1 \text{ GeV}))$	
$p_{\mathrm{T},\ell\ell}$ [GeV]	$> 20 + 9 \cdot \sqrt{r}$	$n_{Vh}/(1 \text{ GeV}) - 320^{\dagger\dagger}$	
$m_{\ell\ell}$ [GeV]	$\in \max [40, 87 - 0.030 \cdot m_{Vh}]$	$/(1 \text{ GeV})$, 97 + 0.013 · $m_{Vh}/(1 \text{ GeV})$	

2207.00230

 $H^{\pm} \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$

arXiv:2207.03925

 $t \rightarrow bH^+(\rightarrow cb)$

g

ATLAS-CONF-2021-037

FCNC t \rightarrow qX(\rightarrow bb)

-)
- BSM Higgs called "flavon" with flavor charge inducing FCNC top decays
- Dominant decay <200 GeV: X→bb
- Events separated into signal and control regions based on number of (b)-jets
 > SR: 4j3b, 5j3b, 6j3b
 > CR: 4j4b, 5j ≥ 4b, 6j ≥ 4b

FCNC t \rightarrow qX(\rightarrow bb)

FCNC t \rightarrow qX(\rightarrow bb)

(<u>q</u>q ← X)8 × (10⁻

(X) 10⁻³

10-4

ATLAS Preliminary

√s = 13 TeV, 139 fb⁻¹

- Discriminating variable based on NN defined in each SR for each signal mass and separately for t→uX and t→cX
 - Simultaneous fit over SRs/CRs in binned NN discriminants
- No significant excess observed • 10 20 40 60 80 9000 ATLAS Preliminary Data 9000 ATLAS Preliminary Data √s = 13 TeV, 139 fb⁻¹ cX 80 GeV s = 13 TeV, 139 fb⁻¹ uX 30 GeV 8000 8000 tt+≥1b t→c) tt+≥1b $\times B(X \rightarrow b\overline{b})$ Ttt+≥1c 5j 3b Ttt+≥1c 7000 5j 3b 7000 ☐ tt+light Post-F ATLAS Preliminary ☐ tt+light Post-Fit non-tt 6000F 6000 non-tt √s = 13 TeV, 139 fb⁻¹ 1// Uncertainty 1// Uncertainty 10^{-2} 5000 5000 (Xn ← 10⁻³ 4000 4000 3000 3000 2000 2000 1000 1000E 10-4 nÞ Data / Pred. Data / Pred. 0.9 0.9 0.8LL 10⁻⁵20 0.85 0.1 0.2 0.1 0.2 0.3 0.4 40 60 80 0.3 0.4 0.5 0.6 0.7 0.9 0.5 0.6 07 0.8 0.9 cX 80 GeV NN output uX 30 GeV NN output (f) $t \rightarrow cX$, 5j 3b (b) $t \rightarrow uX$, 5j 3b

160

95% CL observed limit 95% CL expected limit

Expected $\pm 1\sigma$ Expected $\pm 2\sigma$

120

95% CL observed limit

95% CL expected limit

Expected $\pm 1\sigma$

Expected $\pm 2\sigma$

120

140

m_v [GeV]

100

140

m_x [GeV]

160

100

$H^{++}H^{--} \rightarrow 4\ell$

- Appear in e.g. left-right symmetric models, Georgi-Machacek model...
 > Depending on the parameters, can decay to WW or ℓℓ here consider ℓℓ case
 > LFV decays are allowed: H^{±±}→ℓℓ'
- Couplings assumed to be the same for all flavor combinations (not proportional to mass)
- Search for SS lepton pairs in the final state

signal regions					
SR2L	SR3L	SR4L			
$e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$\ell^+\ell^+\ell^-\ell^-$			
$\mu^{\pm}\mu^{\pm}$					

veto events with b-jets

$H^{++}H^{--} \rightarrow 4\ell$

- Main discriminant: invariant mass of the 2 leading SS leptons
- Diboson/DY background estimated from MC scaled to the data
- Simultaneous fit over CRs & SR in the invariant mass (only 1 bin in 4ℓ case)
- No significant excess observed
 - > 42 channel most sensitive, drives the combination
 - > Analysis statistically dominated

Charge misID data driven

tt H/A \rightarrow 4t

- Look for tt associated H/A (0.4 1 TeV) production
 - > In inclusive $gg \rightarrow H/A$ resonant tt peak diluted due to negative interference effects with SM $gg \rightarrow tt$
- Dominant decay (above 2t threshold): $H/A \rightarrow tt$
- Select events with
 - \succ 2 SS leptons or ≥3 leptons
 - ≻≥6j (≥2b)
 - $> H_T > 500 \text{ GeV}$ (scalar sum of p_T of jets & leptons)

Region	Channel	Nj	Nb	Other selection cuts	Fitted variable
BSM SR	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 \text{ GeV}, \text{SM BDT} \ge 0.55$	BSM pBDT

tt H/A \rightarrow 4t

- Train 2 types of BDTs, sequentially:
 - "SM BDT" to separate SM 4t events from other SM backgrounds
 - $_{\odot}$ Signal has similar kinematics to SM 4t
 - > "BSM pBDT" (mass-parametrized) to separate signal from all backgrounds
 - \circ SM BDT used as input

$ttH/A \rightarrow 4t$

ATLAS-CONF-2022-008

- Simultaneous binned likelihood fit over various discriminating variables in CRs & SR
- No significant deviation from SM prediction observed

Eur. Phys. J. C 81 (2021) 332

- Look for an excess in the 4l invariant mass or 2l2v transverse mass
 - > ggF & VBF categories considered separately for model-independent results

$$m_{\rm T} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p}_{\rm T}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

- Consider narrow width (NWA) and large (1%-15%) width (LWA) signals
 - Interference between heavy H, SM H and ZZ continuum taken into account in the LWA case can modify the Xsec by O(10%)
- Deep Neural networks (DNN) used to improve the sensitivity in the 4^l channel

Eur. Phys. J. C 81 (2021) 332

 $H \rightarrow ZZ \rightarrow 4\ell/2\ell 2v$

- parameter space
- The excluded region in Type II >60% larger with respect to the previous publication

200 220 240 260 280 300 320 340 360 380 400

Eur. Phys. J. C 81 (2021) 332

$H \rightarrow ZZ \rightarrow 4\ell/2\ell 2v$

- SM ZZ normalization derived in a likelihood fit to the data
- m_{4l} parametrized by analytic functions
 combined unbinned ML fit
- Binned $m_{\rm T}$ templates based on simulation are fit to the data

$H(125) \rightarrow ZX/XX \rightarrow 4\ell$

- Dominant bkg from simulation: $H \rightarrow ZZ^* \& ZZ^*$
- High-mass 4I: Largest excess found at 28 GeV with the local significance of 2.6 σ

$H \rightarrow \gamma \gamma > 65 \text{ GeV}$

H→aa→bbµµ

• Largest excess observed at m_{uu} =52 GeV corresponding to the local (global) significance of 3.3 σ (1.7 σ)

ATLAS-CONF-2021-047

 $H^{\pm} \rightarrow W^{\pm}A(\rightarrow \mu\mu)$

