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(2,2) superspace

{D±, D̄±} = 2i∂
++
=
,

Left ` and Right r Semichiral superfields

D̄+` = 0 , D̄−r = 0
T. Buscher, U. L., M. Roček Phys.Lett.B 202 (1988) 94-98

Let L = (`, ¯̀) and R = (r, r̄) . Equal number of left and right
semichirals. Then a general action is

S =

∫
d2xD2D̄2K (L,R)

It reduces to a sigma model in (1,1) superspace as follows:
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Semichiral models T. Buscher, U. L., M. Roček Phys.Lett.B 202 (1988) 94-98

The reduction

D̄+` = (D+ + iQ+)` = 0 , ⇒ Q+L = JD+L

D̄−r = (D− + iQ−)r = 0 , ⇒ Q−R = JD−R

where L = (`, ¯̀) and R = (r, r̄) as before. In addition we define

Q−L = Ψ− , Q+R = Ψ+

These are spinorial auxiliary fields. When they are integrated
out of the action they become part of the complex structures.
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Reduction

(L,R)→ (L,R)|

(Q−L,Q+R)| = (Ψ−,Ψ+)⇒ (Ψ−(L,R)|,Ψ+(L,R)|)

The reduction of the model is∫
d2xD2D̄2K (L,R)

→
∫

d2xD2Q2K (L,R)|

=
∫

d2xD2 [(D+LCLL − D+RKRLJ)ΨL
− −ΨR

+(CRRD−R + JKRLD−L)

+D+LJKLRJD−R + ΨR
+KRLΨL

−
]

⇒
∫

d2xD2
(

D+X A(GAB + BAB)X B
)

=
∫

d2xD2(D+X AEABX B)

where→ indicates reduction,⇒ implies solving for the
auxiliary spinors and where X A = (L,R).
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The potential

The metric plus B field are

ELL = CLLK LRJKRL

ELR = JKLRJ + CLLK LRCRR

ERL = −KRLJK LRJKRL

ERR = −KRLJK LRCRR

with CLL := [J,KLL] etc., while the complex structures read

J+ =

(
J 0

K RLCLL K RLJKLR

)
, J− =

(
K LRJKRL K LRCRR

0 J

)
and will not commute in general.
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GHR Bihermitean geometry= GKG J.Gates, C.Hull and M. Roček 1984

A manifold endowed with two complex structures J+ and J−, a
metric g and an antisymmetric B-field B carries a bihermitian
geometry if g is hermitian with respect to both complex
structures

J t
±gJ± = g ,

and the two complex structures are covariantly constant with
respect to two connections with torsion

∇+J+ = 0 , ∇−J− = 0 ,

where the torsionfull connections are

∇+ = ∇0 + T , ∇− = ∇0 − T , T k
ij = 1

2Hijngnk .

There are two distinct cases of this geometry depending on
whether the two complex structures commute or not.
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Additional susy starting from (1,1).
J.Gates, C.Hull and M. Roček 1984, C.Hull and E. Witten 1985.

A general sigma model in (1,1) is

S =

∫
d2xD+D−

(
D+Φi(x , θ)

(
Gij + Bij

)
(Φ)D−Φj(x , θ)

)
|

=

∫
d2x∂++φiEij(φ)∂=φ

j + ....

It has (1,1) supersymmetry manifest by construction.
Additional supersymmetries will have the form (GHR),

δΦi = ε+J i
(+)kD+Φk + ε−J i

(−)kD−Φk

The conditions on J follow from two requirements:

Closure of the algebra [δ1, δ2]Φ = −i2ε1ε2∂Φ

Invariance of the action δS = 0
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Additional susy starting from (2,2).

M. Goteman, U. L., M. Roček and I. Ryb, JHEP 09 (2010) 055:

U.L. 2207.11780 [hep-th] (2022)

We now ask instead under what conditions the (2,2) model∫
d2xD2D̄2K (L,R)

has additional supersymmetries δL and δR, thinking of the
(2,2) semi chiral fields (L,R) = Xi , i = 1 . . . 4d as coordinates
on the target space. The ansatz for such a symmetry is dictated
by the chirality constraints on the superfields

δXi := ε̄αU(α)i
jD̄αXj + εαV (α)i

jDαXj

where α = ±. The conditions on the functions U and V are
again found from closure of the algebra and invariance of the
action, but are rather different than in the (1,1) formulation.
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Yano F -structures

The matrices U(α) (and V (α)) are degenerate and satisfy

U(+)V (+) = −diag(1,0,1,1), V (+)U(+) = −diag(0,1,1,1),

U(−)V (−) = −diag(1,1,1,0), V (−)U(−) = −diag(1,1,0,1)

where each entry is a d × d matrix. This prevents a direct
interpretation in terms of complex structures on the tangent
space TM. If the coordinates of T(α)M are (Xi ,DαXi) and those
of T̄(α)M are (Xi , D̄αXi) then U(α) acts on T(α)M and V (α) on
T̄(α)M so that the combined action is on T(α)M ⊕ T̄(α)M. This
allows an interpretation of the transformation matrices as a
Yano F -structures on the doubled tangent bundles.

F(α) :=

(
0 U(α)

V (α) 0

)
=⇒ F3

(α) + F(α) = 0 .
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Projection operators

For each α then follow two complementary projection operators

m(α) := 1 + F2
(α) l(α) := −F2

(α)

satisfying

l(α) + m(α) = 1, l2(α) = l(α), m2
(α) = m(α) , l(α)m(α) = 0

and

F(α)l(α) = l(α)F(α) = F(α), m(α)F(α) = F(α)m(α) = 0.
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Invariance of the action

Invariance of

S =

∫
d2xD2D̄2K (L,R)

under + transformations gives the following condition(
KiU(+)i

[j

)
k ] = 0, j , k 6= ` ,

and similarly for other U(−) and the Vs. This may be interpreted
as the existence of a symplectic structure Ω

Ω =

(
0 K
−Kt 0

)
=

(
K 0
0 −Kt

)(
0 114d

114d 0

)
:= Kη ,

with K formed from second derivatives of the potential K (L,R),
K a neutral metric and η a local product structure.

Ulf Lindström and Supersymmetry.



The projections of Ω are

l(α) Ω l(α) =: Ω(α) ,

they satisfy

F t
(α)Ω

(α)F(α) = Ω(α) ,

i.e. the F -structures preserve Ω on the subspaces Λ(α) defined
by the projectors l(α) .
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Integrability of F

To discuss integrability we introduce a doubled manifold
M = M2 and integrability of endomorphisms of TM via the Lie
bracket. The doubled tangent space then follows from a double
foliation of M, the identification of coordinates on M as
coordinates on two leafs S and S̃ of the foliation and finally the
restriction to the physicalM as a base via a section condition.
This entails splitting the tangent space using the projection
operators

P = 1
2

(
11 + η

)
, P̃ = 1

2

(
11− η

)
.

Using these we have

TM = L⊕ L̃ ,

where the ±1 eigenspaces L and L̃ are integrable distributions.
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By Frobenius theorem L and L̃ define a double foliation
structure in M so that L = TS, L̃ = T S̃. The spacetime M is
identified with a leaf of the foliation. This introduces coordinates
(Xi ,Yi) on M. The physical spacetime is then choosen by a
section constraint.
So now we define integrability of F by requiring that its
Nijenhuis tensor N P

IJ (F) on TM vanishes when we impose the
section constraint which we take to be ∂

∂Yi ∼ 0.

The conditions on U(α) and V (α) from closure of the algebra
ensures the integrability of F
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For each α they define two complementary distributions of
dimensions 6d and 2d , respectively. They trivially fulfil the
integrability conditions

mi
(±)lN

l
F(±)jk = 0, N i

F(±)jkmj
(±)lm

k
(±)m = 0.

where NF is the Nijenhuis tensor for F .

Closure of the algebra has led to two integrable Yano F -
structures on a doubled tangent space with associated split-
ting of this tangent space into involutive subspaces
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The bi-quaternionic structure at (1,1)

δAXi
| = ε+AJ i(A)

(+)j D+Xj
| + ε−AJ i(A)

(−)j D−X
j
| ,

J(A)
(±)J(B)

(±) = −δAB + εABCJ(C)
(±) ,

J(1)
(α) = U(α)π(α) + V (α)π̄(α)

J(2)
(α) = i

(
U(α)π(α) − V (α)π̄(α)

)
.

where

π(±) := 1
2

(
11 + iJ(3)

(α)

)
.
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Summary

Additional off-shell supersymmetry for the symplectic sigma
model requires

1 That the manifold has dimension 4d with d > 1.
2 That the doubled tangent bundles

T(α) = T(α)M ⊕ T̄(α)M carry integrable Yano
F -stuctures F(α) and a symplectic form Ω.

3 That F(α) preserves Ω.
4 That each F splits T into invariant complementary

distributions defined by the projection operators l(α)
and m(α).

5 Reduction to (1,1) gives an interpretation of this
structure in terms of the pre-existing bi-hermitian
geometry.
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