Extended supersymmetry and Yano F-structures

Ulf Lindström¹

¹METU Ankara and University of Uppsala

Kerkyra, September 8 2022

ORTA DOĞU TEKNİK ÜNİVERSİTESİ MIDDLE EAST TECHNICAL UNIVERSITY

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Ulf Lindström

and Supersymmetry.

$$\{\mathbb{D}_{\pm}, \overline{\mathbb{D}}_{\pm}\} = 2i\partial_{\pm},$$

Left ℓ and Right t Semichiral superfields

$$\bar{\mathbb{D}}_+\ell=0\;,\quad \bar{\mathbb{D}}_-\mathfrak{r}=0$$

T. Buscher, U. L., M. Roček Phys.Lett.B 202 (1988) 94-98

ヘロン ヘアン ヘビン ヘビン

Let $L = (\ell, \overline{\ell})$ and $R = (\mathfrak{r}, \overline{\mathfrak{r}})$. Equal number of left and right semichirals. Then a general action is

$$S = \int d^2 x \mathbb{D}^2 \bar{\mathbb{D}}^2 K(L,R)$$

It reduces to a sigma model in (1, 1) superspace as follows:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The reduction

$$\begin{split} \bar{\mathbb{D}}_+ \ell &= (D_+ + iQ_+)\ell = 0 \ , \quad \Rightarrow Q_+ L = JD_+ L \\ \bar{\mathbb{D}}_- \mathfrak{r} &= (D_- + iQ_-)\mathfrak{r} = 0 \ , \quad \Rightarrow Q_- R = JD_- R \end{split}$$

where $L = (\ell, \overline{\ell})$ and $R = (\mathfrak{r}, \overline{\mathfrak{r}})$ as before. In addition we define

$$Q_-L = \Psi_-$$
, $Q_+R = \Psi_+$

These are spinorial auxiliary fields. When they are integrated out of the action they become part of the complex structures.

Reduction

$$(L,R)
ightarrow (L,R)_{|}$$

 $(Q_{-}L,Q_{+}R)_{|} = (\Psi_{-},\Psi_{+}) \Rightarrow (\Psi_{-}(L,R)_{|},\Psi_{+}(L,R)_{|})$

The reduction of the model is

$$\int d^2 x \mathbb{D}^2 \overline{\mathbb{D}}^2 K(L, R)$$

$$\rightarrow \int d^2 x D^2 Q^2 K(L, R)_{|}$$

$$= \int d^2 x D^2 \left[(D_+ L C_{LL} - D_+ R K_{RL} J) \Psi_-^L - \Psi_+^R (C_{RR} D_- R + J K_{RL} D_- L) \right.$$

$$+ D_+ L J K_{LR} J D_- R + \Psi_+^R K_{RL} \Psi_-^L \right]$$

$$\Rightarrow \int d^2 x D^2 \left(D_+ X^A (G_{AB} + B_{AB}) X^B \right) = \int d^2 x D^2 (D_+ X^A E_{AB} X^B)$$

where \rightarrow indicates reduction, \Rightarrow implies solving for the auxiliary spinors and where $X^A = (L, R)$.

ъ

The metric plus *B* field are

$$E_{LL} = C_{LL}K^{LR}JK_{RL}$$
$$E_{LR} = JK_{LR}J + C_{LL}K^{LR}C_{RR}$$
$$E_{RL} = -K_{RL}JK^{LR}JK_{RL}$$
$$E_{RR} = -K_{RL}JK^{LR}C_{RR}$$

with $C_{LL} := [J, K_{LL}]$ etc., while the complex structures read

$$\mathbb{J}_{+} = \left(\begin{array}{cc} J & 0 \\ \mathcal{K}^{RL}\mathcal{C}_{LL} & \mathcal{K}^{RL}J\mathcal{K}_{LR} \end{array}\right) \ , \quad \mathbb{J}_{-} = \left(\begin{array}{cc} \mathcal{K}^{LR}J\mathcal{K}_{RL} & \mathcal{K}^{LR}\mathcal{C}_{RR} \\ 0 & J \end{array}\right)$$

and will not commute in general.

ヘロト 人間 とくほとくほとう

3

GHR Bihermitean geometry= GKG

A manifold endowed with two complex structures J_+ and J_- , a metric g and an antisymmetric B-field B carries a *bihermitian geometry* if g is hermitian with respect to both complex structures

$$J^t_\pm g J_\pm = g \; ,$$

and the two complex structures are covariantly constant with respect to two connections with torsion

$$abla_+ J_+ = \mathbf{0} \;, \quad
abla_- J_- = \mathbf{0} \;,$$

where the torsionfull connections are

$$abla_+ =
abla_0 + T$$
, $abla_- =
abla_0 - T$, $abla_{ij}^k = rac{1}{2} H_{ijn} g^{nk}$

There are two distinct cases of this geometry depending on whether the two complex structures commute or not.

Additional susy starting from (1, 1).

J.Gates, C.Hull and M. Roček 1984, C.Hull and E. Witten 1985.

A general sigma model in (1, 1) is

$$\begin{split} S &= \int d^2 x D_+ D_- \Big(D_+ \Phi^i(x,\theta) \big(G_{ij} + B_{ij} \big) (\Phi) D_- \Phi^j(x,\theta) \Big)_{|} \\ &= \int d^2 x \partial_+ \phi^i E_{ij}(\phi) \partial_= \phi^j + \dots \end{split}$$

It has (1, 1) supersymmetry manifest by construction. Additional supersymmetries will have the form (GHR),

$$\delta \Phi^{i} = \epsilon^{+} J^{i}_{(+)k} D_{+} \Phi^{k} + \epsilon^{-} J^{i}_{(-)k} D_{-} \Phi^{k}$$

The conditions on *J* follow from two requirements:

- Closure of the algebra $[\delta_1, \delta_2]\Phi = -i2\epsilon_1\epsilon_2\partial\Phi$
- Invariance of the action $\delta S = 0$

ヘロト ヘワト ヘビト ヘビト

Additional susy starting from (2,2).

M. Goteman, U. L., M. Roček and I. Ryb, JHEP 09 (2010) 055:

U.L. 2207.11780 [hep-th] (2022)

ヘロア ヘビア ヘビア・

We now ask instead under what conditions the (2,2) model

$$\int d^2 x \mathbb{D}^2 \bar{\mathbb{D}}^2 K(L,R)$$

has additional supersymmetries δL and δR , thinking of the (2, 2) semi chiral fields $(L, R) = \mathbb{X}^i$, $i = 1 \dots 4d$ as coordinates on the target space. The ansatz for such a symmetry is dictated by the chirality constraints on the superfields

$$\delta \mathbb{X}^{i} := \bar{\epsilon}^{\alpha} \boldsymbol{U}^{(\alpha)i}{}_{j} \bar{\mathbb{D}}_{\alpha} \mathbb{X}^{j} + \epsilon^{\alpha} \boldsymbol{V}^{(\alpha)i}{}_{j} \mathbb{D}_{\alpha} \mathbb{X}^{j}$$

where $\alpha = \pm$. The conditions on the functions *U* and *V* are again found from closure of the algebra and invariance of the action, but are rather different than in the (1, 1) formulation.

Yano F-structures

The matrices $U^{(\alpha)}$ (and $V^{(\alpha)}$) are degenerate and satisfy

$$U^{(+)}V^{(+)} = -\operatorname{diag}(1,0,1,1), \quad V^{(+)}U^{(+)} = -\operatorname{diag}(0,1,1,1),$$
$$U^{(-)}V^{(-)} = -\operatorname{diag}(1,1,1,0), \quad V^{(-)}U^{(-)} = -\operatorname{diag}(1,1,0,1)$$

where each entry is a $d \times d$ matrix. This prevents a direct interpretation in terms of complex structures on the tangent space *TM*. If the coordinates of $T_{(\alpha)}M$ are $(\mathbb{X}^i, \mathbb{D}_{\alpha}\mathbb{X}^i)$ and those of $\overline{T}_{(\alpha)}M$ are $(\mathbb{X}^i, \overline{\mathbb{D}}_{\alpha}\mathbb{X}^i)$ then $U^{(\alpha)}$ acts on $T_{(\alpha)}M$ and $V^{(\alpha)}$ on $\overline{T}_{(\alpha)}M$ so that the combined action is on $T_{(\alpha)}M \oplus \overline{T}_{(\alpha)}M$. This allows an interpretation of the transformation matrices as a Yano *F*-structures on the doubled tangent bundles.

$$\mathcal{F}_{(\alpha)} := \left(egin{array}{cc} 0 & U^{(lpha)} \ V^{(lpha)} & 0 \end{array}
ight) \quad \Longrightarrow \ \mathcal{F}^3_{(lpha)} + \mathcal{F}_{(lpha)} = 0$$

ヘロト ヘアト ヘヨト ヘ

For each α then follow two complementary projection operators

$$m_{(\alpha)} := 1 + \mathcal{F}^2_{(\alpha)} \quad I_{(\alpha)} := -\mathcal{F}^2_{(\alpha)}$$

satisfying

$$l_{(\alpha)} + m_{(\alpha)} = 1$$
, $l_{(\alpha)}^2 = l_{(\alpha)}$, $m_{(\alpha)}^2 = m_{(\alpha)}$, $l_{(\alpha)}m_{(\alpha)} = 0$
and

$$\mathcal{F}_{(\alpha)}I_{(\alpha)}=I_{(\alpha)}\mathcal{F}_{(\alpha)}=\mathcal{F}_{(\alpha)}, \quad m_{(\alpha)}\mathcal{F}_{(\alpha)}=\mathcal{F}_{(\alpha)}m_{(\alpha)}=0.$$

ヘロン 人間 とくほど くほとう

2

Invariance of the action

Invariance of

$$S = \int d^2 x \mathbb{D}^2 \bar{\mathbb{D}}^2 K(L,R)$$

under $+ \mbox{ transformations gives the following condition}$

$$\left(K_i U^{(+)i}{}_{[j]}\right){}_{k]}=0, \quad j,k\neq\ell$$

and similarly for other $U^{(-)}$ and the Vs. This may be interpreted as the existence of a symplectic structure Ω

$$\Omega = \begin{pmatrix} \mathbf{0} & \mathbb{K} \\ -\mathbb{K}^t & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbb{K} & \mathbf{0} \\ \mathbf{0} & -\mathbb{K}^t \end{pmatrix} \begin{pmatrix} \mathbf{0} & \mathbf{1}_{4d} \\ \mathbf{1}_{4d} & \mathbf{0} \end{pmatrix} := \mathcal{K}\eta ,$$

with \mathbb{K} formed from second derivatives of the potential K(L, R), \mathcal{K} a neutral metric and η a local product structure.

The projections of Ω are

$$I_{(\alpha)}\Omega I_{(\alpha)} =: \Omega^{(\alpha)} ,$$

they satisfy

$$\mathcal{F}_{(\alpha)}^{t}\Omega^{(\alpha)}\mathcal{F}_{(\alpha)}=\Omega^{(\alpha)}$$
,

i.e. the *F*-structures preserve Ω on the subspaces $\Lambda^{(\alpha)}$ defined by the projectors $I_{(\alpha)}$.

ヘロト 人間 ト ヘヨト ヘヨト

3

Integrability of \mathcal{F}

To discuss integrability we introduce a doubled manifold $\mathbb{M} = M^2$ and integrability of endomorphisms of $T\mathbb{M}$ via the Lie bracket. The doubled tangent space then follows from a double foliation of \mathbb{M} , the identification of coordinates on \mathbb{M} as coordinates on two leafs S and \tilde{S} of the foliation and finally the restriction to the physical \mathcal{M} as a base via a section condition. This entails splitting the tangent space using the projection operators

$$P = \frac{1}{2} (\mathbf{1} + \eta)$$
, $\tilde{P} = \frac{1}{2} (\mathbf{1} - \eta)$.

Using these we have

$$T\mathbb{M}=L\oplus \tilde{L}$$
,

where the ± 1 eigenspaces *L* and \tilde{L} are integrable distributions.

By Frobenius theorem *L* and \tilde{L} define a double foliation structure in \mathbb{M} so that L = TS, $\tilde{L} = T\tilde{S}$. The spacetime *M* is identified with a leaf of the foliation. This introduces coordinates $(\mathbb{X}^i, \mathbb{Y}^i)$ on \mathbb{M} . The physical spacetime is then choosen by a section constraint.

So now we define integrability of \mathcal{F} by requiring that its Nijenhuis tensor $\mathcal{N}_{IJ}{}^{P}(\mathcal{F})$ on $T\mathbb{M}$ vanishes when we impose the section constraint which we take to be $\frac{\partial}{\partial \mathbb{V}^{I}} \sim 0$.

The conditions on $U^{(\alpha)}$ and $V^{(\alpha)}$ from closure of the algebra ensures the integrability of \mathcal{F}

For each α they define two complementary distributions of dimensions 6*d* and 2*d*, respectively. They trivially fulfil the integrability conditions

$$m_{(\pm)l}^i \mathcal{N}_{\mathcal{F}_{(\pm)}jk}^l = 0, \qquad \mathcal{N}_{\mathcal{F}_{(\pm)}jk}^i m_{(\pm)l}^j m_{(\pm)m}^k = 0.$$

where $\mathcal{N}_{\mathcal{F}}$ is the Nijenhuis tensor for \mathcal{F} .

Closure of the algebra has led to two integrable Yano *F*-structures on a doubled tangent space with associated splitting of this tangent space into involutive subspaces

< ロ > < 同 > < 三 > .

The bi-quaternionic structure at (1, 1)

$$\delta^{\mathcal{A}} \mathbb{X}_{|}^{i} = \epsilon_{\mathcal{A}}^{+} J_{(+)j}^{i(\mathcal{A})} D_{+} \mathbb{X}_{|}^{j} + \epsilon_{\mathcal{A}}^{-} J_{(-)j}^{i(\mathcal{A})} D_{-} \mathbb{X}_{|}^{j} ,$$

$$J_{(\pm)}^{(\mathcal{A})}J_{(\pm)}^{(\mathcal{B})} = -\delta^{\mathcal{A}\mathcal{B}} + \epsilon^{\mathcal{A}\mathcal{B}\mathcal{C}}J_{(\pm)}^{(\mathcal{C})},$$

$$egin{split} J^{(1)}_{(lpha)} &= U^{(lpha)} \pi_{(lpha)} + V^{(lpha)} ar{\pi}_{(lpha)} \ J^{(2)}_{(lpha)} &= i \left(U^{(lpha)} \pi_{(lpha)} - V^{(lpha)} ar{\pi}_{(lpha)}
ight). \end{split}$$

where

$$\pi_{(\pm)} := \frac{1}{2} \left(\mathbf{1} + i J_{(\alpha)}^{(3)} \right) \; .$$

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

Additional off-shell supersymmetry for the symplectic sigma model requires

- That the manifold has dimension 4d with d > 1.
- **2** That the doubled tangent bundles $\mathbb{T}_{(\alpha)} = \mathcal{T}_{(\alpha)} M \oplus \overline{\mathcal{T}}_{(\alpha)} M$ carry integrable Yano *F*-stuctures $\mathcal{F}_{(\alpha)}$ and a symplectic form Ω .

③ That $\mathcal{F}_{(\alpha)}$ preserves Ω.

- That each *F* splits T into invariant complementary distributions defined by the projection operators *l*_(α) and *m*_(α).
- Reduction to (1, 1) gives an interpretation of this structure in terms of the pre-existing bi-hermitian geometry.

(日)

Σας ευχαριστώ για την προσοχή σας

Ulf Lindström and Supersymmetry.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●