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(2,2) superspace

{Dy, Dy} =2i0

x

Left £ and Right © Semichiral superfields

D=0, D_t=0

T. Buscher, U. L., M. Rocek Phys.Lett.B 202 (1988) 94-98

Let L = (¢,¢) and R = (x,t) . Equal number of left and right
semichirals. Then a general action is

S— / dxDPD2K(L, R)
It reduces to a sigma model in (1, 1) superspace as follows:
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Semichiral models T. Buscher, U. L., M. RoSek Phys.Lett.B 202 (1988) 94-98

The reduction

]D+€ — (D+ —|— IQ+)£ — 0 5 = Q+L — JD+L
D_t=(D_+iQ_}x=0, = Q. R=JD_R

where L = (¢,¢) and R = (,t) as before. In addition we define
Q,L:\U, 3 Q+FI’:W+

These are spinorial auxiliary fields. When they are integrated
out of the action they become part of the complex structures.
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(L,R) — (L, R),
(Q-L, QuR) = (W_, V) = (V_(L R), V(L R))
The reduction of the model is
[ d2xD2D2K(L, R)
— [ d?xD2Q?K(L, R),
= [ d?xD? [(D;LCyy — Dy RKpJ)WE — WA(CrrD_R + JKr D_L)
+D, LUK rID-R + WK WL ]
N fdsz2<D+XA(GAB + Bag) XB) [ dPXxD?(D XAExsXB)

where — indicates reduction, = implies solving for the
auxiliary spinors and where X4 = (L, R).
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The potential

The metric plus B field are

Ei = CLK"UKg,

Eir = JKipd + CLiK  Crr
Ert = —KroJK RUKRL

Epr = —KaLJK " Cpp

with Cy; := [J, K] etc., while the complex structures read

I, — J 0 I = KLRJKg KLRCpgp
t*7 \ KALe,, KPRLUKg )0 0 J

and will not commute in general.
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GHR Bihermitean geometry= GKG

A manifold endowed with two complex structures J, and J_, a
metric g and an antisymmetric B-field B carries a bihermitian
geometry if g is hermitian with respect to both complex
structures

Jighi =g,

and the two complex structures are covariantly constant with
respect to two connections with torsion

Vidy =0, V_J_=0,
where the torsionfull connections are

Vi=Vo+T, V_=Vo-T, Tijk:%Hijngnk-

There are two distinct cases of this geometry depending on
whether the two complex structures commute or not.
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Additional susy starting from (1, 1).

J.Gates, C.Hull and M. Rocek 1984, C.Hull and E. Witten 1985.

A general sigma model in (1,1) is
S= / a2xD, D_ (D+<b"(x, 0)(Gj + B;)(®)D_/(x, 9))|

_ / A2x04 O Ej( )0 + .

It has (1, 1) supersymmetry manifest by construction.
Additional supersymmetries will have the form (GHR),

00" = "I )k Dy O + € J[_) Do

The conditions on J follow from two requirements:

@ Closure of the algebra  [01, 02]P = —i2¢1e20
@ Invariance of the action 6S =0
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Additional susy starting from (2, 2).

M. Goteman, U. L., M. Ro¢ek and I. Ryb, JHEP 09 (2010) 055:
U.L. 2207.11780 [hep-th] (2022)
We now ask instead under what conditions the (2,2) model

/ d’xD?D?K (L, R)

has additional supersymmetries 6L and ¢ R, thinking of the
(2,2) semi chiral fields (L, R) = X' ,i = 1...4d as coordinates
on the target space. The ansatz for such a symmetry is dictated
by the chirality constraints on the superfields

0X! = e U DX + e V() D, X/

where o = +. The conditions on the functions U and V are
again found from closure of the algebra and invariance of the
action, but are rather different than in the (1, 1) formulation.
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Yano F-structures

The matrices U(®) (and V(®)) are degenerate and satisfy

U V) = _diag(1,0,1,1), VO UH) = —diag(0,1,1,1),
UV = —diag(1,1,1,0), VOIU) = —diag(1,1,0,1)

where each entry is a d x d matrix. This prevents a direct
interpretation in terms of complex structures on the tangent
space TM. If the coordinates of T(,)M are (X', D,X') and those
of T,yM are (X', D,X') then U(®) acts on T(,yM and V() on
T(ayM so that the combined action is on T(,yM & T(,yM. This
allows an interpretation of the transformation matrices as a
Yano F-structures on the doubled tangent bundles.

0 U 3
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Projection operators

For each « then follow two complementary projection operators
T2
My =1+ Fy oy =Ty
satisfying
2 2
foy + Moy =1 fa) = lays M) = Ma) s fa)Ma) =0
and

Flayho) = o) Fla) = Flayy M) Fa) = Fa)Ma) = 0.
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Invariance of the action

Invariance of
S— / dxDPD2K(L, R)

under + transformations gives the following condition
(KIU(+)i[j> k=0, Lk#L,

and similarly for other U(-) and the V's. This may be interpreted
as the existence of a symplectic structure Q

/{0 K\ (K 0 0 140\
2= o) (0 S ) (i ¥) =

with K formed from second derivatives of the potential K(L, R),
K a neutral metric and n a local product structure.
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The projections of Q are

/(a)Q/(a) = Q(a) 5
they satisfy

t « «

i.e. the F-structures preserve Q on the subspaces A(®) defined
by the projectors /) -
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Integrability of F

To discuss integrability we introduce a doubled manifold

M = M? and integrability of endomorphisms of TM via the Lie
bracket. The doubled tangent space then follows from a double
foliation of M, the identification of coordinates on M as
coordinates on two leafs S and S of the foliation and finally the
restriction to the physical M as a base via a section condition.
This entails splitting the tangent space using the projection
operators

P=3(1+n), P=3(1-n).
Using these we have
TM=LaL,

where the +1 eigenspaces L and [ are integrable distributions.
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By Frobenius theorem L and L define a double foliation
structure in M so that L = TS, L = TS. The spacetime M is
identified with a leaf of the foliation. This introduces coordinates
(X’,Y') on M. The physical spacetime is then choosen by a
section constraint.

So now we define integrability of 7 by requiring that its
Nijenhuis tensor A/,P(F) on TM vanishes when we impose the

section constraint which we take to be % ~ 0.

The conditions on U(®) and V(@) from closure of the algebra
ensures the integrability of 7
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For each « they define two complementary distributions of
dimensions 6d and 2d, respectively. They trivially fulfil the
integrability conditions

méi)/Nf(ﬂ/k =0, }(i)fkn%i)’m(i)m =0.

where Nr is the Nijenhuis tensor for F .

Closure of the algebra has led to two integrable Yano F-
structures on a doubled tangent space with associated split-
ting of this tangent space into involutive subspaces
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The bi-quaternionic structure at (1,1)

Axei _ + ji(A) i(A) j
) X\'—ﬁAJ(ﬂ D+X‘+€AJ( )D X‘,

(A) (B) _  cAB ABC (C)
J( )J(i) 6" +e€ J(i),

(1) _
J(a)_U() (o) + V7

(@) _ i o) =
J(a) =1 (U( )7T(a) - V( )77(04)> 5

where
1 : 1(3)
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Additional off-shell supersymmetry for the symplectic sigma
model requires
@ That the manifold has dimension 4d with d > 1.
© That the doubled tangent bundles
T(a) = T(a)M ® T(o)M carry integrable Yano
F-stuctures F(,) and a symplectic form €.
© That F(,) preserves Q.

© That each F splits T into invariant complementary
distributions defined by the projection operators /.,
and m(a).

@ Reduction to (1, 1) gives an interpretation of this
structure in terms of the pre-existing bi-hermitian
geometry.
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