00	000	00	

Starobinsky-Type B - L Higgs Inflation Leading Beyond MSSM

C. PALLIS

SCHOOL OF TECHNOLOGY ARISTOTLE UNIVERSITY OF THESSALONIKI

BASED ON:

C.P. and Q. Shafi, Eur. Phys. J. C 78, No. 1, 13 (2018) [arXiv:1803.00349].

OUTLINE

- STAROBINSKY-TYPE INFLATION (STI)
 - Non-MINIMAL INFLATION (NMI)
 - STAROBINSKY VERSUS INDUCED-GRAVITY INFLATION
- 2 INDUCED-GRAVITY HIGGS INFLATION IN SUGRA
 - GENERAL FRAMEWORK
 - INFLATING WITH A SUPERHEAVY HIGGS
- **EMBEDDING IN A** B L SUSY GUT
 - B L Breaking, μ Term & Neutrino Masses
 - INFLATIONARY SCENARIO
- POST-INFLATIONARY SCENARIO
 - Inflaton Decay & non-Thermal Leptogenesis
 - RESULTS
- CONCLUSIONS

CORFU SUMMER INSTITUTE 2022: WORKSHOP ON THE STANDARD MODEL AND BEYOND 28 August - 8 September 2022, Corfu, Greece

Starobinsky-Type Inflation (STI)		Post-Inflationary Scenario 000 00	
NON-MINIMAL INFLATION (NMI)			

COUPLING NON-MINIMALLY THE INFLATON TO GRAVITY

• Our Starting Point is The Action in the Jordan Frame (JF) Of A Scalar Field ϕ with Potential $V(\phi)$ non-Minimally Coupled to the Ricci Scalar Curvature, \mathcal{R} , Through A Frame Function $f_{\mathcal{R}}(\phi)$. This is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} f_{\mathcal{R}}(\phi) \mathcal{R} + \frac{f_K(\phi)}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right), \quad \text{Where}$$

g is the Determinant Of The Background Metric and $f_R(\langle \phi \rangle) \simeq 1$ (in Reduced Planck Units With $m_P = 1$) to Guarantee the Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function $f_K(\phi)$.

¹ K. Maeda (1989); D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008). 4 🚊 + 4 🧵 + - 🚊 - - 🖓 🔍 (*

STAROBINSKY-TYPE INFLATION (STI)			
• 00 00	0 000	000	
Non-Minimal Inflation (nMI)			

COUPLING NON-MINIMALLY THE INFLATON TO GRAVITY

• Our Starting Point is The Action in the Jordan Frame (JF) Of A Scalar Field ϕ with Potential $V(\phi)$ non-Minimally Coupled to the Ricci Scalar Curvature, \mathcal{R} , Through A Frame Function $f_{\mathcal{R}}(\phi)$. This is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} f_{\mathcal{R}}(\phi) \mathcal{R} + \frac{f_{\mathbf{K}}(\phi)}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right), \quad \text{Where}$$

g is the Determinant Of The Background Metric and $f_R(\langle \phi \rangle) \simeq 1$ (in Reduced Planck Units With $m_P = 1$) to Guarantee the Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function $f_K(\phi)$.

• IF WE PERFORM A CONFORMAL TRANSFORMATION¹ ACCORDING WHICH WE DEFINE THE EF METRIC:

$$\widehat{g}_{\mu\nu} = f_{\mathcal{R}} \, g_{\mu\nu} \quad \Rightarrow \quad \begin{cases} \sqrt{-\widehat{\mathfrak{g}}} = f_{\mathcal{R}}^2 \, \sqrt{-\mathfrak{g}} & \text{and} \quad \widehat{g}^{\mu\nu} = g^{\mu\nu}/f_{\mathcal{R}}, \\ \widehat{\mathcal{R}} = \left(\mathcal{R} + 3\Box \ln f_{\mathcal{R}} + 3g^{\mu\nu}\partial_{\mu}f_{\mathcal{R}}\partial_{\nu}f_{\mathcal{R}}/2f_{\mathcal{R}}^2\right)/f_{\mathcal{R}} \end{cases}$$

WE END UP WITH THE ACTION S IN THE EINSTEIN FRAME (EF)

$$S = \int d^4x \sqrt{-\widehat{\mathfrak{g}}} \left(-\frac{1}{2}\widehat{\mathcal{R}} + \frac{1}{2}\widehat{\mathcal{g}}^{\mu\nu}\partial_{\mu}\widehat{\phi}\partial_{\nu}\widehat{\phi} - \widehat{V}\left(\widehat{\phi}\right) \right)$$

Where we Introduce the EF Canonically Normalized Field, $\hat{\phi}$, and Potential, \hat{V} , Defined As Follows:

$$\left(\frac{d\widehat{\phi}}{d\phi}\right)^2 = J^2 = \frac{f_{\rm K}}{f_{\rm R}} + \frac{3}{2} \left(\frac{f_{{\cal R},\phi}}{f_{\rm R}}\right)^2 \quad {\rm and} \quad \widehat{V}(\widehat{\phi}) = \frac{V\left(\widehat{\phi}(\phi)\right)}{f_{\cal R}\left(\widehat{\phi}(\phi)\right)^2} \cdot$$

¹ K. Maeda (1989); D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008). < 🚊 🕨 < 🧵 🔊 🔍

STAROBINSKY-TYPE INFLATION (STI)			
• 00 00	0 000	000	
Non-Minimal Inflation (nMI)			

COUPLING NON-MINIMALLY THE INFLATON TO GRAVITY

• Our Starting Point is The Action in the Jordan Frame (JF) Of A Scalar Field ϕ with Potential $V(\phi)$ non-Minimally Coupled to the Ricci Scalar Curvature, \mathcal{R} , Through A Frame Function $f_{\mathcal{R}}(\phi)$. This is:

$$\mathcal{S} = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2} f_{\mathcal{R}}(\phi) \mathcal{R} + \frac{f_{\mathbf{K}}(\phi)}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) \right), \quad \text{Where}$$

g is the Determinant Of The Background Metric and $f_R(\langle \phi \rangle) \simeq 1$ (in Reduced Planck Units With $m_P = 1$) to Guarantee the Ordinary Einstein Gravity At Low Energy. We Allow for a Kinetic Mixing Through the Function $f_K(\phi)$.

• IF WE PERFORM A CONFORMAL TRANSFORMATION¹ ACCORDING WHICH WE DEFINE THE EF METRIC:

$$\begin{split} \widehat{g}_{\mu\nu} &= f_{\mathcal{R}} \, g_{\mu\nu} \; \Rightarrow \; \begin{cases} \sqrt{-\widehat{\mathfrak{g}}} = f_{\mathcal{R}}^2 \, \sqrt{-\mathfrak{g}} & \text{and} \; \; \widehat{g}^{\mu\nu} = g^{\mu\nu}/f_{\mathcal{R}}, \\ \widehat{\mathcal{R}} &= \left(\mathcal{R} + 3\Box \ln f_{\mathcal{R}} + 3g^{\mu\nu} \partial_{\mu} f_{\mathcal{R}} \partial_{\nu} f_{\mathcal{R}}/2f_{\mathcal{R}}^2 \right)/f_{\mathcal{R}} \end{cases} \end{split}$$

WE END UP WITH THE ACTION S IN THE EINSTEIN FRAME (EF)

$$S = \int d^4x \sqrt{-\widehat{\mathfrak{g}}} \left(-\frac{1}{2}\widehat{\mathcal{R}} + \frac{1}{2}\widehat{g}^{\mu\nu}\partial_{\mu}\widehat{\phi}\partial_{\nu}\widehat{\phi} - \widehat{V}\left(\widehat{\phi}\right) \right)$$

Where we Introduce the EF Canonically Normalized Field, $\hat{\phi}$, and Potential, \hat{V} , Defined As Follows:

$$\left(\frac{d\widehat{\phi}}{d\phi}\right)^2 = J^2 = \frac{f_{\rm K}}{f_{\rm R}} + \frac{3}{2} \left(\frac{f_{{\rm R},\phi}}{f_{\rm R}}\right)^2 \quad {\rm and} \quad \widehat{V}(\widehat{\phi}) = \frac{V\left(\widehat{\phi}(\phi)\right)}{f_{\rm R}\left(\widehat{\phi}(\phi)\right)^2}.$$

- WE OBSERVE THAT $f_{\mathcal{R}}$ Affects Both J and \widehat{V}_{HI} whereas f_K only J;
- Obviously a clever Choice of V and $f_{\mathcal{R}}$ Can Lead to A Plateau Convenient for Drive Inflation;
- THE ANALYSIS OF INFLATION IN THE EF USING THE STANDARD SLOW-ROLL APPROXIMATION IS EQUIVALENT WITH THE ANALYSIS IN JF.

¹ K. Maeda (1989); D.S. Salopek, J.R. Bond and J.M. Bardeen (1989); D.I. Kaiser (1995); T. Chiba and M. Yamaguchi (2008). 4 🚊 🕨 4 🚊 🕨 💈 📀

Starobinsky-Type Inflation (STI) ○●○ ○○		Post-Inflationary Scenario 000 00	
NON-MINIMAL INFLATION (NMI)			

INFLATIONARY OBSERVATIONAL AND THEORETICAL REQUIREMENTS

IN THE ERA OF PRECISION COSMOLOGY THE INFLATIONARY PARTICLE MODELS CAN BE TIGHTLY RESTRICTED IMPOSING THE CONSTRAINTS:

• The Number of e-foldings, \widehat{N}_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Suffers During inflation has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{\widehat{V}}{\widehat{V}_{,\widehat{\phi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi \, J^2 \frac{\widehat{V}}{\widehat{V}_{,\phi}} \simeq 50 - 60$$

Where \widehat{V} is the EF scalar potential of the Inflaton ϕ ;

 $\phi_{\star}[\widehat{\phi_{\star}}]$ is The Value of $\phi[\widehat{\phi}]$ When k_{\star} Crosses Outside The Inflationary Horizon; $\phi_{f}[\widehat{\phi_{f}}]$ is the Value of $\phi[\widehat{\phi}]$ at the End of Inflation Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{,\widehat{\phi}}}{\widehat{V}}\right)^2 = \frac{1}{2J^2} \left(\frac{\widehat{V}_{,\phi}}{\widehat{V}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{,\widehat{\phi}\widehat{\phi}}}{\widehat{V}} = \frac{1}{J^2} \left(\frac{\widehat{V}_{,\phi\phi}}{\widehat{V}} - \frac{\widehat{V}_{,\phi}}{\widehat{V}} \frac{J_{,\phi}}{J}\right).$$

• The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Normalized With Planck Data:

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{,\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{\widehat{V}(\phi_{\star})^{3/2}}{|\widehat{V}_{,\phi}(\phi_{\star})|} = 4.588 \cdot 10^{-5} \,.$$

² C.P. Burgess et al. (2009); J.F. Barbon and J.R. Espinosa (2009); R. Lerner and J. McDonald (2010); A. Kehagias et al. (2013).

Starobinsky-Type Inflation (STI) ○●○ ○○		Post-Inflationary Scenario 000 00	
NON-MINIMAL INFLATION (NMI)			

INFLATIONARY OBSERVATIONAL AND THEORETICAL REQUIREMENTS

IN THE ERA OF PRECISION COSMOLOGY THE INFLATIONARY PARTICLE MODELS CAN BE TIGHTLY RESTRICTED IMPOSING THE CONSTRAINTS:

• The Number of e-foldings, \widehat{N}_{\star} , that the Scale $k_{\star} = 0.05/Mpc$ Suffers During inflation has to be Sufficient to Resolve the Horizon and Flatness Problems of Standard Big Bang:

$$\widehat{N}_{\star} = \int_{\widehat{\phi}_{\mathrm{f}}}^{\widehat{\phi}_{\star}} d\widehat{\phi} \, \frac{\widehat{V}}{\widehat{V}_{,\widehat{\phi}}} = \int_{\phi_{\mathrm{f}}}^{\phi_{\star}} d\phi \, J^2 \frac{\widehat{V}}{\widehat{V}_{,\phi}} \simeq 50 - 60$$

Where \widehat{V} is the EF scalar potential of the Inflaton ϕ ;

 $\phi_{\star}[\widehat{\phi_{\star}}]$ is The Value of $\phi[\widehat{\phi}]$ When k_{\star} Crosses Outside The Inflationary Horizon; $\phi_{f}[\widehat{\phi_{f}}]$ is the Value of $\phi[\widehat{\phi}]$ at the **End of Inflation** Which Can Be Found From The Condition:

$$\max\{\widehat{\epsilon}(\phi_{\mathrm{f}}), |\widehat{\eta}(\phi_{\mathrm{f}})|\} = 1, \quad \text{With} \quad \widehat{\epsilon} = \frac{1}{2} \left(\frac{\widehat{V}_{,\widehat{\phi}}}{\widehat{V}}\right)^2 = \frac{1}{2J^2} \left(\frac{\widehat{V}_{,\phi}}{\widehat{V}}\right)^2 \quad \text{and} \quad \widehat{\eta} = \frac{\widehat{V}_{,\widehat{\phi}\widehat{\phi}}}{\widehat{V}} = \frac{1}{J^2} \left(\frac{\widehat{V}_{,\phi\phi}}{\widehat{V}} - \frac{\widehat{V}_{,\phi}}{\widehat{V}} \frac{J_{,\phi}}{J}\right).$$

• The Amplitude As of the Power Spectrum of the Curvature Perturbations is To Be Normalized With Planck Data:

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\widehat{\phi}}(\widehat{\phi}_{\star})|} = \frac{|J(\phi_{\star})|}{2\sqrt{3}\pi} \frac{\widehat{V}(\phi_{\star})^{3/2}}{|\widehat{V}_{\phi}(\phi_{\star})|} = 4.588 \cdot 10^{-5} \,.$$

• The Effective Theory has to be Valid. I.e., The Hierarchy Between The Inflationary Scale, $\widehat{V}(\phi_*)^{1/4}$, And The Ultraviolet Cut-off², $\Lambda_{\rm UV} \simeq 1 = m_{\rm P}$, of the Effective Theory has to be the Following:

(a)
$$\widehat{V}(\phi_*)^{1/4} \leq 1$$
 for (b) $\phi \leq 1$

² C.P. Burgess et al. (2009); J.F. Barbon and J.R. Espinosa (2009); R. Lerner and J. McDonald (2010); A. Kehagias et al. (2013).

Starobinsky-Type Inflation (STI) ○○● ○○		Post-Inflationary Scenario 000 00	
NON-MINIMAL INFLATION (NMI)			

CONSTRAINTS FOR THE Λ CDM + r MODEL FROM BICEP2/Keck Array and Planck 2018

• INFLATIONARY MODELS WHICH SUCCEED TO FIT THE OBSERVATIONAL DATA ON A_s and \widehat{N}_{\star} Can Be Further Restricted IF We Calculate The (Scalar) Spectral Index And Tensor-to-Scalar Ratio Found Respectively As:

$$n_{\rm s} = 1 - 6\widehat{\epsilon}(\phi_{\star}) + 2\widehat{\eta}(\phi_{\star})$$
 and $r = 16\widehat{\epsilon}(\phi_{\star})$

э

・ロト ・四ト ・ヨト・ヨト・

Starobinsky-Type Inflation (STI) ○○ ○○		Post-Inflationary Scenario 000 00	
Non-Minimal Inflation (nMI)			

Constraints for the Λ CDM + r Model From Bicep2/Keck Array and Planck 2018

• INFLATIONARY MODELS WHICH SUCCEED TO FIT THE OBSERVATIONAL DATA ON A_s and \widehat{N}_{\star} Can Be Further Restricted IF We Calculate The (Scalar) Spectral Index And Tensor-to-Scalar Ratio Found Respectively As:

 $n_{\rm s} = 1 - 6\widehat{\epsilon}(\phi_{\star}) + 2\widehat{\eta}(\phi_{\star})$ and $r = 16\widehat{\epsilon}(\phi_{\star})$

• THE COMBINED BICEP2/Keck Array 2021 AND Planck 2018 RESULTS YIELD

 $n_{\rm s} = 0.965 \pm 0.009 \implies 0.956 \le n_{\rm s} \le 0.974$ and $r \le 0.032$ at 95%c.l.

• R^2 Inflation (Or Starobinsky Inflation) Predicts $n_s \simeq 0.964$ and r = 0.003 for $\widehat{N}_{\star} \simeq 52$.

• As A Consequence, the Starobinsky Inflation Remains One of the Most Predictive and Successful Models. =) = 🕤 🔍 🔍

STAROBINSKY-TYPE INFLATION (STI)			
000 ● 0		000 00	
STAROBINSKY VERSUS INDUCED-GRAVIT	Y INFLATION		

FROM NON-MINIMAL TO \mathcal{R}^2 Inflation

• The \mathcal{R}^2 Inflation can be Introduced as a Type of nMI Employing an Auxiliary (Non-Propagating) Field ϕ With

$$f_{\rm K} = 0$$
, $f_{\mathcal{R}} = 1 + 4c_{\mathcal{R}}\phi$ And $V = \phi^2$

Using The Equation OF Motion $\phi = c_{\mathcal{R}} \mathcal{R}$ We Obtain The Action OF The Original Model:

(1, 1)

$$S = \int d^4x \sqrt{-9} \left(-\frac{1}{2} \mathcal{R} + c_R^2 \mathcal{R}^2 \right).$$
• APPLYING THE STANDARD FORMULAE, WE FIND $J = 2\sqrt{6}c_R/f_R$,

$$\widehat{V} = \frac{\phi^2}{f_R^2} \approx \frac{1}{16c_R^2}, \ \widehat{\epsilon} \approx \frac{1}{12c_R^2 \phi^2} \text{ and } \widehat{\eta} \approx \frac{1-4c_R \phi}{12c_R^2 \phi^2}.$$
• THEREFORE, $\max\{\widehat{\epsilon}(\phi_f), |\widehat{\eta}(\phi_f)|\} = 1 \Rightarrow \phi_f = \frac{1}{2\sqrt{3}c_R}.$

$$\widehat{N}_\star \approx 3c_R \phi_\star \Rightarrow \phi_\star = \frac{\widehat{N}_\star}{3c_R} \gg \phi_f. \text{ FOR } \widehat{N}_\star \approx 52 \text{ WE GET}$$
• $A_8^{1/2} \approx \frac{\widehat{N}_\star}{12\sqrt{2}\pi c_R} \approx 4.6 \cdot 10^{-5} \Rightarrow \frac{c_R \approx 2.3 \cdot 10^4}{2.3 \cdot 10^4}.$
• $n_S \approx 1 - 2/\widehat{N}_\star \approx 0.965, \ \alpha_S \approx -2/\widehat{N}_\star^2 \approx -6.4 \cdot 10^{-4} \text{ And } r \approx 12/\widehat{N}_\star^2 \approx 4 \cdot 10^{-3}$ (In Agreement With Observations)

3

・ロト ・ 同ト ・ ヨト ・ ヨト

STAROBINSKY-TYPE INFLATION (STI)			Post-Inflationary Scenario	
•0		ဝိဝဝ	000	
STAROBINSKY VERSUS INDUCED-GRAVITY	INFLATION			

FROM NON-MINIMAL TO \mathcal{R}^2 INFLATION

í

 \widehat{N}_{\star}

• The \mathcal{R}^2 Inflation can be Introduced as a Type of nMI Employing an Auxiliary (Non-Propagating) Field ϕ With

$$f_{\rm K}=0, f_{\mathcal R}=1+4c_{\mathcal R}\phi$$
 and $V=\phi^2$

Using The Equation OF Motion $\phi = c_{\mathcal{R}} \mathcal{R}$ We Obtain The Action OF The Original Model: / 1

$$S = \int d^4x \sqrt{-\mathfrak{g}} \left(-\frac{1}{2}\mathcal{R} + c_R^2 \mathcal{R}^2 \right).$$
• Applying the Standard Formulae, we Find $J = 2\sqrt{6}c_R/f_R$,

$$\widehat{V} = \frac{\phi^2}{f_R^2} \simeq \frac{1}{16c_R^2}, \quad \widehat{c} \simeq \frac{1}{12c_R^2\phi^2} \quad \text{and} \quad \widehat{\eta} \simeq \frac{1-4c_R\phi}{12c_R^2\phi^2}.$$
• Therefore, $\max\{\widehat{e}(\phi_f), |\widehat{\eta}(\phi_f)|\} = 1 \Rightarrow \phi_f = \frac{1}{2\sqrt{3}c_R}.$

$$\widehat{N}_{\star} \simeq 3c_R\phi_{\star} \Rightarrow \phi_{\star} = \frac{\widehat{N}_{\star}}{3c_R} \Rightarrow \phi_f. \text{ For } \widehat{N}_{\star} \simeq 52 \text{ We Ger}$$
• $A_8^{1/2} \simeq \frac{\widehat{N}_{\star}}{12\sqrt{2}\pi c_R} \simeq 4.6 \cdot 10^{-5} \Rightarrow \underline{c_R} \simeq 2.3 \cdot 10^4.$

• $n_s \simeq 1 - 2/\widehat{N}_{\star} \simeq 0.965$, $\alpha_s \simeq -2/\widehat{N}_{\star}^2 \simeq -6.4 \cdot 10^{-4}$ And $r \simeq 12/\widehat{N}_{\star}^2 \simeq 4 \cdot 10^{-3}$ (In Agreement With Observations).

• There is **No Problem with Perturbative Unitarity**, Since We Obtain $\Lambda_{\rm UV} = 1$ If we Perform Expansions Around $\langle \phi \rangle = 0$:

$$J^2 \phi^2 = \left(1 - 2\sqrt{\frac{2}{3}} \frac{\widehat{\phi}}{m_{\rm P}} + 2\frac{\widehat{\phi}^2}{m_{\rm P}^2} - \cdots\right) \widehat{\phi}^2 \quad \text{and} \quad \widehat{V} = \frac{\widehat{\phi}^2}{24c_{\mathcal{R}}^2} \left(1 - 2\sqrt{\frac{2}{3}} \frac{\widehat{\phi}}{m_{\rm P}} + 2\frac{\widehat{\phi}^2}{m_{\rm P}^2} - \cdots\right) \quad \text{With} \quad \widehat{\phi} = 2\sqrt{3}c_{\mathcal{R}}\phi$$

• The Mass of the Inflaton at the Vacuum is: $\widehat{m}_{\delta\phi} = \left\langle \widehat{V}_{\delta\phi} \right\rangle^{1/2} = \left\langle \widehat{V}_{\phi\phi} / J^2 \right\rangle^{1/2} = 1/2 \sqrt{3} c_R \approx \frac{1}{6} 25 \cdot 10^{-5}_{\pm}$ (i.e.=3,: $10^{\frac{13}{2}} \text{ GeV}_{A}$, \bigcirc

Starobinsky-Type Inflation (STI) ○○○ ○●		Post-Inflationary Scenario 000 00	
STAROBINSKY VERSUS INDUCED-GRAVITY	INFLATION		

INDUCED-GRAVITY INFLATION (IGI)

• IT WOULD BE CERTAINLY BENEFICIAL TO OBTAIN STI AVOIDING DRASTIC DEVIATIONS FROM EINSTEIN GRAVITY, AT LEAST AT PRESENT.

This Can be Achieved Introducing the Idea of Induced Gravity. • IGI Can Be Realized Employing an Real-Propagating Field ϕ IF We Adopt The Following Ingredients:

(a)
$$f_{\rm K} = 1$$
, (b) $f_{\cal R} = c_{\cal R} \phi^2$ and (c) $V = \lambda \left(\phi^2 - M^2 \right)^2 / 4$.

• RECOVERING EINSTEIN GRAVITY AT THE VACUUM IMPLIES

$$f_{\mathcal{R}}(\langle \phi \rangle) = 1 \ \Rightarrow \ \ \langle \phi \rangle \stackrel{(\mathsf{b})}{=} 1/\sqrt{c_{\mathcal{R}}} \stackrel{(\mathsf{c})}{=} M.$$

• For $c_{\mathcal{R}} \gg 1$ and Defining $f_{\phi} = 1 - c_{\mathcal{R}} \phi^2$ We Find $J = \sqrt{6}/\phi$,

$$\widehat{V}_{\rm I} = \frac{\lambda f_{\phi}^2}{4 f_{\mathcal{R}}^2} \simeq \frac{\lambda}{4 c_{\mathcal{R}}^2}, \ \widehat{\epsilon} \simeq \frac{4}{3 f_{\phi}^2} \quad {\rm and} \quad \widehat{\eta} \simeq \frac{4 (1 + f_{\phi})}{3 f_{\phi}^2}$$

イロト イボト イヨト イヨト

• Also, $\widehat{N}_{\star} \simeq 3c_{\mathcal{R}}\phi_{\star}^2/4 \Rightarrow \phi_{\star} = 2\sqrt{\widehat{N}_{\star}/3c_{\mathcal{R}}} \gg \phi_{\rm f} = \sqrt{(1+2/\sqrt{3})/c_{\mathcal{R}}}$. Imposing $\phi_{\star} \leq 1 \Rightarrow c_{\mathcal{R}} \geq 4\widehat{N}_{\star}/3c_{\mathcal{R}} \simeq 74$ For $\widehat{N}_{\star} \simeq 52$, $A_{\rm s}^{1/2} \simeq \frac{\sqrt{\lambda}\widehat{N}_{\star}}{6\sqrt{2}\pi c_{\mathcal{R}}} \simeq 4.6 \cdot 10^{-5} \Rightarrow \underline{c_{\mathcal{R}} \simeq 41850} \sqrt{\lambda}$ and $\widehat{m}_{\delta\phi} = \langle \widehat{V}_{,\widetilde{\phi}\phi} \rangle^{1/2} = \sqrt{\lambda}/\sqrt{3}c_{\mathcal{R}} \simeq \underline{1.25 \cdot 10^{-5}}$. • $n_{\rm s} \simeq 1 - 2/\widehat{N}_{\star} \simeq 0.962$, $\alpha_{\rm s} \simeq -2/\widehat{N}_{\star}^2 \simeq -7 \cdot 10^{-4}$, $r \simeq 12/\widehat{N}_{\star}^2 \simeq 4 \cdot 10^{-3}$ (:Identically With The Starobinsky Model)

Starobinsky-Type Inflation (STI) $\bigcirc \bigcirc \bigcirc$ $\bigcirc \bullet$		Post-Inflationary Scenario 000 00	
STAROBINSKY VERSUS INDUCED-GRAVITY	INFLATION		

INDUCED-GRAVITY INFLATION (IGI)

• IT WOULD BE CERTAINLY BENEFICIAL TO OBTAIN STI AVOIDING DRASTIC DEVIATIONS FROM EINSTEIN GRAVITY, AT LEAST AT PRESENT.

This Can be Achieved Introducing the Idea of Induced Gravity. • IGI Can Be Realized Employing an Real-Propagating Field ϕ If We Adopt The Following Ingredients:

a)
$$f_{\rm K} = 1$$
, (b) $f_{\mathcal{R}} = c_{\mathcal{R}} \phi^2$ and (c) $V = \lambda \left(\phi^2 - M^2 \right)^2 / 4$.

• RECOVERING EINSTEIN GRAVITY AT THE VACUUM IMPLIES

$$f_{\mathcal{R}}(\langle \phi \rangle) = 1 \quad \Rightarrow \quad \langle \phi \rangle \stackrel{\text{(b)}}{=} 1 / \sqrt{c_{\mathcal{R}}} \stackrel{\text{(c)}}{=} M.$$

• For $c_{\mathcal{R}} \gg 1$ and Defining $f_{\phi} = 1 - c_{\mathcal{R}} \phi^2$ We Find $J = \sqrt{6}/\phi$,

$$\widehat{V}_{\rm I} = \frac{\lambda f_{\phi}^2}{4 f_{\mathcal{R}}^2} \simeq \frac{\lambda}{4 c_{\mathcal{R}}^2}, \ \widehat{\epsilon} \simeq \frac{4}{3 f_{\phi}^2} \quad \text{and} \quad \widehat{\eta} \simeq \frac{4 (1 + f_{\phi})}{3 f_{\phi}^2}$$

• Also, $\widehat{N}_{\star} \simeq 3c_{\mathcal{R}}\phi_{\star}^2/4 \Rightarrow \phi_{\star} = 2\sqrt{\widehat{N}_{\star}/3c_{\mathcal{R}}} \gg \phi_{\rm f} = \sqrt{(1+2/\sqrt{3})/c_{\mathcal{R}}}$. Imposing $\phi_{\star} \leq 1 \Rightarrow c_{\mathcal{R}} \geq 4\widehat{N}_{\star}/3c_{\mathcal{R}} \simeq 74$ For $\widehat{N}_{\star} \simeq 52$, $A_{\rm s}^{1/2} \simeq \frac{\sqrt{\lambda}\widehat{N}_{\star}}{6\sqrt{2\pi}c_{\mathcal{R}}} \simeq 4.6 \cdot 10^{-5} \Rightarrow \frac{c_{\mathcal{R}} \simeq 41850\sqrt{\lambda}}{6\sqrt{2\pi}c_{\mathcal{R}}}$ and $\widehat{m}_{\delta\phi} = \langle \widehat{V}_{,\phi\phi} \rangle^{1/2} = \sqrt{\lambda}/\sqrt{3}c_{\mathcal{R}} \simeq \frac{1.25 \cdot 10^{-5}}{1.25 \cdot 10^{-5}}$. • $n_{\rm s} \simeq 1 - 2/\widehat{N}_{\star} \simeq 0.962$, $\alpha_{\rm s} \simeq -2/\widehat{N}_{\star}^2 \simeq -7 \cdot 10^{-4}$, $r \simeq 12/\widehat{N}_{\star}^2 \simeq 4 \cdot 10^{-3}$ (:Identically With The Starobinsky Model)

• The Model is Unitarity Safe, Since We Obtain $\Lambda_{\rm UV} = 1$ If We Perform an Expansion About $\widehat{\delta \phi} = \phi - M \simeq 0$:

$$J^{2}\dot{\phi}^{2} = \left(1 - \sqrt{\frac{2}{3}}\widehat{\delta\phi} + \frac{1}{2}\widehat{\delta\phi}^{2} - \cdots\right)\widehat{\delta\phi}^{2} \text{ and } \widehat{V} = \frac{\lambda}{6c_{\mathcal{R}}^{2}}\widehat{\delta\phi}^{2} \left(1 - \sqrt{\frac{3}{2}}\widehat{\delta\phi} + \frac{25}{24}\widehat{\delta\phi}^{2} - \cdots\right) \underbrace{\mathsf{W}_{\mathsf{e}}}_{\mathsf{e}} \underbrace{\mathsf{W}_{\mathsf{e}}} \underbrace{\mathsf{W}_{\mathsf{e}}}_{\mathsf{e}} \underbrace{\mathsf{W}_{\mathsf{e}}} \underbrace{\mathsf{W}_{\mathsf{e}}}_{\mathsf{e}} \underbrace{\mathsf{W}_{\mathsf{e}}}_{\mathsf{e}} \underbrace{\mathsf{W}_{\mathsf{e}}}_{\mathsf{e}} \underbrace{\mathsf{W}_{\mathsf{e}}} \underbrace{\mathsf{W}_$$

Starobinsky-Type Inflation (STI) 000 00	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA • •	Post-Inflationary Scenario 000 00	
General Framework			

• IT WOULD BE INTERESTING IF ϕ may be Promoted to A Gauge non-Singlet Field and M (or $c_{\mathcal{R}}$) Is Related to the Scale of MSSM Gauge Unification. To This End, We Work Within SUGRA Where The Gauge Hierarchy Problem is Elegantly Addressed.

э

< ロ > < 回 > < 回 > < 回 > < 回 >

Starobinsky-Type Inflation (STI) 000 00	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA	Embedding In A $B - L$ SUSY GUT O	Post-Inflationary Scenario	
General Framework				

• IT WOULD BE INTERESTING IF ϕ may be Promoted to A Gauge non-Singlet Field and M (or $c_{\mathcal{R}}$) Is Related to the Scale of MSSM Gauge Unification. To This End, We Work Within SUGRA Where The Gauge Hierarchy Problem is Elegantly Addressed.

• The Relevant Part of the Einstein Frame Action In Four Dimensional, $\mathcal{N} = 1$ SUGRA is (z^{α} are Scalar Complex Fields):

$$\mathcal{S} = \int d^4x \, \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{\ast \overline{\beta}} - \widehat{V} \right) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\text{F}} + \widehat{V}_{\text{D}}$$

Also K is The Kähler Potential With $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^a \partial z^{*\beta}} > 0$ and $K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\gamma}$; $D_{\mu} z^{\alpha} = \partial_{\mu} z^{\alpha} + igA^a_{\mu} T^a_{\alpha\beta} z^{\beta}$, Where A^a_{μ} is The Vector Gauge Fields and T_a are the Generators of the Gauge Transformations OF z^{α} ; Also $\widehat{V}_{\rm F} = e^K \left(K^{\alpha\bar{\beta}} F_{\alpha} F^*_{\beta} - 3|W|^2 \right)$ With W The Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}} W$; $\widehat{V}_{\rm D} = \frac{1}{2}g^2 D^2_a$ with $D_a = z_{\alpha} (T_a)^a_{\beta} K_{z^{\beta}}$.

• We Concentrate on Induced-Gravity Higgs Inflation (IGHI) Driven by \widehat{V}_F Whereas $\widehat{V}_D=0$ During it.

Therefore, IGHI Within SUGRA Requires The Appropriate Selection of the Functions W and K

Starobinsky-Type Inflation (STI) 000 00	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA	Embedding In A $B - L$ SUSY GUT O	Post-Inflationary Scenario	
General Framework				

• IT WOULD BE INTERESTING IF ϕ may be Promoted to A Gauge non-Singlet Field and M (or $c_{\mathcal{R}}$) Is Related to the Scale of MSSM Gauge Unification. To This End, We Work Within SUGRA Where The Gauge Hierarchy Problem is Elegantly Addressed.

• The Relevant Part of the Einstein Frame Action In Four Dimensional, $\mathcal{N}=1$ SUGRA is (z^{lpha} are Scalar Complex Fields):

$$\mathcal{S} = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu\nu} D_{\mu} z^{\alpha} D_{\nu} z^{\ast \overline{\beta}} - \widehat{V} \right) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\text{F}} + \widehat{V}_{\text{D}}$$

Also K is The Kähler Potential With $K_{\alpha\beta} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\beta}} > 0$ and $K^{\beta\alpha} K_{\alpha\gamma} = \delta^{\beta}_{\gamma}; \quad D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA^{\alpha}_{\mu}T^{\alpha}_{\alpha\beta}z^{\beta},$ Where A^{α}_{μ} is the Vector Gauge Fields and T_{α} are the Generators of the Gauge Transformations Of z^{α} ; Also $\widehat{V}_{\rm F} = e^{K} \left(K^{\alpha\beta}F_{\alpha}F^{*}_{\beta} - 3|W|^{2}\right)$ with W The Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W; \quad \widehat{V}_{\rm D} = \frac{1}{2}g^{2}{\rm D}^{2}_{\alpha}$ with ${\rm D}_{a} = z_{\alpha} (T_{a})^{\alpha}_{\beta}K_{z^{\beta}}.$ • We Concentrate on Induced-Gravity Higgs Inflation (IGHI) Driven by $\widehat{V}_{\rm F}$ Whereas $\widehat{V}_{\rm D} = 0$ During it.

Therefore, IGHI Within SUGRA Requires The Appropriate Selection of the Functions W and K

• DIFFICULTIES AND POSSIBLE WAYS OUT

• The Runaway Problem. The Term $-3|W|^2$ May Render \widehat{V}_F Unbounded From Below. To Avoid This We May Adopt a WWhere the Inflaton is Multiplied With A Stabilizer Field S Which is Set At Zero During IGHI.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Starobinsky-Type Inflation (STI) 000 00	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA	Embedding In A $B - L$ SUSY GUT O	Post-Inflationary Scenario	
General Framework				

• IT WOULD BE INTERESTING IF ϕ may be Promoted to A Gauge non-Singlet Field and M (or $c_{\mathcal{R}}$) Is Related to the Scale of MSSM Gauge Unification. To This End, We Work Within SUGRA Where The Gauge Hierarchy Problem is Elegantly Addressed.

• The Relevant Part of the Einstein Frame Action In Four Dimensional, $\mathcal{N} = 1$ SUGRA is (z^{α} are Scalar Complex Fields):

$$\mathcal{S} = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu \nu} D_{\mu} z^{\alpha} D_{\nu} z^{\ast \overline{\beta}} - \widehat{V} \right) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\text{F}} + \widehat{V}_{\text{D}}$$

Also K is The Kähler Potential With $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\beta}} > 0$ and $K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}; \quad D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA^a_{\mu}T^a_{\alpha\beta}z^{\beta},$ Where A^a_{μ} is the Vector Gauge Fields and T_a are the Generators of the Gauge Transformations OF z^{α} ; Also $\widehat{V}_F = e^K \left(K^{a\bar{\beta}} F_{\alpha} F^*_{\bar{\beta}} - 3|W|^2 \right)$ With W The Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W; \quad \widehat{V}_D = \frac{1}{2}g^2 D^2_{a}$ with $D_a = z_{\alpha} (T_a)^a_{\beta} K_{z^{\beta}}.$

• We Concentrate on Induced-Gravity Higgs Inflation (IGHI) Driven by \widehat{V}_F Whereas $\widehat{V}_D=0$ During it.

Therefore, IGHI Within SUGRA Requires The Appropriate Selection of the Functions W and K

• DIFFICULTIES AND POSSIBLE WAYS OUT

- The Runaway Problem. The Term $-3|W|^2$ May Render \widehat{V}_F Unbounded From Below. To Avoid This We May Adopt a WWhere the Inflaton is Multiplied With A Stabilizer Field S Which is Set At Zero During IGHI.
- The η Problem. It is Related to The Prefactor e^K or \widehat{V}_F Which Diverges for Coefficients of Order Unity. This Can Be Evaded If We Adopt $K = -\mathbf{N} \ln (c_R(\Phi^p + \Phi^{*p})) + \cdots$ and Tune N > 0 and \mathbf{p} With The Exponent \mathbf{q} of Φ in $W = \lambda S \Phi^q$.
 - E.g., If we Select $W = \lambda S \Phi^2$ and $K = -2 \ln f_{\mathcal{R}} + |S|^2$. With $f_{\mathcal{R}} = c_{\mathcal{R}} (\Phi^2 + \Phi^{*2}) |\Phi|^2/2$ $(N\mathbf{p} = 2\mathbf{q})$. We Obtain (for S = 0) $\widehat{V}_{\mathrm{F}} = e^{K} K^{SS^*} |W_S|^2 = \lambda^2 \phi^4 / 4((c_{\mathcal{R}} + 1)\phi^2)^2 \sim \mathrm{cst}$ for $c_{\mathcal{R}} \gg 1$ and $\phi = \sqrt{2}\mathrm{Re}(\Phi)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

STAROBINSKY-TYPE INFLATION (STI)	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA		Post-Inflationary Scenario	
000	0	000	800	
General Framework				

• IT WOULD BE INTERESTING IF ϕ may be Promoted to A Gauge non-Singlet Field and M (or $c_{\mathcal{R}}$) Is Related to the Scale of MSSM Gauge Unification. To This End, We Work Within SUGRA Where The Gauge Hierarchy Problem is Elegantly Addressed.

• The Relevant Part of the Einstein Frame Action In Four Dimensional, $\mathcal{N}=1$ SUGRA is (z^{lpha} are Scalar Complex Fields):

$$\mathcal{S} = \int d^4x \sqrt{-\widehat{g}} \left(-\frac{1}{2} \widehat{\mathcal{R}} + K_{\alpha \overline{\beta}} \widehat{g}^{\mu \nu} D_{\mu} z^{\alpha} D_{\nu} z^{\ast \overline{\beta}} - \widehat{V} \right) \quad \text{Where} \quad \widehat{V} = \widehat{V}_{\text{F}} + \widehat{V}_{\text{D}}$$

Also K is The Kähler Potential With $K_{a\bar{\beta}} = \frac{\partial^2 K}{\partial z^{\alpha} \partial z^{*\beta}} > 0$ and $K^{\bar{\beta}\alpha} K_{a\bar{\gamma}} = \delta^{\bar{\beta}}_{\bar{\gamma}}$; $D_{\mu}z^{\alpha} = \partial_{\mu}z^{\alpha} + igA^a_{\mu}T^a_{\alpha\beta}z^{\beta}$, Where A^a_{μ} is The Vector Gauge Fields and T_a are the Generators of the Gauge Transformations OF z^{α} ; Also $\widehat{V}_F = e^K \left(K^{\alpha\bar{\beta}} F_{\alpha} F^*_{\bar{\beta}} - 3|W|^2 \right)$ With W The Superpotential and $F_{\alpha} = W_{z^{\alpha}} + K_{z^{\alpha}}W$; $\widehat{V}_D = \frac{1}{2}g^2 D^2_{a}$ with $D_a = z_{\alpha} (T_a)^a_{\beta} K_{z^{\beta}}$.

• WE CONCENTRATE ON INDUCED-GRAVITY HIGGS INFLATION (IGHI) DRIVEN BY \widehat{V}_F Whereas $\widehat{V}_D = 0$ During it.

Therefore, IGHI Within SUGRA Requires The Appropriate Selection of the Functions W and K

• DIFFICULTIES AND POSSIBLE WAYS OUT

- The Runaway Problem. The Term $-3|W|^2$ May Render \widehat{V}_F Unbounded From Below. To Avoid This We May Adopt a WWhere the Inflaton is Multiplied With A Stabilizer Field S Which is Set At Zero During IGHI.
- The η Problem. It is Related to The Prefactor e^{K} of \widehat{V}_{F} Which Diverges for Coefficients of Order Unity. This Can Be Evaded If We Adopt $K = -\mathbf{N} \ln (c_{\mathcal{R}}(\Phi^{\mathbf{p}} + \Phi^{*\mathbf{p}})) + \cdots$ and Tune N > 0 and \mathbf{p} With The Exponent \mathbf{q} of Φ in $W = \lambda S \Phi^{\mathbf{q}}$.

E.g., If we Select $W = \lambda S \Phi^2$ and $K = -2 \ln f_{\mathcal{R}} + |S|^2$. With $f_{\mathcal{R}} = c_{\mathcal{R}} (\Phi^2 + \Phi^{*2}) - |\Phi|^2/2$ $(N\mathbf{p} = 2\mathbf{q})$. We Obtain (for S = 0) $\widehat{V}_F = e^K K^{SS^*} |W_S|^2 = \lambda^2 \phi^4 / 4((c_{\mathcal{R}} + 1)\phi^2)^2 \sim \text{cst for } c_{\mathcal{R}} \gg 1$ and $\phi = \sqrt{2}\text{Re}(\Phi)$.

How We can Apply These General Ideas to IGHI?* 🖛 🗖 🕨 🗟 🛌

3

	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA		
000		000	
	•		
INFLATING WITH A SUPERHEAVY HIGGS			

SELECTING CONVENIENTLY THE SUPERPOTENTIAL AND KÄHLER POTENTIALS

- We Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field).
- Superpotential $W = \lambda S \left(\bar{\Phi} \Phi M^2 / 4 \right)$
- W Is Uniquely Determined Using $U(1)_{B-L}$ and an R Symmetry and Leads to a Grand Unified Theory (GUT) Phase Transition

At the SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2,$ Since in the SUSY Limit, After IGHI, We Expect to Get

CHARGE ASSIGNMENTS

SUPERFIELDS:	S	Φ	$\bar{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

$$V_{\rm eff} \simeq \lambda^2 e^K \left| \bar{\Phi} \Phi - \frac{1}{4} M^2 \right|^2 + \frac{g^2}{2} \left(\Phi K_{\Phi} - \bar{\Phi} K_{\bar{\Phi}} \right)^2 + |S|^2 \left(\cdots \right)$$

³C.P. and N. Toumbas (2016, 2017).

	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA		
000		000	
INFLATING WITH A SUPERHEAVY HIGGS			

SELECTING CONVENIENTLY THE SUPERPOTENTIAL AND KÄHLER POTENTIALS

- We Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field).
- Superpotential $W = \lambda S \left(\bar{\Phi} \Phi M^2 / 4 \right)$
- W IS UNIQUELY DETERMINED USING $U(1)_{B-L}$ and an R Symmetry and Leads to a Grand Unified Theory (GUT) Phase Transition

At the SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2,$ Since in the SUSY Limit, After IGHI, We Expect to Get

$$V_{\rm eff} \simeq \lambda^2 e^K \left| \bar{\Phi} \Phi - \frac{1}{4} M^2 \right|^2 + \frac{g^2}{2} \left(\Phi K_\Phi - \bar{\Phi} K_{\bar{\Phi}} \right)^2 + |S|^2 \left(\cdots \right)$$

Possible Kähler Potentials

• IGHI can be Obtained Selecting the Following K's Which Are Quadratic and Invariant Under $U(1)_{B-L}$ and R Symmetries:

$$K_{1} = -3\ln\left(c_{\mathcal{R}}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^{*}\right) - \frac{|\Phi|^{2} + |\bar{\Phi}|^{2}}{3} + F_{1S}\right), \quad K_{2} = -2\ln\left(c_{\mathcal{R}}(F_{\mathcal{R}} + F_{\mathcal{R}}^{*}) - \frac{|\Phi|^{2} + |\bar{\Phi}|^{2}}{2}\right) + F_{2S}(|S|^{2})$$

WHERE WE USE INTEGER PREFACTORS FOR THE LOGARITHMIC TERMS (TO AVOID TUNING) AND WE CHOOSE THE FUNCTIONS³

$$F_{\mathcal{R}} = \bar{\Phi}\Phi, \quad F_{1S} = -\ln\left(1 + |S|^2/3\right) \text{ And } F_{2S} = N_S \ln(1 + |S|^2/N_S) \text{ With } N_S > 0$$

Note that $c_{\mathcal{R}}(F_{\mathcal{R}} + F_{\mathcal{R}}^*)$ Dominates $f_{\mathcal{R}}$ and $|\Phi|^2 + |\bar{\Phi}|^2 f_{\mathrm{K}}$, Whereas $F_{1,2S}$ Assures $m_S^2 > 0$ & $m_S^2 > \widehat{H}_{\mathrm{HI}}^2$ During IGHI.

CHARGE ASSIGNMENTS

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

³C.P. and N. Toumbas (2016, 2017).

	INDUCED-GRAVITY HIGGS INFLATION IN SUGRA		
000		000	
	•		
INFLATING WITH A SUPERHEAVY HIGGS			

SELECTING CONVENIENTLY THE SUPERPOTENTIAL AND KÄHLER POTENTIALS

- We Use 3 Superfields $z^1 = \Phi$, $z^2 = \overline{\Phi}$, Charged Under a Local Symmetry, e.g. $U(1)_{B-L}$, and $z^3 = S$ ("Stabilizer" Field).
- Superpotential $W = \lambda S \left(\bar{\Phi} \Phi M^2 / 4 \right)$
- W IS UNIQUELY DETERMINED USING $U(1)_{B-L}$ and an R Symmetry and Leads to a Grand Unified Theory (GUT) Phase Transition

At the SUSY Vacuum $\langle S \rangle = 0, |\langle \Phi \rangle| = |\langle \bar{\Phi} \rangle| = M/2,$ Since in the SUSY Limit, After IGHI, We Expect to Get

$$V_{\rm eff} \simeq \lambda^2 e^K \left| \bar{\Phi} \Phi - \frac{1}{4} M^2 \right|^2 + \frac{g^2}{2} \left(\Phi K_\Phi - \bar{\Phi} K_{\bar{\Phi}} \right)^2 + |S|^2 \left(\cdots \right)$$

Possible Kähler Potentials

• IGHI can be Obtained Selecting the Following K's Which Are Quadratic and Invariant Under $U(1)_{B-L}$ and R Symmetries:

$$K_1 = -3\ln\left(c_{\mathcal{R}}\left(F_{\mathcal{R}} + F_{\mathcal{R}}^*\right) - \frac{|\Phi|^2 + |\bar{\Phi}|^2}{3} + F_{1S}\right), \quad K_2 = -2\ln\left(c_{\mathcal{R}}(F_{\mathcal{R}} + F_{\mathcal{R}}^*) - \frac{|\Phi|^2 + |\bar{\Phi}|^2}{2}\right) + F_{2S}(|S|^2)$$

WHERE WE USE INTEGER PREFACTORS FOR THE LOGARITHMIC TERMS (TO AVOID TUNING) AND WE CHOOSE THE FUNCTIONS³

$$F_{\mathcal{R}} = \bar{\Phi}\Phi, \ F_{1S} = -\ln\left(1 + |S|^2/3\right) \ \text{And} \ F_{2S} = N_S \ln(1 + |S|^2/N_S) \ \text{With} \ N_S > 0$$

Note that $c_{\mathcal{R}}(F_{\mathcal{R}} + F_{\mathcal{R}}^*)$ Dominates $f_{\mathcal{R}}$ and $|\Phi|^2 + |\bar{\Phi}|^2 f_{K}$, Whereas $F_{1,2S}$ Assures $m_S^2 > 0 \& m_S^2 > \hat{H}_{HI}^2$ During IGHI. • Given that K's Have the form $K = -N \ln f_{\mathcal{R}}$, Imposing the Induced-Gravity Requirement We Obtain:

$$M = \sqrt{\frac{2N}{Nc_{\mathcal{R}} - 1}} \quad \text{Where} \quad N = \begin{cases} 3 & \text{for } K = K_1, \\ 2 & \text{for } K = K_2. \end{cases}$$

CHARGE ASSIGNMENTS

SUPERFIELDS:	S	Φ	$\overline{\Phi}$
$U(1)_R$	1	0	0
$U(1)_{B-L}$	0	1	-1

³C.P. and N. Toumbas (2016, 2017).

Starobinsky-Type Inflation (STI) 000 00		Embedding In A $B - L$ SUSY GUT \odot	Post-Inflationary Scenario 000 00	
$B - L$ Breaking, μ Term & Neutrino	Masses			

THE RELEVANT SUPER- & KÄHLER POTENTIALS

• Promoting To Local The Already Existing $U(1)_{B-L}$ Global Symmetry of the MSSM, We Obtain a Superpotential Invariant under the $G_{SM} \times U(1)_{B-L}$ Gauge Group Which Respects Also Three Other Global Symmetries (R, B, L):

э

Starobinsky-Type Inflation (STI) 000 00		Embedding In A $B - L$ SUSY GUT \bigcirc \bigcirc \bigcirc	Post-Inflationary Scenario 000 00	
$B - L$ Breaking, μ Term & Neutrino	Masses			

THE RELEVANT SUPER- & KÄHLER POTENTIALS

• Promoting To Local The Already Existing $U(1)_{B-L}$ Global Symmetry of the MSSM, We Obtain a Superpotential Invariant under the $G_{SM} \times U(1)_{B-L}$ Gauge Group Which Respects Also Three Other Global Symmetries (R, B, L):

$$W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$$

to Achieve IGHI & Break $U(1)_{B-L}$

- + $\lambda_{\mu}S H_{u}H_{d}$ to Generate $\mu \sim 1 \text{ TeV}$
- + $\lambda_{ij\nu} \bar{\Phi} N^c_i N^c_j$ to Generate Majorana Masses for Neutrinos & Ensure The Inflaton Decay
- + $h_{ijN}N_i^c L_j H_u$ to Generate Dirac Masses for Neutrinos
- + W_{MSSM} with $\mu = 0$

(Note that 3 Right-Handed Neutrinos, N_i^c , Are Necessary To Cancel the B - L Gauge Anomaly)

SUPER-	Representations	GLC	BAL SYMM	ETRIES
FIELDS	under $G_{\mathrm{SM}} \times U(1)_{B-L}$	R	В	L
	MATTER FIELDS			
e_i^c	(1 , 1 , 1, 1)	0	0	-1
N_i^c	(1 , 1 , 0, 1)	0	0	-1
L_i	(1 , 1 , −1/2, −1)	2	0	1
u_i^c	(3 , 2 , -2/3, -1/3)	1	-1/3	0
d_i^c	(3 , 2 , 1/3, -1/3)	1	-1/3	0
Q_i	(3 , 2 , 1/6, -1/3)	1	1/3	0
	HIGGS FIELDS			
H_d	(1 , 2 , -1/2, 0)	0	0	0
H_u	(1 , 2 , 1/2, 0)	0	0	0
S	(1, 1, 0, 0)	4	0	0
$\bar{\Phi}$	(1, 1, 0, 2)	0	0	-2
Φ	(1, 1, 0, -2)	0	0	2

Starobinsky-Type Inflation (STI) 000 00		Embedding In A $B - L$ SUSY GUT \circ	Post-Inflationary Scenario	
$B - L$ Breaking, μ Term & Neutrino	Masses			

THE RELEVANT SUPER- & KÄHLER POTENTIALS

• Promoting To Local The Already Existing $U(1)_{B-L}$ Global Symmetry of the MSSM, We Obtain a Superpotential Invariant under the $G_{SM} \times U(1)_{B-L}$ Gauge Group Which Respects Also Three Other Global Symmetries (R, B, L):

$$W = \lambda S \left(\bar{\Phi} \Phi - M^2 / 4 \right)$$

to Achieve IGHI & Break $U(1)_{B-L}$

- + $\lambda_{\mu}S H_{u}H_{d}$ to Generate $\mu \sim 1 \text{ TeV}$
- + $\lambda_{ij\nu} \bar{\Phi} N^c_i N^c_j$ to Generate Majorana Masses for Neutrinos & Ensure The Inflaton Decay
- + $h_{ijN}N_i^cL_jH_u$

TO GENERATE DIRAC MASSES FOR NEUTRINOS

+ W_{MSSM} with $\mu = 0$

(Note that 3 Right-Handed Neutrinos, N_i^c , Are Necessary To Cancel the B - L Gauge Anomaly)

SUPER-	Representations	Glo	BAL SYMM	ETRIES
FIELDS	under $G_{\mathrm{SM}} \times U(1)_{B-L}$	R	В	L
	MATTER FIELDS			
e_i^c	(1 , 1 , 1, 1)	0	0	-1
N_i^c	(1 , 1 , 0, 1)	0	0	-1
L_i	(1, 1, -1/2, -1)	2	0	1
u_i^c	(3 , 2 , -2/3, -1/3)	1	-1/3	0
d_i^c	(3 , 2 , 1/3, -1/3)	1	-1/3	0
Q_i	$(\bar{3}, 2, 1/6, -1/3)$	1	1/3	0
	HIGGS FIELDS			
H_d	(1 , 2 , -1/2, 0)	0	0	0
H_u	(1 , 2 , 1/2, 0)	0	0	0
S	(1, 1, 0, 0)	4	0	0
$\bar{\Phi}$	(1, 1, 0, 2)	0	0	-2
Φ	(1, 1, 0, -2)	0	0	2

• THE ABOVE W MAY COOPERATE WITH ONE OF THE KÄHLER POTENTIALS K1 AND K2, MENTIONED ABOVE, IF WE REPLACE

 $F_{1S}(|S|^2) \ \, {\rm With} \ \, F_{1X}(|X|^2), \ \, F_{2S}(|S|^2) \ \, {\rm With} \ \, F_{2X}(|X|^2) \ \, {\rm Where}$

 $F_{1X} = -\ln\left(1 + X^{\alpha}X^{\ast \alpha}/3\right) \quad \text{And} \quad F_{2X} = N_X \ln\left(1 + X^{\alpha}X^{\ast \alpha}/N_X\right) \quad \text{With} \quad N_X > 0 \quad \text{and} \quad X^{\alpha} = S, H_{\mu}, H_{d,\nu}N_i^c, H_{d,\nu}$

Starobinsky-Type Inflation (STI) 000 00	Embedding In A $B - L$ SUSY GUT \bigcirc \bigcirc \bigcirc \bigcirc	Post-Inflationary Scenario 000 00	
INFLATIONARY SCENARIO			

INFLATIONARY POTENTIAL

• IF WE USE THE PARAMETRIZATION: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi} / \sqrt{2}$ and $\bar{\Phi} = \phi e^{i\theta} \sin \theta_{\Phi} / \sqrt{2}$ and $X^{\beta} = \left(x^{\beta} + i\bar{x}^{\beta}\right) / \sqrt{2}$, Where $X^{\beta} = S$, H_{u} , H_{d} , N_{i}^{c} and $Q \le \theta_{\Phi} \le \pi/2$, A D-FLAT DIRECTION IS $\theta = \bar{\theta} = x^{\beta} = \bar{x}^{\beta} = 0$ and $\theta_{\Phi} = \pi/4$ (: I) • THE ONLY SURVIVING TERM OF V_{F} Along the PATH in Eq. (I) is

$$\widehat{V}_{\mathrm{HI}} = e^{K} K^{SS^{*}} \left| W_{\mathrm{HI},S} \right|^{2} \simeq \frac{\lambda^{2} \phi^{4}}{16 f_{\mathcal{R}}^{N}} \cdot \begin{cases} f_{\mathcal{R}} & \text{for } K = K_{1}, \\ 1 & \text{for } K = K_{2}, \end{cases}$$

With $f_{\mathcal{R}} = (Nc_{\mathcal{R}} - 1)\phi^2/2N$ Playing The Role Of A Non-Minimal Coupling to Gravity.

• Along the Inflationary Path $K_{\alphaar{eta}}$ Takes The Form

$$(K_{\alpha\bar{\beta}}) = \operatorname{diag}(M_{\pm}, K_{SS^*}) \quad \text{with} \quad M_{\pm} = \frac{1}{f_{\mathcal{R}}^2} \begin{pmatrix} \kappa & \bar{\kappa} \\ \bar{\kappa} & \kappa \end{pmatrix},$$

and $K_{SS^*} = 1/f_{\mathcal{R}} [K_{SS^*} = 1]$ for $K = K_1 [K = K_2]$. Here $\kappa = (1 + Nc_{\mathcal{R}})/2f_{\mathcal{R}}$ and $\bar{\kappa} = N/\phi^2$.

Starobinsky-Type Inflation (STI) 000 00	Embedding In A $B - L$ SUSY GUT \bigcirc \bigcirc \bigcirc \bigcirc	Post-Inflationary Scenario 000 00	
INFLATIONARY SCENARIO			

INFLATIONARY POTENTIAL

• IF WE USE THE PARAMETRIZATION: $\Phi = \phi e^{i\theta} \cos \theta_{\Phi} / \sqrt{2}$ and $\bar{\Phi} = \phi e^{i\theta} \sin \theta_{\Phi} / \sqrt{2}$ and $X^{\beta} = \left(x^{\beta} + i\bar{x}^{\beta}\right) / \sqrt{2}$, Where $X^{\beta} = S$, H_{u} , H_{d} , N_{i}^{c} and $Q \le \theta_{\Phi} \le \pi/2$, A D-Flat Direction is $\theta = \bar{\theta} = x^{\beta} = \bar{x}^{\beta} = 0$ and $\theta_{\Phi} = \pi/4$ (: I) • The Only Surviving Term of $V_{\rm F}$ Along the Path in Eq. (I) is

$$\widehat{V}_{\mathrm{HI}} = e^{K} K^{SS^{*}} \left| W_{\mathrm{HI},S} \right|^{2} \simeq \frac{\lambda^{2} \phi^{4}}{16 f_{\mathcal{R}}^{N}} \cdot \begin{cases} f_{\mathcal{R}} & \text{for } K = K_{1}, \\ 1 & \text{for } K = K_{2}, \end{cases}$$

With $f_{\mathcal{R}} = (Nc_{\mathcal{R}} - 1)\phi^2/2N$ Playing The Role Of A Non-Minimal Coupling to Gravity.

• Along the Inflationary Path $K_{lphaar{eta}}$ Takes The Form

$$\begin{pmatrix} K_{\alpha\bar{\beta}} \end{pmatrix} = \operatorname{diag}\left(M_{\pm}, K_{SS^*}\right) \quad \text{with} \quad M_{\pm} = \frac{1}{f_{\mathcal{R}}^2} \begin{pmatrix} \kappa & \bar{\kappa} \\ \bar{\kappa} & \kappa \end{pmatrix}$$

and $K_{SS^*} = 1/f_{\mathcal{R}} [K_{SS^*} = 1]$ for $K = K_1 [K = K_2]$. Here $\kappa = (1 + Nc_{\mathcal{R}})/2f_{\mathcal{R}}$ and $\bar{\kappa} = N/\phi^2$.

• THE EF CANONICALLY NORMALIZED FIELDS, WHICH ARE DENOTED BY HAT, CAN BE OBTAINED AS FOLLOWS:

$$\frac{d\widehat{\phi}}{d\phi} = J = \sqrt{\kappa_+}, \ \widehat{\theta}_+ = \frac{J\phi\theta_+}{\sqrt{2}}, \ \widehat{\theta}_- = \sqrt{\frac{\kappa_-}{2}}\phi\theta_-, \ \text{ and } \ \widehat{\theta}_\Phi = \phi\sqrt{\kappa_-}\left(\theta_\Phi - \frac{\pi}{4}\right), \ \left(\widehat{x}^\beta, \widehat{x}^\beta\right) = \left(x^\beta, \overline{x}^\beta\right),$$

Where $\theta_{\pm} = (\theta \pm \bar{\theta})/\sqrt{2}$, $\kappa_{+} = Nc_{\mathcal{R}}f_{\mathcal{R}}^{-1}$ and $\kappa_{-} = f_{\mathcal{R}}^{-1}$. • We Can Check the Stability of the Trajectory in Eq. (I) w.r.t the Fluctuations Of The Various Fields, i.e.

$$\frac{\partial V}{\partial \overline{z}^{\alpha}}\Big|_{\text{Eq. (I)}} = 0 \quad \text{and} \quad \widehat{m}_{z^{\alpha}}^2 > 0 \quad \text{Where} \quad \widehat{m}_{z^{\alpha}}^2 = \text{Egv}\Big[\widehat{M}_{a\beta}^2\Big] \quad \text{With} \quad \widehat{M}_{a\beta}^2 = \frac{\partial^2 V}{\partial \overline{z}^{\alpha} \partial \overline{z}^{\beta}}\Big|_{\text{Eq. (I)}} \quad \text{and} \quad z^{\alpha} = \theta_{-}, \theta_{+}, \theta_{\Phi}, x^{\beta}, \overline{x}^{\beta}.$$

	Embedding In A $B - L$ SUSY GUT		
00	000	00	

STABILITY AND RADIATIVE CORRECTIONS

THE MASS SPECTRUM ALONG THE INFLATIONARY TRAJECTORY

FIELDS	Eingestates	Masses Squared		
			$K = K_1$	$K = K_2$
14 Real	$\widehat{\theta}_+$	$\widehat{m}_{\theta+}^2$	$4\widehat{H}_{\mathrm{HI}}^2$	$6\widehat{H}_{\mathrm{HI}}^2$
Scalars	$\widehat{ heta}_{\Phi}$	$\widehat{m}_{\theta_{\Phi}}^2$	M_{BL}^2	M_{BL}^2
	$\widehat{s}, \widehat{\overline{s}}$	\widehat{m}_s^2	$\widehat{H}_{\rm HI}^2(c_{\mathcal R}\phi^2-9)$	$6\widehat{H}_{\mathrm{HI}}^2/N_S$
	$\widehat{h}_{\pm}, \widehat{\bar{h}}_{\pm}$	$\widehat{m}_{h\pm}^2$	$3\widehat{H}_{\rm HI}^2 c_{\mathcal{R}} \left(\phi^2 / 6 \pm 2\lambda_{\mu} / \lambda \right)$	$3\widehat{H}_{\text{HI}}^2\left(1+1/N_S \pm 4\lambda_{\mu}/\lambda\phi^2\right)$
	$\widehat{\tilde{v}}_{i}^{c}, \widehat{\tilde{v}}_{i}^{c}$	$\widehat{m}_{i\tilde{v}c}^2$	$3\widehat{H}_{\text{HI}}^2 c_{\mathcal{R}} \left(\phi^2/6 + 8\lambda_{iN^c}^2/\lambda^2 \right)$	$3\widehat{H}_{\mathrm{HI}}^{2}\left(1+1/N_{S}+16\lambda_{iN^{c}}^{2}/\lambda^{2}\phi^{2}\right)$
1 Gauge Boson	A_{BL}	M_{BL}^2	$2Ng^2$	$/(Nc_{\mathcal{R}}-1)$
7 Weyl	$\widehat{\psi}_{\pm}$	$\widehat{m}_{\psi\pm}^2$	$12\widehat{H}_{\mathrm{HI}}^2/c_{\mathcal{R}}^2\phi^4$	
Spinors	$\lambda_{BL}, \widehat{\psi}_{\Phi-}$	M_{BL}^2	$\overline{I_{BL}^2} = \frac{2Ng^2/(Nc_R-1)}{2Ng^2/(Nc_R-1)}$	
	\widehat{N}_{i}^{c}	$\widehat{m}_{iN^c}^2$	$48\widehat{H}_{\mathrm{HI}}^2$	$c_{\mathcal{R}}\lambda_{iN^c}^2/\lambda^2\phi^2$

• We can Obtain $\forall \alpha, \ \widehat{m}_{\nu}^2 > 0$. Especially

$$\widehat{m}_s^2 > 0 \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} N_S < 6 \hspace{0.2cm} \text{and} \hspace{0.2cm} \widehat{m}_{h^-}^2 > 0 \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} \lambda_{\mu} \leq \lambda \phi^2 / 4N \hspace{0.2cm} [\lambda_{\mu} \lesssim \lambda \phi^2 (1+1/N_S)/4] \sim 10^{-5} \hspace{0.2cm} \text{for} \hspace{0.2cm} K = K_1 [K = K_2].$$

- We can Obtain $\forall \alpha, \widehat{m}_{y^{\alpha}}^{2} > \widehat{H}_{HI}^{2}$ and So Any Inflationary Perturbations Of The Fields Other Than ϕ Are Safely Eliminated;
- $M_{BL} \neq 0$ Signals the Fact that That $U(1)_{B-L}$ Is Broken and so, no Topological Defects are Produced;
- We Determine $c_{\mathcal{R}}$ Demanding That The Unification Scale $M_{\text{GUT}} \simeq 2/2.43 \times 10^{-2}$ is Identified with M_{BL} at the Vacuum, i.e.,

$$2Ng^2/(Nc_R - 1) = M_{\rm GUT}^2 \Rightarrow c_R = 1/N + 2g^2/M_{\rm GUT}^2 \simeq 1.451 \cdot 10^4$$
 with $g \simeq 0.7$ (GUT Gauge Coupling).

• The One-Loop Radiative Corrections à la Coleman-Weinberg to $\widehat{V}_{
m HI}$ Can Be Kept Under Control. Ξ^{-1}

Starobinsky-Type Inflation (STI) 000 00	Embedding In A $B - L$ SUSY GUT \bigcirc \bigcirc	Post-Inflationary Scenario 000 00	
INFLATIONARY SCENARIO			

• The <code>Slow-Roll Parameters</code> Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon}\simeq 16\frac{\widetilde{f}_W^2}{Nc_{\mathcal{R}}^4\phi^8} \quad \text{and} \quad \widehat{\eta}=8\frac{2-\widetilde{f}_W}{N\widetilde{f}_W^2} \quad \text{With} \quad \widetilde{f}_W=c_{\mathcal{R}}\phi^2-2\cdot$$

3

Starobinsky-Type Inflation (STI) 000 00	Embedding In A $B - L$ SUSY GUT \bigcirc $\bigcirc \bigcirc \bigcirc$	Post-Inflationary Scenario 000 00	
Inflationary Scenario			

• The <code>Slow-Roll Parameters</code> Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon}\simeq 16\frac{\widetilde{f}_W^2}{Nc_{\mathcal{R}}^4\phi^8} \quad \text{and} \quad \widehat{\eta}=8\frac{2-\widetilde{f}_W}{N\widetilde{f}_W^2} \quad \text{With} \quad \widetilde{f}_W=c_{\mathcal{R}}\phi^2-2\cdot$$

• The Number of *e*-Foldings That $k_{\star} = 0.05/\text{Mpc}$ Experiences During IGHI Is Calculated to be

$$\widehat{N}_{\star} \simeq N c_{\mathcal{R}} \phi_{\star}^2 / 8 \implies \phi_{\star} \simeq \left(8 \widehat{N}_{\star} / N c_{\mathcal{R}} \right)^{1/2} \simeq \begin{cases} 0.11, & K = K_1, \\ 0.13, & K = K_2. \end{cases}$$

THEREFORE, THE MODEL IS AUTOMATICALLY WELL STABILIZED AGAINST CORRECTIONS FROM HIGHER ORDER TERMS.

Starobinsky-Type Inflation (STI)	Embedding In A $B - L$ SUSY GUT \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Post-Inflationary Scenario 000 00	
INFLATIONARY SCENARIO			

• The <code>Slow-Roll Parameters</code> Are Determined Using the Standard Formulae Employing The Canonically Normalized $\widehat{\phi}$:

$$\widehat{\epsilon}\simeq 16\frac{\widetilde{f}_W^2}{Nc_{\mathcal{R}}^4\phi^8} \quad \text{and} \quad \widehat{\eta}=8\frac{2-\widetilde{f}_W}{N\widetilde{f}_W^2} \quad \text{With} \quad \widetilde{f}_W=c_{\mathcal{R}}\phi^2-2\cdot$$

• The Number of *e*-Foldings That $k_{\star} = 0.05/\text{Mpc}$ Experiences During IGHI Is Calculated to be

$$\widehat{N}_{\star} \simeq N c_{\mathcal{R}} \phi_{\star}^2 / 8 \implies \phi_{\star} \simeq \left(8 \widehat{N}_{\star} / N c_{\mathcal{R}} \right)^{1/2} \simeq \begin{cases} 0.11, & K = K_1, \\ 0.13, & K = K_2. \end{cases}$$

Therefore, The Model Is Automatically Well Stabilized Against Corrections From Higher Order Terms. • The Power Spectrum Normalization Implies A Unique Value of λ

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}_{\rm HI}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\rm HI,\widehat{\phi}}(\widehat{\phi}_{\star})|} \implies \lambda = 8\sqrt{6A_{\rm s}}\pi c_{\mathcal{R}} \frac{4\widehat{N}_{\star}}{N^{3/2}(4\widehat{N}_{\star}/N-1)^2} \simeq \begin{cases} 0.29, & K = K_1, \\ 0.24, & K = K_2. \end{cases}$$
(A_sN)

・ロト ・四ト ・ヨト・ヨト・

Starobinsky-Type Inflation (STI) 000 00	Embedding In A $B - L$ SUSY GUT \bigcirc $\bigcirc \bigcirc \bigcirc$	Post-Inflationary Scenario 000 00	
Inflationary Scenario			

• THE SLOW-ROLL PARAMETERS ARE DETERMINED USING THE STANDARD FORMULAE EMPLOYING THE CANONICALLY NORMALIZED $\hat{\phi}$:

$$\widehat{\epsilon}\simeq 16\frac{\widetilde{f}_W^2}{Nc_{\mathcal{R}}^4\phi^8} \quad \text{and} \quad \widehat{\eta}=8\frac{2-\widetilde{f}_W}{N\widetilde{f}_W^2} \quad \text{With} \quad \widetilde{f}_W=c_{\mathcal{R}}\phi^2-2\cdot$$

• The Number of *e*-Foldings That $k_{\star} = 0.05/\text{Mpc}$ Experiences During IGHI Is Calculated to be

$$\widehat{N}_{\star} \simeq N c_{\mathcal{R}} \phi_{\star}^2 / 8 \implies \phi_{\star} \simeq \left(8 \widehat{N}_{\star} / N c_{\mathcal{R}} \right)^{1/2} \simeq \begin{cases} 0.11, & K = K_1, \\ 0.13, & K = K_2. \end{cases}$$

Therefore, The Model Is Automatically Well Stabilized Against Corrections From Higher Order Terms. • The Power Spectrum Normalization Implies A Unique Value of λ

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}_{\rm HI}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\rm HI,\widehat{\phi}}(\widehat{\phi}_{\star})|} \implies \lambda = 8\sqrt{6A_{\rm s}}\pi c_{\mathcal{R}} \frac{4\widehat{N}_{\star}}{N^{3/2}(4\widehat{N}_{\star}/N-1)^2} \simeq \begin{cases} 0.29, & K = K_1, \\ 0.24, & K = K_2. \end{cases}$$
(A_sN)

• THE OBSERVABLES ARE PREDICTED TO BE IDENTICAL WITH THOSE OBTAINED IN THE ORIGINAL STI

ヘロト 人間 トメヨトメヨト

Starobinsky-Type Inflation (STI) 000 00	Embedding In A $B - L$ SUSY GUT \bigcirc $\bigcirc \bigcirc \bigcirc$	Post-Inflationary Scenario 000 00	
Inflationary Scenario			

• THE SLOW-ROLL PARAMETERS ARE DETERMINED USING THE STANDARD FORMULAE EMPLOYING THE CANONICALLY NORMALIZED $\hat{\phi}$:

$$\widehat{\epsilon}\simeq 16\frac{\widetilde{f}_W^2}{Nc_{\mathcal{R}}^4\phi^8} \quad \text{and} \quad \widehat{\eta}=8\frac{2-\widetilde{f}_W}{N\widetilde{f}_W^2} \quad \text{With} \quad \widetilde{f}_W=c_{\mathcal{R}}\phi^2-2\cdot$$

• The Number of *e*-Foldings That $k_{\star} = 0.05/\text{Mpc}$ Experiences During IGHI Is Calculated to be

$$\widehat{N}_{\star} \simeq N c_{\mathcal{R}} \phi_{\star}^2 / 8 \implies \phi_{\star} \simeq \left(8 \widehat{N}_{\star} / N c_{\mathcal{R}} \right)^{1/2} \simeq \begin{cases} 0.11, & K = K_1, \\ 0.13, & K = K_2. \end{cases}$$

Therefore, The Model Is Automatically Well Stabilized Against Corrections From Higher Order Terms. • The Power Spectrum Normalization Implies A Unique Value of λ

$$\sqrt{A_{\rm s}} = \frac{1}{2\sqrt{3}\pi} \frac{\widehat{V}_{\rm HI}(\widehat{\phi}_{\star})^{3/2}}{|\widehat{V}_{\rm HI,\widehat{\phi}}(\widehat{\phi}_{\star})|} \implies \lambda = 8\sqrt{6A_{\rm s}}\pi c_{\mathcal{R}} \frac{4\widehat{N}_{\star}}{N^{3/2}(4\widehat{N}_{\star}/N-1)^2} \simeq \begin{cases} 0.29, & K = K_1, \\ 0.24, & K = K_2. \end{cases}$$
(A_sN)

• THE OBSERVABLES ARE **PREDICTED** TO BE IDENTICAL WITH THOSE OBTAINED IN THE ORIGINAL STI

$$n_{\rm s} \simeq 1 - \frac{2}{\widehat{N}_{\star}} = 0.963 \,, \ r \simeq \frac{4N}{\widehat{N}_{\star}^2} = 0.0032 \, [0.0022] \quad \text{and} \quad \alpha_{\rm s} \simeq -\frac{2}{\widehat{N}_{\star}^2} - \frac{7N}{2\widehat{N}_{\star}^3} = -0.005 \quad \text{for} \quad K = K_1 \quad [K_2].$$

• Although c_R is large, No Problem With The Perturbative Unitarity Emerges Since The Expansions Abound $\langle \phi \rangle = 0$ Are c_R Independent:

$$J^{2}\phi^{2} \simeq \left(1 - \sqrt{\frac{2}{N}}\widehat{\delta\phi} + \frac{3}{2N}\widehat{\delta\phi}^{2} - \sqrt{\frac{2}{N^{3}}}\widehat{\delta\phi}^{3} + \cdots\right)\widehat{\delta\phi}^{2} \text{ and } \widehat{V}_{\mathrm{HI}} \simeq \frac{\lambda^{2}\widehat{\delta\phi}^{2}}{2c_{\mathcal{R}}^{2}} \left(1 - \frac{2N - 1}{\sqrt{2N}}\widehat{\delta\phi} + \frac{8N^{2} - 4N + 1}{8N}\widehat{\delta\phi}^{2} + \cdots\right).$$

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	
Inflaton Decay & non-Thermal Lepto	DGENESIS		

PERTURBATIVE REHEATING

C. PALLIS

• At the SUSY Vacuum, The Inflaton And The RHNs, N_i^c , Acquire Masses $\widehat{m}_{\delta\phi}$ and M_{iN^c} Respectively Given by

$$\widehat{m}_{\delta\phi}\simeq \frac{\lambda m_{\rm P}}{\sqrt{c_{\mathcal{R}}\left(Nc_{\mathcal{R}}-1\right)}}\simeq 2.8\cdot 10^{13}~{\rm GeV}~~{\rm and}~~M_{iN^c}=\lambda_{iN^c}M\,,$$

WHERE WE RESTORE *m*P IN THE FORMULAS.

æ

・ロト ・ 同ト ・ ヨト ・ ヨト

			Post-Inflationary Scenario	
000			000	
INFLATON DECAY & NON-THERMAL LEPTOGENESIS				

PERTURBATIVE REHEATING

• At the SUSY Vacuum, The Inflaton And The RHNs, N_i^c , Acquire Masses $\widehat{m}_{\delta\phi}$ and M_{iN^c} Respectively Given by

$$\widehat{m}_{\delta\phi}\simeq \frac{\mathcal{A}m_{\rm P}}{\sqrt{c_{\mathcal{R}}\left(Nc_{\mathcal{R}}-1\right)}}\simeq 2.8\cdot 10^{13}~{\rm GeV}~~{\rm and}~~M_{iN^c}=\lambda_{iN^c}M\,,$$

Where We Restore $m_{\rm P}$ in the Formulas.

- THE INFLATON CAN DECAY PERTURBATIVELY INTO:
 - A PAIR OF RHNs (N^c_i) With Majorana Masses M_{jN^c} Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to N_{l}^{c}} = \frac{g_{iN^{c}}^{2}}{16\pi} \widehat{m}_{\delta\phi} \left(1 - \frac{4M_{iN^{c}}^{2}}{\widehat{m}_{\delta\phi}^{2}}\right)^{3/2} \quad \text{With} \quad g_{iN^{c}} = (N-1) \frac{\lambda_{iN^{c}}}{\langle J \rangle} \quad \text{Arising from } \mathcal{L}_{\widehat{\delta\phi}\to N_{l}^{c}} = g_{iN^{c}} \widehat{\delta\phi} \; N_{i}^{c} N_{i}^{c} \, .$$

• Hu and Hd Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to H} = \frac{2}{8\pi} g_{H}^{2} \widehat{m}_{\delta\phi} \quad \text{with} \quad g_{H} = \frac{\lambda_{\mu}}{\sqrt{2}} \left(1 - 2c_{+} \frac{M^{2}}{m_{P}^{2}} \right) \text{ Arising from } \mathcal{L}_{\widehat{\delta\phi}\to H_{u}H_{d}} = -g_{H} \widehat{m}_{\delta\phi} \widehat{\delta\phi} H_{u}^{*} H_{d}^{*} \, .$$

MSSM (s)-PARTICLES XYZ THROUGH THE FOLLOWING C+-DEPENDENT 3-BODY DECAY WIDTH

$$\widehat{\Gamma}_{\delta\phi\to XYZ} = g_y^2 \frac{14}{512\pi^3} \frac{\widehat{m}_{\delta\phi}^3}{m_{\rm P}^2} \quad \text{With} \quad g_y = y_3 \left(\frac{Nc_{\mathcal{R}}-1}{2c_{\mathcal{R}}}\right)^{1/2} \quad \text{and} \quad y_3 = h_{t,b,\tau}(\widehat{m}_{\delta\phi}) \simeq 0.5 \,.$$

This Decay Arises From $\mathcal{L}_{\widehat{\delta\phi} \to XYZ} = -\lambda_y (\widehat{\delta\phi}/m_{\mathrm{P}}) \left(X \psi_Y \psi_Z + Y \psi_X \psi_Z + Z \psi_X \psi_Y \right) + \mathrm{h.c.}$

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト

			Post-Inflationary Scenario	
000			000	
INFLATON DECAY & NON-THERMAL LEPTOGENESIS				

PERTURBATIVE REHEATING

• At the SUSY Vacuum, The Inflaton And The RHNs, N_i^c , Acquire Masses $\widehat{m}_{\delta\phi}$ and M_{iN^c} Respectively Given by

$$\widehat{m}_{\delta\phi}\simeq \frac{\lambda m_{\rm P}}{\sqrt{c_{\mathcal{R}}\left(Nc_{\mathcal{R}}-1\right)}}\simeq 2.8\cdot 10^{13}~{\rm GeV}~~{\rm and}~~M_{iN^c}=\lambda_{iN^c}M\,,$$

Where We Restore $m_{\rm P}$ in the Formulas.

- THE INFLATON CAN DECAY PERTURBATIVELY INTO:
 - A PAIR OF RHNs (N^c_i) With Majorana Masses M_{jN^c} Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to N_i^c} = \frac{g_{iN^c}^2}{16\pi} \widehat{m}_{\delta\phi} \left(1 - \frac{4M_{iN^c}^2}{\widehat{m}_{\delta\phi}^2}\right)^{3/2} \quad \text{With} \quad g_{iN^c} = (N-1) \frac{\lambda_{iN^c}}{\langle J \rangle} \quad \text{Arising from } \mathcal{L}_{\widehat{\delta\phi}\to N_i^c} = g_{iN^c} \widehat{\delta\phi} \; N_i^c N_i^c \, .$$

H_u and H_d Through The Following Decay Width

$$\widehat{\Gamma}_{\delta\phi\to H} = \frac{2}{8\pi} g_{H}^{2} \widehat{m}_{\delta\phi} \quad \text{with} \quad g_{H} = \frac{\lambda_{\mu}}{\sqrt{2}} \left(1 - 2c_{+} \frac{M^{2}}{m_{P}^{2}} \right) \text{ Arising from } \mathcal{L}_{\widehat{\delta\phi}\to H_{u}H_{d}} = -g_{H} \widehat{m}_{\delta\phi} \widehat{\delta\phi} H_{u}^{*} H_{d}^{*} \, .$$

MSSM (s)-PARTICLES XYZ THROUGH THE FOLLOWING C+-DEPENDENT 3-BODY DECAY WIDTH

$$\widehat{\Gamma}_{\delta\phi\to XYZ} = g_y^2 \frac{14}{512\pi^3} \frac{\widehat{m}_{\delta\phi}^3}{m_{\rm P}^2} \quad {\rm With} \quad g_y = y_3 \left(\frac{Nc_{\mathcal R}-1}{2c_{\mathcal R}}\right)^{1/2} \quad {\rm and} \quad y_3 = h_{t,b,\tau}(\widehat{m}_{\delta\phi}) \simeq 0.5 \, .$$

 $\text{This Decay Arises From } \mathcal{L}_{\widehat{\delta\phi} \to XYZ} = -\lambda_y (\widehat{\delta\phi}/m_{\mathrm{P}}) \left(X \psi_Y \psi_Z + Y \psi_X \psi_Z + Z \psi_X \psi_Y \right) + \mathrm{h.c.}$

• THE REHEATING TEMPERATURE, T_{rh}, is given by

$$T_{\rm rh} = \left(72/5\pi^2 g_*\right)^{1/4} \widetilde{\Gamma}_{\delta\phi}^{1/2} m_{\rm p}^{1/2} \quad \text{with} \quad \widehat{\Gamma}_{\delta\phi} = \widehat{\Gamma}_{\delta\phi \to N_i^c} + \widehat{\Gamma}_{\delta\phi \to H} + \widehat{\Gamma}_{\delta\phi \to XZ}, \quad \text{with} \quad g_* \simeq 228.75.$$

			POST-INFLATIONARY SCENARIO	
			000	
00		000	00	
INELATON DECAY & NON-THERMAL LEFT	OGENERIE			

Leptogenesis and \widetilde{G} Abundance

• THE OUT-OF-EQUILIBRIUM DECAY OF N^c_i can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_B = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\text{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi \to N_i^c}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_i \quad \text{Where} \quad \varepsilon_i = \sum_{j \neq i} \frac{\text{Im}\left[(m_{\text{D}}^{\dagger}m_{\text{D}})_{ij}^2\right]}{8\pi \langle H_u \rangle^2 (m_{\text{D}}^{\dagger}m_{\text{D}})_{ii}} \Big(F_{\text{S}}\left(x_{ij}, y_i, y_j\right) + F_{\text{V}}(x_{ij})\Big).$$

Here $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. Also F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams. • m_{iD} are the Dirac Masses Which May Be Diagonalized In the Weak (primed) Basis

$$U^{\dagger}m_{\mathrm{D}}U^{c\dagger} = d_{\mathrm{D}} = \mathrm{diag}\left(m_{\mathrm{1D}}, m_{\mathrm{2D}}, m_{\mathrm{3D}}\right) \text{ Where } L' = LU \text{ and } N^{c\prime} = U^{c}N^{c}.$$

AND ARE RELATED TO M_{iN^c} via the Type I Seesaw Formula

 $m_{v} = -m_{\rm D} \ d_{N^{\rm C}}^{-1} \ m_{\rm D}^{\mathsf{T}}, \ \text{Where} \ d_{N^{\rm C}} = \text{diag} \left(M_{1N^{\rm C}}, M_{2N^{\rm C}}, M_{3N^{\rm C}} \right) \ \text{with} \ M_{1N^{\rm C}} \le M_{2N^{\rm C}} \le M_{3N^{\rm C}} \ \text{Real and Positive.}$

ullet Replacing $m_{
m D}$ in the See-Saw Formula We Extract The Mass Matrix of Light Neutrinos In The Weak Basis

$$\bar{m}_{\nu} = U^{\dagger} m_{\nu} U^* = -d_{\rm D} U^c d_{N^c}^{-1} U^c {}^{\mathsf{T}} d_{\rm D},$$

Which Can Be Diagonalized by the Unitary PMNS Matrix U_{ν} Parameterized As Follows:

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \cdot \begin{pmatrix} e^{-i\varphi_{1}/2} & e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \\ & e^{-i\varphi_{2}/2} & e^{-i\varphi_{2}/2} \\$$

with $c_{ij} := \cos \theta_{ij}$, $s_{ij} := \sin \theta_{ij}$, δ the CP-Violating Dirac Phase and φ_1 and φ_2 the two CP-Violating Majorana Phases.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

			POST-INFLATIONARY SCENARIO	
			000	
00		000	00	
INELATON DECAY & NON-THERMAL LEFT	OGENERIE			

Leptogenesis and \widetilde{G} Abundance

• THE OUT-OF-EQUILIBRIUM DECAY OF N^c_i can Generate an L Asymmetry Which Can Be Converted to the B Yield:

$$Y_B = -0.35 \ 2 \ \frac{5}{4} \ \frac{T_{\text{rh}}}{\widehat{m}_{\delta\phi}} \frac{\widehat{\Gamma}_{\delta\phi \to N_i^c}}{\widehat{\Gamma}_{\delta\phi}} \varepsilon_i \quad \text{Where} \quad \varepsilon_i = \sum_{j \neq i} \frac{\text{Im}\left[(m_{\text{D}}^{\dagger}m_{\text{D}})_{ij}^2\right]}{8\pi \langle H_u \rangle^2 (m_{\text{D}}^{\dagger}m_{\text{D}})_{ii}} \Big(F_{\text{S}}\left(x_{ij}, y_i, y_j\right) + F_{\text{V}}(x_{ij})\Big).$$

Here $x_{ij} := M_{jN^c}/M_{iN^c}$ and $y_i := \Gamma_{iN^c}/M_{iN^c} = (m_D^{\dagger}m_D)_{ii}/8\pi\langle H_u \rangle^2$ and $\widehat{m}_{\delta\phi} < 2M_{iN^c}$ For Some *i* with i = 1, 2, 3. Also F_V and F_S Represent, Respectively, The Contributions From Vertex And Self-Energy Diagrams. • m_{iD} are the Dirac Masses Which May Be Diagonalized In the Weak (primed) Basis

$$U^{\dagger}m_{\rm D}U^{c\dagger} = d_{\rm D} = {\rm diag}\,(m_{1{\rm D}}, m_{2{\rm D}}, m_{3{\rm D}})$$
 Where $L' = LU$ and $N^{c\prime} = U^c N^c$.

AND ARE RELATED TO M_{iN^c} via the Type I Seesaw Formula

 $m_v = -m_D \ d_{N^C}^{-1} \ m_D^{\mathsf{T}}$, Where $d_{N^C} = \text{diag}(M_{1N^C}, M_{2N^C}, M_{3N^C})$ with $M_{1N^C} \le M_{2N^C} \le M_{3N^C}$ Real and Positive.

ullet Replacing $m_{
m D}$ in the See-Saw Formula We Extract The Mass Matrix of Light Neutrinos In The Weak Basis

$$\bar{m}_{\nu} = U^{\dagger} m_{\nu} U^* = -d_{\rm D} U^c d_{N^c}^{-1} U^c {}^{\mathsf{T}} d_{\rm D},$$

Which Can Be Diagonalized by the Unitary PMNS Matrix U_{ν} Parameterized As Follows:

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \\ \end{pmatrix} \cdot \begin{pmatrix} e^{-i\varphi_{1}/2} & e^{-i\varphi_{2}/2} \\ & e^{-i\varphi_{2}/2} \\ & & 1 \end{pmatrix},$$

with $c_{ij} := \cos \theta_{ij}$, $s_{ij} := \sin \theta_{ij}$, δ the CP-Violating Dirac Phase and φ_1 and φ_2 the two CP-violating Majorana Phases.

• The Thermally Produced \widetilde{G} Yield At The Onset of Big-Bang Nucleosythesis (BBN) is Estimated To Be:

$$Y_{\widetilde{G}} \simeq 1.9 \cdot 10^{-22} T_{\rm rh}/{\rm GeV}.$$

・ ロ ト ス 四 ト ス ヨ ト ス ヨ ト

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	
INFLATON DECAY & NON-THERMAL LEPT	OGENESIS		

The Achievement Of Baryogenesis via non-Thermal Leptogenesis Can be Characterized Successful IF: (i) We Obtain the Observationally Required B Yield Which is $Y_B = (8.697 \pm 0.054) \cdot 10^{-11}$ at 95% c.l.

・ロト ・日下・ ・ ヨト

< E

⁴ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	
INFLATON DECAY & NON-THERMAL LEPT	OGENESIS		

THE ACHIEVEMENT OF BARYOGENESIS VIA NON-THERMAL LEPTOGENESIS CAN BE CHARACTERIZED SUCCESSFUL IF:

(i) WE OBTAIN THE OBSERVATIONALLY REQUIRED B YIELD WHICH IS $Y_B = (8.697 \pm 0.054) \cdot 10^{-11}$ at 95% c.l.

(ii) Constraints on M_{iN^c} Are Satisfied. We have To Avoid Any Erasure Of The Produced Y_L ; Ensure That The ϕ Decay To N_c^c is Kinematically Allowed; and M_{iN^c} are Theoretically Acceptable, We Have To Impose The Constraints:

(a) $M_{1N^c} \gtrsim 10T_{\rm rh}$, (b) $\widehat{m}_{\delta\phi} \ge 2M_{1N^c}$ and (c) $M_{iN^c} \lesssim 7.1M \Leftrightarrow \lambda_{iN^c} \lesssim 3.5$.

⁴ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

Starobinsky-Type Inflation (STI)		Embedding In A $B - L$ SUSY GUT O	Post-Inflationary Scenario	
INFLATON DECAY & NON-THERMAL LEPT	OGENESIS			

THE ACHIEVEMENT OF BARYOGENESIS VIA NON-THERMAL LEPTOGENESIS CAN BE CHARACTERIZED SUCCESSFUL IF:

(i) WE OBTAIN THE OBSERVATIONALLY REQUIRED B YIELD WHICH IS $Y_B = (8.697 \pm 0.054) \cdot 10^{-11}$ at 95% c.l.

(ii) Constraints on M_{iN^c} Are Satisfied. We have To Avoid Any Erasure Of The Produced Y_L ; Ensure That The ϕ Decay To N_i^c is Kinematically Allowed; and M_{iN^c} are Theoretically Acceptable, We Have To Impose The Constraints:

 $(a) \ M_{1N^c} \gtrsim 10 T_{\rm rh}, \ (b) \ \widehat{m}_{\delta\phi} \ge 2 M_{1N^c} \ \text{and} \ (c) \ M_{iN^c} \lesssim 7.1 M \ \Leftrightarrow \lambda_{iN^c} \lesssim 3.5.$

(iii) \widetilde{G} Constraint Is Under Control. Assuming Unstable \widetilde{G} , We Impose an Upper Bound⁴ on $Y_{\widetilde{G}}$ In Order to Avoid Problems With the BBN:

$$Y_{3/2} \lesssim \begin{cases} 10^{-14} \\ 10^{-13} \\ 10^{-12} \end{cases} \Rightarrow T_{\rm rh} \lesssim \begin{cases} 5.3 \cdot 10^{7} \text{ GeV} \\ 5.3 \cdot 10^{8} \text{ GeV} \\ 5.3 \cdot 10^{9} \text{ GeV} \end{cases} \text{ FOR } \widetilde{G} \text{ Mass } m_{3/2} \simeq \begin{cases} 0.69 \text{ TeV}, \\ 10.6 \text{ TeV}, \\ 13.5 \text{ TeV}, \\ 13.5 \text{ TeV}, \end{cases}$$

⁴ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	
INFLATON DECAY & NON-THERMAL LEP	FOGENESIS		

THE ACHIEVEMENT OF BARYOGENESIS VIA NON-THERMAL LEPTOGENESIS CAN BE CHARACTERIZED SUCCESSFUL IF:

(i) WE OBTAIN THE OBSERVATIONALLY REQUIRED B YIELD WHICH IS $Y_B = (8.697 \pm 0.054) \cdot 10^{-11}$ at 95% c.l.

(ii) Constraints on M_{iN^c} Are Satisfied. We have To Avoid Any Erasure Of The Produced Y_L ; Ensure That The ϕ Decay To N_i^c is Kinematically Allowed; and M_{iN^c} are Theoretically Acceptable, We Have To Impose The Constraints:

(a)
$$M_{1N^c} \gtrsim 10T_{\rm rh}$$
, (b) $\widehat{m}_{\delta\phi} \ge 2M_{1N^c}$ and (c) $M_{iN^c} \lesssim 7.1M \Leftrightarrow \lambda_{iN^c} \lesssim 3.5$.

(iii) \widetilde{G} Constraint Is Under Control. Assuming Unstable \widetilde{G} , We Impose an Upper Bound⁴ on $Y_{\widetilde{G}}$ in Order to Avoid Problems With the BBN:

$$Y_{3/2} \lesssim \begin{cases} 10^{-14} \\ 10^{-13} \\ 10^{-12} \end{cases} \Rightarrow T_{\rm rh} \lesssim \begin{cases} 5.3 \cdot 10^7 \text{ GeV} \\ 5.3 \cdot 10^8 \text{ GeV} \\ 5.3 \cdot 10^9 \text{ GeV} \end{cases} \text{ for } \widetilde{G} \text{ Mass } m_{3/2} \simeq \begin{cases} 0.69 \text{ TeV}, \\ 10.6 \text{ TeV}, \\ 13.5 \text{ TeV}. \end{cases}$$

(IV) BE IN AGREEMENT WITH THE LIGHT NEUTRINO DATA.

Parameter	BEST FIT	Value <mark>(2021)</mark>	• The Masses m_{1} of v_{1} Are Calculated as Follows'
	Normal	INVERTED	
	Hie	RARCHY	$m_{2\nu} = \sqrt{m_{1\nu}^2 + \Delta m_{21}^2}$ and
$\Delta m_{21}^2 / 10^{-3} \text{eV}^2$		7.5	
$\Delta m_{31}^2 / 10^{-3} \text{eV}^2$	2.55	2.45	$m_{3\nu} = \sqrt{m_{1\nu}^2 + \Delta m_{31}^2}, \text{ for Normally Ordered (NO) } m_{\nu}\text{'s}$
$\sin^2 \theta_{12} / 0.1$	3	3.18	OR
$\sin^2 \theta_{13} / 0.01$	2.2	2.225	$m_1 = \sqrt{m^2 + \Delta m^2 }$ FOR INVERTED V ORDERED (IO) m's
$\sin^2 \theta_{23} / 0.1$	5.74	5.78	$m_{1v} = \sqrt{m_{3v}} + [2m_{31}]$, for interest orbities (10) m_v o
δ/π	1.08	1.58	• $\sum_{i} m_{iv} \leq 0.12 \ [0.15] \text{ eV AT 95\% C.L. FOR NO [IO] } m_{v} \text{ 's.}$

⁴ M. Kawasaki, K. Kohri, and T. Moroi (2005); J.R. Ellis, K.A. Olive, and E. Vangioni (2005).

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	
Results			

COMBINING INFLATIONARY AND POST-INFLATIONARY REQUIREMENTS

• Enforcing the Post-Inflationary Constraints, We Can Obtain Predictions for m_{iD} 's or M_{iNC} Employing as Free Parameters $m_{r\gamma}$, φ_1 and φ_2 , (Where $m_{r\gamma}$ is A Reference Scale for the Neutrino Masses). • All the Requirements can be Met Along the Lines Presented in the $m_{1D} - m_{2D}$ Plane for $\lambda_{\mu} = 10^{-6}$.

• We take $m_{rv} = m_{1v}$ for NO v_i 's and $m_{rv} = m_{3v}$ for IO v_i 's.

- The Inflaton Decays into the Lightest and Next-to-Lightest of RHN Since $2M_{iN^c} > \widehat{m}_{\delta\phi}$ for i = 3.
- Y_B Is Equal to its Central Value and the \widetilde{G} Constraint is Under Control for $m_{3/2}\sim 10~{
 m TeV}$ Since We Obtain

 $1.4 \lesssim Y_{\widetilde{G}}/10^{-13} \lesssim 1.7 \ \text{ with } \ 7.5 \lesssim T_{\rm rh}/10^8 {\rm GeV} \lesssim 9,$

WHERE THE LOWEST VALUES OBTAINED FOR CASE A.

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	
Results			

GENERATION OF THE µ-TERM OF MSSM APPLYING THE MECHANISM OF G. DVALI, G. LAZARIDES AND Q. SHAFI (1999)

• The Origin of the μ Term Can be Explained IF We Combine the Terms $W_{\text{HI}} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi - M^2/4 \right) + \lambda_{\mu} S H_u H_d$.

⁵ P. Athron et al. [GAMBIT Collaboration] (2018) – It is obtained $m_{\tilde{g}} \ge 2.9$ TeV, $m_{\tilde{\chi}^{\pm}} \ge 1.1$ TeV & $m_{\tilde{l}_1} \ge 3.6$ TeV (Besides Region III) so, Regions I, II, IV Are Still Alive. On the Other hand, The muon q - 2 Anomaly is not Interpreted in These Regions.

		Post-Inflationary Scenario	
		00	
D			

GENERATION OF THE *µ*-TERM OF MSSM APPLYING THE MECHANISM OF G. DVALI, G. LAZARIDES AND Q. SHAFI (1999)

- The Origin of the μ Term Can be Explained IF We Combine the Terms $W_{\text{HI}} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi M^2 / 4 \right) + \lambda_{\mu} S H_u H_d$.
- The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\rm soft} = \left(\lambda A_{\lambda} S \,\bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S \,H_u H_d - a_S S \,\lambda M^2 / 4 + {\rm h.c.}\right) + m_{\tilde{\alpha}}^2 \left| z^{\tilde{\alpha}} \right|^2 \quad \text{with} \ z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_u, H_d = h_{\tilde{\alpha}} S \,\lambda M^2 / 4 + h_{\tilde{\alpha}} \left| z^{\tilde{\alpha}} \right|^2$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters Of the Order of Gravitino Mass $m_{3/2}$.

⁵ P. Athron et al. [GAMBIT Collaboration] (2018) – It is obtained $m_{\tilde{g}} \ge 2.9$ TeV, $m_{\tilde{\chi}^{\pm}} \ge 1.1$ TeV & $m_{\tilde{f}_1} \ge 3.6$ TeV (Besides Region III) so, Regions I, II, IV Are Still Alive. On the Other hand, The muon q - 2 Anomaly is not Interpreted in These Regions.

		Post-Inflationary Scenario	
00	000	00	

GENERATION OF THE *µ*-TERM OF MSSM APPLYING THE MECHANISM OF G. DVALI, G. LAZARIDES AND Q. SHAFI (1999)

- The Origin of the μ Term Can be Explained IF We Combine the Terms $W_{\text{HI}} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi M^2/4 \right) + \lambda_{\mu} S H_u H_d$.
- The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \,\bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S \,H_u H_d - a_S S \,\lambda M^2 / 4 + \text{h.c.}\right) + m_{\tilde{\alpha}}^2 \left| z^{\tilde{\alpha}} \right|^2 \quad \text{with} \quad z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_u, H_d$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters Of the Order of Gravitino Mass $m_{3/2}$.

• MINIMIZING $V_{\text{tot}} = V_{\text{SUSY}} + V_{\text{soft}}$ w.r.t Phases and Substituting in V_{soft} the SUSY v.e.vs of Φ and $\overline{\Phi}$ we get

$$\langle V_{\text{tot}}(S) \rangle = \lambda^2 m_P^2 S^2 / c_R (N c_R - 1) - \lambda a_{3/2} m_{3/2} M^2 S$$
, where $m_S \ll M$ and $(|A_{\lambda}| + |a_S|) = 2 a_{3/2} m_{3/2}$.
Minimizing Finally $\langle V_{\text{tot}}(S) \rangle$ w.r.t S . We Obtain a non-Vanishing $\langle S \rangle$ as Follows:

$$\langle S \rangle \simeq N \mathbf{a}_{3/2} m_{3/2} c_{\mathcal{R}} / \lambda \stackrel{(A_{\mathrm{S}}\mathrm{N})}{\simeq} 10^5 \mathbf{a}_{3/2} m_{3/2} \mathcal{F}(N, \widehat{N}_{\star}) \quad \text{With } \mathcal{F}(N, \widehat{N}_{\star}) \sim 1$$

⁵ P. Athron et al. [GAMBIT Collaboration] (2018) – It is obtained $m_{\tilde{g}} \ge 2.9$ TeV, $m_{\tilde{\chi}^{\pm}} \ge 1.1$ TeV & $m_{\tilde{f}_1} \ge 3.6$ TeV (Besides Region III) so, Regions I, II, IV Are Still Alive. On the Other hand, The muon q - 2 Anomaly is not Interpreted in These Regions.

		POST-INFLATIONARY SCENARIO	
00	000	00	
RESULTS			

GENERATION OF THE M-TERM OF MSSM APPLYING THE MECHANISM OF G. DVALI, G. LAZARIDES AND Q. SHAFI (1999)

- The Origin of the μ Term Can be Explained IF We Combine the Terms $W_{\text{HI}} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi M^2/4 \right) + \lambda_{\mu} S H_u H_d$.
- The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S H_{u} H_{d} - a_{S} S \lambda M^{2} / 4 + \text{h.c.}\right) + m_{\tilde{\alpha}}^{2} \left| z^{\tilde{\alpha}} \right|^{2} \quad \text{with} \quad z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_{u}, H_{d}$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters Of the Order of Gravitino Mass $m_{3/2}$.

• Minimizing $V_{\rm tot} = V_{\rm SUSY} + V_{\rm soft}$ w.r.t Phases and Substituting in $V_{\rm soft}$ the SUSY v.e.vs of Φ and $\bar{\Phi}$ we get

$$\langle V_{\text{tot}}(S) \rangle = \lambda^2 m_p^2 S^2 / c_R (N c_R - 1) - \lambda a_{3/2} m_{3/2} M^2 S$$
, where $m_S \ll M$ and $(|A_\lambda| + |a_S|) = 2 a_{3/2} m_{3/2}$
Minimizing Finally $\langle V_{\text{tot}}(S) \rangle$ w.r.t S We Obtain a non-Vanishing $\langle S \rangle$ as Follows:

 $\langle S \rangle \simeq Na_{3/2}m_{3/2}c_{\mathcal{R}}/\lambda \stackrel{(A_{S}N)}{\simeq} 10^{5}a_{3/2}m_{3/2}\mathcal{F}(N,\widehat{N}_{\star})$ With $\mathcal{F}(N,\widehat{N}_{\star}) \sim 1$.

• Therefore, the Generated μ Parameter From W_{μ} is $\mu = \lambda_{\mu} \langle S \rangle \simeq N \lambda_{\mu} a_{3/2} m_{3/2} c_R / \lambda \simeq 10^5 m_{3/2} \lambda_{\mu} \mathcal{F}(N, \widehat{N_{\star}})$ Where the Prefactor is Absorbed Since Successful IGHI Needs $\lambda_{\mu} \leq 2 \cdot 10^{-5}$ For Stability Reasons.

⁵ P. Athron et al. [GAMBIT Collaboration] (2018) – It is obtained $m_{\tilde{g}} \ge 2.9$ TeV, $m_{\tilde{\chi}^{\pm}} \ge 1.1$ TeV & $m_{\tilde{f}_1} \ge 3.6$ TeV (Besides Region III) so, Regions I, II, IV Are Still Alive. On the Other hand, The muon g - 2 Anomaly is not Interpreted in These Regions.

		POST-INFLATIONARY SCENARIO	
00	000	00	
RESULTS			

GENERATION OF THE μ -TERM OF MSSM APPLYING THE MECHANISM OF G. DVALI, G. LAZARIDES AND Q. SHAFI (1999)

- The Origin of the μ Term Can be Explained IF We Combine the Terms $W_{\text{HI}} + W_{\mu} = \lambda S \left(\bar{\Phi} \Phi M^2/4 \right) + \lambda_{\mu} S H_u H_d$.
- The Soft SUSY Breaking Terms Corresponding to $W_{\rm HI} + W_{\mu}$ Are Included In

$$V_{\text{soft}} = \left(\lambda A_{\lambda} S \,\bar{\Phi} \Phi + \lambda_{\mu} A_{\mu} S \,H_{u} H_{d} - a_{S} S \,\lambda M^{2}/4 + \text{h.c.}\right) + m_{\tilde{\alpha}}^{2} \left| z^{\tilde{\alpha}} \right|^{2} \quad \text{with} \quad z^{\tilde{\alpha}} = \Phi, \bar{\Phi}, S, H_{u}, H_{d}$$

where $m_{\alpha}, A_{\lambda}, A_{\mu}$ and a_{S} are Soft SUSY Breaking Mass Parameters Of the Order of Gravitino Mass $m_{3/2}$.

• Minimizing $V_{tot} = V_{SUSY} + V_{soft}$ w.r.t Phases and Substituting in V_{soft} the SUSY v.e.vs of Φ and $\bar{\Phi}$ we get

$$\langle V_{\text{tot}}(S) \rangle = \lambda^2 m_P^2 S^2 / c_R (N c_R - 1) - \lambda a_{3/2} m_{3/2} M^2 S$$
, where $m_S \ll M$ and $(|A_{\lambda}| + |a_S|) = 2 a_{3/2} m_{3/2} m$

Minimizing Finally $\langle V_{tot}(S) \rangle$ w.r.t S We Obtain a non-Vanishing (S) as Follows:

$$\langle S \, \rangle \simeq N \mathbf{a}_{3/2} m_{3/2} c_{\mathcal{R}} / \lambda \stackrel{(A_{\mathrm{S}}\mathrm{N})}{\simeq} 10^5 \mathbf{a}_{3/2} m_{3/2} \mathcal{F}(N, \widehat{N}_{\star}) \quad \text{With } \mathcal{F}(N, \widehat{N}_{\star}) \sim 1.$$

• Therefore, the **Generated** μ **Parameter** From W_{μ} is $\mu = \lambda_{\mu} \langle S \rangle \simeq N \lambda_{\mu} a_{3/2} m_{3/2} c_{\mathcal{R}} / \lambda \simeq 10^5 m_{3/2} \lambda_{\mu} \mathcal{F}(N, \widehat{N}_{\star})$ Where the Prefactor is Absorbed Since Successful IGHI Needs $\lambda_{\mu} \leq 2 \cdot 10^{-5}$ For Stability Reasons.

• THE ALLOWED λ_{μ} VALUES RENDER OUR MODELS COMPATIBLE WITH THE BEST-FIT POINTS IN THE CMSSM⁵ SETTING, E.G.,

CMSSM REGION		$ A_0 $ (TeV)	m_0 (TeV)	μ (TeV)	a _{3/2}	λ_{μ} (1	l0 ⁻⁶)
$(m_h \simeq$	125 GeV & $\Omega_{\chi} h^2 \lesssim 0.12$)					$K = K_1$	$K = K_2$
(I)	A/H Funnel	9.9244	9.136	1.409	1.086	0.963	1.184
(11)	$ ilde{ au}_1 - \chi$ Coannihilation	1.2271	1.476	2.62	0.831	14.48	17.81
(III)	$\tilde{t}_1 - \chi$ Coannihilation	9.965	4.269	4.073	2.33	2.91	3.41
(IV)	$\tilde{\chi}_1^{\pm} - \chi$ Coannihilation	9.2061	9.000	0.983	1.023	0.723	0.89

 $m_0 = m_{3/2}$ and $|A_{\lambda}| = |a_S| = |A_0|$ - Regions (I) & (IV) are More Favored From the \widetilde{G} Constraint.

⁵ P. Athron et al. [GAMBIT Collaboration] (2018) – It is obtained $m_{\tilde{g}} \ge 2.9$ TeV, $m_{\tilde{\chi}^{\pm}} \ge 1.1$ TeV & $m_{\tilde{f}_1} \ge 3.6$ TeV (Besides Region III) so, Regions I, II, IV Are Still Alive. On the Other hand, The muon g - 2 Anomaly is not Interpreted in These Regions.

Starobinsky-Type Inflation (STI)		Post-Inflationary Scenario	Conclusions

• We Proposed A Variant of B - L Higgs Inflation (Named Induced-Gravity Higgs Inflation) Which can be Elegantly Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by the Gauge and R Symmetries and Two SemiLogarithmic Kähler Potentials.

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	Conclusions

• We Proposed A Variant of B - L Higgs Inflation (Named Induced-Gravity Higgs Inflation) Which can be Elegantly Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by the Gauge and R Symmetries and Two SemiLogarithmic Kähler Potentials.

- THE MODEL EXHIBITS THE FOLLOWING FEATURES:
 - IT INFLATES AWAY COSMOLOGICAL DEFECTS;

< ロ > < 同 > < 三 > < 三 > :

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	Conclusions

• We Proposed A Variant of B - L Higgs Inflation (Named Induced-Gravity Higgs Inflation) Which can be Elegantly Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by the Gauge and R Symmetries and Two SemiLogarithmic Kähler Potentials.

- THE MODEL EXHIBITS THE FOLLOWING FEATURES:
 - IT INFLATES AWAY COSMOLOGICAL DEFECTS;
 - IT PREDICTS ACCEPTABLE INFLATIONARY OBSERVABLES EMPLOYING SUBPLANCKIAN INFLATON VALUES AND WITHOUT CAUSING ANY PROBLEM WITH THE VALIDITY OF THE EFFECTIVE THEORY;

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	Conclusions

• We Proposed A Variant of B - L Higgs Inflation (Named Induced-Gravity Higgs Inflation) Which can be Elegantly Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by the Gauge and R Symmetries and Two SemiLogarithmic Kähler Potentials.

- THE MODEL EXHIBITS THE FOLLOWING FEATURES:
 - IT INFLATES AWAY COSMOLOGICAL DEFECTS;
 - IT PREDICTS ACCEPTABLE INFLATIONARY OBSERVABLES EMPLOYING SUBPLANCKIAN INFLATON VALUES AND WITHOUT CAUSING ANY PROBLEM WITH THE VALIDITY OF THE EFFECTIVE THEORY;
 - IT OFFERS A NICE SOLUTION TO THE μ Problem of MSSM Provided that λ_{μ} is Somehow Small and Selects the Most Favored from the Best-Fit Points of CMSSM;

Starobinsky-Type Inflation (STI) 000 00		Post-Inflationary Scenario	Conclusions

• We Proposed A Variant of B - L Higgs Inflation (Named Induced-Gravity Higgs Inflation) Which can be Elegantly Implemented Within a B - L Extension of MSSM, Adopting A Superpotential Determined by the Gauge and R Symmetries and Two SemiLogarithmic Kähler Potentials.

- THE MODEL EXHIBITS THE FOLLOWING FEATURES:
 - IT INFLATES AWAY COSMOLOGICAL DEFECTS;
 - IT PREDICTS ACCEPTABLE INFLATIONARY OBSERVABLES EMPLOYING SUBPLANCKIAN INFLATON VALUES AND WITHOUT CAUSING ANY PROBLEM WITH THE VALIDITY OF THE EFFECTIVE THEORY;
 - IT OFFERS A NICE SOLUTION TO THE μ Problem of MSSM Provided that λ_{μ} is Somehow Small and Selects the Most Favored from the Best-Fit Points of CMSSM;
 - IT Allows for Baryogenesis via non-TL Compatible With \tilde{G} Constraints and Neutrino Data. In particular We may have $m_{3/2} \gtrsim 10$ TeV, With The Inflaton Decaying Mainly to N_1^c and N_2^c We Obtain M_{iN^c} in the Range $(10^{10} 10^{15})$ GeV.
- IT REMAINS TO INTRODUCE A CONSISTENT SOFT SUSY BREAKING SECTOR IN THE THEORY.

THANK YOU!