Quasinormal modes of black holes in nonlinear electrodynamics

Kimihiro Nomura (PhD Student; Kobe Univ., Japan)

KN, Daisuke Yoshida, Jiro Soda, Phys.Rev.D 101 (2020) 124026, [2004.07560] KN, Daisuke Yoshida, Phys.Rev.D 105 (2022) 044006, [2111.06273]

Workshop on the Standard Model and Beyond in 22nd Hellenic School and Workshops on Elementary Particle Physics and Gravity, Sep. 7, 2022, @Mon Repos, Corfu, Greece

Gravitational Waves from Black Holes

Quasinormal modes of black holes in nonlinear electrodynamics

Kimihiro Nomura (Kobe Univ.)

Gravitational Waves from Black Holes

Ringdown phase is described by the perturbation of a single BH

• Superposition of Quasi-Normal Modes (QNM)

$$\sum_{l,m,n} (\text{Amplitude})_{lmn} e^{i\omega_{lmn}(t-r)}$$

- Based on GR, ω's are determined by a few parameters of the BH (mass, charge, spin):
 "Normal Modes" of BH spacetime
 - Important observables for estimating parameters of the BH
 - If once a deviation from the predictions is detected, there may be "new effects."

Motivation

If there are "new effects," how much are QNMs altered by them?

- Effective field theoretical approach is useful.

Earlier works [Cardoso, Kimura, Maselli, Senatore (2018)][de Rham, Francfort, Zhang (2020)]
"Einstein gravity" + "new effects in gravity"

higher-order of spacetime curvature

$$\mathcal{L} = \frac{R}{16\pi G} + c_1 R_{\mu\nu}{}^{\alpha\beta} R_{\alpha\beta}{}^{\gamma\sigma} R_{\gamma\sigma}{}^{\mu\nu} + (R_{\mu\nu\rho\sigma}\text{-quartic}) + \cdots$$

- QNMs of Schwarzschild BH are investigated.

Our work

BHs can have a charge. What about QNMs of charged BHs?

Charged BHs and Nonlinear Electrodynamics

 Conventionally, BH solutions are constructed based on "GR + Maxwell electrodynamics," and then, QNMs are calculated.

$$\mathcal{L} = \frac{R}{16\pi G} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$$

 However, some effects beyond the above "standard framework" can actually appear, for example, from quantum electrodynamics.

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}(i\partial \!\!\!/ - m_e)\psi + e\bar{\psi}\gamma^{\mu}A_{\mu}\psi$$

$$\downarrow \text{Low energy}$$

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{2\alpha^2}{45m_e^4}\left(4\mathcal{F}^2 + 7\mathcal{G}^2\right)$$

$$\mathcal{F} \coloneqq \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$\mathcal{G} \coloneqq \frac{1}{8}\epsilon_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma}$$
[Heisenberg, Euler (1936)]

Quasinormal modes of black holes in nonlinear electrodynamics

ς

Charged BHs and Nonlinear Electrodynamics

 More generally, the effects beyond Maxwell electrodynamics can be summarized in a framework of nonlinear electrodynamics.

• For charged BHs, the effects of nonlinear electrodynamics, $\alpha \mathcal{F}^2 + \beta \mathcal{G}^2$, can appear in QNMs.

Purpose of our work

• Calculate QNMs of charged BHs in nonlinear electrodynamics.

Contents

1. Introduction

- Quasinormal modes of black holes
- Nonlinear electrodynamics

2. Black holes in nonlinear electrodynamics

- Black hole solutions
- Perturbations of black holes

3. Quasinormal modes of black holes in nonlinear electrodynamics

- Definition
- Calculation results
- 4. Summary

Black Hole Solutions

• GR + nonlinear electrodynamics

$$\mathcal{L} = \frac{R}{16\pi G} - \mathcal{F} + \alpha \mathcal{F}^2 + \beta \mathcal{G}^2$$

parameters with dim.-4

$$\mathcal{F} \coloneqq \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$
$$\mathcal{G} \coloneqq \frac{1}{8} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

- Spherically sym. BH with a magnetic charge
 - Spherically sym. magnetic field: $F = q \sin \theta d\theta \wedge d\phi$

- charge of the BH

$$\begin{array}{l} \text{Metric: } ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2) \\ \text{mass of the BH-} \\ \text{with } f(r) = 1 - \frac{2GM}{r} + \frac{Q^2}{r^2} - \frac{\bar{\alpha}Q^2(GM)^4}{10r^6} \,, \quad Q^2 \coloneqq 4\pi Gq^2 \end{array}$$

• Dimensionless parameters: $\bar{\alpha} \coloneqq \frac{\alpha q^2}{(GM)^4}, \ \bar{\beta} \coloneqq \frac{\beta q^2}{(GM)^4}$

Black Hole Solutions

• GR + nonlinear electrodynamics

$$\mathcal{L} = \frac{R}{16\pi G} - \mathcal{F} + \alpha \mathcal{F}^2 + \beta \mathcal{G}^2$$

parameters with dim.-4

$$\mathcal{F} \coloneqq \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$
$$\mathcal{G} \coloneqq \frac{1}{8} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

- Spherically sym. BH with a magnetic charge
 - Spherically sym. magnetic field: $F = q \sin \theta d\theta \wedge d\phi$

- charge of the BH

- Metric:
$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

 $\frac{\alpha \mathcal{F}^2}{\mathcal{F}} \sim \bar{\alpha} \rightarrow \text{When } \bar{\alpha}, \bar{\beta} \ll 1$, our "effective" framework is valid.

• Dimensionless parameters: $\bar{\alpha} \coloneqq \frac{\alpha q^2}{(GM)^4}, \ \bar{\beta} \coloneqq \frac{\beta q^2}{(GM)^4}$

Quasinormal modes of black holes in nonlinear electrodynamics

Black Hole Solutions

• GR + nonlinear electrodynamics

- Spherically sym. BH with a magnetic charge
 - Spherically sym. magnetic field: $F = q \sin \theta d\theta \wedge d\phi$

- charge of the BH

- Metric:
$$ds^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

 $\frac{\alpha \mathcal{F}^2}{\mathcal{F}} \sim \bar{\alpha} \rightarrow \text{When } \bar{\alpha}, \bar{\beta} \ll 1$, our "effective" framework is valid.

• Dimensionless parameters: $\bar{\alpha} \coloneqq \frac{\alpha q^2}{(GM)^4}, \ \bar{\beta} \coloneqq \frac{\beta q^2}{(GM)^4}$

Quasinormal modes of black holes in nonlinear electrodynamics

Perturbations of BHs

 Perturbations of the metric/elemag field on BHs propagate as gravitational/elemag waves.

1. Add perturbations
spherically sym. background
metric:
$$g_{\mu\nu} = \bar{g}_{\mu\nu} + \delta g_{\mu\nu}$$
 elemag field: $F_{\mu\nu} = \bar{F}_{\mu\nu} + \delta F_{\mu\nu}$
perturbation
2. Expand on tensor spherical harmonics $[Y_{lm}^a]_{\mu\nu}(\theta, \phi)$
 $\delta g_{\mu\nu}(t, r, \theta, \phi) = \sum \sum \delta g^a(l, m; t, r) [Y_{lm}^a]_{\mu\nu}(\theta, \phi)$

$$\delta F_{\mu\nu}(t,r,\theta,\phi) = \sum_{a} \sum_{l,m} \delta F^{a}(l,m;t,r) [Y_{lm}^{a}]_{\mu\nu}(\theta,\phi)$$

$$-\text{metric perturbation}$$

3. EoMs of perturbations

metric perturbation (in terms of δq^a)

$$\begin{pmatrix} -\frac{d^2}{dt^2} + \frac{d^2}{dr^{*2}} - fV_{I/II}(r) \end{pmatrix} \begin{pmatrix} \mathcal{R}_{I/II}(l,m;t,r) \\ \mathcal{E}_{I/II}(l,m;t,r) \end{pmatrix} = r^*: \text{ tortoise coordinate} \\ 2x2 \text{ matrix} \end{pmatrix} = \frac{1}{2x2 \text{ matrix}} \quad \text{(in terms of } \delta F^a)$$

Quasinormal modes of black holes in nonlinear electrodynamics

Perturbations of BHs

 Perturbations of the metric/elemag field on BHs propagate as gravitational/elemag waves.

Quasinormal modes of black holes in nonlinear electrodynamics

Contents

1. Introduction

- Quasinormal modes of black holes
- Nonlinear electrodynamics

2. Black holes in nonlinear electrodynamics

- Black hole solutions
- Perturbations of black holes
- 3. Quasinormal modes of black holes in nonlinear electrodynamics
 - Definition
 - Calculation results
- 4. Summary

Quasinormal Modes – Definition

• EoMs of metric/elemag perturbations (Fourier transformed: $\partial_t \rightarrow -i\omega$)

- Eigenfrequencies, ω 's, form a discrete spectrum.
- ω 's are complex \rightarrow damping oscillations

•

Quasinormal modes of black holes in nonlinear electrodynamics

Quasinormal modes of black holes in nonlinear electrodynamics

Summary

Calculate QNMs of charged BHs in GR + nonlinear electrodynamics.

$$\mathcal{L} = \frac{R}{16\pi G} - \mathcal{F} + \alpha \mathcal{F}^2 + \beta \mathcal{G}^2$$

$$\mathcal{F} \coloneqq \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$
$$\mathcal{G} \coloneqq \frac{1}{8} \epsilon_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

- Metric & electromagnetic perturbations become coupled, unlike Maxwell (i.e., linear) electrodynamics.
- Nonlinear electrodynamics (nonzero α or β) violates isospectrality.
- a > 0, $\beta > 0$ (such as QED correction) act to reduce the oscillation frequency and enhance the damping rate.
 - QED's prediction in strong gravity
 - GW is modified regardless of whether the charge is the electromagnetic charge in the Standard Model sector or a possible charge in a dark sector.

→ GW as a tool to probe a dark sector

Backup

Charged BHs

No observations so far.

However, the possibility of existence has been discussed.

- Electric BH: leading to a balance of gravitational+electric potential for electrons and protons [Zajaček, Tursunov (2019)]
- Magnetic BH: production in the early universe(?) [Maldacena (2020)]

Perturbations of BHs

• V_I & V_{II} : "effective potentials"

$$V_{\rm I} = \begin{pmatrix} V_{\rm I,11} & V_{\rm I,12} \\ V_{\rm I,21} & V_{\rm I,22} \end{pmatrix} \left\{ \begin{array}{c} V_{\rm I,11} = \frac{l(l+1)+3(f-1)}{r^2} + \frac{Q^2}{r^4} - \frac{\bar{\alpha}Q^2(GM)^4}{2r^8}, \\ V_{\rm I,12} = V_{\rm I,21} = \frac{2\sqrt{(l+2)(l-1)Q^2[1-\bar{\alpha}(GM)^4/r^4]}}{r^3}, \\ V_{\rm I,22} = \frac{l(l+1)}{r^2} \left(1 + \frac{2\bar{\beta}(GM)^4/r^4}{1-\bar{\alpha}(GM)^4/r^4}\right)^{-1} + \cdots \right\} \\ V_{\rm II} = \begin{pmatrix} V_{\rm II,11} & V_{\rm II,12} \\ V_{\rm II,21} & V_{\rm II,22} \end{pmatrix} \\ \begin{cases} V_{\rm II,11} = -\frac{1}{r^2} \left(f + l(l+1) - 3 + \frac{Q^2}{r^2} - \frac{\bar{\alpha}Q^2(GM)^4}{2r^6}\right) + \cdots, \\ V_{\rm II,21} = V_{\rm II,12} = \cdots, \\ V_{\rm II,22} = \cdots \end{cases} \end{cases}$$

- dependence on $a \& \beta \leftarrow$ effects of nonlinear electrodynamics

$$\begin{pmatrix} -\frac{d^2}{dt^2} + \frac{d^2}{dr^{*2}} - fV_{I/II}(r) \end{pmatrix} \begin{pmatrix} \mathcal{R}_{I/II}(l,m;t,r) \\ \mathcal{E}_{I/II}(l,m;t,r) \end{pmatrix} = 0$$

$$r^*: \text{ tortoise coordinate} - \text{lemag perturbation} \\ 2x2 \text{ matrix} - \text{lemag perturbation} \\ \text{(in terms of } \delta F^a) \end{pmatrix}$$

Quasinormal modes of black holes in nonlinear electrodynamics

$$\begin{split} \left(\frac{d^2}{dr^{*2}} + \omega^2 - fV_{\mathrm{I},\mathrm{II}}\right) \begin{pmatrix} \mathcal{R}_{\mathrm{I},\mathrm{II}} \\ \mathcal{E}_{\mathrm{I},\mathrm{II}} \end{pmatrix} &= 0 \\ V_{\mathrm{I},11} &= \frac{l(l+1) + 3(f-1)}{r^2} + 8\pi G\mathcal{L}, \\ V_{\mathrm{I},12} &= V_{\mathrm{I},21} = \frac{\sqrt{16\pi Gq^2 \mathcal{L}_{\mathcal{F}}(l+2)(l-1)}}{r^3}, \\ V_{\mathrm{I},22} &= \frac{l(l+1)}{r^2} \frac{1}{1 - q^2 \mathcal{L}_{\mathcal{G}\mathcal{G}}/(r^4 \mathcal{L}_{\mathcal{F}})} + \frac{16\pi Gq^2 \mathcal{L}_{\mathcal{F}}}{r^4} \\ V_{\mathrm{II},11} &= \frac{\zeta(r)}{r^2} - \frac{2(2\lambda - f+1)}{r^2} + \frac{8\lambda(\lambda - f+1)}{r^2\zeta(r)} + \frac{8\lambda^2 f}{r^2\zeta^2(r)} + \frac{64\pi Gfq^2\lambda\mathcal{L}_{\mathcal{F}}}{r^4\zeta^2(r)}, \\ V_{\mathrm{II},12} &= V_{\mathrm{II},21} = \sqrt{32\pi Gq^2\lambda\mathcal{L}_{\mathcal{F}}} \left[-\frac{1}{r^3} \left(1 - \frac{2(2\lambda - f+2)}{\zeta(r)} - \frac{4\lambda f}{\zeta^2(r)} \right) + \frac{32\pi Gfq^2\mathcal{L}_{\mathcal{F}}}{r^5\zeta^2(r)} + \frac{2fq^2\mathcal{L}_{\mathcal{F}\mathcal{F}}}{r^7\zeta(r)\mathcal{L}_{\mathcal{F}}} \right], \\ V_{\mathrm{II},22} &= \frac{2(\lambda + 1)}{r^2} - \frac{16\pi Gq^2\mathcal{L}_{\mathcal{F}}}{r^4} \left(1 - \frac{4(\lambda + 1)}{\zeta(r)} - \frac{4\lambda f}{\zeta^2(r)} \right) + \frac{512\pi^2 G^2 fq^4\mathcal{L}_{\mathcal{F}}^2}{r^6\zeta^2(r)} \\ &- \frac{q^2\mathcal{L}_{\mathcal{F}\mathcal{F}}}{r^6\mathcal{L}_{\mathcal{F}}} \left[\zeta(r) - 3f - 4(\lambda + 1) \right] + \frac{64\pi Gfq^4\mathcal{L}_{\mathcal{F}\mathcal{F}}}{r^8\zeta(r)} + \frac{2fq^4\mathcal{L}_{\mathcal{F}\mathcal{F}}}{r^{10}\mathcal{L}_{\mathcal{F}}} - \frac{fq^4\mathcal{L}_{\mathcal{F}\mathcal{F}}^2}{r^{10}\mathcal{L}_{\mathcal{F}}}, \\ \lambda &:= \frac{1}{2}(l+2)(l-1), \\ \zeta(r) &:= -3f + 2\lambda + 3 - 8\pi Gr^2\mathcal{L}. \end{split}$$

$$\begin{split} \left(\frac{d^2}{dr^{*2}} + \omega^2 - fV_{\mathrm{I},\mathrm{II}}\right) \begin{pmatrix} \mathcal{R}_{\mathrm{I},\mathrm{II}} \\ \mathcal{E}_{\mathrm{I},\mathrm{II}} \end{pmatrix} &= 0 \\ V_{\mathrm{I},11} &= \frac{l(l+1) + 3(f-1)}{r^2} + \frac{Q^2}{r^4} - \frac{\bar{\alpha}Q^2(GM)^4}{2r^8}, &\lambda := \frac{1}{2}(l+2)(l-1), \\ \zeta(r) &= -3f + 2\lambda + 3 - \frac{Q^2}{r^2} + \frac{\bar{\alpha}Q^2(GM)^4}{2r^6}, \\ V_{\mathrm{I},12} &= V_{\mathrm{I},21} = \frac{2\sqrt{(l+2)(l-1)Q^2[1 - \bar{\alpha}(GM)^4/r^4]}}{r^3}, \\ V_{\mathrm{I},22} &= \frac{l(l+1)}{r^2} \left(1 + \frac{2\bar{\beta}(GM)^4/r^4}{1 - \bar{\alpha}(GM)^4/r^4}\right)^{-1} + \frac{4Q^2}{r^4} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right) \\ &+ \frac{2\bar{\alpha}(GM)^4}{r^6} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right)^{-1} \left(6f - 1 + \frac{Q^2}{r^2} - \frac{\bar{\alpha}Q^2(GM)^4}{2r^6}\right) + \frac{12\bar{\alpha}^2 f(GM)^8}{r^{10}} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right)^{-2}, \end{split}$$

$$V_{\mathrm{II},11} = \frac{\zeta(r)}{r^2} - \frac{2(2\lambda - f + 1)}{r^2} + \frac{8\lambda(\lambda - f + 1)}{r^2\zeta(r)} + \frac{8\lambda^2 f}{r^2\zeta^2(r)} + \frac{16\lambda f Q^2}{r^4\zeta^2(r)} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right),$$

$$\begin{split} V_{\mathrm{II},12} &= V_{\mathrm{II},21} = \sqrt{8\lambda Q^2 \left[1 - \frac{\bar{\alpha}(GM)^4}{r^4} \right]} \left\{ -\frac{1}{r^3} \left(1 - \frac{2(2\lambda - f + 2)}{\zeta(r)} - \frac{4\lambda f}{\zeta^2(r)} \right) + \frac{8fQ^2}{r^5 \zeta^2(r)} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4} \right) - \frac{4\bar{\alpha}f(GM)^4}{r^7 \zeta(r)} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4} \right)^{-1} \right\}, \end{split}$$

$$\begin{split} V_{\mathrm{II},22} &= \frac{2(\lambda+1)}{r^2} - \frac{4Q^2}{r^4} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right) \left(1 - \frac{4(\lambda+1)}{\zeta(r)} - \frac{4\lambda f}{\zeta^2(r)}\right) + \frac{32fQ^4}{r^6\zeta^2(r)} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right)^2 \\ &+ \frac{2\bar{\alpha}(GM)^4(\zeta(r) - 3f - 4(\lambda+1))}{r^6} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right)^{-1} - \frac{32\bar{\alpha}fQ^2(GM)^4}{r^8\zeta(r)} - \frac{4\bar{\alpha}^2f(GM)^8}{r^{10}} \left(1 - \frac{\bar{\alpha}(GM)^4}{r^4}\right)^{-2}, \end{split}$$

Quasinormal modes of black holes in nonlinear electrodynamics

Kimihiro Nomura (Kobe Univ.)

29

Effective potentials

QNM Calculation Method 1

$$\begin{pmatrix} \frac{d^2}{dr^{*2}} + \omega^2 - fV \\ \frac{2 \times 2 \text{ matrix}}{2 \times 2 \text{ matrix}} \end{pmatrix} \psi = 0$$

Method 1. Numerical integration: based on [Chaverra, Degollado, Moreno, Sarbach (2016)]

- Idea: we can construct 2x2 matrix-valued solutions satisfying boundary conditions as

Outgoing at infinity:
$$\psi_{+\infty}(\omega, r) = e^{+i\omega r^*} \lim_{N \to \infty} ((T_{+\infty,\omega})^N \mathbf{1})(r)$$

operator on 2x2 matrices
 $(T_{+\infty,\omega}\xi)(r) = \mathbf{1} - \frac{1}{2i\omega} \int dr' \left[1 - \exp\left(2i\omega \int_r^{r'} \frac{dr''}{f(r'')}\right)\right] V(r')\xi(r')$

Ingoing at the horizon:
$$\psi_{-\infty}(\omega, r) = e^{-i\omega r^*} \lim_{N \to \infty} ((T_{-\infty,\omega})^N \mathbf{1})(r)$$

operator on 2x2 matrices
 $(T_{-\infty,\omega}\xi)(r) = \mathbf{1} + \frac{1}{2i\omega} \int dr' \left[1 - \exp\left(-2i\omega \int_r^{r'} \frac{dr''}{f(r'')}\right)\right] V(r')\xi(r')$

To find eigenfrequencies (QNMs), we seek ω such that $\psi_{+\infty} \& \psi_{-\infty}$ are matched. (= zeros of the Wronskian of $\psi_{+\infty} \& \psi_{-\infty}$)

QNM Calculation Method 2

$$\begin{pmatrix} \frac{d^2}{dr^{*2}} + \omega^2 - fV \\ \frac{dr^{*2}}{2x2 \text{ matrix}} \end{pmatrix} \vec{\psi} = 0$$

Method 2. Continued fractions method: originally [Leaver (1985)]; matrix-valued version [Pani (2013)] etc.

- Idea: series ansatz suited for boundary conditions

$$\psi = \left(\frac{r}{2GM}\right)^{2GMi\omega} e^{i\omega r} [(r - r_{\rm h})/r]^{-i\omega/f'(r_{\rm h})} \sum_{n=0}^{\infty} \left(\frac{a_n^{(1)}[(r - r_{\rm h})/r]^n}{a_n^{(2)}[(r - r_{\rm h})/r]^n}\right)$$

Inserting this ansatz into EoMs, we get recurrence relations for series coefficients $\begin{pmatrix}a_n^{(1)}\\a_n^{(2)}\end{pmatrix}$.

By requiring that nontrivial $\vec{\psi}$ s exist, we can find eigenfrequencies (QNMs) semi-analytically.

- For simplicity, we take linear approximations in EFT parameters, $a \& \beta$.

• Parametrize as $\omega = \omega_{\rm RN} + \bar{\alpha}\kappa_{\alpha} + \bar{\beta}\kappa_{\beta}$.

-correction coefficients

Find $\kappa_{\alpha}, \kappa_{\beta}$ by fitting the calculation results.

1 - 2	QNM 1					QNM 2				
		type I		type II			type I		type II	
Q/GM	$\omega_{\rm RN} GM$	$\kappa_{\alpha}GM$	$\kappa_{\beta}GM$	$\kappa_{\alpha}GM$	$\kappa_{\beta}GM$	$\omega_{\rm RN}GM$	$\kappa_{\alpha}GM$	$\kappa_{\beta}GM$	$\kappa_{\alpha}GM$	$\kappa_{\beta}GM$
0	-0.45760	_	_	_	_	-0.37367	_	_	_	_
	-0.09500i	_	_	_	_	-0.08896i	_	—	_	_
0.2	-0.46297	-0.00068	0.00660	0.00735	0	-0.37474	-0.00003	0.00011	0.00012	0
	-0.09537i	-0.00060i	-0.00058i	-0.00001i	+0i	-0.08907i	-0.00001i	-0.00003i	-0.00001i	+0i
0.4	-0.47993	-0.00061	0.00727	0.00819	0	-0.37844	-0.00012	0.00043	0.00046	0
	-0.09644i	-0.00068i	-0.00061i	-0.00010i	+0i	-0.08940i	-0.00003i	-0.00014i	-0.00003i	+0i
0.6	-0.51201	-0.00041	0.00896	0.01032	0	-0.38622	-0.00030	0.00101	0.00111	0
	-0.09802i	-0.00091i	-0.00073i	-0.00035i	+0i	-0.08981i	-0.00008i	-0.00039i	-0.00014i	+0i
0.8	-0.57013	0.00036	0.01363	0.01637	0	-0.40122	-0.00072	0.00220	0.00249	0
	-0.09907i	-0.00168i	-0.00119i	-0.00135i	+0i	-0.08964i	-0.00019i	-0.00113i	-0.00061i	+0i
0.9	-0.61940	0.00180	0.01980	0.02469	0	-0.41357	-0.00130	0.00340	0.00391	0
	-0.09758i	-0.00314i	-0.00208i	-0.00349i	+0i	-0.08833i	-0.00032i	-0.00226i	-0.00156i	+0i

Black holes without singularity