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1 Introduction

The flavour problem, the problem of the origin of families and of fermion masses and mixing
angles, has been a longstanding unanswered question facing the Standard Model, and remains
a powerful motivation for going beyond it [1]. The recent progress in neutrino physics in fact
demands new physics beyond the Standard Model, and implies that any solution to the flavour
problem must also include (almost) maximal atmospheric neutrino mixing, and large mixing
angle (LMA) MSW solar neutrino mixing [2]. Such a spectrum can be readily reproduced from
the see-saw mechanism in a very natural way using right-handed neutrino dominance [3], but
the necessary conditions required for this mechanism to work can only be understood in terms
of beyond Standard Model physics. On the other hand, these conditions provide powerful clues
to the nature of the new physics, which may help to unlock the whole mystery of flavour.

It is clear that any hope of a understanding the flavour problem from present data is only
going to be possible if the Yukawa matrices exhibit a high degree of symmetry. A recent phe-
nomenological analysis shows that an excellent fit to all quark data is given by the approximately
symmetric form of quark Yukawa matrices [4]

Y u ∝







0 ε3 O(ε3)
. ε2 O(ε2)
. . 1





 , Y d ∝







0 1.5ε̄3 0.4ε̄3

. ε̄2 1.3ε̄2

. . 1





 (1)

where the expansion parameters ε and ε̄ are given by

ε ≈ 0.05, ε̄ ≈ 0.15. (2)

In [5] we showed how Yukawa matrices with the structure of Eq.1, could originate from an
SU(3) family symmetry. 1 The SU(3) family symmetry constrains the leading order terms
to have equal coefficients [5]. We also showed that, due to the see-saw mechanism [7], the
neutrino Yukawa matrix Y ν could have a similar form to Y u in Eq.1, providing that the heavy
Majorana matrix MRR has a strongly hierarchical form. In the explicit model presented [5] a
new expansion parameter was invoked to describe the right-handed neutrino sector. The first
right-handed neutrino was arranged to be light enough to be the dominant one, and the second
one the leading subdominant one, corresponding to sequential dominance [3]. This implies that
the atmospheric neutrino mixing angle is given by tan θ23 ≈ Y ν

21/Y
ν
31, where this ratio is equal

to unity at leading order due to the SU(3) symmetry. Similarly the solar neutrino angle is then
given by tan θ12 ≈

√
2Y ν

12/(Y
ν
22 − Y ν

32), where the leading order terms in the denominator cancel
due to the SU(3) symmetry. We further proposed that the charged lepton Yukawa matrix Y e

has a similar form to Y d in Eq.1, apart from a Georgi-Jarlskog factor of 3 premultiplying the ε̄2

terms [8].
Although the above SU(3) family symmetry model is in many ways very attractive, the model

presented in [5] has one major shortcoming: the proposed form of neutrino Yukawa matrix Y ν

implies that LMA MSW solar solution cannot be reproduced. In this paper we shall construct a
modified version in which the LMA MSW solution is natural. The difficulty in obtaining a large
solar angle was due to the fact that Y ν

(22,32) ∼ ε2 are larger than Y ν
12 ∼ ε3. In [9] it was shown

that if a Grand Unified theory (GUT) such as SO(10) [10] is used to obtain the Georgi-Jarlskog
1For reviews of SU(3) family symmetry with original references see for example [6].
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Note (1,1) texture zero and symmetric matrices

 leading to the successful GST relation

In this the parameters of the up quark mass matrix are given by ε = 0.05, b′ ! eiφ, where in the
phase convention used here φ ≈ 900 is the ‘standard’ (i.e.PDG convention) CP violating phase δ
[7] while a′ and c′ are very weakly constrained. The parameters of the down quark mass matrix
are much better determined with

ε̄ = 0.15± 0.01 b = 1.5± 0.1 a = 1.31± 0.14

|c| = 0.4± 0.05 ψ ≡ Arg(c) = −240 ± 30 or

|c| = 1.28±0.05 ψ = 600 ± 50 (4)

In both Mu and Md the entries marked with a question mark are only weakly constrained. In
what follows we shall consider the case that the mass matrices are symmetric or antisymmetric
or some combination of the two so that the elements below the diagonal are also determined.
This is in the spirit of looking for the maximal symmetry consistent with the masses and is
motivated by certain GUTs, notably SO(10). There is one strong piece of experimental evidence
for such a symmetric structure, namely the success of the Gatto, Sartori, Tonin relation [8]
between the Cabibbo angle and the quark masses of the first two generations

Vus =

√

md

ms

−
√

mu

mc

eiσ (5)

where σ is the CP violating phase entering the Jarlskog invariant [7, 9]. This relation only applies
if the (1, 2) and (2, 1) matrix elements are equal in magnitude. The solution of eqs(2) and (3)
has this structure. Of course there is no direct indication that the same reflection symmetry
applies to the remaining matrix elements but it is the most natural generalisation of this result.
In any case, as stressed above, we think it of interest to ask whether the most symmetric form
for the quark mass matrices can be simply related to viable forms for the lepton mass matrices.

3 Quark family and flavour symmetries

In this Section we will discuss whether the quark mass matrices are consistent with a larger
set of symmetries than those of the Standard Model3. These may be flavour symmetries acting
in the same way on each of the three families; for example simple Grand Unified theories are
flavour symmetries. Alternatively they may also be family symmetries distinguishing between
families. In our opinion the structure of the quark mass matrices strongly suggests an underlying
(spontaneously) broken family symmetry. In such a scheme, in leading order, only the (3, 3)
elements are allowed. In terms of the parameter, ε, characterising the symmetry breaking
the remaining matrix elements are filled in at some order εn which is also determined by the
symmetry, thus generating the hierarchical structure of fermion masses.

The candidate family symmetry group, namely those symmetries which commutes with the
gauge interactions of the Standard Model, is quite large. For the quarks it is U(3)3, corresponding
to a separate U(3) factor for the left-handed doublets and each of the right-handed SU(2) singlet
fields respectively. To generate quark mass matrices with a left- right- symmetry we restrict the

3Here we shall only consider supersymmetric theories.
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The leading operators allowed by the symmetries are

PYuk ∼
1

M2
ψiφ

i
3ψ

c
jφ

j
3H (7)

+
Σ

M3
ψiφ

i
23ψ

c
jφ

j
23H (8)

+
1

M5

(

(εijkψc
iφ23jφ3,k)(ψlφ

l
23) + (εijkψiφ23jφ3,k)(ψ

c
l φ

l
23)
)

H(φm
23φ3,m) (9)

+
1

M5
(εijkψc

iφ23jψk)H(φl
23φ3,l)

2 +
1

M5
(εijkψc

iφ3jψk)H(φl
23φ23,l)(φ

m
23φ3,m) (10)

+
1

M4

(

ψiφ
i
23ψ

c
jφ

j
3 + ψiφ

i
3ψ

c
jφ

j
23

)

H.S (11)

PMaj ∼
1

M
ψc
i θ

iθjψc
j (12)

+
1

M11
ψc
iφ

i
23ψ

c
jφ

j
23(θ

kφ23,k)(θ
lφ3,l)(φ3φ23)

3 (13)

+
1

M13
(εijkψc

iφ23,jφ3,k)
2(θkφ23,k)(θ

lφ3,l)(φ3φ23)(φ23φ3)
2 (14)

where, as discussed below, the operator mass scales, generically denoted by M may differ and
we have suppressed couplings of O(1). The field S is involved in symmetry breaking as discussed
in Section 4. Its quantum numbers are given in Table 2. It acquires a vev of O(φ23φ23).

3.2 Messengers and the (2, 3) Yukawa block

The leading Yukawa operators which contribute to the (2, 3) block of the Yukawa matrices are
given in Eqs.7 and 8. These operators arise from Froggat-Nielsen diagrams similar to Figure
1, but generalized to include insertions of the φ3,φ23 fields. M represents the right-handed up
and down messenger mass scales Mu,d, corresponding to the dominance of diagram (b), which
applies if M < ML where ML represents the left-handed messenger mass scale. We shall not
specify the messenger sector explicitly, but characterize it by the messenger mass scales

Md ≈
1

3
Mu # ML. (15)

Such a universal structure is to be expected in theories with Wilson line breaking in which
the breaking is due to the (4D) scalar component of a higher dimension gauge field because it
couples universally to fields in the same representation of gauge group factors left unbroken by
the Wilson line. The Wilson line breaking is associated with the compactification and so the
splitting induced is naturally of order the compactification scale. Thus, if Wilson line breaking is
responsible for breaking SU(2)R, the messenger states (Kaluza-Klein modes or vectorlike states
obtaining mass on compactification) must have masses of order the compactification scale.

Given that SU(4)PS remains after compactification, its subsequent breaking will be a small
effect so that the right-handed lepton messenger masses are Mν $ Mu, and Me $ Md. The
splitting of the messenger mass scales relies on left-right and SU(2)R breaking effects which we
shall assume to be due to the Wilson line symmetry breaking mechanism. Eq.15 implies that
diagrams of type (b) in Figure 1 dominate, and the expansion parameters associated with φ23

7

Field SU(3) SU(4)PS SU(2)L SU(2)R R Z2 U(1) Z5 Z3 Z′
2

ψ 3 4 2 1 1 + 0 0 0 +
ψc 3 4 1 2 1 + 0 0 0 +
θ 3 4 1 2 0 + 0 0 0 +
θ 3 4 1 2 0 + −6 −1 0 +
H 1 1 2 2 0 + 8 −2 −1 +
Σ 1 15 1 3 0 + 2 2 −1 +
φ3 3 1 1 3⊕ 1 0 − −4 1 −1 +
φ23 3 1 1 1 0 + −5 0 1 −
φ3 3 1 1 3⊕ 1 0 − −2 −2 1 +
φ23 3 1 1 1 0 + 6 1 0 +
φ2 3 1 1 3⊕ 1 0 − 5 0 −1 −

Table 1: Transformation of the superfields under the SU(3) family, Pati-Salam and R×Z2 ×U(1) symmetries

which restrict the form of the mass matrices for three representative examples. The continuous R-symmetry

may be alternatively be replaced by a discrete Z2R symmetry. Also shown in the last three columns is the

transformation under a Z5 × Z3 × Z ′

2 subgroup of the U(1) which is sufficient to ensure a phenomenologically

viable pattern of couplings. We only display the fields relevant for generating fermion mass and spontaneous

symmetry breaking.

to an acceptable heavy Majorana matrix MRR.

The explicit bottom-up models we shall construct are based on SU(3) family symmetry
commuting with Pati-Salam symmetry, SU(3)×GPS. The transformation properties of the left-
handed quarks and leptons ψi, the left-handed charge conjugates of the right-handed quarks and
leptons ψc

i , the Higgs doublets H and the Σ field under the gauge group SU(3)×GPS are given
in Table 1. Assuming the Pati-Salam symmetry to start with has the advantage that it explicitly
exhibits SU(4)PS quark-lepton and SU(2)R isospin symmetry, allowing Georgi-Jarlskog factors
to be generated and isospin breaking to be controlled, while avoiding the Higgs doublet-triplet
splitting problem [12]. The SU(4)PS symmetry also provides a welcome restriction of the mes-
senger masses, providing a link between the up-quarks and neutrinos. The fields θ and θ carry
lepton number 1 and −1 respectively. They acquire vevs and break lepton number giving rise
to the Majorana masses for the neutrino components of ψc.

The adjoint Σ field develops vevs in the SU(4)PS × SU(2)R direction which preserves the
hypercharge generator Y = T3R+(B−L)/2, and implies that any coupling of the Σ to a fermion
and a messenger such as Σaα

bβψ
c
aαχ

bβ , where the SU(2)R and SU(4)PS indices have been displayed
explicitly, is proportional to the hypercharge Y of the particular fermion component of ψc times
the vev σ.

To build a viable model we also need spontaneous breaking of the family symmetry

SU(3) −→ SU(2) −→ Nothing (3)

To achieve this symmetry breaking we introduce additional Higgs fields φ3, φ3, φ23 and φ23 in
the representations given in Table 1. The largeness of the third family fermion masses implies
that SU(3) must be strongly broken by new Higgs antitriplet fields φ3 which develop a vev in
the third SU(3) component < φ3 >T= (0, 0, a3) as in [5]. However, for reasons discussed later,
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Alignment and Yukawa matriceswe assume that φi
3 transforms under SU(2)R as 3⊕ 1 rather than being SU(2)R singlets as we

assumed in [5], and develops vevs in the SU(3)× SU(2)R directions

< φ3 >=< φ3 >=







0
0
1






⊗
(

au3 0
0 ad3

)

. (4)

The symmetry breaking also involves the SU(3) antitriplets φ23 which develop vevs [5]

< φ23 >=







0
1
eiθ





 b, (5)

where, as in [5], vacuum alignment ensures that the vevs are aligned in the 23 direction. Due
to D-flatness there must also be accompanying Higgs triplets such as φ23 which develop vevs [5]

< φ23 >=







0
1

e−iθ





 beiφ. (6)

In Section 4 we will show how this pattern can be achieved through the introduction of the
additional triplet field φ2 given in Table 1. With the spectrum shown in this Table there are
residual SU(3) and U(1) anomalies but no mixed anomalies involving the Standard Model gauge
group. These anomalies can be cancelled by the addition of Standard Model singlet fields all of
which can acquire a mass at the scale of breaking of SU(3). We do not list these fields here as
they play no role in the low energy theory but note that in a more unified model such anomaly
cancellation can happen in an elegant manner [14].

3 A Realistic Model

3.1 Operators and Additional Symmetries

In building a phenomenologically viable scheme it is necessary to constrain the allowed Yukawa
couplings through additional symmetries. There is considerable freedom in implementing such
symmetries, the resultant models differing in their detailed phenomenology. In this paper we
present a simple example in which the SU(3) family symmetry is augmented by a Z2 × U(1)
gauge symmetry. It will ensure that the quark and lepton Dirac masses have an acceptable form
and also order the Majorana mass matrix of the right handed neutrinos so that the see-saw
mechanism gives to large mixing angles. The assignment of the Z2 × U(1) charges is shown in
Table 1. The symmetries of the model are completed through the addition of an R-symmetry
(or a discrete version of it Z2R).

In practice it is not necessary that the full U(1) symmetry be present and a discrete subgroup
can be sufficient to limit the allowed Yukawa couplings. For example, the discrete group Z5 ×
Z3 × Z ′

2 with charges given in Table 1 gives the same leading operators discussed in the next
Section and hence approximately the same mass matrices. Note that the charges under the
discrete symmetry look simpler than those for the U(1) showing that is not necessary to have
an exotic choice of charges to achieve a realistic model.
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the right-handed neutrino which is zero. This leads to the desired suppression of these elements
of Y ν . To characterise this suppression we define the expansion parameter in the left-handed
neutrino sector

σY (νL)

ML
≡ −αε̄. (22)

Then the 22, 23 ,32 elements of Y ν are of order αε2, once the overall factor of ε̄ has been factored
out,

Y ν ≈
(

ε2(−α) ε2(−α)
ε2(−α) 1

)

ε̄. (23)

3.3 The complete Yukawa Matrices

The leading elements in the 12, 13, 21, 31 positions contain contributions from two different
leading order operators, namely those in Eqs. 9 and 10. These contributions depend on the
vevs of φ23 in Eq.5 and φ23 in Eq.6 with the 12, 13 contributions being of order ε3 in the up
and neutrino sector, and ε̄3 in the down and charged lepton sector, each multiplied by an overall
factor of ε̄. However, due to the antisymmetric SU(3) invariant, the relative coupling of the (1, 2)
and (1, 3) elements have opposite signs. Note that in a full SO(10) theory the operators in Eq.10
are forbidden due to antisymmetry since ψ and ψc are unified into a single 16 representation.
However, since SO(10) breaking effects are required in any case, we must allow for the presence
of such operators. The sum of the contributions gives a factor g + h + h′ in the 12 entry and
g − h in the 13 entries of Y d, Y e, a factor g + h/3 + h′/3 in the 12 entry and g − h/3 in the 13
entries of Y u, Y ν , where we allow for the fact that the SO(10) symmetry breaking effects which
are responsible for the existence of the second term are controlled by the same messenger masses
Mu,Md as in Eq.15. The corresponding operators in the 21,31 positions have an independent
coefficient g′ due to the contribution from the two operators in Eq. 9.

The operators in Eq.11 give an important sub-leading contribution to the 23,32 elements of
the Yukawa matrices. This, together with the structure discussed above, and allowing for the
corrections due to wavefunction insertions of the invariant operator φ3φ

†
3/M

2 ∼ ε̄ on a third
family fermion leg, gives the final form of the Yukawa matrices

Y u ≈









0 ε3(g + h
3 +

h′

3 ) ε3(g − h
3 )(1 +O(ε̄))

ε3(g′ − h
3 −

h′

3 ) ε2(−2
3) ε2(−2

3) + c′ε3ε̄−
1

2

ε3(g′ + h
3 )(1 +O(ε̄)) ε2(−2

3) + cε3ε̄−
1

2 1 +O(ε̄)









ε̄, (24)

Y d ≈







0 ε̄3(g + h + h′) ε̄3(g − h)(1 +O(ε̄))
ε̄3(g′ − h− h′) ε̄2 ε̄2 + c′ε̄

5

2

ε̄3(g′ + h)(1 +O(ε̄)) ε̄2 + cε̄
5

2 1 +O(ε̄)





 ε̄, (25)

Y e ≈







0 ε̄3(g + h + h′) ε̄3(g − h)(1 +O(ε̄))
ε̄3(g′ − h− h′) ε̄2(3) ε̄2(3) + c′ε̄

5

2

ε̄3(g′ + h)(1 +O(ε̄)) ε̄2(3) + cε̄
5

2 1 +O(ε̄)





 ε̄, (26)

Y ν ≈









0 ε3(g + h
3 +

h′

3 ) ε3(g − h
3 )(1 + O(ε̄))

ε3(g′ − h
3 −

h′

3 ) ε2(−α) ε2(−α) + c′ε3ε̄−
1

2

ε3(g′ + h
3 )(1 +O(ε̄)) ε2(−α) + cε3ε̄−

1

2 1 +O(ε̄)









ε̄. (27)
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are then generated as in [5]

ε ≡
b

Mu
, ε̄ ≡

b

Md
(16)

Unlike the previous model [5], we shall construct a model in which the φ3 vev a3 is less than
the messenger mass scale M . The reason for this is twofold. Firstly, an underlying SO(10)
leads us to consider fermion messengers, and if a3 > M this then implies an undesirably massive
third family fermion ψ3 from the coupling φ3ψ3χ̄, and a light fermion messenger χ. Secondly,
wavefunction insertions of the invariant operator φ3φ

†
3/M

2 on an third family fermion propagator
can spoil the perturbative expansion if a3 > M . Therefore we shall assume here that a3 < M . If
φ3 were a SU(2)R singlet as in [5] then Eq.15 would imply that the top quark Yukawa coupling
is much smaller than the bottom quark Yukawa coupling by a factor of 1/9. This explains why
φ3 cannot be a SU(2)R singlet. For the case that φ3 transforms as 2 × 2 under SU(2)R it may
acquire vevs au3 , a

d
3 in the up and down directions. Then with au3/M

u ≈ ad3/M
d < 1 we have

comparable top and bottom Yukawa couplings, as required. For definiteness we shall consider
the case that

au3
Mu

=
ad3
Md

=
√
ε̄. (17)

It remains to specify the expansion parameter associated with σ, the vev of Σ. For phe-
nomenological reasons we take it to be

σY (d)

Md
= ε̄ (18)

where Y (d) = 1/3 is the hypercharge of dc. From Eqs.15,18, we find

σY (u)

Mu
= −

2

3
ε̄ (19)

where Y (u) = −2/3 is the hypercharge of uc.
The operators in Eqs.7-14 with the expansion parameters in Eqs.16, 17, 18, 19, and the vevs

in Eqs.4, 5 lead to the approximate form of the quark Yukawa matrices for the (2, 3) block given
by :

Y u ≈
(

ε2(−2
3) ε2(−2

3)
ε2(−2

3) 1

)

ε̄, Y d ≈
(

ε̄2 ε̄2

ε̄2 1

)

ε̄ (20)

which is of the form in Eq.1.
The charged lepton Yukawa matrix Y e has a similar form to Y d since the charged lepton

operators are generated by messengers with the quantum numbers of ec, with the same messenger
mass scale as for dc messengers, Me = Md, due to the SU(4)PS symmetry. However due to Σ
the 22, 23, 32 elements of Y e are multiplied by the Georgi-Jarlskog factor of Y (e)/Y (d) = 3,
where Y (e) is the hypercharge of ec, giving
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(
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)

ε̄. (21)

The above results apply in the limit that the Froggatt-Nielsen diagrams are dominated by
the right-handed messengers. In this limit the neutrino Yukawa matrix Y ν has zeroes in the
22, 23, 32 positions due to the fact that these elements are proportional to the hypercharge of
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1 Introduction

The flavour problem, the problem of the origin of families and of fermion masses and mixing
angles, has been a longstanding unanswered question facing the Standard Model, and remains
a powerful motivation for going beyond it [1]. The recent progress in neutrino physics in fact
demands new physics beyond the Standard Model, and implies that any solution to the flavour
problem must also include (almost) maximal atmospheric neutrino mixing, and large mixing
angle (LMA) MSW solar neutrino mixing [2]. Such a spectrum can be readily reproduced from
the see-saw mechanism in a very natural way using right-handed neutrino dominance [3], but
the necessary conditions required for this mechanism to work can only be understood in terms
of beyond Standard Model physics. On the other hand, these conditions provide powerful clues
to the nature of the new physics, which may help to unlock the whole mystery of flavour.

It is clear that any hope of a understanding the flavour problem from present data is only
going to be possible if the Yukawa matrices exhibit a high degree of symmetry. A recent phe-
nomenological analysis shows that an excellent fit to all quark data is given by the approximately
symmetric form of quark Yukawa matrices [4]

Y u ∝







0 ε3 O(ε3)
. ε2 O(ε2)
. . 1





 , Y d ∝







0 1.5ε̄3 0.4ε̄3

. ε̄2 1.3ε̄2

. . 1





 (1)

where the expansion parameters ε and ε̄ are given by

ε ≈ 0.05, ε̄ ≈ 0.15. (2)

In [5] we showed how Yukawa matrices with the structure of Eq.1, could originate from an
SU(3) family symmetry. 1 The SU(3) family symmetry constrains the leading order terms
to have equal coefficients [5]. We also showed that, due to the see-saw mechanism [7], the
neutrino Yukawa matrix Y ν could have a similar form to Y u in Eq.1, providing that the heavy
Majorana matrix MRR has a strongly hierarchical form. In the explicit model presented [5] a
new expansion parameter was invoked to describe the right-handed neutrino sector. The first
right-handed neutrino was arranged to be light enough to be the dominant one, and the second
one the leading subdominant one, corresponding to sequential dominance [3]. This implies that
the atmospheric neutrino mixing angle is given by tan θ23 ≈ Y ν

21/Y
ν
31, where this ratio is equal

to unity at leading order due to the SU(3) symmetry. Similarly the solar neutrino angle is then
given by tan θ12 ≈

√
2Y ν

12/(Y
ν
22 − Y ν

32), where the leading order terms in the denominator cancel
due to the SU(3) symmetry. We further proposed that the charged lepton Yukawa matrix Y e

has a similar form to Y d in Eq.1, apart from a Georgi-Jarlskog factor of 3 premultiplying the ε̄2

terms [8].
Although the above SU(3) family symmetry model is in many ways very attractive, the model

presented in [5] has one major shortcoming: the proposed form of neutrino Yukawa matrix Y ν

implies that LMA MSW solar solution cannot be reproduced. In this paper we shall construct a
modified version in which the LMA MSW solution is natural. The difficulty in obtaining a large
solar angle was due to the fact that Y ν

(22,32) ∼ ε2 are larger than Y ν
12 ∼ ε3. In [9] it was shown

that if a Grand Unified theory (GUT) such as SO(10) [10] is used to obtain the Georgi-Jarlskog
1For reviews of SU(3) family symmetry with original references see for example [6].
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the right-handed neutrino which is zero. This leads to the desired suppression of these elements
of Y ν . To characterise this suppression we define the expansion parameter in the left-handed
neutrino sector

σY (νL)

ML
≡ −αε̄. (22)

Then the 22, 23 ,32 elements of Y ν are of order αε2, once the overall factor of ε̄ has been factored
out,

Y ν ≈
(

ε2(−α) ε2(−α)
ε2(−α) 1

)

ε̄. (23)

3.3 The complete Yukawa Matrices

The leading elements in the 12, 13, 21, 31 positions contain contributions from two different
leading order operators, namely those in Eqs. 9 and 10. These contributions depend on the
vevs of φ23 in Eq.5 and φ23 in Eq.6 with the 12, 13 contributions being of order ε3 in the up
and neutrino sector, and ε̄3 in the down and charged lepton sector, each multiplied by an overall
factor of ε̄. However, due to the antisymmetric SU(3) invariant, the relative coupling of the (1, 2)
and (1, 3) elements have opposite signs. Note that in a full SO(10) theory the operators in Eq.10
are forbidden due to antisymmetry since ψ and ψc are unified into a single 16 representation.
However, since SO(10) breaking effects are required in any case, we must allow for the presence
of such operators. The sum of the contributions gives a factor g + h + h′ in the 12 entry and
g − h in the 13 entries of Y d, Y e, a factor g + h/3 + h′/3 in the 12 entry and g − h/3 in the 13
entries of Y u, Y ν , where we allow for the fact that the SO(10) symmetry breaking effects which
are responsible for the existence of the second term are controlled by the same messenger masses
Mu,Md as in Eq.15. The corresponding operators in the 21,31 positions have an independent
coefficient g′ due to the contribution from the two operators in Eq. 9.

The operators in Eq.11 give an important sub-leading contribution to the 23,32 elements of
the Yukawa matrices. This, together with the structure discussed above, and allowing for the
corrections due to wavefunction insertions of the invariant operator φ3φ

†
3/M

2 ∼ ε̄ on a third
family fermion leg, gives the final form of the Yukawa matrices

Y u ≈









0 ε3(g + h
3 +

h′

3 ) ε3(g − h
3 )(1 +O(ε̄))

ε3(g′ − h
3 −

h′

3 ) ε2(−2
3) ε2(−2

3) + c′ε3ε̄−
1

2

ε3(g′ + h
3 )(1 +O(ε̄)) ε2(−2

3) + cε3ε̄−
1

2 1 +O(ε̄)









ε̄, (24)

Y d ≈







0 ε̄3(g + h + h′) ε̄3(g − h)(1 +O(ε̄))
ε̄3(g′ − h− h′) ε̄2 ε̄2 + c′ε̄

5

2

ε̄3(g′ + h)(1 +O(ε̄)) ε̄2 + cε̄
5

2 1 +O(ε̄)





 ε̄, (25)

Y e ≈







0 ε̄3(g + h + h′) ε̄3(g − h)(1 +O(ε̄))
ε̄3(g′ − h− h′) ε̄2(3) ε̄2(3) + c′ε̄

5

2

ε̄3(g′ + h)(1 +O(ε̄)) ε̄2(3) + cε̄
5

2 1 +O(ε̄)





 ε̄, (26)

Y ν ≈









0 ε3(g + h
3 +

h′

3 ) ε3(g − h
3 )(1 + O(ε̄))

ε3(g′ − h
3 −

h′

3 ) ε2(−α) ε2(−α) + c′ε3ε̄−
1

2

ε3(g′ + h
3 )(1 +O(ε̄)) ε2(−α) + cε3ε̄−

1

2 1 +O(ε̄)









ε̄. (27)
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4.2 Neutrino masses and mixing

In the type I seesaw mechanism for neutrino masses [11–14], we need to consider both
the Dirac mass matrix MD

⌫
and the heavy Majorana mass matrix MM

⌫
. We may write

Dirac mass matrix MD

⌫
in Eq.99 in a simplified notation as,

MD

⌫
⌘

0

@
0 a a0

e b b0

f c c0

1

A ⇠

0

@
0 m̄D

⌫e
m̄D

⌫e

mD

⌫e
mD

⌫µ
mD

⌫µ

mD

⌫e
mD

⌫µ
mD

⌫⌧

1

A , (114)

The heavy Majorana mass matrix, follows from Eq.20,

MM

⌫
⇠

0

@
⇠̃2 ⇠̃5 ⇠̃4

⇠̃5 ⇠̃2 ⇠̃
⇠̃4 ⇠̃ 1

1

A hH 0ihH 0i
⇤

⇠

0

@
MM

1 0 0
0 MM

2 0
0 0 MM

3

1

A (115)

where we have written ⇠̃ = h⇠̃i ⌧ 1 and dropped the small o↵-diagonal elements with,

MM

1 ⇠ MM

2 ⇠ ⇠̃2MM

3 , MM

3 ⇠ hH 0ihH 0i
⇤

(116)

Note that MM

1 and MM

2 are not expected to be degenerate due to the dimensionless
coe�cients multiplying each element of Eq. 115 which we have dropped. We shall first give
a short qualitative discussion of the neutrino mass and mixing, and the scales involved,
before constructing the physical neutrino mass matrix using the seesaw formula.

We assume that the first right-handed neutrino ⌫c

1 dominates the seesaw mechanism, as
in single right-handed neutrino dominance (SRHND) [6, 7]. Although the second right-
handed neutrino mass has a similar scale, we shall assume that it is several times larger
than the first, which is not unreasonable given that the higher dimensional operators
in Eq.115 may result from a product of several Yukawa couplings, each of which may
di↵er by a small factor. Ignoring the other right-handed neutrinos, then, we have just
a single right-handed neutrino ⌫c

1 with couplings given by the first column of the Dirac
mass matrix in Eq.114, where there is a texture zero, and the second and third elements
having similar entries due to L2 and L3 being indistinguishable under the Z6 symmetry.
Thus the dominant right-handed neutrino couples as ⌫c

1(⌫µ + ⌫⌧ ), with similar couplings
to ⌫µ and ⌫⌧ , and a zero coupling to ⌫e due to the texture zero, naturally leading to large
atmospheric neutrino mixing. After the single right-handed neutrino ⌫c

1 is integrated out
(i.e. applying the seesaw mechanism) there is only one massive neutrino ⌫3 ⇠ ⌫µ + ⌫⌧
with light Majorana mass,

m⌫3 ⇠ 2
(mD

⌫e
)2

MM

1

⇠ 0.05 eV (117)

while ⌫e and the orthogonal linear combination ⌫3 ⇠ ⌫µ�⌫⌧ remain massless. This scheme
will therefore predict a normal mass hierarchy when the other smaller neutrino masses
are included. The lightest right-handed neutrino mass may be estimated by assuming
mD

⌫e
⇠ p

mumc/3, motivated by the up quark matrix in the previous subsection, hence

MM

1 ⇠ 3⇥ 107 GeV (118)

25

The condition for the heaviest right-handed neutrino to decouple from the seesaw mech-
anism is

(mD

⌫⌧
)2

MM

3

⌧ m3 ⇠ 0.05 eV ! MM

3 ⇠ MM � 6⇥ 1014 GeV (119)

assuming that mD

⌫⌧
⇠ mt, as motivated in the previous subsection. The high value of

MM

3 ⇠ MM in Eq.119 suggests from Eq.116 that the VEV hH 0i should be close to
the conventional scale of Grand Unified Theories (GUTs), MGUT , which sets the high
symmetry breaking scale of the twin PS theory Mhigh in Eq.8. A set of possible scales is,

MM

3 ⇠ MM ⇠ 3⇥ 1015 GeV , hH 0i ⇠ MGUT ⇠ 3⇥ 1016 GeV , ⇤ ⇠ 3⇥ 1017 GeV (120)

This leads to a characteristic spectrum of right-handed neutrino masses in which the
lightest right-handed neutrino has a mass from Eq.118 of about 30 PeV, the second
one being several times heavier, while the heaviest right-handed neutrinos ⌫c

3 has masses
from Eq.120 an order of magnitude below the GUT scale. The extreme hierarchy of right-
handed neutrino masses, of order 10�8, fixes ⇠̃ ⇠ 10�4, from Eqs.116, 118 and 120. Note
that such a pattern of right-handed neutrino masses is typical of models based on family
symmetry and Pati-Salam [61,62]. Leptogenesis in this model will be highly non-standard
and deserves a separate study.

The light physical e↵ective Majorana neutrino mass matrix follows from the type I seesaw
formula [11–14],

m⌫ = MD

⌫
(MM

⌫
)�1(MD

⌫
)T (121)

In the SRHND approximation, the low energy neutrino mass matrix takes the form,

m⌫ ⇡

0

@
0 0 0
0 e2 ef
0 ef f 2

1

A 1

MM

1

(122)

with a vanishing sub-determinant and hence only one non-zero eigenvalue and a large
atmospheric neutrino mixing angle ✓23 [6–10],

m⌫3 ⇠
e2 + f 2

MM

11

, tan ✓23 ⇠
e

f
⇠ x 25

x 35
⇠ 1 (123)

where atmospheric neutrino mixing is expected to be large since it is given by a ratio of
dimensionless coe�cients of order unity.

The subdominant contribution to the seesaw mechanism comes from the second right-
handed neutrino which has a similar mass to the lightest right-handed neutrino, and
couples to the second column of the Dirac mass matrix in Eq.114. Including also the
contribution from the third right-handed neutrino, the seesaw formula Eq.121 including
all three right-handed neutrinos with Eqs.114,115 leads to the neutrino mass matrix,

m⌫ ⇡

0

@
0 0 0
0 e2 ef
0 ef f 2

1

A 1

MM

1

+

0

@
a2 ab ac
ab b2 bc
ac bc c2

1

A 1

MM

2

+

0

@
0 0 0
0 0 0
0 0 c02

1

A 1

MM

3

(124)
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contribution from the third right-handed neutrino, the seesaw formula Eq.121 including
all three right-handed neutrinos with Eqs.114,115 leads to the neutrino mass matrix,
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+
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where each of the three matrices is responsible for a particular neutrino mass, yield-
ing a normal ordered mass pattern described by Eq.123 plus the additional sequential
dominance (SD) results [6–10],

m⌫1 ⇠
c02

MM

3

, m⌫2 ⇠
a2

MM

2 s212
, tan ✓12 ⇠

p
2a

b� c
, ✓13 .

m⌫2

m⌫3

(125)

To achieve the observed solar mixing in Eq.6 we need a ⇠ (b� c)/2, where from Eqs.114,
105 and the previous assumptions,

a ⇠ m̄D

⌫e
⇠ mD

⌫e
⇠

p
mumc

3
, b ⇠ c ⇠ mD

⌫µ
⇠ h�1i�u

h�3i�u

mc (126)

which suggests that we need the pre-factor h�1i�u
h�3i�u

⌧ 1. The partial cancellation between

b and c in Eq.125 can also help to achieve the desired value of tan ✓12.

5 Conclusions

The main motivation for the present work was find a realistic model with the correct
ingredients for explaining the B anomalies, as well as providing a theory quark and lepton
(including neutrino) masses and mixings. Indeed the two endeavours have a natural
synergy, since on the one hand theories which only attempt to explain the quark and
lepton masses and mixings are far from unique and cannot be readily tested, while on the
other hand theories which only attempt to explain the B anomalies, although testable,
inevitably involve input parameters which depend on the unknown quark and lepton mass
matrices. The anomalies provide a stimulus for novel model building approaches to the
flavour problem, while upgrading the low energy phenomenological models of B physics
anomalies to include a realistic explanation of the quark and lepton masses provides
welcome constraints on the input parameters. Therefore searching for a realistic model
of quark and lepton masses and mixings, with the correct ingredients to explain the B
anomalies, in an all-encompassing theory of flavour seems to be very well justified.

In this paper we have proposed a twin PS theory of flavour broken to the G4321 gauge
group at high energies, then to the Standard Model at low energies, as in Fig. 1 and
Eq.8. The motivation for a theory of this particular kind was to yield a TeV scale
vector leptoquark Uµ

1 (3, 1, 2/3) which enables the R
K(⇤) and R

D(⇤) anomalies in B decays
to be addressed simultaneously, where the couplings of such a vector leptoquark could
be predicted by the same theory which also explains the quark and lepton masses and
mixings. In the present model we found that the twin PS theory of flavour successfully
accounts for all quark and lepton (including neutrino) masses and mixings, and predicts
a dominant coupling of Uµ

1 (3, 1, 2/3) to the third family left-handed doublets, which
generates flavour changing due to CKM-like mixing. However the predicted mass matrices
are not consistent with the single vector leptoquark solution to the B anomalies, given
the current value of R

D(⇤) .
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Model predicted ✓13 ⇠ ✏ ⇠ 0.15 way before it was measured

3.4 Heavy Majorana Masses

The leading heavy right-handed neutrino Majorana mass arises from the operator of Eq.12 where
the θ fields defined in Table 1 are further Higgs superfields whose vevs break lepton number.
It is spontaneously broken when the right-handed sneutrinos develop vevs in the third SU(3)
direction.This operator gives the Majorana mass,

M3 ≈
< θ >2

Mν
, (28)

to the third family, where Mν = Mu is the same messenger mass scale as in the up sector due
to SU(4)PS. Operators involving Σ do not contribute since it does not couple to right-handed
neutrinos which have zero hypercharge.

The operator in Eq.13 gives Majorana mass, M2 = ε6ε̄2 < θ >2 /M, to the second family,
and the operator in Eq.14 gives Majorana mass, M1 = ε6ε̄3 < θ >2 /M, to the first family, giving
the final form

MRR ≈







ε6ε̄3 0 0
0 ε6ε̄2 0
0 0 1





M3. (29)

4 Spontaneous Symmetry Breaking

The pattern of SU(3) family symmetry breaking explored here is as in Eq.3. We start with
a discussion of the first stage of breaking, SU(3) → SU(2), induced by the vevs of the φ3,φ3
Higgs. The structure of the effective potential is very sensitive to the field content as well as the
additional symmetries. In the context of the model of interest here the additional symmetry is
U(1) or some discrete subgroup of it which still maintains the structure of the leading operators
given in Eqs.7-14. To illustrate the mechanisms that can lead to a phenomenologically acceptable
pattern of symmetry breaking we consider a simple case in which that discrete subgroup of U(1)
is the Z5 × Z3 × Z ′

2 symmetry introduced in the last two columns of Table 1.
As we have discussed it is necessary for there to be a hierarchy in the vevs of the fields φ3, φ3

and φ23, φ23. One way such an hierarchy can develop is through radiative breaking in which,
due to radiative corrections, the running mass squared of a field becomes negative at some
scale, triggering a vev close to this scale. Gauge interactions increase the mass squared while
Yukawa interactions decrease it so it is likely that the field undergoing radiative breaking has
a reduced gauge symmetry. For this reason we suppose that a SO(10)× SU(3)× Z2R singlet
field S acquires a vev due to (unspecified) Yukawa interactions5. Its charge is given in Table
2. We expect the symmetry breaking will be communicated to the other fields of the theory
via heavy messenger fields. Due to the Z2R symmetry the superpotential does not contain
terms involving the φ superfields on their own. The only way the superpotential will generate
a potential for these fields is if there are additional fields carrying Z2R charge 2. Allowing for
such a SO(10)× SU(3) singlet field U carrying the Z5 charge as in Table 2 we find the relevant
superpotential term P1 given by

P1 = U((φ23φ23)
2 + S2) (30)

5It is easy to add a Yukawa interaction involving X and additional fields to drive radiative breaking. When
X acquires a vev these additional field acquire a large mass and need play no role in low energy phenomenology.
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M⌫

4.2 Neutrino masses and mixing

In the type I seesaw mechanism for neutrino masses [11–14], we need to consider both
the Dirac mass matrix MD

⌫
and the heavy Majorana mass matrix MM

⌫
. We may write

Dirac mass matrix MD

⌫
in Eq.99 in a simplified notation as,

MD

⌫
⌘

0

@
0 a a0

e b b0

f c c0

1

A ⇠

0

@
0 m̄D

⌫e
m̄D

⌫e

mD

⌫e
mD

⌫µ
mD

⌫µ

mD

⌫e
mD

⌫µ
mD

⌫⌧

1

A , (114)

The heavy Majorana mass matrix, follows from Eq.20,

MM

⌫
⇠

0

@
⇠̃2 ⇠̃5 ⇠̃4

⇠̃5 ⇠̃2 ⇠̃
⇠̃4 ⇠̃ 1

1

A hH 0ihH 0i
⇤

⇠

0

@
MM

1 0 0
0 MM

2 0
0 0 MM

3

1

A (115)

where we have written ⇠̃ = h⇠̃i ⌧ 1 and dropped the small o↵-diagonal elements with,

MM

1 ⇠ MM

2 ⇠ ⇠̃2MM

3 , MM

3 ⇠ hH 0ihH 0i
⇤

(116)

Note that MM

1 and MM

2 are not expected to be degenerate due to the dimensionless
coe�cients multiplying each element of Eq. 115 which we have dropped. We shall first give
a short qualitative discussion of the neutrino mass and mixing, and the scales involved,
before constructing the physical neutrino mass matrix using the seesaw formula.

We assume that the first right-handed neutrino ⌫c

1 dominates the seesaw mechanism, as
in single right-handed neutrino dominance (SRHND) [6, 7]. Although the second right-
handed neutrino mass has a similar scale, we shall assume that it is several times larger
than the first, which is not unreasonable given that the higher dimensional operators
in Eq.115 may result from a product of several Yukawa couplings, each of which may
di↵er by a small factor. Ignoring the other right-handed neutrinos, then, we have just
a single right-handed neutrino ⌫c

1 with couplings given by the first column of the Dirac
mass matrix in Eq.114, where there is a texture zero, and the second and third elements
having similar entries due to L2 and L3 being indistinguishable under the Z6 symmetry.
Thus the dominant right-handed neutrino couples as ⌫c

1(⌫µ + ⌫⌧ ), with similar couplings
to ⌫µ and ⌫⌧ , and a zero coupling to ⌫e due to the texture zero, naturally leading to large
atmospheric neutrino mixing. After the single right-handed neutrino ⌫c

1 is integrated out
(i.e. applying the seesaw mechanism) there is only one massive neutrino ⌫3 ⇠ ⌫µ + ⌫⌧
with light Majorana mass,

m⌫3 ⇠ 2
(mD

⌫e
)2

MM

1

⇠ 0.05 eV (117)

while ⌫e and the orthogonal linear combination ⌫3 ⇠ ⌫µ�⌫⌧ remain massless. This scheme
will therefore predict a normal mass hierarchy when the other smaller neutrino masses
are included. The lightest right-handed neutrino mass may be estimated by assuming
mD

⌫e
⇠ p

mumc/3, motivated by the up quark matrix in the previous subsection, hence

MM

1 ⇠ 3⇥ 107 GeV (118)
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How to test such models? 
Two options:

Fu, S.F.K., Marsili, Pascoli, Turner, Zhou 2209.XXXXXX (tomorrow!)

1. Proton decay and Gravitational Waves

2. At the TeV scale with LHC and B physics
Mario F.  Navarro and S.F.K. 2209.XXXXXX (tomorrow!)

We focus on second option here…



Twin PS Theory of Flavour with 
a TeV scale Vector Leptoquark

S.F. King, JHEP 11 (2021), [2106.03876]

Recently new evidence for the experimental anomaly in the semi-leptonic B decay ratio
R

K(⇤) , which violates µ � e universality in b ! s decays, has been presented [17]. Also
the semi-leptonic B decay ratio R

D(⇤) violates ⌧ universality in b ! c decays. These
anomalies motivate new theories of flavour involving leptoquarks, for example the single
vector leptoquark Uµ

1 (3, 1, 2/3) has been shown to address all the B physics anomalies
[18–37] with contributions to the muon aµ = (g� 2)µ/2 [38], while the scalar leptoquarks
S2(3, 2, 7/6), S̃2(3, 2, 1/6), and S3(3, 3, 1/3) could also play a role for R

K(⇤) [39].

Although a vector leptoquark is predicted by Pati-Salam theory (PS) [40], its mass is
generally expected to lie above the PeV scale, too heavy to explain the anomalies. Nev-
ertheless, such a vector leptoquark could arise from a low energy PS gauge group 3 as
discussed in several works [42–49]. However, the ultraviolet completion of such theories
remains challenging, and motivates further model building in this direction, in particular
models which can simultaneously explain the origin of quark and lepton masses. In this
way, the recent anomalies can provide additional experimental hints which can help to
shed light on the path towards finding the correct BSM theory of flavour.
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Figure 1: The model is based on two copies of the PS gauge group SU(4)PS⇥SU(2)L⇥SU(2)R.

The circles represent the gauge groups with the indicated symmetry breaking as in Eq.8.

In this paper we propose a twin PS theory of flavour capable of explaining some of the
anomalies, for natural values of the parameters, as well as providing a theory quark and
lepton (including neutrino) masses and mixings. At high energies, the theory involves
two copies of the PS gauge group, G422 [40], with the usual three chiral fermion families
transforming under GII

422. A fourth vector-like (VL) family, which mediates the second
and third family masses, transforms under GI

422. The twin PS gauge groups are broken
in stages first to G4321 then to the SM gauge group G321, as in Fig. 1,

GI

422 ⇥GII

422

Mhigh�! G4321
Mlow�! G321 (8)

The explanation of the anomalies involves the vector leptoquark Uµ

1 (3, 1, 2/3) from the
SU(4)I

PS
, broken at Mlow ⇠ 1 TeV, while the origin of quark and lepton masses depends

on the full theory, including the high scale PS symmetry, broken at Mhigh & 1 PeV,
the latter limit being due to the non-observation of KL ! µe [50], although we later
find it to be near the conventional scale of Grand Unified Theories (GUTs). The first
family fermion masses are mediated by a fifth family of VL fermions which transform
under SU(4)II

PS
, and neutrino masses are further suppressed by the type I [11–14] seesaw

mechanism. In order to achieve the texture zero in the first element of the mass matrices
3
A low energy PS gauge group has also been considered from a di↵erent perspective [41].

2

Chiral families 1,2,3 
mix with vector-like 
families 4,5,6

Motivated by B anomalies

 have SU(4)IPS at TeV

This mixing generates 
VLQ couplings (above) 
and Yukawa matrices

TeV

Plus shaping symmetries and extra fields Q3
MQ
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Q4 Q4 L4 L4

Figure 3: Diagrams in the model which lead to the e�ective U1 couplings in the mass insertion
approximation.

are suppressed by small mixing angles. This way, the U1 couplings will be purely left-handed, as
preferred by the global fits of B-anomalies [25], and the phenomenology is further simplified as the
couplings to EW singlets can be safely ignored.

The SM gauge couplings of SU(3)c and U(1)Y are given by

gs = g4g3Ò
g2

4 + g2
3

, gY = g4g1Ò
g2

4 + 2
3g2

1

, (2.76)

where g4,3,2,1 are the gauge couplings of G4321. The scenario g4 ∫ g3,1 is well motivated from the
phenomenological point of view, since here the flavour universal couplings of light fermions to the
heavy Z Õ and gÕ are suppressed by the ratios g1/g4 and g3/g4, which will inhibit the direct production
of these states at the LHC. In this scenario, the relations above yield the simple expressions gs ¥ g3

and gY ¥ g1 for the SM gauge couplings.
A key feature of the gauge boson couplings in Eqs. (2.70-2.72) is that, while the coloron gÕ

µ and
the Z Õ

µ couple to all chiral and VL quarks and leptons, the vector leptoquark Uµ

1 only couples to
the fourth family VL fermions. However, the couplings in the Eqs. (2.70-2.72) are written in the
original gauge basis. We shall perform the transformation to the decoupling basis (primed) as per
Eq. (2.27),

L
gauge
U1 = g4

Ô
2

Q†Õ
– V Q

34“µdiag (0, 0, 0, 1) V L†
34 LÕ

—Uµ

1 + h.c. , (2.77)

where –, — = 1, .., 4 and the indexes of the matrices are implicit. We obtain an e�ective coupling
for the third family due to mixing with the fourth family,

L
gauge
U1 = g4

Ô
2

Q†Õ

i
VQ“µ

Q

a
0 0 0
0 0 0
0 0 sQ

34sL
34

R

b V †
L

LÕ
LjUµ

1 + h.c. , (2.78)

where we have not written the fourth column and row for simplicity. The diagrams in Fig. 3 are
illustrative, however it must be remembered that the mass insertion approximation is not accurate
here due to the heavy top mass, instead we have to work in the large mixing angle formalism. In
principle, the operator in (2.78) can simultaneously account for both LFU anomalies R

K(ú) and
R

D(ú) once the further transformations required to diagonalise the quark and lepton mass matrices,
see Eq. (2.44), are taken into account. Such transformations split the SU(2)L doublets and lead to
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Field SU(4)I

P S
SU(2)I

L
SU(2)I

R
SU(4)II

P S
SU(2)II

L
SU(2)II

R
Z4

Â1,2,3 1 1 1 4 2 1 –, 1, 1
Âc

1,2,3 1 1 1 4 1 2 –, –2, 1
Â4,5,6 4 2 1 1 1 1 1, 1, –
Â4,5,6 4 2 1 1 1 1 1, 1, –3

Âc
4,5,6 4 1 2 1 1 1 1, 1, –

Âc
4,5,6 4 1 2 1 1 1 1, 1, –3

„ 4 2 1 4 2 1 1
„, „Õ 4 1 2 4 1 2 1, –2

H 4 2 1 4 1 2 1
H 4 1 2 4 2 1 1
�15 15 1 1 1 1 1 1

Table 2: The field content under GI
422 ◊ GII

422 ◊ Z4, see text for details.

and fifth, via powers of the Z4 charge – = eifi/2. This way, the total symmetry group of the high
energy model is extended to

GI

422 ◊ GII

422 ◊ Z4 . (3.2)

The new Z4 discrete symmetry is introduced for phenomenological purposes, as it will prevent
fine-tuning, reduce the total number of parameters of the model and protect from certain FCNCs
involving the first family of SM-like chiral fermions. Moreover, Z4will simplify the diagonalisation
of the full mass matrices and preserve the e�ective Yukawa couplings for SM fermions of Section 2.3
with minimal modifications. The origin of the chiral fermion families is still the second Pati-Salam
group, however now they transform in a non-trivial way under Z4,

Â1,2,3(1, 1, 1; 4, 2, 1)(–,1,1) , Âc

1,2,3(1, 1, 1; 4, 1, 2)(–,–2,1) . (3.3)

Finally, the scalar content is extended by an additional scalar �15 which transforms in the adjoint
representation of SU(4)I , whose VEV È�15Í = T15v15 splits the vector-like masses,

T15 = 1
2
Ô

6
diag(1, 1, 1, ≠3) . (3.4)

We also include an additional copy of the Yukon „, denoted as „Õ, featuring –2 charge under Z4.
The simplified Lagrangian in Eq. (2.6) is extended by the new matter content to

L
ren

mass = yÂ

ia
HÂiÂ

c

a + yÂ

a3HÂaÂc

3 + xÂ

ia
„ÂiÂa + xÂ

c

a2 Âc
a„ÕÂc

2 + xÂ
c

a3 Âc
a„Âc

3 + xÂ

16„Â1Â6 + xÂ
c

61 Âc
6„Âc

1

+ MÂ

ab
ÂaÂb + MÂ

c

ab
Âc

aÂc

b
+ Â6Â6 + MÂ

c

66 Âc

6Âc
6

+ ⁄aa

15�15ÂaÂa + ⁄66
15�15Â6Â6 + ⁄̄aa

15�15Âc

aÂc
a + ⁄̄66

15�15Âc

6Âc
6 + h.c. ,

(3.5)

where i = 2, 3 and a, b = 4, 5 (terms i = 1 and a, b = 6 forbidden by Z4). The symmetry breaking
and the decomposition of the di�erent fields proceeds just like in the simplified model, see Section
(2), however the VEVs of the additional scalars „Õ and �15 play a role in the spontaneous breaking of
the 4321 symmetry, and the corresponding gauge boson masses become (assuming v1,3 ¥ v̄1,3 ¥ v̄Õ1,3
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Yukawa matrices
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Figure 2: Diagrams in the model which lead to the e�ective Yukawa couplings in the mass insertion
approximation, i, j = 2, 3.

As anticipated in [26], the heavy top mass requires È„Í /MÂ

4 ≥ 1 and thus breaks the mass
insertion approximation. Moreover, from the phenomenological point of view, it is also interesting
to go beyond the mass insertion approximation. The reason is that some flavour violating processes
mediated at 1-loop level by U1, such as U1-mediated Bs ≠ Bs mixing, require vector-like leptons
with masses around or below the TeV scale [17, 19], i.e.. of the same order as È„Í, È„Í. In order
to go beyond the mass insertion approximation, we should use a large angle mixing formalism as
discussed in Appendix A of [26]. We shall rotate the mass matrix in Eq. (2.25) in order to obtain
the SM Yukawa couplings for the chiral families,

MÂ
Õ =

Q

cccccccccccccccca

Âc
Õ

1 Âc
Õ

2 Âc
Õ

3 Âc
Õ

4 ÂÕ
4

ÂÕ
1| 0

ÂÕ
2| 0

ÂÕ
3| ÂyÂ

Õ

–—
0

ÂÕ
4| ÊMÂ

4

ÂcÕ
4

--- 0 0 0 ÊMÂ
c

4 0

R

ddddddddddddddddb

, (2.26)

where ÂyÂ

–—
are the upper 4 ◊ 4 upper block of the Yukawa matrices in this basis. The key feature of

Eq. (2.26) are the zeros in the fifth row and column which are achieved by rotating the four families
by the unitary 4 ◊ 4 transformations,

VÂ = V Â

34 =

Q

cccccccca

1 0 0 0

0 1 0 0

0 0 cÂ

34 sÂ

34

0 0 ≠sÂ

34 cÂ

34

R

ddddddddb

, (2.27)
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where we have expressed the personal Higgs fields in terms of the light Higgs doublets
using Eqs.84-93, with VEVs in Eq.83, and taken the fifth family lepton masses to be
three times larger than the fifth family quark masses, according to Eq.50. Since we have
assumed the hierarchy in Eq.29, it is natural to assume that each term in Eqs.102,103,104
roughly corresponds to a particular charged fermion mass of the second and third family,
as the notation suggests (the neutrinos will be discussed separately), with each fermion
mass controlled by its own personal Higgs as discussed below Eqs.42-45. However, unlike
private Higgs models [51–54], the fermion mass hierarchies are controlled by the heavy
fourth and fifth family messenger masses, rather than requiring a hierarchy of Higgs
VEVs, which do not need to be very small, as discussed below. Eq.105 refers to the Dirac
neutrino masses, where the Dirac neutrino mass matrix in Eq.99 enters the type I seesaw
mechanism and will be discussed in the following subsection.

By comparing Eqs.102,103,104 to Eqs.1,2,3, a number of requirements emerge to achieve
a correct description of the charged fermion masses of the second and third families:

• The dominant VEV is hHti = ↵uvu ⇠ v = 175 GeV for the correct top mass

• Also the large top mass requires h�3i ⇠ M 

4

• mb/mt ⇠ hHbi/hHti ⇠ �2.5 implies hHbi = ↵dvd ⇠ �2.5v ⇠ 5 GeV

• ms/mc ⇠ hHsi/hHci = (�dvd)/(�uvu) ⇠ �1.7 ⇠ 1/13

• ms/mµ ⇠ h�3ihHsi
h�1ihHµi

⇠ 1

We conclude that all second and third family masses can be accommodated with the
above conditions satisfied. As claimed, the personal Higgs VEVs here are not very small
and could be around 1-10 GeV, apart from that associated with the top quark whose
VEV is approximately that of the SM Higgs doublet, recalling that we have absorbed the
factor of

p
2 into the VEVs according to v = vSM/

p
2 and vSM = 246 GeV.

Approximate forms of Eqs.96,97,98,99 can also be useful for analytic estimates as follows,
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assuming m0
f
⇠ mf for the second and third family charged fermions and dropping the

dimensionless coe�cients. IfM 

5 ⇠ M 
c

5 , then the matrices are approximately symmetric,
up to order unity dimensionless coe�cients x, y which we have dropped here, hence,

m0
u
⇠ m̄0

u
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p
mumc, m0

d
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d
⇠

p
mdms, m0

e
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e
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memµ (108)
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B anomalies in a Twin PS ToF

Recently new evidence for the experimental anomaly in the semi-leptonic B decay ratio
R

K(⇤) , which violates µ � e universality in b ! s decays, has been presented [17]. Also
the semi-leptonic B decay ratio R

D(⇤) violates ⌧ universality in b ! c decays. These
anomalies motivate new theories of flavour involving leptoquarks, for example the single
vector leptoquark Uµ

1 (3, 1, 2/3) has been shown to address all the B physics anomalies
[18–37] with contributions to the muon aµ = (g� 2)µ/2 [38], while the scalar leptoquarks
S2(3, 2, 7/6), S̃2(3, 2, 1/6), and S3(3, 3, 1/3) could also play a role for R

K(⇤) [39].

Although a vector leptoquark is predicted by Pati-Salam theory (PS) [40], its mass is
generally expected to lie above the PeV scale, too heavy to explain the anomalies. Nev-
ertheless, such a vector leptoquark could arise from a low energy PS gauge group 3 as
discussed in several works [42–49]. However, the ultraviolet completion of such theories
remains challenging, and motivates further model building in this direction, in particular
models which can simultaneously explain the origin of quark and lepton masses. In this
way, the recent anomalies can provide additional experimental hints which can help to
shed light on the path towards finding the correct BSM theory of flavour.
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Figure 1: The model is based on two copies of the PS gauge group SU(4)PS⇥SU(2)L⇥SU(2)R.

The circles represent the gauge groups with the indicated symmetry breaking as in Eq.8.

In this paper we propose a twin PS theory of flavour capable of explaining some of the
anomalies, for natural values of the parameters, as well as providing a theory quark and
lepton (including neutrino) masses and mixings. At high energies, the theory involves
two copies of the PS gauge group, G422 [40], with the usual three chiral fermion families
transforming under GII

422. A fourth vector-like (VL) family, which mediates the second
and third family masses, transforms under GI

422. The twin PS gauge groups are broken
in stages first to G4321 then to the SM gauge group G321, as in Fig. 1,

GI

422 ⇥GII

422

Mhigh�! G4321
Mlow�! G321 (8)

The explanation of the anomalies involves the vector leptoquark Uµ

1 (3, 1, 2/3) from the
SU(4)I

PS
, broken at Mlow ⇠ 1 TeV, while the origin of quark and lepton masses depends

on the full theory, including the high scale PS symmetry, broken at Mhigh & 1 PeV,
the latter limit being due to the non-observation of KL ! µe [50], although we later
find it to be near the conventional scale of Grand Unified Theories (GUTs). The first
family fermion masses are mediated by a fifth family of VL fermions which transform
under SU(4)II

PS
, and neutrino masses are further suppressed by the type I [11–14] seesaw

mechanism. In order to achieve the texture zero in the first element of the mass matrices
3
A low energy PS gauge group has also been considered from a di↵erent perspective [41].

2
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energy 4321 
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Observable Experiment/constraint Theory expr.

”Cµ

L
≠0.40+0.08

≠0.09 [25] (2.87), (3.58)
gVL 0.05 ± 0.02 [4] (2.88), (3.59)

”(�Ms) > 0.11(see Section 2.4.2 and [27]) (2.97), (3.61)
B (· æ 3µ) < 2.1 · 10≠8 (90% CL) [40] (3.71)
B (· æ µ“) < 5.0 · 10≠8 (90% CL) [41] (3.78)

B (Bs æ ·±µû) < 3.4 · 10≠5 (90% CL) [42] (3.82)
B

!
B+

æ K+·±µû"
< 2.8 · 10≠5 (90% CL) [43] (3.84)

B (· æ µ„) < 8.4 · 10≠8 (90% CL) [44] (3.85)
B (KL æ µe) < 4.7 · 10≠12 (90% CL) [45] (3.86)

(g· /ge,µ)¸+fi+K 1.0003 ± 0.0014 [3] (3.89)
B

!
Bs æ ·+·≠"

< 5.2 ◊ 10≠3 (90% CL) [46] (3.92)
B

!
B æ K·+·≠"

< 2.25 ◊ 10≠3 (90% CL) [47] (3.93)

B

1
B æ K(ú)‹‹̄

2
/B

1
B æ K(ú)‹‹̄

2

SM
< 3.5 (3.2) (90% CL) [48,49] (3.96)

Table 3: Set of observables explored in the phenomenological analysis, including current experimen-
tal constraints

thanks to the underlying Twin Pati-Salam symmetry, the small breaking e�ects given by the splitting
of VL masses via È�15Í.

3.4 Low-energy phenomenology

The upcoming phenomenological analysis is supported in the deep and extense analyses of gen-
eral 4321 models performed during the last few years [17–19], including beyond tree-level calcula-
tions [50–52]. The expressions of the relevant observables were presented in terms of vector-fermion
couplings such that the obtained expressions can be easily generalised to any UV completion fea-
turing a low-scale 4321 theory, like the Twin Pati-Salam model. The underlying Twin Pati-Salam
model introduces universality (and perturbativity) constraints over several parameters of the model,
which are not present in general 4321 models, hence we will highlight key observables for which the
intrinsic nature of the model can be disentangle from other UV completions and from general 4321
models.

The benchmarck point in Table 4 addresses the B-anomalies and is compatible with all low-
energy data and high-pT searches considered in this manuscript. It provides a good starting point
to study the relevant phenomenology and we shall go back to it during the remainder of this article.
(Discuss the benchmarck) We also define

CU = g2
4v2

SM
4M2

U1

, CZÕ = g2
4g2

Y

g1

3v2
SM

4M2
ZÕ

. (3.57)
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Figure 4: Leptoquark-mediated tree level diagrams contributing to b æ sµµ̄ (left panel) and b æ

c·‹· (right panel).

2.4.1 R
K(ú) and R

D(ú)

Current deviations in the R
D(ú) ratios can be addressed via a tree-level contribution mediated by

the U1 vector leptoquark, see Fig. 4a. After integrating out U1, we obtain the following e�ective
operators in the e�ective field theory (after applying a Fierz rearrangement, which in this case does
not carry a minus sign),

Le� ∏ CU1
bsµµ

(s̄L“µbL) (µ̄L“µµL) + CU1
bc·‹

(c̄L“µbL) (·̄L“µ‹·L) + h.c. , (2.84)

where

CU1
bsµµ

= ≠
g2

4
2M2

U1

—ú
b· —c‹· = ≠

g2
4

2M2
U1

1
sL

34sQ

34

22
(se

23)2 sd

23cd

23 , (2.85)

CU1
cb·‹·

= ≠
g2

4
2M2

U1

—ú
bµ—sµ = ≠

g2
4

2M2
U1

1
sL

34sQ

34

22
su

23cu

23 , (2.86)

where —qi¸j are defined as the U1 couplings as written in the matrices of Eqs. (2.79) and (2.80). The
purely left-handed operators in Eq. (2.84) are favoured by b æ sµµ and b æ c·‹ data, and provide
a good fit for both anomalies if [4, 25],

CU1
bsµµ

= 4GF
Ô

2
VtbV

ú
ts

–EM
4fi

2”Cµ

L
, ”Cµ

L
= ≠0.40+0.08

≠0.09 , (2.87)

CU1
cb·‹·

= ≠2
Ô

2GF VcbgVL , gVL = 0.07 ± 0.02 , (2.88)

at the matching scale µ ≥ mb, provided that small corrections over the Wilson coe�cients above
due to renormalization group evolution (RGE) from the U1 scale are at the percent level and can be
safely neglected [19]. In particular, ”Cµ

L
in Eq. (2.87) provides a good fit of RK , RKú and Bs æ µµ

data, while gVL in Eq. (2.88) provides a good fit of RD and RDúwhile imposing B(Bc æ ·‹) > 30 %.
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Figure 5: Z Õ-mediated (left) and coloron-mediated (right) tree level diagrams contributing to Bs≠B̄s

meson mixing. s-chanel for the coloron is forbidden by color, t-chanel for the Z Õ is allowed.

From Eq. (2.86) it can be seen that our contribution to R
D(ú) is proportional to the mixing angle

◊u
23. Such angle is naturally small in this model, roughly O(0.1Vcb) as per Eq. (2.53), due to the fact

that the CKM mixing is originated from the down sector. As a consequence, the contribution to
R

D(ú) is heavily suppressed, In Fig. 6a it can be seen that for a typycal benchmarck MU1 = 3 TeV,
a larger su

23 ¥ 4Vcb would be needed in order to address the R
D(ú) anomaly, provided that the 3-4

mixing is maximal. This is consistent with the EFT estimation of Eq. (1.6), where we anticipated
that R

D(ú) can be addressed with TeV-scale U1 provided that the couplings are of order unity.
On the other hand, the contribution of U1 to R

K(ú) is further suppressed by the O(Vcb) mixing
angles ◊d

23 and ◊e
23, for a total suppression of O(V 3

cb
). Another contribution to R

K(ú) arises due to
Z Õ tree level exchange,

CZ
Õ

bsµµ = ≠
›bs›µµ

M2
ZÕ

=
A

g4gY

2M2
ZÕg1

B2 1
sQ

34

22
sd

23cd

23

C

(ce

23)2 g2
1

3g2
4

≠
1
2

1
sL

34se

23

22
D

, (2.89)

where we have defined ›qiqj (›¸i¸j ) as the Z Õ couplings in Eq. (2.82) (Eq. (2.83)). However, the
Z Õ contribution is subleading, rendering around a 10% correction over the leptoquark contribution.

2.4.2 Bs ≠ B̄s mixing

As anticipated before, flavour-violating couplings involving the coloron and Z Õ could be sizable in
the down sector, via the order Vcb mixing, which is unavoidable as the CKM is predicted to be
originated from the down sector in this model. After integrating out the heavy Z Õ and gÕ, we obtain

Le� ∏ ≠
CNP

bs

2 (s̄L“µbL)2 , (2.90)

where the Wilson coe�cient receives independent contribution to from both heavy gauge bosons as
per Fig. 5,

CNP
bs = Cg

Õ

bs
+ CZ

Õ
bs , =

3
g4gs

g3

42 Ÿ2
bs

3M2
gÕ

+
AÔ

3
Ô

2
g4gY

g1

B2
›2

bs

M2
ZÕÕ

, (2.91)
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3.2 E�ective Yukawa couplings revisited

In this section, we diagonalise the full mass matrix of the model, following the same procedure as
in Section (2.3), but including the extra matter content of the extended model. We may write the
mass terms and couplings in Eq. (3.5) as a 9◊9 matrix in flavour space (we also define 9-dimensional
vectors as Â– and Âc

—
below),

L
ren

4,5,6 = ÂT
– MÂÂc

— + h.c. , (3.9)

Â– =
!

Â1 Â2 Â3 Â4 Â5 Â6 Âc
4 Âc

5 Âc
6

"T
, (3.10)

Âc

— =
!

Âc
1 Âc

2 Âc
3 Âc

4 Âc
5 Âc

6 Â4 Â5 Â6
"T

, (3.11)

MÂ =

Q

cccccccccccccccccccccccccccccca

Âc
1 Âc

2 Âc
3 Âc

4 Âc
5 Âc

6 Â4 Â5 Â6

Â1| 0 0 0 0 0 0 0 0 xÂ

16„

Â2| 0 0 0 yÂ

24H yÂ

25H 0 0 xÂ

25„ 0

Â3| 0 0 0 yÂ

34H yÂ

35H 0 xÂ

34„ xÂ

35„ 0

Â4| 0 0 yÂ

43H 0 0 0 M̄Â

44 MÂ

45 0

Â5| 0 0 yÂ

53H 0 0 0 MÂ

54 M̄Â

55 0

Â6| 0 0 0 0 0 0 0 0 M̄Â

66

Âc
4

--- 0 xÂ
c

42 „Õ xÂ
c

43 „ M q
c
,e

c

44 MÂ
c

45 0 0 0 0

Âc
5

--- 0 xÂ
c

52 „Õ xÂ
c

53 „ MÂ
c

54 M q
c
,e

c

44 0 0 0 0

Âc
6

--- xÂ
c

61 „ 0 0 0 0 M q
c
,e

c

66 0 0 0

R

ddddddddddddddddddddddddddddddb

. (3.12)

where the diagonal mass parametersMÂ,Â
c

44,55,66 are splitted for quarks and leptons due to the VEV
of �15,

M̄Q

aa © MÂ

aa + ⁄aa
15 È�15Í

2
Ô

6
, (3.13)

M̄L

aa © MÂ

aa ≠ 3⁄aa
15 È�15Í

2
Ô

6
, (3.14)

where a = 4, 5, 6, and similar equations are obtained for the Âc sector, however in the Âc sector the
mass splitting is minimal due to È�15Í being of order a few hundreds GeV, while MÂ

c

aa are much
heavier due to the hierarchy in Eq. (3.27). In Eq. (3.12) we have achieved an extra zero in the (2,7)
entry by rotating Â2 and Â3, without loss of generality thanks to the zeroes in the upper 3◊3 block
(see Section (2.3)).

The matrix in Eq. (3.12) features three di�erent mass scales, the Higgs VEVs ÈHÍ and
e
H

f
,

the Yukon VEVs È„Í,
e
„

f
,

e
„Õ

f
and the VL mass terms MÂ

ab
and MÂ

c

ab
. This way, we can block

diagonalise the matrix above, taking advantage of the di�erent mass scales. Firstly, we diagonalise
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Benchmark and output
benchmark (BP) Output

g4 3.5 ⁄44
15 -0.5 sQ

34 0.978 MgÕ 3782.86 GeV
g3,2,1 1, 0.65, 0.36 ⁄55

15, ⁄66
15 2.5, 0.8 sL

34 0.977 MZÕ 2414.32 GeV

xÂ

34 2 xÂ
c

42 0.4 sQ

25 = sQ

16 0.1986 su
23 0.042556

xÂ

25 = xÂ

16 0.41 xÂ
c

43 1 sL
25 = sQ

16 0.1455 sd
23 0.001497

MÂ

44 320 GeV MÂ
c

44 5 TeV s◊LQ 0.7097 se
23 -0.111

MÂ

55 780 GeV yÂ

53,43,34,24 -0.3, 1, 1, 1 ÊMQ

4 1226.82 GeV Vcb 0.04106

MÂ

66 930 TeV ÈHtÍ 177.2 GeV ÊMQ

5 1238.69 GeV mt 172.91 GeV

MÂ

45 -700 GeV ÈHcÍ 26.8 GeV ÊML
4 614.038 GeV mc 1.270 GeV

MÂ

54 50 GeV ÈHbÍ 4.25 GeV ÊML
5 845.263 GeV mb 4.180 GeV

È„3Í 0.6 TeV ÈHsÍ 2.1 GeV ÊMQ

6 1235.73 GeV ms 0.0987 GeV

È„1Í 0.3 TeV ÈH· Í 1.75 GeV ÊML
6 842.39 GeV m· 1.7765 GeV

v15 0.4 TeV ÈHµÍ 4.5788 GeV MU1 2986.99 GeV mµ 105.65 MeV

Table 4: Input and output parameters for the benchmark point (BP).

which O(0.1) charged lepton mixing. The latter is more benchmark dependent, with the common
range being se

23 = [Vcb, 5Vcb]. The case se
23 ¥ 0.1 is interesting because it leads to interesting signals

in LFV processes, as we shall see. BP also features xÂ

25 ¥ xÂ

16 and ÊMQ,L

5 ¥ ÊMQ

6 , providing a GIM-
like suppression of 1-2 FCNCs, as anticipated before. We also define the following adimensional
variables for convenience,

CU = g2
4v2

SM
4M2

U1

, CZÕ = 3
4

g2
4g2

Y

g2
1

v2
SM

M2
ZÕ

. (3.57)

where vSM ¥ 246 GeV.
In the forthcoming sections we will assume the Yukawas of the fundamental Lagrangian, such

as xÂ

34 and xÂ

25 to be universal, however their universality is broken by small RGE e�ects which in
we estimate in Section 3.4.6 to be below 8%. We prefer to neglect the RGE e�ects and preserve
universal parameters, to simplify the exploration of the parameter space and reflect the underlying
Twin Pati-Salam symmetry.

3.4.1 R
K(ú) and R

D(ú) revisited

In this extended version of the Twin Pati-Salam model, the Wilson coe�cients of the e�ective
Lagrangian in Eq. (2.84) are given by

CU1
bsµµ

= ≠
g2

4
2M2

U1

—ú
bµ—sµ = g2

4
2M2

U1

c◊LQs◊LQsQ

25sQ

34

1
sL

25

22
, (3.58)
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Figure 17: (Left) Spectrum of new bosons and fermions in BP around the TeV scale. (Right) Main
decay channels of the new vectors U1, gÕ and Z Õ in BP. Addition (+) implies that the depicted
channels have been summed when computing B(BP). i = 1, 2, 3 and a = 4, 5, 6.

In the scenario g4 ∫ g3,1, the coupling strength of the coloron is roughly g4, which receives NLO
corrections via the K-factor [51,52]

KNLO ¥

A

1 + 2.65 g2
4

16fi2 + 8.92 g2
s

16fi2

B≠1/2

, (3.114)

ggÕ ¥ KNLOg4 (3.115)

The coloron couples to light left-handed quarks (see Eq. (3.46)) via the mixing sQ

25 ¥ sQ

16 of
O(0.1), which interferes destructively with the flavour-universal term, allowing for a certain can-
cellation of the left-handed couplings to light quarks. This allows for a partial cancellation of the
coloron production, but it will still be produced via the flavour–universal right-handed couplings
(see Eq. (3.47)). The couplings to third generation quarks are much larger via the large mixing
sQ

34, however those are negligible for the coloron production, which takes place mostly via valence
quarks. We have computed the coloron production cross section from pp collisions with Madgraph5

aMC@NLO [59] using the default NNPDF23LO PDF set and the coloron UFO model presented in [54],
publicly available in the Feynrules [60] model database (https://feynrules.irmp.ucl.ac.be/

wiki/LeptoQuark). We verify in Fig. 18a that coloron production is dominated by valence quarks,
even though the coupling to bottoms is maximal. We estimate analytically the branching fraction
to all SM quarks excluding tops, and then we compute the total cross section via the narrow width
approximation. Finally, we confront our results with the limits for a qq̄-initiated spin-1 resonance
provided by CMS in Figure 10 of [61]. The results are displayed in Fig. 19a, where we have var-
ied xÂ

25 = [0.3, 1.2] and fixed the rest of parameters as in BP. We find the bound ranging from
MgÕ ? 2.5 TeV when Ÿqq ¥ 0 and MgÕ ? 3 TeV when Ÿqq ¥ g2

s/g2
4, where Ÿqq is the coupling of the
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Figure 22: Dominating vector-like decay channels.

Vector-like fermions

The presence of vector-like fermions is of fundamental importance to discriminate the di�erent
implementations of the 4321 model addressing the B-anomalies. A common constraint arises from
�F = 2 transitions at low energies, which require that the vector-like charged lepton that mixes
with muons is light. In particular, we obtained ML

5 ≥ 1 TeV in our analysis of the U1-mediated
1-loop contribution to Bs ≠ B̄s meson mixing (see Fig. 9a), in good agreement with the limits of
[19, 21]. The natural mass of the quark partner of L5 should not lie far away due to Pati-Salam
universality, unless the splitting is strongly enlarged via a very large È�15Í, which we do not consider.
In particular, in BP ML

5 ¥ 0.8 TeV and MQ

5 ¥ 1.2 TeV. The mixing structure of the model naturally
predicts that both Q5 and L5 are strongly coupled to the third generation of SM fermions, with the
dominating decay channels of vector-like fermions displayed in Fig. 22.

The Twin Pati-Salam model features also L4 and Q4 as a relevant pair of vector-like fermions,
which mix maximally with the third generation in order to obtain the large couplings required for
R

D(ú) , and also to fit the top mass without perturbativity issues. This implies that the bare mass
terms in the original Lagrangian are small, hence their physical masses are dominated by xÂ

34 È„3,1Í,
see Eq. (3.20) and (3.24). In the phenomenological scenario È„3Í ∫ È„1Í which suppresses coloron
production, we found L4 to be very light, featuring roughly 600 GeV in BP. Instead, Q4 can lie
above 1 TeV, featuring roughly 1.2 TeV in BP. The couplings of L4 to SM fermions are smaller than
those of L5, but it is still dominantly coupled to the third generation. For example, in BP we find
roughly |—bE5 | ¥ 0.67 and |—bE4 | ¥ 0.3 . We believe that these features are not specific of BP, but
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�F = 2 transitions at low energies, which require that the vector-like charged lepton that mixes
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5 ≥ 1 TeV in our analysis of the U1-mediated
1-loop contribution to Bs ≠ B̄s meson mixing (see Fig. 9a), in good agreement with the limits of
[19, 21]. The natural mass of the quark partner of L5 should not lie far away due to Pati-Salam
universality, unless the splitting is strongly enlarged via a very large È�15Í, which we do not consider.
In particular, in BP ML

5 ¥ 0.8 TeV and MQ

5 ¥ 1.2 TeV. The mixing structure of the model naturally
predicts that both Q5 and L5 are strongly coupled to the third generation of SM fermions, with the
dominating decay channels of vector-like fermions displayed in Fig. 22.

The Twin Pati-Salam model features also L4 and Q4 as a relevant pair of vector-like fermions,
which mix maximally with the third generation in order to obtain the large couplings required for
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D(ú) , and also to fit the top mass without perturbativity issues. This implies that the bare mass
terms in the original Lagrangian are small, hence their physical masses are dominated by xÂ

34 È„3,1Í,
see Eq. (3.20) and (3.24). In the phenomenological scenario È„3Í ∫ È„1Í which suppresses coloron
production, we found L4 to be very light, featuring roughly 600 GeV in BP. Instead, Q4 can lie
above 1 TeV, featuring roughly 1.2 TeV in BP. The couplings of L4 to SM fermions are smaller than
those of L5, but it is still dominantly coupled to the third generation. For example, in BP we find
roughly |—bE5 | ¥ 0.67 and |—bE4 | ¥ 0.3 . We believe that these features are not specific of BP, but
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Figure 4.5: Collider constraints from resonant G0 production with dijet (green) and tt̄ (blue) final
states for the benchmark couplings iiq = �gs(M 0

G)
2/g2G0 (solid) and iiq = 0 (dashed), and R = 1 in

both cases (see text for details). We mark in gray those values of the width which are below the sum
of tt̄ and dijet partial widths for gG0 = 3.

In models where the coloron has a gauge origin, such as the ones discussed here, we have G = ̃G = 0.
This is an important feature, since it implies that coloron couplings to two gluons are absent at the
tree-level, thus e↵ectively reducing the coloron production cross-section at the LHC. Concerning the
coloron couplings to fermions, as already discussed in Section 4.2, o↵-diagonal couplings are strongly
constrained by meson-antimeson mixing and thus do not play a relevant role at high-pT . Furthermore,
in all UV completions aimed at the explanation of the B-anomalies, the following relations are satisfied

gG0 ⇡ KNLO gU , 33q = 1 , 33u,d = R , iiq = s2Q �
g2s
g2G0

, iiu,d = �
g2s
g2G0

, (4.21)

with i = 1, 2 and gs evaluated at the coloron mass scale (gs(MG0) ⇡ 1). In this expression, sQ
parametrizes possible contributions from vector-like fermion mixing, assuming the latter enter in an
U(2)-invariant way, namely that they are the same (up to small corrections) for first and second
families. This condition is necessary to avoid the strong constraints from D–D̄ mixing [90]. Since sQ
is connected to the value of �s⌧

L (c.f. (4.3)), the constraint from the low-energy fit naturally leads to a
significant suppression of the iiq couplings. To illustrate this e↵ect, we consider two benchmark values
for these couplings in our analysis: iiq = 0 and iiq = �g2s/g

2

U . The value of R can vary depending
on the UV completion. For concreteness, here we take R = 1, which is common to all models with
third-family quark-lepton unification. Finally, in UV models where U1 and G0 have a common origin,
we have gG0 ⇡ gU . In order to account for NLO corrections to coloron on-shell production, in (4.21)
we modified this relation by adding the K-factor [56, 57]

KNLO ⇡

⇣
1 + 2.65

↵4

4⇡
+ 8.92

↵s

4⇡

⌘�1/2
, (4.22)

which amounts to an O(10%) reduction of gG0 for gU = 3.
Given the coupling structure in (4.21), the most e↵ective coloron searches consist in resonant

production with tt̄ and bb̄ final states. Since the coloron couples to two gluons only at the loop level,

28

Figure 3.3: LHC constraints for the U1 vector leptoquark for the benchmark scenarios with �b⌧
R = 0

(left) and �b⌧
R = �1 (right). The 1� and 2� regions obtained from the fit to low-energy data are also

shown.

scenarios considered here, the largest cross section is obtained for pp ! U⇤
1
U1 ! b⌧ t⌫. The CMS

collaboration has performed a dedicated search for this channel using 137 fb�1 of 13 TeV data [105].
The corresponding exclusion regions (obtained for c = 0) are shown in Figure 3.3 for both benchmark
scenarios, together with the 1� and 2� regions obtained from the low-energy fit. We also show
the projected limits for the high-luminosity phase of the LHC (HL-LHC with 3 ab�1 of integrated
luminosity) under the assumption that no NP signal is detected and that statistical and systematic
uncertainties scale with the square root of the luminosity. As can be seen, these searches o↵er only a
relatively small coverage of the parameter space favored by the low-energy fit. Other direct searches,
such as single-leptoquark production from quark-gluon scattering [102, 106–108] (see figure 3.4 b)
or resonant production via lepton-quark fusion [109–111] (exploiting the recently determined lepton
PDFs from photon splitting [112]) will play a crucial role in the event of a discovery, but are currently
not competitive with other high-pT searches.

Another interesting collider constraint is obtained by searching for modifications of the high-pT
tail in the dilepton invariant mass distribution in the Drell-Yan process pp ! ⌧+⌧� + X induced
by t-channel U1 exchange [41, 103, 113, 114] (see figure 3.4 c).4 The dominant production mechanism
for this channel is via a bb̄ initial state, while contributions from bs̄- and ss̄-initiated processes are
subdominant due to the underlying flavor structure of the leptoquark couplings. Stringent limits
from pp ! ⌧+⌧� +X data can be obtained by recasting the ATLAS analysis in [117] with 139 fb�1

of 13 TeV data, following the same recasting procedure described in [103]. As shown in Figure 3.3,
high-pT lepton tails provide important constraints on the parameter space preferred by the low-energy
fit, especially for �b⌧

R = �1, where the limit is about two times stronger than in the �b⌧
R = 0 scenario.

However, for both benchmark scenarios a large region of the parameter space still remains viable.
Together with the present bounds, we also show the projected limits for the HL-LHC, again assuming

4Analogous limits from pp ! µ⌧ [103, 115] and pp ! µ+µ� [42] do not provide competitive bounds because of the
flavor suppression of the light-lepton couplings, though they might play a relevant role in the future in the event of
discovery. Similarly, limits derived from pp ! ⌧ ⌫̄ [116] are found to be weaker due to the smallness of V ⇤

cs �
s⌧
L and V ⇤

cb

compared to the dominant third-generation couplings.
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Figure 9: Left: ”(�Ms) (Eq. (2.97)) as a function of the 5th vector-like mass term. xÂ

25 is varied in
the range xÂ

25 = [0.3, 0.8] so that R
D(ú) is preserved (blue region). The gray region is excluded by

the �Ms bound, see (Eq. (2.96)). Right: Parameter space in the plane (xÂ

34, xÂ

25) compatible with
the B-anomalies. The rest of parameters are fixed as in BP for both panels. The blue regions is
excluded by the �Ms bound, the region exluded only due to the contribution via the 5th lepton is
also shown for comparison. The blue star shows BP.

by the small cosine cL
34. This way, the loop is dominated by E5 in good approximation. We obtain

the e�ective loop function in this scenario by removing all constants in x–,— which vanish due to
the property (3.64),

F̃ (x) ¥ F (x, x) ≠ 2F (x, 0) + F (0, 0) = x (x + 4)
!
≠1 + x2

≠ 2x log x
"

4 (x ≠ 1)3 , (3.65)

which after some algebra recovers the expression in Eq. (45) of [52] (up to a factor 1/4 in the
normalisation, which we have absorbed in the normalisation of the Wilson coe�cient (3.61)). Hence,
we can approximate the U1 contribution by

CNP≠loop
bs

= g4
4

(8fiMU1)2
!
—ú

sE5—bE5

"2 F̃ (xE5) . (3.66)

The loop function grows with x (see Fig. 8b). However, in the limit of large ML
5 the e�ective coupling

—ú
sE5 Ã sQ

25 vanishes (since large ML
5 also implies large MQ

5 due to Pati-Salam universality), hence
both the contribution to �Ms and R

D(ú)go away. In Fig. 9a we plot ”(�Ms) defined in Eq. (2.97)
in terms of ML

5 and we vary xÂ

25 in the range xÂ

25 = [0.3, 0.7] so that R
D(ú) is preserved. We can see

that the �Msbound requires a vector-like lepton not much heavier than 1 TeV.
In Fig. 9b we show that Eq. (3.66) is indeed a good approximation, up to very small interference

e�ects between the 4th and 5th family contributions in the small xÂ

34 region, where the fourth lepton
is lighter. We also show the parameter space compatible with �Ms and the B-anomalies.
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Figure 12: Left: B
!
B0

s æ ·+µ≠"
versus xÂ

34. The blue region is obtained by varying xÂ

25 = [0.3, 0.8]
compatible with R

D(ú) . The gray region is excluded by the experiment, the dashed line shows
the projected future bound. Right: Parameter space in the plane (xÂ

34, xÂ

25) compatible with the
B-anomalies. The rest of parameters are fixed as in BP. The regions excluded by LFV violating
processes are displayed. The blue star shows BP.

Bs æ ·µ, B æ K·µ and · æ µ„

The vector leptoquark U1 mediates tree level contributions to flavour-violating semileptonic B-
decays to Kaons, taus and muons. We define the e�ective lagrangian as

Le� ∏ ≠
4GF
Ô

2
–

4fi
VtbV

ú
ts2

Ë
CNP

bs·µ (sL“µbL) (·L“µµL) + CNP
bs·µ (sL“µbL) (µL“µ·L)

È
+ h.c. , (3.79)

where

CNP
bs·µ = ≠

2fi

–VtbV ú
ts

CU —sµ—ú
b· , CNP

bsµ· = ≠
2fi

–VtbV ú
ts

CU —s· —ú
bµ . (3.80)

The contributions to Bs æ µ· are given in [19,27]

B

1
Bs æ ·≠µ+

2
=

·BsmBsf2
Bs

32fi3 –2G2
F m2

· |VtbV
ú

ts|
2

A

1 ≠
m2

·

m2
Bs

B2 ---CNP
bs·µ

---
2

, (3.81)

B

1
Bs æ ·+µ≠

2
=

m2
· mBsf2

Bs

�Bs32fi3 –2G2
F |VtbV

ú
ts|

2
A

1 ≠
m2

·

m2
Bs

B2 ---CNP
bsµ·

---
2

, (3.82)

where fBs = 230.3 MeV, mBs = 5366.88 MeV and ·Bs = 1.515 ps. The experimental bound was
obtained by LHCb [42].

Regarding B æ K·µ, experimental bounds are only available for the decays B+
æ K+µ· [43].

Their expression in terms of Wilson coe�cients are given by [19]
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Figure 18: (Left) Total cross section for the coloron dijet channel in the narrow width approximation,
with xÂ

25 varied in the range xÂ

25 = [0.3, 1.2]. The exclusion bounds from CMS are shown in Green.
(Right) Parameter space in the plane (xÂ

34, xÂ

25) compatible with the B-anomalies. The regions
excluded by the collider searches considered are included. The rest of parameters are fixed as in
BP for both panels. The blue star shows BP.

via the narrow width approximation. We confront our results with the limits from the dilepton
resonance searches by ATLAS, Fig. 4 of [59] for muons and and Fig. 7 (c) of [59] for taus. We
display all results in Figs. 19a and 19b. Exclusion bounds are only competitive for the case of large
xÂ

25, or equivalently larger mixing sQ,L

25 , but the B-anomalies can be explained with smaller xÂ

25 as
in Fig. 18b. Here we see that ditau searches are more competetive than dimuon searches or the
coloron dijet searches, due to the branching fractions to muons and light quarks being suppressed by
mixing angles of order the smaller mixing sQ,L

25 . Instead, the ditau channel is enhanced by maximal
3-4 mixing, but is still unable to constrain any of the good region for the B-anomalies in BP.

Another interesting channel would be pp æ Z Õ
æ ·µ, mediate via the flavour-violating ·µZ Õ

which arises in our model due to the non-vanishing 2-3 lepton mixing predicted. However, the
analysis in [53] shows that the bounds from pp æ Z Õ

æ ·µ are weaker than those from the · ·̄ unless
larger ·µZ Õ, which we expect to be in conflict with the bound from · æ 3µ. A further contribution
with ·µ mediated by U1 would lead to a stronger bound than that of the · ·̄ channel if |—bµ| ? 0.5,
however in our BP we have |—bµ| ¥ 0.3 (when rescaling to the normalization —b· = 1), and we find
it di�cult to obtain larger values for |—bµ| while preserving R

K(ú) and without introducing larger
lepton mixing. However, the combination of both the Z Õ and U1 contributions could lead to an
interesting signal at colliders, and would fit well in a future manuscript dedicated to specific collider
signals of the Twin Pati-Salam model.

U1 signals

Leptoquark pair-production cross sections at the LHC are dominated by QCD dynamics, and thus
are largely independent of the leptoquark couplings to fermions. Hence we are able to safely compare
with the complete analyses of Refs. [4, 19, 53]A certain model dependence is present in the form of
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Figure 4: Leptoquark-mediated tree level diagrams contributing to b æ sµµ̄ (left panel) and b æ

c·‹· (right panel).

2.4.1 R
K(ú) and R

D(ú)

Current deviations in the R
D(ú) ratios can be addressed via a tree-level contribution mediated by

the U1 vector leptoquark, see Fig. 4a. After integrating out U1, we obtain the following e�ective
operators in the e�ective field theory (after applying a Fierz rearrangement, which in this case does
not carry a minus sign),

Le� ∏ CU1
bsµµ

(s̄L“µbL) (µ̄L“µµL) + CU1
bc·‹

(c̄L“µbL) (·̄L“µ‹·L) + h.c. , (2.84)

where

CU1
bsµµ

= ≠
g2

4
2M2

U1

—ú
b· —c‹· = ≠

g2
4

2M2
U1

1
sL

34sQ

34

22
(se

23)2 sd

23cd

23 , (2.85)
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4
2M2

U1

—ú
bµ—sµ = ≠

g2
4

2M2
U1

1
sL

34sQ

34

22
su

23cu

23 , (2.86)

where —qi¸j are defined as the U1 couplings as written in the matrices of Eqs. (2.79) and (2.80). The
purely left-handed operators in Eq. (2.84) are favoured by b æ sµµ and b æ c·‹ data, and provide
a good fit for both anomalies if [4, 25],

CU1
bsµµ

= 4GF
Ô

2
VtbV

ú
ts

–EM
4fi

2”Cµ

L
, ”Cµ

L
= ≠0.40+0.08

≠0.09 , (2.87)

CU1
cb·‹·

= ≠2
Ô

2GF VcbgVL , gVL = 0.07 ± 0.02 , (2.88)

at the matching scale µ ≥ mb, provided that small corrections over the Wilson coe�cients above
due to renormalisation group evolution (RGE) from the U1 scale are at the percent level and can be
safely neglected [19]. In particular, ”Cµ

L
in Eq. (2.87) provides a good fit of RK , RKú and Bs æ µµ

data, while gVL in Eq. (2.88) provides a good fit of RD and RDúwhile imposing B(Bc æ ·‹) > 30 %.
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Figure 7: Leptoquark mediated one-loop diagrams contributing to Bs ≠ B̄s mixing. The indexes
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CU1
cb·‹·

= ≠
g2

4
2M2

U1

—ú
b· —c‹· = ≠

g2
4

2M2
U1

c◊LQs◊LQsQ

25sQ

34

1
sL

34

22
, (3.59)

where the mixing angles are defined in Eqs. (3.20), (3.21) in terms of fundamental parameters of
the model. The Wilson coe�cients also receive small corrections via 2-3 fermion mixing. We match
the Wilson coe�cients above to the global fits in Eqs. (2.87) and (2.88) [4, 25], following a similar
discussion as in Section (2.4.1).

The EFT estimation of Eq. (1.6) anticipated that hierarchical couplings involving taus and
leptons are required in order to simultaneously fit both anomalies via U1. Such hierarchy is achieved
here due to the hierarchy of fourth and fifth VL masses introduced in Eq. (3.27). Hence, this
hierarchy will provide roughly maximal sQ,L

34 ¥ 1 and sQ,L

25 ¥ O(0.1), with lepton angles being
slightly smaller than quark angles in the scenario È„3Í ∫ È„1Í. The choice ◊LQ = fi/4 maximizes
the contribution to both anomalies, and we can reproduce After the VEVs and the VL masses are
provided, the fundamental Yukawas xÂ

34 and xÂ

25 control the mixing angles, hence all the relevant
phenomenology for the B-anomalies is intrinsically connected with those parameters. We have
explored their parameter space compatible with the B-anomalies in Fig. 9b, 12b, with the rest of
parameters fixed as BP in Table 4. In BP, we also obtained a large s◊LQ ¥ 1/

Ô
2, which is the best

value to maximise the contribution to the B-anomalies, via diagonalising Eqs. (3.15) and (3.16)
with a suitable choice of the parameters.

3.4.2 Bs ≠ B̄s mixing revisited

In the extended Twin Pati-Salam model, tree-level gÕ and Z Õ exchange, along with 1-loop U1 ex-
change, contribute to Bs ≠B̄s meson mixing. After the heavy degrees of freedom are integrated out,
the e�ective Lagrangian in Eq. (2.84) receives the following contributions from tree level exchange,

CNP≠tree
bs

= Cg
Õ

bs
+ CZ

Õ
bs =

S

U1
3

A
g4gs

g3MgÕ

B2 A

1 + g2
3

g2
4

B

+ 1
24

3
g4gY

g1MZÕ

42
T

V
1
cQ

25sQ

25sQ

35

22
, (3.60)
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Predictions for LHCb and Belle II
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Figure 14: The branching fractions B
!
Bs æ ·+·

"
(left) and B

!
B+

æ K+·+µ≠"
(right) against

xÂ

34. The rest of the parameters are fixed as in BP. Current exclusion limits are displayed, along
with their future projections. The blue star shows BP.

3.4.5 Signals in rare semi-leptonic processes

Bs æ ·· and B æ K··

The explanation of R
D(ú) requires large couplings of U1 to the third generation of SM fermions,

hence mediating a large tree-level contribution to the rare decays Bs æ ·· and B æ K·· , with
branching fractions of order 10≠7 in the SM and mild upper bounds measured by LHCb [46] and
BaBar [47], respectively. We parameterise the new contributions via the e�ective lagrangian

Le� ∏ ≠
4GF
Ô

2
–

4fi
VtbV

ú
tsCNP

bs··,10 (sL“µbL) (·“µ“5·) + h.c. , (3.90)

where

CNP
bs·· = 2fi

–VtbV ú
ts

CU —ú
s· —b· . (3.91)

The branching fractions are given by [19]

B

1
Bs æ ·+·

2
= B

1
Bs æ ·+·

2

SM

-----1 +
CNP

bs··,10
CSM

10

-----

2

, (3.92)

B

1
B+

æ K+·+·≠
2

= 8.2 · 10≠9
---CNP

bs··,10

---
2

, (3.93)

The branching fractions above mostly depend on the mixing angles sQ,L

34 and sQ,L

25 , which are con-
trolled by the fundamental Yukawas xÂ

34 and xÂ

25. In Fig. 14, we plot the branching fractions in
terms of xÂ

34, while varying xÂ

25 in the range compatible with R
D(ú) , xÂ

25 = [0.3, 0.8]. We find that the
predictions are far below the present bounds, however they lie closer to the expected future bounds
from LHCb and Belle II data [55,56] . In particular, some part of the good region in B+

æ K+·+·≠
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CNP
µ· =CZÕ

µ· +CU1
µ· , (3.73)

where [19,54,55]

CU1
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CU

16fi2
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i
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iµ—i· (G1(xi) ≠ 2G2(xi)) (3.74)
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µ· (�) = ≠
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16fi2
y· (�)

2
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–

›·–›–µ
ÂG(x–) (3.75)

where i = s, b, Q4, Q5 and – = µ, ·, L4, L5. The e�ective tau Yukawa coupling y· in the Higgs basis
is estimated following the same procedure used in Eq. (2.52), obtaining an e�ective SM-like Yukawa
y· ¥ 0.01. The loop functions are defined as [19,54,55]

G1(x) = x

C
2 ≠ 5x

2 (x ≠ 1)4 log x ≠
4 ≠ 13x + 3x2

4 (x ≠ 1)3

D

, G2(x) = x

C
4x ≠ 1

2 (x ≠ 1)4 x log x ≠
2 ≠ 5x ≠ 3x2

4 (x ≠ 1)3

D

,

(3.76)

ÂG(x) = 5x4
≠ 14x3 + 39x2

≠ 38x ≠ 18x2 log x + 8
12(1 ≠ x)4 . (3.77)

Provided that the 3-4 mixing is maximal, the U1 loop is dominated by the 5th vector-like quark, and
in this situation the couplings —ú

Q5µ
—Q5· are controlled by xÂ

25. The Z Õ loop is dominated by light
leptons, in particular by the · lepton, since the coupling ›·· is maximal while ›µµ is suppressed.
In this scenario, the overall Z Õ contribution is controlled by ›·µ which grows with the 2-3 charged
lepton mixing se

23, and the variation via xÂ

25 is minimal.
The running of the dipole operator from � = 2 TeV to the scale µ ≥ m· is given by CNP

µ· (m· ) ¥

0.92CNP
µ· (�) [19]. Neglecting the muon mass, the branching ratio is given by

B (· æ µ“) = 8G2
F

–m3
·

�·

v2
SM
2

---CNP
µ· (m· )

---
2

. (3.78)

In Fig. 10b we can see that the Z Õ contribution dominates the branching fraction in the range
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Figure 10: (Left) B (· æ 3µ) versus the 2-3 charge lepton mixing sine se
23. The purple region

denotes the Z Õ contribution while the blue region denotes the U1 contribution, for both we have
varied xÂ

25 = [0.3, 0.8] which is compatible with R
D(ú) . (Right) B (· æ µ“) versus xÂ

34. The purple
region denotes the Z Õ contribution for which we have varied se

23 = [Vcb, 5Vcb]. The blue region
denotes the U1 contribution, for which we have varied xÂ

25 = [0.1, 1]. The gray regions are excluded
by the experiment, the dashed lines show the projected future bound. The blue star shows BP.

Eq. (3.61) to the case �L = 2 [58]. This loop is dominated again by the 5th family, provided that
the 3-4 mixing is maximal, hence

CU1
·µµµ = 3g4

4
128fi2M2

U1

1
—ú

Q5µ—Q5·

22 1
—ú

Q5µ

22
F̃ (xQ5) . (3.70)

The e�ective coupling —ú
Q5µ

Ã sL
25, where sL

25 ¥ 0.1 provides a further suppression of O((sL
25)3),

which renders the loop negligible against the much larger tree-level Z Õ-mediated contribution. The
typical benchmark sL

25 ¥ 0.1 naturally suppresses the µµZ Õ coupling, keeping · æ 3µ under control,
and simultaneously protects from Z Õ decays to muons at colliders, see Section (3.4.7). The measured
bound over the · æ 3µ branching fraction [46] leads to

B (· æ 3µ) =
A Ô

2
4GF

B2

2
1
CNP

·µµµ

22
< 2.1 · 10≠8 . (3.71)

As depicted in Fig. 10a the Z Õ contribution dominates over the U1 contribution, and the regions
of the parameter space with large se

23 and/or xÂ

25 are already excluded by the experiment. The Belle
II collaboration will test a further region of the parameter space, setting the bound se

23 < 2.8Vcb if
no signal is detected. In general 4321 models the 2-3 charge lepton mixing is usually unspecified,
so only the small U1 signal is predicted. Therefore, the large Z Õ signal o�ers the opportunity to
disentangle the Twin Pati-Salam model from other proposals.

As depicted in Fig. 12b, · æ 3µ is the most constraining signal over the parameter space out of
all the LFV processes, provided that the 2-3 charged lepton mixing is O(0.1), and requires a mild
suppression via sL

25 ¥ 0.1 which drives the model to the small xÂ

25 region.
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0.92CNP
µ· (�) [21]. Neglecting the muon mass, the branching ratio is given by

B (· æ µ“) = 8G2
F

–m3
·

�·

v2
SM
2

---CNP
µ· (m· )

---
2

. (3.78)

In Fig. 10b we can see that the Z Õ contribution dominates the branching fraction in the range
of large xÂ

34 interesting for the B-anomalies, leading to predictions of B (· æ µ“) roughly one order
of magnitude below the current experimental limit for the case of large 2-3 charged lepton mixing.
Instead, for order Vcb lepton mixing, the signal in B (· æ µ“) lies 3 orders of magnitude below the
experimental limit. We have also included the projected sensitivity of Belle II (50 ab≠1) [61], which
will partially test the parameter space compatible with large 2-3 charged lepton mixing. In general
4321 models this mixing is usually unspecified, so usually only the U1 signal is predicted. This
signal is largely enhanced via a chirality flip with the bottom quark running in the loop (and RGE)
in models with a large coupling bR·RU1, predicting a larger signal B (· æ µ“) ¥ 10≠8. Instead, our
Z Õ signal lies just below, o�ering the opportunity to disentangle the Twin Pati-Salam model from
other proposals.

Bs æ ·µ, B æ K·µ and · æ µ„

The vector leptoquark U1 mediates tree level contributions to flavour-violating semileptonic B-
decays to Kaons, taus and muons. We define the e�ective Lagrangian as

Le� ∏ ≠
4GF
Ô

2
–

4fi
VtbV

ú
ts2

Ë
CNP

bs·µ (sL“µbL) (·L“µµL) + CNP
bs·µ (sL“µbL) (µL“µ·L)

È
+ h.c. , (3.79)

where
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Prediction for B->K nu nu at Belle II

Figure 16: ”B(B æ K(ú)‹‹̄) (Eq. (3.96)) as a function of the 5th family vector-like mass term.
xÂ

25 is varied in the range xÂ

25 = [0.3, 0.8] which fits R
D(ú) (blue region). The hatched region is

excluded by the �Ms bound, see Eq. (2.96). The gray region is excluded by current experimental
measurements, the dashed line indicates the projected future bound (see text for details).

The first term in Eq. (3.101) corresponds to the tree-level contribution plus a 1-loop coloron
correction. The bsZ Õ coupling is given by

›bs = 1
6

51
sQ

34

22
≠

1
sQ

25

22
6

sd

23cd

23 , (3.104)

hence the first term in Eq. (3.101) is suppressed by the small sd
23, leading to percent corrections

to B(B æ K(ú)‹‹̄). The other contributions can be sizable, yielding up to O(1) corrections to the
SM value, as in Fig. 16. For low ML

5 , the value of ”B(B æ K(ú)‹‹̄) corresponds to CRGE
‹,U

, while
the growth with ML

5 is due to the second contribution in Eq. (3.101) and to the U1 semileptonic
box, which is dominated by the 5th family due to the flavour structure of the model. However, we
have seen that stringent constraints from Bs ≠ B̄s meson mixing push ML

5 to lie around 1 TeV, see
Section 3.4.2. This constraint is depicted as the hatched region in Fig. 16, and rules out the region
where ”B(B æ K(ú)‹‹̄) can reach values close to current experimental limits. Nevertheless, the
Belle II collaboration could measure B(B æ K(ú)‹‹̄) up to 10% of the SM value [61], hence testing
all the parameter space.

As studied in [21], B æ K(ú)‹‹̄ also o�ers a great opportunity to disentangle models with purely
left-handed couplings from models with large couplings for third family right-handed fermions, as
the latter predict a much smaller signal.

3.4.6 Perturbativity

The fit of the R
D(ú) requires large mixing angles sQ

34 and sL
34, which translate to a sizeable Yukawa

coupling xÂ

34, thus pushing the model close to the boundary of the perturbative domain. In particu-
lar, perturbativity is a serious constraint over our model, since we need the low energy 4321 theory
to remain perturbative until the high scale of the twin Pati-Salam symmetry. When assessing the
issue of perturbativity, two conditions must be satisfied:
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Figure 15: Box and penguin diagrams contributing to B æ K‹‹. The index – run for all charged
leptons including vector-like, i.e. ¸L– = (µL, ·L, EL4, EL5), and the index j runs for all up-type
quarks, including vector-like uLj = (cL, tL, UL4, UL5). See more details in the text.

CRGE
‹,U = ≠0.047 g2

4
2M2

U1

—b· —s· . (3.100)

The Z Õ contribution at NLO accuracy reads

C··

‹,ZÕ ¥
3g2

4
2M2

ZÕ

C

›bs›‹· ‹·

A

1 + 3
2

g2
4

16fi2 ›2
‹· ‹·

B

+ g2
4

16fi2 —ú
sE5—bE5G�Q=1(xE5 , xZÕ , xR)

D

, (3.101)

where xE5 © (ML
5 )2/M2

U
, xZÕ © M2

ZÕ/M2
U

and xR © M2
R

/M2
U

with MR being a scale associated to
the radial mode hU (3, 1, 2/3) arising from „3,1. The first term in Eq. (3.101) corresponds to the
tree-level contribution plus a 1-loop Z Õ correction to the leptonic vertex. The bsZ Õ coupling is given
by

›bs = 1
6

51
sQ

34

22
≠

1
sQ

25

22
6

sd

23cd

23 , (3.102)

hence the first term in Eq. (3.101) is suppressed by the small sd
23, leading to percent corrections to

B(B æ K(ú)‹‹̄). The second term in Eq. (3.101) corresponds to a 1-loop correction to the flavour-
violating vertex, with U1, the fifth vector-like lepton E5 and hU running in the loop, see Fig. 15b.
The loop function is given by [21, 58]

G�Q=1(x1, x2, x3) ¥
5
4x1 + x1

2

3
x2 ≠

3
2

4 3
ln x3 ≠

5
2

4
, (3.103)

which was computed in [58] assuming a framework similar to the composite model in [64], where
right-handed partners of vector-like fermions are SU(4) singlets. However, it was shown that similar
results are obtained when right-handed partners transform in the fundamental of SU(4), as we
consider in our model. Regarding the radial modes, we expect the same radial hU arising from „3,1
with a mass around the scale of U1. Extra radials associated to „̄3,1 and „̄Õ

3,1 arise, however they
couple only to right-handed SM fermions and hence they cannot contribute to the e�ective operator
in Eq. (3.94).
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Conclusion
• SU(3) x PS model still valid today,  prediction confirmed


• Such high scale models difficult to test directly (PD, GWs ?)


• It is possible that Nature has given us a lucky break and 
provided us with a TeV scale PS symmetry


• (PS)2 with TeV scale PS symmetry reproduces similar mass 
matrices to Graham’s and explains RK, RD


• This allows the theory to be probed by experiments such as 
LHC, LHCb, Belle II, providing a testable theory of flavour

θ13



Yukawa matrices (basis dependent)

Flavour Physics and CP Violation in the SM and Beyond

The bosonic state orthogonal bosonic state to Zµ :

Aµ = cosqW Bµ + sinqW W 3
µ , (2.33)

remains massless and is identified with the photon. The electron coupling to the photon is directly
determined from the weak couplings g and g0 as

1
e2 =

1
g2 +

1
g02

, (2.34)

or
e =

gg0p
g2 +g02

= gsinqW = g0 cosqW . (2.35)

3. Fermion masses and mixings

In the SM, one cannot write directly a mass term for any of the fundamental fermions because
they would violate the gauge symmetry, since left-handed and right-handed chiralities do transform
differently. The SM fermions acquire mass through Yukawa couplings, once the SM group is spon-
taneously broken. Therefore, in the SM the Higgs mechanism that is responsible for the breaking
of the SM group, also generates fermion masses.

Quark and Charged Lepton masses

The Yukawa interactions are the most general terms in the Lagrangian allowed by the SM
gauge group that involve fermions and the Higgs doublet. The Yukawa couplings can be written
as:

�LY = (Yu)i j qiL f̃ uiR + (Yd)i j qiL f diR + (Y`)i j `iL f eiR + H.c. , (3.1)

where f̃ ⌘ it2 f †. The Yukawa matrices Yu, Yd and Y` are arbitrary complex matrices in flavour
space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the
third term will give rise to the charged lepton masses. Making use of the Higgs doublet parametri-
sation given in eq. (2.28) one can decompose the Lagrangian given in eq. (3.1) as

�LY =
vp
2
(Yu)i j uiL uiR +

vp
2
(Yd)i j diL diR +

vp
2
(Y`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H

�
i(Yu)i jp

2
uiL uiR G0 +

i(Yd)i jp
2

diL diR G0 +
i(Y`)i jp

2
eiL eiR G0

� (Yu)i j diL uiR G� + (Yd)i j uiL diR, G+ + (Y`)i j niL eiR G+ + H.c. .

(3.2)

Once a gauge transformation is performed in order to absorbed the Nambu-Goldstone bosons G±

and G0, the Lagrangian in eq. (3.2) becomes

�LY = (mu)i j uiL uiR + (md)i j diL diR + (m`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H + H.c. ,

(3.3)
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where the quark mass matrices mu, md and the charged lepton mass matrix m` are simply defined
by

mu ⌘ vp
2

Yu , md ⌘ vp
2

Yd , m` ⌘
vp
2

Y` . (3.4)

Gauge invariance does not constrain the flavour structure of Yukawa couplings and therefore mu,
md and m` are arbitrary complex matrices.

Let us now focus on the mass terms,

�Lm = (mu)i j ui
0
L u0

i R + (md)i j di
0
L d0

i R + (m`)i j ei
0
L e0

i R . (3.5)

A super-script 0 on the fermion fields was used that these fields are the original ones, in the weak
basis. The matrices mu,d,e can be diagonalised by the following bi-unitary transformations:

ui
0
L = Uu

L uiL ; ui
0
R = Uu

R uiR , (3.6a)

di
0
L = Ud

L diL ; di
0
R = Ud

R diR , (3.6b)

ei
0
L = Ue

L eiL ; ei
0
R = Ue

R eiR , (3.6c)

where Uu,d,e
R,L are a set of unitary matrix such as

mu �! Uu
L

† muUu
R = diag(mu,mc,mt) , (3.7a)

md �! Ud
L

†
md Ud

R = diag(md ,ms,mb) , (3.7b)

m` �! Ue
L

† m`Ue
R = diag

�
m`,mµ ,mt

�
. (3.7c)

The fields uL,R,dL,R,eL,R are thus the mass eigenstates. The bi-unitary transformations given in
eq. (3.6) affect the interactions between left-handed particles and the W±

µ bosons - the charged
currents - which are written in a weak basis as:

�LCC =
gp
2

⇥
ui

0
L gµ di

0
L + ni

0
L gµ ei

0
L
⇤

W+
µ + H.c. . (3.8)

In the mass eigenstate basis the charged currents become:

�LCC =
gp
2

h
uL gµ Uu

L
†Ud

L dL + n0
L gµ Ue

L eL

i
W+

µ + H.c. . (3.9)

The product of unitary matrices in eq. (3.9) defines the well know Cabibbo-Kobayshi-Maskawa
matrix V as

V ⌘ Uu
L

†Ud
L . (3.10)

In the SM the unitary matrix Ue
L is physically meaningless. Note that since neutrinos are massless

in the SM, one can always redefine neutrino fields as

n0
L �! nL = Ue

L nL , (3.11)

and therefore the charged current term n0
L gµ Ue

L eL in eq. (3.9) becomes nL gµ eL . We then conclude
that in the SM there is no leptonic mixing and therefore no neutrino oscillations.
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Figure 16: RGE of the fundamental Yukawa couplings in BP from the TeV scale to the scale of
the Twin Pati-Salam symmetry µ ≥ 1 PeV. The left panel shows the xÂ

i–
Yukawas which lead to

the mixing between SM fermions and vector-like partners. The right panel shows the ⁄15 Yukawas
which split the vector-like masses of quarks and leptons.

due to the underlying Twin Pati-Salam symmetry in our model, plus the slightly di�erent scalar
implementation and VEV structure. In general the results obtained in the dedicated analyses
of [17, 19, 54] apply. However, we anticipate that some bounds obtained in [54] might be slightly
overestimated for our model, as they usually consider large couplings to right-handed third family
fermions.

We have included the particle spectrum of BP around the TeV scale in Fig. 17a, as a typical
configuration for the new vector and fermion masses. Fig. 17b shows the main decay channels of
the new vector bosons, which feature large decay widths �/M due to all the available channels to
vector-like fermions, plus the choice of large g4 = 3.5 close to perturbativity bounds.

In this section we have revisited some of the most simple collider signals, such as coloron dijet
searches and Z Õ dileptons searches. We will support ourselves in the complete analysis of [19,27,54]
to discuss vector leptoquark signals and coloron ditop searches, which also set the most stringent
bound on the overall scale of the low-energy model, and we will discuss the situation of vector-
like leptons. We will point out the di�erences between our framework and general 4321 models,
motivating a future manuscript dedicated to specific collider signals of the Twin Pati-Salam model.

Coloron signals

The heavy color octet has a large impact in collider searches for 4321 models and its production
usually sets the lower bound on the scale of the model. In our case, the heavy coloron in our model
has a gauge origin, hence the coloron couplings to two gluons are absent at tree-level, reducing
the coloron production at the LHC. Moreover, in the motivated scenario È„3Í ∫ È„1Í, the coloron
is slightly heavier than the vector leptoquark at roughly MgÕ ¥

Ô
2MU1 , helping to suppress the

impact of coloron over collider searches while preserving a slightly lighter U1 for the B-anomalies.
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Perturbativity

(a) ”B(B æ K
(ú)

‹‹̄) (Eq. (3.96)) as a function of the 5th
family vector-like mass term. x

Â
25 is varied in the range

x
Â
25 = [0.3, 0.8] which fits RD(ú) (blue region). The hatched

region is excluded by the �Ms bound, see Eq. (2.96). The
gray region is excluded by current experimental measure-
ments, the dashed line indicates the projected future bound
(see text for details).
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(b) RGE of the gauge couplings in BP from the TeV scale
to the scale of the Twin Pati-Salam symmetry µ ≥ 1 PeV.

Figure 15

hence the first term in Eq. (3.101) is suppressed by the small sd
23, leading to percent corrections

to B(B æ K(ú)‹‹̄). The other contributions can be sizable, yielding up to O(1) corrections to the
SM value, as in Fig. 15a. For low ML

5 , the value of ”B(B æ K(ú)‹‹̄) corresponds to CRGE
‹,U

, while
the growth with ML

5 is due to the second contribution in Eq. (3.101) and to the U1 semileptonic
box, which is dominated by the 5th family due to the flavour structure of the model. However, we
have seen that stringent constraints from Bs ≠ B̄s meson mixing push ML

5 to lie around 1 TeV, see
Section 3.4.2. This constraint is depicted as the hatched region in Fig. 15a, and rules out the region
where ”B(B æ K(ú)‹‹̄) can reach values close to current experimental limits. Nevertheless, the
Belle II collaboration could measure B(B æ K(ú)‹‹̄) up to 10% of the SM value [56], hence testing
all the parameter space.

As studied in [19], B æ K(ú)‹‹̄ also o�ers a great opportunity to disentangle models with purely
left-handed couplings from models with large couplings for third family right-handed fermions, as
the latter predict a much smaller signal.

3.4.6 Perturbativity

The fit of the R
D(ú) requires large mixing angles sQ

34 and sL
34, which translate to a sizeable Yukawa

coupling xÂ

34, thus pushing the model close to the boundary of the perturbative domain. In particu-
lar, perturbativity is a serious constraint over our model, since we need the low energy 4321 theory
to remain perturbative until the high scale of the twin Pati-Salam symmetry. When assessing the
issue of perturbativity, two conditions must be satisfied:
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Figure 19: (Left) Total cross section for the coloron dijet channel in the narrow width approximation,
with |Ÿqq| varied in the range |Ÿqq| = [0, g2

s/g2
4], where q = Q1, Q2. The exclusion bounds from

CMS are shown in green. (Right) Parameter space in the plane (xÂ

34, xÂ

25) compatible with the
B-anomalies. The regions excluded by the collider searches considered are included. The rest of
parameters are fixed as in BP for both panels. The blue star shows BP.

this case, following the methodology of [54]. In Fig. 18b we show that the production via bottoms
is larger than the production via valence quarks for a light Z Õ, however the production via valence
quarks is bigger for MZÕ ? 2 TeV, and shall not be neglected in models where the couplings to light
quarks are modified by sQ mixing with VL quarks entering in an U(2)Q invariant way.

We estimate the branching fraction to muons and taus, and we compute the total decay width
via the narrow width approximation. We confront our results with the limits from the dilepton
resonance searches by ATLAS, Fig. 4 of [62] for muons and and Fig. 7 (c) of [62] for taus. We
display the results in Figs. 20a and 20b. In Fig. 19b we see that these processes, along with coloron
dijet searches, only constrain the region of large xÂ

25 in BP, but the B-anomalies are explained with
smaller xÂ

25. The ditau searches are slightly more competitive than dimuon searches or coloron dijet
searches, due to the branching fractions to muons and light quarks being suppressed by mixing
angles sQ,L

25 ≥ O(0.1). Instead, the ditau channel is enhanced by maximal 3-4 mixing, and sets the
bounds MZÕ > 2 TeV for xÂ

25 = 0.8 and MZÕ > 1.4 TeV for xÂ

25 = 0.3, see Fig. 20b.
Another interesting channel would be pp æ Z Õ

æ ·µ, mediate via the flavour-violating ·µZ Õ

which arises in our model due to the non-vanishing 2-3 lepton mixing predicted. However, the
analysis in [54] shows that the bounds from pp æ Z Õ

æ ·µ are weaker than those from the · ·̄ unless
larger ·µZ Õ, which we expect to be in conflict with the bound from · æ 3µ. A further contribution
with ·µ mediated by U1 would lead to a stronger bound than that of the · ·̄ channel if |—bµ| ? 0.5,
however in our BP we have |—bµ| ¥ 0.3 (when rescaling to the normalization —b· = 1), and we find
it di�cult to obtain larger values for |—bµ| while preserving R

K(ú) and without introducing larger
lepton mixing. However, the combination of both the Z Õ and U1 contributions could lead to an
interesting signal at colliders, and would fit well in a future manuscript dedicated to specific collider
signals of the Twin Pati-Salam model.
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Figure 20: Total cross section for ditop (left) and dimuon (right) production via a heavy Z Õ in the
narrow width approximation, with xÂ

25 varied in the range xÂ

25 = [0.3, 1.2]. The exclusion bounds
from ATLAS are shown in Green.

U1 signals

Leptoquark pair-production cross sections at the LHC are dominated by QCD dynamics, and thus
are largely independent of the leptoquark couplings to fermions. Hence we are able to safely compare
with the complete analyses of Refs. [4, 19, 54]A certain model dependence is present in the form of
non-minimal couplings to gluons, however these couplings are absent in models where U1 has a gauge
origin, allowing for a safe comparison with the bounds from pp æ U1Uú

1 depicted in Fig. 3.3 of [19].
Current bounds exclude MU1 > 1.6 TeV, and the future bound is expected to be MU1 > 2.1 TeV if
no NP signal is found during the high-luminosity phase of LHC.

The stronger collider constraint over U1 arises from searching modifications of the high-pT tail
in the dilepton invariance mass distribution of the Drell-Yan process pp æ ·+·≠ +X, induced by t-
channel exchange U1 exchange [4,14,19,54]. This channel is well-motivated by the U1 explanation of
R

D(ú) which unavoidably predicts large b·U1 coupling. The scenario —R

b·
= 0 considered in the study

of pp æ U1 æ ·· in [19, 54] fits very well the Twin Pati-Salam framework, up to normalization of
the U1 coupling strength gU for the case when —L

b·
is not maximal, as in our model it receives certain

suppression via c◊LQ . For example, in BP we obtain —L

b·
¥ 0.63, leading to gU ¥ 2.3. According to

the left panel of Fig. 3.3 in [19], the 3 TeV leptoquark of BP lies well below the current bounds,
but within projected limits for the high luminosity phase of LHC. Finding U1 below 3 TeV enters in
tension with pp æ gÕ

æ tt̄, due to the approximate relation MgÕ ¥
Ô

2MU1 , but we have discussed
that the tt̄ bound from [19] might be a bit overestimated for the Twin Pati-Salam model where
the vector-fermions couplings to the third generation are purely left-handed in good approximation.
This way, the Twin Pati-Salam model could provide a good candidate for the CMS 3‡ excess [22]
pointing to a 2 TeV U1 leptoquark in the well-motivated channel pp æ U1 æ ·· .

Stronger bounds from pp æ ·· where obtained in [54] when both Z Õ and U1 contributions
were combined, however the analysis assume that both vector states have maximal couplings to the
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