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Introduction

Flavor symmetry

    The SM New physics

Discrete flavor symmetry 

                Mu,d,e ∼ ( )
The origin of flavor 
3 generations
hierarchical structure

No significant NP signal
→ NP have highly non-
generic flavor structure

Flavor symmetry would play an important role both in the SM and NP

Modular flavor symmetry 
well studied to describe large 
mixing angle in neutrino

e.g. 
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Compactification of the superstring theory

	�

Superstring theory 10D 
Our universe is      4D�

 The extra 6D 
 should be compactified.�

Torus compactification�

from  T.H.Tatsuishi’s slides  
	�

Superstring theory 10D 
Our universe is      4D�

 The extra 6D 
 should be compactified.�

Torus compactification�

from  T.H.Tatsuishi’s slides  

2D torus × 3our universesuperstring

compactification

Two dimensional torus is characterized by modulus τ

2D complex
modulus 
parameter τ


�

α2�

α1�

(x,y)!(x,y)+n1α1+n2α2�

Two-dimensional torus T2  is obtained as  
�����T2 = �2 / Λ                                      
    

Λ is two-dimensional lattice,  
which is spanned by two lattice vectors 

    �1=2πR    and  �2=2πR
  

The same lattice is spanned by other bases under the transformation�

ad-bc=1  
a,b,c,d are integer  SL(2,Z)�


 =�2 /�1 is a modulus parameter (complex).�
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2D lattice

Modular symmetry
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Modular group often appears in the superstring theory

see also talk by Sin Kyu Kang



The paper is organized as follows.

2 A4 modular symmetry and flavor of quarks and leptons

2.1 Modular flavor symmetry

The modular group Γ̄ is the group of linear fractional transformations γ acting on the modulus τ ,
belonging to the upper-half complex plane as:

τ −→ γτ =
aτ + b

cτ + d
, where a, b, c, d ∈ Z and ad− bc = 1, Im[τ ] > 0 , (2)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,−I} transformation. This modular transformation
is generated by S and T ,

S : τ −→ −1

τ
, T : τ −→ τ + 1 , (3)

which satisfy the following algebraic relations,

S2 = I , (ST )3 = I . (4)

We introduce the series of groups Γ(N), called principal congruence subgroups, where N is the
level 1, 2, 3, . . . . These groups are defined by

Γ(N) =

{(
a b
c d

)
∈ SL(2,Z) ,

(
a b
c d

)
=

(
1 0
0 1

)
(modN)

}
. (5)

For N = 2, we define Γ̄(2) ≡ Γ(2)/{I,−I}. Since the element −I does not belong to Γ(N) for N > 2,
we have Γ̄(N) = Γ(N). The quotient groups defined as ΓN ≡ Γ̄/Γ̄(N) are finite modular groups. In
these finite groups ΓN , TN = I is imposed. The groups ΓN with N = 2, 3, 4, 5 are isomorphic to S3,
A4, S4 and A5, respectively [?].

Modular forms fi(τ) of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(τ) , γ ∈ Γ̄ , (6)

under the modular symmetry, where ρ(γ)ij is a unitary matrix under ΓN .
Under the modular transformation of Eq. (2), chiral superfields ψi (i denotes flavors) with weight

−k transform as [?],
ψi −→ (cτ + d)−kρ(γ)ijψj . (7)

We study global SUSY models. The superpotential which is built from matter fields and modular
forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given
modular forms this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter
fields ψi with the modular weight −k is given simply by

1

[i(τ̄ − τ)]k

∑

i

|ψi|2, (8)
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Modular transformation�
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a,b,c,d are integer���

modular transformation
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 =�2 /�1 is a modulus parameter (complex).�Modular transformation does not change the lattice

Modular symmetry
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The modular group is defined as the transformation group , generated by S 
and T

γ

duality Discrete shift symmetry 

(a b
c d) = ( 0 1

−1 0) (a b
c d) = (1 1

0 1)

S : τ → − 1
τ

T : τ → τ + 1

Modular group Γ
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1 b ! s�

� ' {S, T |S2 = I, (ST )3 = I} (1.1)

S2 = �I , (ST )3 = I . (1.2)

———
Within the WET, the branching ratio of b ! s� is given by [?]

B(B ! Xs�)⇥ 104 =
⇥
3.26� 15.17 C7 � 0.77 C8 + 1.66 C7C8 + 1.36 C70C80 (1.3)

+ 18.03 (C2
7 + C2

70) + 0.20 C2
8 + 0.09 C2

80
⇤
⇥
�
1± 5%

�
,

where again we have absorbed the SM contributions CSM
a

into the constant term. The BSM
contributions of O7 and O70 are particularly large, due to a chiral enhancement of mW/mb

1

14

Modular transformation

• The modular group is defined as the transformation group  
acts on the modulus .

γ
τ

 PSL(2,ℤ) = SL(2,ℤ)/{I, − I}
I : unit matrix

τ → τ′ = γτ = aτ + b
cτ + d

, (a b
c d) ∈ PSL(2,ℤ)

SL(2,ℤ) = {(a b
c d) a, b, c, d ∈ ℤ, ad − bc = 1

• Generators of the modular group are  and .S T

 transformation :S τ → − 1
τ

 transformation :T τ → τ + 1

• Imposing the relation , the finite group, , of 
modular group is constructed.

(T )N = I ΓN

,  ,  ,  Γ2 ≅ S3 Γ3 ≅ A4 Γ4 ≅ S4 Γ5 ≅ A5

(2D lattice)’               (2D lattice)



Modular symmetry

scale

N = 2

Modular group Γ
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S : τ → − 1
τ

T : τ → τ + 1

Quotient group  ΓN ≡ Γ/Γ(N)

2.2 Modular symmetry

The modular group �̄ is the group of linear fractional transformations � acting on the modulus ⌧ ,
belonging to the upper-half complex plane as:

⌧ �! �⌧ =
a⌧ + b

c⌧ + d
, where a, b, c, d 2 Z and ad� bc = 1, Im[⌧ ] > 0 , (4)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,�I} transformation. This modular transformation
is generated by S and T ,

S : ⌧ �! �
1

⌧
, T : ⌧ �! ⌧ + 1 , (5)

which satisfy the following algebraic relations,

S
2 = 1 , (ST )3 = 1 . (6)

We introduce the series of groups �(N), called principal congruence subgroups, where N is the
level 1, 2, 3, . . . . These groups are defined by

�(N) =

⇢✓
a b

c d

◆
2 SL(2,Z) ,

✓
a b

c d

◆
=

✓
1 0
0 1

◆
(modN)

�
. (7)

For N = 2, we define �̄(2) ⌘ �(2)/{I,�I}. Since the element �I does not belong to �(N) for N > 2,
we have �̄(N) = �(N). The quotient groups defined as �N ⌘ �̄/�̄(N) are finite modular groups. In
these finite groups �N , TN = 1 is imposed. The groups �N with N = 2, 3, 4, 5 are isomorphic to S3,
A4, S4 and A5, respectively [12].

Modular forms fi(⌧) of weight k are the holomorphic functions of ⌧ and transform as

fi(⌧) �! (c⌧ + d)k⇢(�)ijfj(⌧) , � 2 G , (8)

under the modular symmetry, where ⇢(�)ij is a unitary matrix under �N .
Under the modular transformation of Eq. (4), chiral superfields  i (i denotes flavors) with weight

�k transform as [136],
 i �! (c⌧ + d)�k

⇢(�)ij j . (9)

We study global SUSY models. The superpotential which is built from matter fields and modular
forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given
modular forms this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter
fields  i with the modular weight �k is given simply by

1

[i(⌧̄ � ⌧)]k

X

i

| i|
2
, (10)

where the superfield and its scalar component are denoted by the same letter, and ⌧̄ = ⌧
⇤ after

taking VEV of ⌧ . The canonical form of the kinetic terms is obtained by changing the normalization
of parameters [17]. The general Kähler potential consistent with the modular symmetry possibly
contains additional terms [137]. However, we consider only the simplest form of the Kähler potential.

For �3 ' A4, the dimension of the linear space Mk(�(3)) of modular forms of weight k is
k + 1 [138–140], i.e., there are three linearly independent modular forms of the lowest non-trivial

weight 2, which form a triplet of the A4 group, Y (2)
3 (⌧) = (Y1(⌧), Y2(⌧), Y3(⌧))T . These modular

forms have been explicitly given [11] in the symmetric base of the A4 generators S and T for the
triplet representation (see Appendix A) in Appendix B.
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Modular symmetry
Superstring theory in 10 dimensions 

4 dimensional theory (SUSY)             symmetry (modular)ΓN

Low scale phenomenology

Compactification

Expectation value of modulus τ 
breaks the symmetry 

 and SUSY breaking 
scales are not determined
ΓN

SUSY breaking terms are invariant (covariant) under modular transformation 
in moduli-mediated SUSY breaking scenario 

We can consider modular invariant SMEFT by supposing modular forms 
to be spurion

 T. Kobayashi, H. Otsuka [2108.02700] 
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Effective theories with  symmetryΓN

Holomorphic functions which transform under modular trans., are called  
 modular form with weight k

A4 modular symmetry

Non-Abelian discrete symmetry  group could be adjusted to family symmetry: 
      The minimum group containing triplet 
      Irreducible representations:  1,   1”,  1’,   3 

A4

 ,   ,  ,  eR μR τR (eL, μL, τL)

chiral superfield with modular weight  transforms as k

modular form

modular form

stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE

4
⌦AQ

4

symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE

4
⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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Y(τe)

15

Modular transformation

chiral superfield transform

 :modular weight−kI, k

 :unitary represe- 
               ntation matrix of 
ρ(γ), ρ(I)(γ)

ΓN

modular form of modular weight k

f(τ) → (cτ + d)kρ(γ)f(τ)

γ ∈ ΓN

Superpotential under the modular  symmetryΓN

S . Ferrara, D, Lust, A . Shapere, S . Theisen, Phys . Lett . B225,4(1989)

W = ∑
n

f(τ)ϕ(I1)ϕ(I2)⋯ϕ(In)

kI1
+ kI2

+ ⋯ + kIn
= k and

ρ × ρ(I1) × ρ(I2) × ⋯ × ρ(In) ∋ 1 of ΓN

ϕ(I) → (cτ + d)−kI ρ(I)(γ)ϕ(I)

 : representation of ϕ(I), f(τ) ΓN
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Effective theories with  symmetryΓN

A4 modular symmetry

Non-Abelian discrete symmetry  group could be adjusted to family symmetry: 
      The minimum group containing triplet 
      Irreducible representations:  1,   1”,  1’,   3 

A4

 ,   ,  ,  eR μR τR (eL, μL, τL)

ℒeff ⊃ Y(τ)ijHϕ(I)ϕ(J)
modular form

modular form

stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE

4
⌦AQ

4

symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE

4
⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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Y(τe)

Automorphy factor 
vanishes if k = kI + kJ

11

Leff is modular invariant if sum of weights satisfy ∑kI=k.

Modular invariant kinetic terms of matters

Automorphy factor
vanishes if k = kI + kJ

Consider

Simplest

Modular forms are explicitly given if weight k is fixed. 

On the other hand, chiral superfields are not modular forms and we have no restriction on the 
possible value of weight kI, a priori. 8



Modular forms fi(τ) of weight k are the holomorphic functions of τ and transform as

fi(τ) −→ (cτ + d)kρ(γ)ijfj(τ) , γ ∈ Γ̄ , (6)

under the modular symmetry, where ρ(γ)ij is a unitary matrix under ΓN .
Under the modular transformation of Eq. (2), chiral superfields ψi (i denotes flavors) with weight

−k transform as [109],
ψi −→ (cτ + d)−kρ(γ)ijψj . (7)

We study global SUSY models. The superpotential which is built from matter fields and modular
forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given
modular forms, this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter
fields ψi with the modular weight −k is given simply by

1

[i(τ̄ − τ)]k
∑

i

|ψi|2, (8)

where the superfield and its scalar component are denoted by the same letter, and τ̄ = τ ∗ after
taking VEV of τ . The canonical form of the kinetic terms is obtained by changing the normalization
of parameters [26]. The general Kähler potential consistent with the modular symmetry possibly
contains additional terms [110]. However, we consider only the simplest form of the Kähler potential.

For Γ3 $ A4, the dimension of the linear space Mk(Γ(3)) of modular forms of weight k is
k + 1 [111–113], i.e., there are three linearly independent modular forms of the lowest non-trivial

weight 2, which form a triplet of the A4 group, Y (2)
3 (τ) = (Y1(τ), Y2(τ), Y3(τ))T . These modular

forms have been explicitly given [20] in the symmetric base of the A4 generators S and T for the
triplet representation as shown in the next subsection.

2.2 Modular forms

The holomorphic and anti-holomorphic modular forms with weight 2 compose the A4 triplet as:

Y (2)
3 (τ) =




Y1(τ)
Y2(τ)
Y3(τ)



 , Y (2)
3 (τ) ≡ Y (2)∗

3 (τ) =




Y ∗
1 (τ)

Y ∗
3 (τ)

Y ∗
2 (τ)



 . (9)

In the representation of the generators S and T for A4 triplet:

S =
1

3




−1 2 2
2 −1 2
2 2 −1



 , T =




1 0 0
0 ω 0
0 0 ω2



 , (10)

where ω = ei
2
3π, modular forms are given explicitly in terms of the Dedekind eta function η(τ) and

its derivative [20]:

Y1(τ) =
i

2π

(
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)
,

Y2(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω2η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
, (11)

Y3(τ) =
−i
π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2η

′((τ + 2)/3)

η((τ + 2)/3)

)
.
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The holomorphic and anti-holomorphic modular forms with weight 2 compose 
the  triplet A4

Those are also expressed in the q expansions:



Y1(τ)
Y2(τ)
Y3(τ)



 =




1 + 12q + 36q2 + 12q3 + . . .
−6q1/3(1 + 7q + 8q2 + . . . )
−18q2/3(1 + 2q + 5q2 + . . . )



 . (12)

2.3 Representation of down-type quarks and charged leptons

Assign the left-handed down-type quarks to A4 triplets 3 and the three right-handed ones to A4

three different singlets. Then, those are expressed as follows:

DL =




dL
sL
bL



 , D̄L =




d̄L
b̄L
s̄L



 , (dc, sc, bc) = (1, 1′′, 1′) , (d̄c, s̄c, b̄c) = (1, 1′, 1′′) . (13)

It is noticed that quarks of second and third families are exchanged each other in d̄i. The weight of
DL and D̄L, −kI , are −2 and 2, respectively. On the other hand, −kI = 0 for Dc and D̄c.

The charged leptons are like down-type quarks as:

EL =




eL
µL

τL



 , ĒL =




ēL
τ̄L
µ̄L



 , (ec, µc, τ c) = (1, 1′′, 1′) , (ēc, τ̄ c, µ̄c) = (1, 1′′, 1′) . (14)

The weight of EL and ĒL, −kI , are also −2 and and 2, respectively. On the other hand, −kI = 0 for
Ec and Ēc.

Most of modular flavor models, which have been studied, are supersymmetric models. In the
following sections, we study models below the supersymmetry breaking scale. We assume that the
light modes are exactly the same as the SM with two doublet Higgs models.

3 SMEFT realization of four fermion operators in A4 mod-
ular symmetry

We study the modular A4 flavor symmetry. Although most of modular flavor models are supersym-
metric models, here we study the modular A4 flavor model below the supersymmetry breaking scale.
We assume that the light matter content is one of the SM. We write down 4-fermion operators as
well as dipole operators in terms of modular forms Y (τ). We also follow the Ansatz (1) that those
higher-dimensional operators are related with 3-point couplings, e.g. Yukawa couplings with Higgs
fields. Here, the higher-dimensional operators are supposed to be generated by integrating out heavy
superpartners, massive gauge bosons and stringy modes. We have already many modular flavor sym-
metric models, which lead to realistic quark and lepton mass matrices separately. However, when we
use the common value of the modulus τ for both quark and lepton sectors, the models are severely
constrained and very difficult to realize all the experimental values of quark and lepton masses and
their mixing angles at the same time. In order to cover many modular flavor models, we assume
that the modular A4 flavor symmetry in the lepton sector is independent of the A4 symmetry in the
quark sector, i.e., AE

4 ⊗ AQ
4 symmetry. They have two independent moduli, τq and τe for the quark

sector and the lepton sector, respectively. Such a setup can be realized through the compactification,

5

 q = e2πiτ

9

Modular forms with higher weights k=4, 6 ... are constructed by them 

F. Feruglio [1706.08749] 

Yi (i=1,2,3) is a function of the modulus  τ

Once  is determined, the Yukawa is fixedτ

A4 modular symmetry



Fixed point for τ

  (  symmetry)τ = ω ST

  (  symmetry)τ = i S

ω = −1 + i 3
2

  (  symmetry)τ = i∞ T
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3   Modular A4 invariance as  flavor symmetry 

A4 modular  group ( �3  ).�

 There are 3 linealy independent modular forms for weight 2 . 

Taking T3=1, we get�

A4 triplet !�

�N�

weight 2 is minimal one for non-trival representation of A4 .�

# of modular forms is k+1 (for N=3)    k: weight�
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4  Flavor mixing at nearby fixed points  

 principal valueτ

At exact fixed point, CP is not violated
→ need small deviation from these point :   (fixed point)  τ = +ϵ

phenomenoligiv all successful

 q = e2πiτ

phenomenologically  ,(ϵ) ∼ 10−2
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from the view point of the vacuum stability study

A4 modular symmetry



String Ansatz

String compactifications leads to 4-dim low energy field theories with 
the specific structure

 T. Kobayashi, H. Otsuka [2108.02700] 

Modular symmetry in the SMEFT

neutrino mixing angles and the Dirac CP phase was given in the simple lepton mass matrices with
the A4 modular symmetry [26]. The Double Covering groups T0 [32, 33] and S 0

4
[34, 35] were also

realized in the modular symmetry. Furthermore, phenomenological studies have been developed
in many works [36–101].

Superstring theory is a promising candidate for the unified theory including gravity. Various
string compactifications lead to four-dimensional low energy field theories with the specific struc-
ture, where 4-point couplings y(4)

ijk`
of matter fields can be written by a product of 3-point couplings

y(3)
ijm

of matter fields,

y(4)
ijk`

=
X

m

y(3)
ijm

y(3)
mk`

, (1.1)

up to an overall factor, where the modes corresponding to m may be light or heavy modes.
Furthermore, n-point couplings y(n) can also be written by products of 3-point couplings y(3), i.e.,
y(n) = (y(3))n�2. Thus, the symmetries in 3-point couplings are still symmetries even for higher-
dimensional operators, and the flavor structures of higher-dimensional operators are controlled by
3-point couplings. This structure in the string-derived low-energy e↵ective field theory meets the
MFV hypothesis [102]. Note that the string EFTs satisfy the relation (1.1) at the compactification
scale or the string scale, but it holds at the low-energy scale. This is because new operators
appearing through the vacuum expectation value (VEV) of scalar fields and integrating out heavy
states keep the relation (1.1).

In addition, these couplings in the string-derived e↵ective field theory depend on moduli, which
represent geometrical characters of string compact spaces such as size and shape. When we ig-
nore the dynamic of moduli fields, these moduli-dependent couplings behave as spurions. Then,
the geometrical symmetry, under which moduli transform non-trivially, would be important from
the viewpoint of the MFV, although Yukawa spurions transform (3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and
(1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q ⌦ U(3)U ⌦ U(3)D ⌦ U(3)L ⌦ U(3)E flavor symmetric MFV
scenario, where {Q,U,D, L,E} denote the five independent types of the SM fermions. The U(2)5

flavor symmetric scenario can also be realized in string models due to the fact that matter Yukawa
couplings have rank 1 at the leading order [103]. The modular symmetry is the geometrical sym-
metry, which changes the basis of cycles of the torus T 2 as well as the orbifold T 2/Z2.1. Moreover,
zero-modes transform non-trivially under the modular symmetry (see, e.g., for heterotic string
theory on orbifolds Ref. [105] and for magnetized brane models Ref. [106]). That is, the modular
symmetry corresponds to the flavor symmetry in the low-energy e↵ective field theory. Yukawa
couplings as well as other couplings transform non-trivially under the modular symmetry, because
these couplings depend on the modulus. Calabi-Yau threefolds have many moduli, and their
geometrical symmetries are symplectic modular symmetries [107, 108]. Their phenomenological
implications were studied in Refs. [109, 110]. Hence, these observations strongly support that fla-
vor structures of higher-dimensional operators as well as Yukawa couplings in the string EFTs are
determined by the modular flavor symmetry.

A drawback of the MFV hypothesis is that it does not allow us to define a clear power-counting
in the SMEFT. This is because one of the breaking term, namely Yukawa coupling Yt, is large.
It is therefore not obvious why one should not consider more powers of Yt in the counting of

1The possible discrete modular symmetries on higher-dimensional toroidal orbifolds were classified in the context
of Type IIB string theory [104].
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Appendix

A SMEFT operators

Class 5–7: Fermion Bilinears

(L̄R)

5: ψ2H3+ h.c. 6: ψ2XH+ h.c.

("̄e) QeH (H†H)("̄perH) QeW ("̄pσµνer)τ IHW I
µν

QeB ("̄pσµνer)HBµν

(q̄u) QuH (H†H)(q̄purH̃) QuG (q̄pσµνTAur)H̃GA
µν

QuW (q̄pσµνur)τ IH̃W I
µν

QuB (q̄pσµνur)H̃Bµν

(q̄d) QdH (H†H)(q̄pdrH) QdG (q̄pσµνTAdr)HGA
µν

QdW (q̄pσµνdr)τ IHW I
µν

QdB (q̄pσµνdr)HBµν

7: ψ2H2D

(L̄L) (R̄R) (R̄R′)

lepton Q(1)
H" (H†i

←→
D µH)("̄pγµ"r) QHe (H†i

←→
D µH)(ēpγµer)

Q(3)
H" (H†i

←→
D I

µH)("̄pτ Iγµ"r)

quark Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr) QHu (H†i

←→
D µH)(ūpγµur) QHud + h.c. i(H̃†DµH)(ūpγµdr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτ Iγµqr) QHd (H†i
←→
D µH)(d̄pγµdr)

Class 8: Fermion Quadrilinears

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

semileptonic Q(1)
"q ("̄pγµ"r)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Q"u ("̄pγµ"r)(ūsγµut)

Q(3)
"q ("̄pγµτ I"r)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q"d ("̄pγµ"r)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

4-quark Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(8)

qd (q̄pγµTAqr)(d̄sγµTAdt)

4-lepton Q"" ("̄pγµ"r)("̄sγµ"t) Qee (ēpγµer)(ēsγµet) Q"e ("̄pγµ"r)(ēsγµet)

(L̄R)(R̄L) + h.c. (L̄R)(L̄R) + h.c.

semi-leptonic Q"edq ("̄jper)(d̄sqtj) Q(1)
"equ ("̄jper)εjk(q̄

k
sut)

4-quark Q(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q(3)
"equ ("̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 16: List of all fermionic SMEFT operators in the Warsaw basis [2]. The division in classes is
adopted from Ref. [3]. The p, r, s, t are flavor index, and j, k stand for SU(2) index. The operator
classes 1–4 without fermion fields are irrelevant in this paper, and not listed here.
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D µH)(ūpγµur) QHud + h.c. i(H̃†DµH)(ūpγµdr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτ Iγµqr) QHd (H†i
←→
D µH)(d̄pγµdr)

Class 8: Fermion Quadrilinears

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

semileptonic Q(1)
"q ("̄pγµ"r)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Q"u ("̄pγµ"r)(ūsγµut)

Q(3)
"q ("̄pγµτ I"r)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q"d ("̄pγµ"r)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

4-quark Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(8)

qd (q̄pγµTAqr)(d̄sγµTAdt)

4-lepton Q"" ("̄pγµ"r)("̄sγµ"t) Qee (ēpγµer)(ēsγµet) Q"e ("̄pγµ"r)(ēsγµet)

(L̄R)(R̄L) + h.c. (L̄R)(L̄R) + h.c.

semi-leptonic Q"edq ("̄jper)(d̄sqtj) Q(1)
"equ ("̄jper)εjk(q̄

k
sut)

4-quark Q(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q(3)
"equ ("̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 16: List of all fermionic SMEFT operators in the Warsaw basis [2]. The division in classes is
adopted from Ref. [3]. The p, r, s, t are flavor index, and j, k stand for SU(2) index. The operator
classes 1–4 without fermion fields are irrelevant in this paper, and not listed here.
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not invariant both
  and modularA4

 :     A4 {1,1′ ′ ,1′ } ⊗ 3

 structure in the modular symmetry(L̄R)

[L̄RLL]
※   structure  is omittedγμ Γ
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stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE

4
⌦AQ

4

symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE

4
⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,
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2—> -2?

  
        

Y(τ) ⊗ LL =
Y1(τ)
Y2(τ)
Y3(τ)

3

⊗ (
eL
μL
τL

)
3

= (Y1eL + Y2τL + Y3μL)1 + (Y3τL + Y1μL + Y2eL)1′ + (Y2μL + Y1τL + Y3eL)1′ ′ 
+(⋯)3s + (⋯)3a

 {1,1′ ′ ,1′ } ⊗ 3 ⊗ 3
 = 1 ⊕ 1′ ′ ⊕ 1′ ⊕ 3s ⊕ 3a

decomposition

  and 1 ⊗ 1 = 1 1′ ⊗ 1′ ′ = 1
(i)

(ii)
(i)

 multiplication ruleA4

(ii) L̄R ⊗ (Y(τ) ⊗ LL)

    

    

= ēR ⊗ (Y(τ) ⊗ LL)
+μ̄R ⊗ (Y(τ) ⊗ LL)
+τ̄R ⊗ (Y(τ) ⊗ LL)

 1 ⊗ (1 ⊕ 1′ ⊕ 1′ ′ ) → 1 ⊗ 1

    

    

= ēR ⊗ (Y1eL + Y2τL + Y3μL)1

+μ̄R ⊗ (Y2μL + Y1τL + Y3eL)1′ ′ 

+τ̄R ⊗ (Y3τL + Y1μL + Y2eL)1′ 

 1′ ⊗ (1 ⊕ 1′ ⊕ 1′ ′ ) → 1′ ⊗ 1′ ′ 

 1′ ′ ⊗ (1 ⊕ 1′ ⊕ 1′ ′ ) → 1′ ′ ⊗ 1′ 
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B Unitary transformation of S and ST and Mass matrix

The mass matrix is transformed by the unitary transformation, which transforms the generator S
and ST . We discuss details at the fixed points τ = i and τ = ω.

B.1 Diagonal base of S for A4 triplet

The generators of A4 group for the triplet are:

S =
1

3




−1 2 2
2 −1 2
2 2 −1



 , T =




1 0 0
0 ω 0
0 0 ω2



 , (115)

where ω = ei
2
3π for a triplet. The eigenvalues of S is (1 ,−1 ,−1). This is the diagonal base of T .

In order to present the mass matrices in the diagonal base of S, we move to the diagonal base of
S as follows:

US1 S U †
S1 =




−1 0 0
0 1 0
0 0 −1



 , US2 S U †
S2 =




1 0 0
0 −1 0
0 0 −1



 , US3 S U †
S3 =




−1 0 0
0 −1 0
0 0 1



 , (116)

where

USi ≡ Pi





2√
6
− 1√

6
− 1√

6
1√
3

1√
3

1√
3

0 − 1√
2

1√
2



 , P1 =




1 0 0
0 1 0
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Then, the generator T is not anymore diagonal. However, the eigenvalue −1 of S is degenerated,
there is a freedom of the rotation between corresponding rows and between columns.
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M̂RL = MRLU
†
Si , (118)
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2 = {I, S}, which is realized at the
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RLM̂RL , S
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P T
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M̂RL = MRLU
†
Si , (118)
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2 = {I, S}, which is realized at the
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[
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The generators of A4 triplet

Y(τe)



 structure in the modular symmetry(L̄R)

and leptons have been discussed intensively in these years. Phenomenological studies of the lepton
flavors have been done based on A4 [25–27], S4 [28–30] and A5 [31]. A clear prediction of the neutrino
mixing angles and the Dirac CP phase was given in the simple lepton mass matrices with the A4

modular symmetry [26]. The Double Covering groups T′ [32, 33] and S ′
4 [34, 35] were also realized

in the modular symmetry. Furthermore, phenomenological studies have been developed in many
works [36–86].

Superstring theory is a promising candidate for the unified theory including gravity. Various
string compactifications lead to four-dimensional low energy field theories with the specific structure,
where 4-point couplings y(4)ijk! of matter fields can be written by a product of 3-point couplings y(3)ijm

of matter fields,
y(4)ijk! =

∑

m

y(3)ijmy
(3)
mk!, (1)

up to an overall factor, where the modes corresponding to m may be light or heavy modes. Fur-
thermore, n-point couplings y(n) can also be written by products of 3-point couplings y(3), i.e.,
y(n) = (y(3))n−2. Thus, the symmetries in 3-point couplings are still symmetries even for higher-
dimensional operators, and the flavor structures of higher-dimensional operators are controlled by
3-point couplings. This structure in the string-derived low-energy effective field theory meets the
MFV hypothesis [90]. Note that the string EFTs satisfy the relation (1) at the compactification
scale or the string scale, but it holds at the low-energy scale. This is because new operators appear-
ing through the vacuum expectation value (VEV) of scalar fields and integrating out heavy states
keep the relation (1).

In addition, these couplings in the string-derived effective field theory depend on moduli, which
represent geometrical characters of string compact spaces such as size and shape. When we ignore the
dynamic of moduli fields, these moduli-dependent couplings behave as spurions. Then, the geomet-
rical symmetry, under which moduli transform non-trivially, would be important from the viewpoint
of the MFV, although Yukawa spurions transform (3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the
U(3)5 = U(3)L⊗U(3)Q⊗U(3)E⊗U(3)U ⊗U(3)D flavor symmetric MFV scenario. The U(2)5 flavor
symmetric scenario can also be realized in string models due to the fact that matter Yukawa couplings
have rank 1 at the leading order [91]. The modular symmetry is the geometrical symmetry, which
changes the basis of cycles of the torus T 2 as well as the orbifold T 2/Z2.1 Moreover, zero-modes trans-
form non-trivially under the modular symmetry. (See, e.g., for heterotic string theory on orbifolds
Ref. [93] and for magnetized brane models Ref. [94]). That is, the modular symmetry corresponds to
the flavor symmetry in the low-energy effective field theory. Yukawa couplings as well as other cou-
plings transform non-trivially under the modular symmetry, because these couplings depend on the
modulus. Calabi-Yau threefolds have many moduli, and their geometrical symmetries are symplectic
modular symmetries [95, 96]. Their phenomenological implications were studied in Refs. [97, 98].
Hence, these observations strongly support that flavor structures of higher-dimensional operators as
well as Yukawa couplings in the string EFTs are determined by the modular flavor symmetry.

A drawback of the MFV hypothesis is that it does not allow us to define a clear power-counting
in the SMEFT. This is because one of the breaking term, namely Yukawa coupling Yt, is large. It is
therefore not obvious why one should not consider more powers of Yt in the counting of independent
operators. On the other hand, it defines a clear power counting in the modular symmetry due to the
modular weights.

1The possible discrete modular symmetries on higher-dimensional toroidal orbifolds were classified in the context
of Type IIB string theory [92].
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[L̄R ⊗ Y(τ) ⊗ LL]1 = αe ēR ⊗ (Y1eL + Y2τL + Y3μL)1 +βe μ̄R ⊗ (Y2μL + Y1τL + Y3eL)1′ ′ 

+γe τ̄R ⊗ (Y3τL + Y1μL + Y2eL)1′ 

= (ēR, μ̄R, τ̄R)
αe 0 0
0 βe 0
0 0 γe

Y1(τ) Y3(τ) Y2(τ)
Y2(τ) Y1(τ) Y3(τ)
Y3(τ) Y2(τ) Y1(τ) (

eL
μL
τL

)

                   Me = vd

αe(m) 0 0
0 βe(m) 0
0 0 γe(m)

Y1(τ) Y3(τ) Y2(τ)
Y2(τ) Y1(τ) Y3(τ)
Y3(τ) Y2(τ) Y1(τ)

RL

Same structure with mass matrix : 

It is useful to compare them with the down-type quark mass matrix Md in the assignment of Table
1. The mass matrix is given in terms of weight 2 modular forms as:

Md = vd




αd(m) 0 0
0 βd(m) 0
0 0 γd(m)








Y1(τq) Y3(τq) Y2(τq)
Y2(τq) Y1(τq) Y3(τq)
Y3(τq) Y2(τq) Y1(τq)





RL

, (4.4)

where the VEV of the Higgs field Hd is denoted by vd. Parameters αd(m), βd(m), γd(m) can be taken
to be real constants. Since the bilinear operators appear in four-field operators, it is reasonable
to assume

αd = cαd(m), βd = cβd(m), γd = cγd(m), (4.5)

from the viewpoint of the Ansatz Eq. (1.1), where the mode m may correspond to Hd. Here, c
is a common constant. Hereafter , we set c = 1 for simplicity. In this case, the matrix structure
of bilinear operators [ D̄RΓDL ] appearing four-field operators is exactly the same as the mass
matrix. Obviously, the bilinear operator matrix is diagonal in the basis for mass eigenstates. The
FC processes such b→ s, b→ d, s→ d never happen. Hence, we obtain the very clear results in
the modular symmetric SMEFT with the Ansatz Eq. (1.1).

If the relation is violated, the situation would change drastically. When such violations are
small such as

αd − αd(m) # αd, βd − βd(m) # βd, γd − γd(m) # γd, (4.6)

FC processes are still suppressed.
In what follows, we study larger violations such that αd, βd, and γd are of O(αd(m)), O(βd(m)),

and O(γd(m)), respectively, but they are different by factors from αd(m), βd(m), and γd(m), i.e.

αd − αd(m) ∼ αd, βd − βd(m) ∼ βd, γd − γd(m) ∼ γd. (4.7)

Unknown modes m in Eq. (1.1) may contribute to such violations.
For the charged lepton operators [ ĒRΓEL ] and [ ĒLΓER ], we obtain the decompositions by

replacing τq, αd, βd and γd with τe, αe, βe and γe in Eq. (4.1). As in the down-sector quarks, the FC
processes such as µ→ e, τ → e, and τ → µ never occur when we assume αe = αe(m), βe = βe(m),
and γe = γe(m), where αe(m), βe(m), and γe(m) are parameters in the charged lepton mass matrix as
shown in Appendix B. This is the clear result in the modular symmetric SMEFT with the Ansatz
Eq. (1.1).

On the other hand, violations of the above parameter relation may lead to the FC processes.
In what follows, we study such violations such as

αe − αe(m) ∼ αe, βe − βe(m) ∼ βe, γe − γe(m) ∼ γe. (4.8)

The A4 flavor coefficients are given in Table 2 for relevant bilinear operators of down-type
quarks and charged leptons, where the overall strength of the NP effect is not included. 3 Hereafter,
without specifying them, we denote αd,e(m), βd,e(m), and γd,e(m) by αd,e, βd,e, and γd,e, too, because
they are the same orders.

3The overall strength of the NP effect is omitted in coefficients of other Tables.
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flavors have been done based on A4 [25–27], S4 [28–30] and A5 [31]. A clear prediction of the neutrino
mixing angles and the Dirac CP phase was given in the simple lepton mass matrices with the A4
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in the modular symmetry. Furthermore, phenomenological studies have been developed in many
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up to an overall factor, where the modes corresponding to m may be light or heavy modes. Fur-
thermore, n-point couplings y(n) can also be written by products of 3-point couplings y(3), i.e.,
y(n) = (y(3))n−2. Thus, the symmetries in 3-point couplings are still symmetries even for higher-
dimensional operators, and the flavor structures of higher-dimensional operators are controlled by
3-point couplings. This structure in the string-derived low-energy effective field theory meets the
MFV hypothesis [90]. Note that the string EFTs satisfy the relation (1) at the compactification
scale or the string scale, but it holds at the low-energy scale. This is because new operators appear-
ing through the vacuum expectation value (VEV) of scalar fields and integrating out heavy states
keep the relation (1).
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changes the basis of cycles of the torus T 2 as well as the orbifold T 2/Z2.1 Moreover, zero-modes trans-
form non-trivially under the modular symmetry. (See, e.g., for heterotic string theory on orbifolds
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the flavor symmetry in the low-energy effective field theory. Yukawa couplings as well as other cou-
plings transform non-trivially under the modular symmetry, because these couplings depend on the
modulus. Calabi-Yau threefolds have many moduli, and their geometrical symmetries are symplectic
modular symmetries [95, 96]. Their phenomenological implications were studied in Refs. [97, 98].
Hence, these observations strongly support that flavor structures of higher-dimensional operators as
well as Yukawa couplings in the string EFTs are determined by the modular flavor symmetry.

A drawback of the MFV hypothesis is that it does not allow us to define a clear power-counting
in the SMEFT. This is because one of the breaking term, namely Yukawa coupling Yt, is large. It is
therefore not obvious why one should not consider more powers of Yt in the counting of independent
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It is useful to compare them with the down-type quark mass matrix Md in the assignment of Table
1. The mass matrix is given in terms of weight 2 modular forms as:
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where the VEV of the Higgs field Hd is denoted by vd. Parameters αd(m), βd(m), γd(m) can be taken
to be real constants. Since the bilinear operators appear in four-field operators, it is reasonable
to assume

αd = cαd(m), βd = cβd(m), γd = cγd(m), (4.5)

from the viewpoint of the Ansatz Eq. (1.1), where the mode m may correspond to Hd. Here, c
is a common constant. Hereafter , we set c = 1 for simplicity. In this case, the matrix structure
of bilinear operators [ D̄RΓDL ] appearing four-field operators is exactly the same as the mass
matrix. Obviously, the bilinear operator matrix is diagonal in the basis for mass eigenstates. The
FC processes such b→ s, b→ d, s→ d never happen. Hence, we obtain the very clear results in
the modular symmetric SMEFT with the Ansatz Eq. (1.1).

If the relation is violated, the situation would change drastically. When such violations are
small such as

αd − αd(m) # αd, βd − βd(m) # βd, γd − γd(m) # γd, (4.6)

FC processes are still suppressed.
In what follows, we study larger violations such that αd, βd, and γd are of O(αd(m)), O(βd(m)),

and O(γd(m)), respectively, but they are different by factors from αd(m), βd(m), and γd(m), i.e.

αd − αd(m) ∼ αd, βd − βd(m) ∼ βd, γd − γd(m) ∼ γd. (4.7)

Unknown modes m in Eq. (1.1) may contribute to such violations.
For the charged lepton operators [ ĒRΓEL ] and [ ĒLΓER ], we obtain the decompositions by

replacing τq, αd, βd and γd with τe, αe, βe and γe in Eq. (4.1). As in the down-sector quarks, the FC
processes such as µ→ e, τ → e, and τ → µ never occur when we assume αe = αe(m), βe = βe(m),
and γe = γe(m), where αe(m), βe(m), and γe(m) are parameters in the charged lepton mass matrix as
shown in Appendix B. This is the clear result in the modular symmetric SMEFT with the Ansatz
Eq. (1.1).

On the other hand, violations of the above parameter relation may lead to the FC processes.
In what follows, we study such violations such as

αe − αe(m) ∼ αe, βe − βe(m) ∼ βe, γe − γe(m) ∼ γe. (4.8)

The A4 flavor coefficients are given in Table 2 for relevant bilinear operators of down-type
quarks and charged leptons, where the overall strength of the NP effect is not included. 3 Hereafter,
without specifying them, we denote αd,e(m), βd,e(m), and γd,e(m) by αd,e, βd,e, and γd,e, too, because
they are the same orders.

3The overall strength of the NP effect is omitted in coefficients of other Tables.
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of bilinear operators [ D̄RΓDL ] appearing four-field operators is exactly the same as the mass
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the modular symmetric SMEFT with the Ansatz Eq. (1.1).
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small such as
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For the charged lepton operators [ ĒRΓEL ] and [ ĒLΓER ], we obtain the decompositions by

replacing τq, αd, βd and γd with τe, αe, βe and γe in Eq. (4.1). As in the down-sector quarks, the FC
processes such as µ→ e, τ → e, and τ → µ never occur when we assume αe = αe(m), βe = βe(m),
and γe = γe(m), where αe(m), βe(m), and γe(m) are parameters in the charged lepton mass matrix as
shown in Appendix B. This is the clear result in the modular symmetric SMEFT with the Ansatz
Eq. (1.1).

On the other hand, violations of the above parameter relation may lead to the FC processes.
In what follows, we study such violations such as

αe − αe(m) ∼ αe, βe − βe(m) ∼ βe, γe − γe(m) ∼ γe. (4.8)

The A4 flavor coefficients are given in Table 2 for relevant bilinear operators of down-type
quarks and charged leptons, where the overall strength of the NP effect is not included. 3 Hereafter,
without specifying them, we denote αd,e(m), βd,e(m), and γd,e(m) by αd,e, βd,e, and γd,e, too, because
they are the same orders.

3The overall strength of the NP effect is omitted in coefficients of other Tables.
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Suppose unknown mode contribution being small and couplings are Higgs-like 

value of Eq.(A.2), the real part of the Wilson coe�cient of the muon C
0
e�
µµ

has been obtained as

seen in Eq.(A.4) [19]. Now, we can estimate the magnitude of the electron (g � 2)e anomaly by

using the relation in Eq.(4.1) as:

�ae =
4me

e

v
p
2

1

⇤2
Re [C 0

e�
ee

] ' 5.8⇥ 10�14
, (4.2)

where ⇤ denotes a certain mass scale of NP. It is easily seen that �ae and �aµ are proportional

to the lepton masses squared. This result is agreement with the naive scaling �a` / m
2
`
[161].

In the electron anomalous magnetic moment, the experiments [162] give

a
Exp
e

= 1159 652 180.73(28)⇥ 10�12
, (4.3)

while the SM prediction crucially depends on the input value for the fine-structure constant ↵.

Two latest determination [163,164] based on Cesium and Rubidium atomic recoils di↵er by more

than 5�. Those observations lead to the di↵erence from the SM prediction

�a
Cs

e
= a

Exp
e

� a
SM,CS
e

= (�8.8± 3.6)⇥ 10�13
,

�a
Rb

e
= a

Exp
e

� a
SM,Rb
e

= (4.8± 3.0)⇥ 10�13
. (4.4)

Our predicted value is small of one order compared with the present observed one at present. We

wait for the precise observation of the fine structure constant to test our framework.

4.2 (g � 2)µ and µ ! e�

The NP in the LFV process is severely constrained by the experimental bound B(µ+
! e

+
�) <

4.2 ⇥ 10�13 in the MEG experiment [165]. We can discuss the correlation between the anomaly

of the muon (g � 2)µ and the LFV process µ ! e� by using the Wilson coe�cients in Eqs.(3.18)

and (3.19). The ratio is given as:

������

C
0
e�
eµ

C 0
e�
µµ

������
=

�̃e

↵̃e

�����1�
↵̃e

↵̃e(m)

�̃e(m)

�̃e

����� . (4.5)

Let us introduce small parameters �↵, �� and �� as follows:

�̃e

�̃e(m)

=
�̃e(m) + c�

�̃e(m)

= 1 +
c�

�̃e(m)

⌘ 1 + �� ,

↵̃e

↵̃e(m)
=

↵̃e(m) + c↵

↵̃e(m)
= 1 +

c↵

↵̃e(m)
⌘ 1 + �↵ ,

�̃e

�̃e(m)
=

�̃e(m) + c�

�̃e(m)
= 1 +

c�

�̃e(m)
⌘ 1 + �� , (4.6)
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δ’s are very small 
 



Strategy
 write down fermionic SMEFT operator so as to be invariant at   

 and modular symmetryA4

  (  symmetry)τ = ω ST
  (  symmetry)τ = i S

  (  symmetry)τ = i∞ T

 diagonalize the mass matrix and move to mass eigenstate basis

 pheno. study

In this talk

focus on  bilinear structure in lepton sector(L̄R)

 & Lepton flavor violation(g − 2)e,μ

focus on  caseτ = i

 expand modular forms  at three fixed point, and then include 
small deviation :  (fixed point)  

Y(τ)
τ = +ϵ
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at  (  symmetry); Diagonalizationτ = i S

29

Mass matrix of charged leptons at nearby τ= i

Results of  structure in interaction basis(L̄R)
R̄L

L̄R

s̄R�bL
s̄L�bR

d̄R�bL
d̄L�bR

d̄R�sL
d̄L�sR

µ̄R�⌧L
µ̄L�⌧R

ēR�⌧L
ēL�⌧R

ēR�µL

ēL�µR

ēR�eL
ēL�eR

µ̄R�µL

µ̄L�µR

Coe↵.
�d Y3(⌧q)
�d Y

⇤
2
(⌧q)

↵d Y2(⌧q)
�d Y

⇤
3
(⌧q)

↵d Y3(⌧q)
�̃d Y

⇤
2
(⌧q)

�e Y3(⌧e)
�e Y

⇤
2
(⌧e)

↵e Y2(⌧e)
�e Y

⇤
3
(⌧e)

↵e Y3(⌧e)
�e Y

⇤
2
(⌧e)

↵e Y1(⌧e)
↵e Y

⇤
1
(⌧e)

�e Y1(⌧e)
�e Y

⇤
1
(⌧e)

Table 2: A4 flavor coe�cients of the bilinear operators of down-type quarks and charged leptons.

Therefore, the flavor structure of the these operators is predicted if the modulus ⌧q,e is fixed. It
is noticed that above operators are given in the flavor base. In order to move the mass eigenstate
of the left-handed quarks and leptons, we must fix the modulus ⌧q,e. The value of ⌧q,e depends
on models, for example, Eqs. (B.1) and (B.2). The interesting value of ⌧q,e is fixed points of the
modulus in the fundamental domain of SL(2,Z) since the moduli stabilization is realized in a
controlled way at nearby fixed points [123, 124]. Furthermore, the fixed points are statistically
favored in the string landscape [125]. We discuss the phenomenology at nearby fixed points in the
next subsection.

4.2 Diagonal matrix M †

E
ME and M †

q
Mq at fixed points

Residual symmetries arise whenever the VEV of the modulus ⌧ breaks the modular group � only
partially. Here and in what follows, we denote ⌧ = ⌧q,e unless we specify it. Fixed points of
modulus are the case. There are only 2 inequivalent finite points in the fundamental domain of �,
namely, ⌧ = i and ⌧ = ! = �1/2+ i

p
3/2. The first point is invariant under the S transformation

⌧ = �1/⌧ . In the case of A4 symmetry, the subgroup ZS

2
= {I, S} is preserved at ⌧ = i. The

second point is the left cusp in the fundamental domain of the modular group, which is invariant
under the ST transformation ⌧ = �1/(⌧+1). Indeed, ZST

3
= {I, ST, (ST )2} is one of subgroups of

A4 group. The right cusp at ⌧ = �!2 = 1/2+ i
p
3/2 is related to ⌧ = ! by the T transformation.

There is also infinite point ⌧ = i1, in which the subgroup ZT

3
= {I, T, T 2

} of A4 is preserved. We
summarize at three cases of the transformation:

S invariant : ⌧ = i , ST invariant : ⌧ = ! , T invariant : ⌧ = i1 . (4.9)

If a residual symmetry of S and T in A4 is preserved in mass matrices of leptons and quarks,
we have commutation relations between the mass matrices and the generator G ⌘ S, T, ST as:

[M †
RL

MRL, G] = 0 , (4.10)

where MRL denotes the mass matrix of charged leptons and quarks, ME and Mq (q = u, d).
Then the mass matrices M †

E
ME and M †

q
Mq could be diagonal in the diagonal basis of G at the

fixed points. Therefore, the hierarchical structures of flavor mixing are easily realized near those
fixed points.
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R̄L
L̄R

s̄RΓbL
s̄LΓbR

d̄RΓbL
d̄LΓbR

d̄RΓsL
d̄LΓsR

µ̄RΓτL
µ̄LΓτR

ēRΓτL
ēLΓτR

ēRΓµL
ēLΓµR

ēRΓeL
ēLΓeR

µ̄RΓµL
µ̄LΓµR

Coeff.
βd Y3(τq)
γd Y ∗

2 (τq)
αd Y2(τq)
γd Y ∗

3 (τq)
αd Y3(τq)
β̃d Y ∗

2 (τq)
βe Y3(τe)
γe Y ∗

2 (τe)
αe Y2(τe)
γe Y ∗

3 (τe)
αe Y3(τe)
βe Y ∗

2 (τe)
αe Y1(τe)
αe Y ∗

1 (τe)
βe Y1(τe)
βe Y ∗

1 (τe)

Table 2: A4 flavor coefficients of the bilinear operators of down-type quarks and charged leptons.

Therefore, the flavor structure of the these operators is predicted if the modulus τq,e is fixed. It
is noticed that above operators are given in the flavor base. In order to move the mass eigenstate
of the left-handed quarks and leptons, we must fix the modulus τq,e. The value of τq,e depends
on models, for example, Eqs. (B.1) and (B.2). The interesting value of τq,e is fixed points of the
modulus in the fundamental domain of SL(2,Z) since the moduli stabilization is realized in a
controlled way at nearby fixed points [123, 124]. Furthermore, the fixed points are statistically
favored in the string landscape [125]. We discuss the phenomenology at nearby fixed points in the
next subsection.

4.2 Diagonal matrix M †
EME and M †

qMq at fixed points

Residual symmetries arise whenever the VEV of the modulus τ breaks the modular group Γ only
partially. Here and in what follows, we denote τ = τq,e unless we specify it. Fixed points of
modulus are the case. There are only 2 inequivalent finite points in the fundamental domain of Γ,
namely, τ = i and τ = ω = −1/2+ i

√
3/2. The first point is invariant under the S transformation

τ = −1/τ . In the case of A4 symmetry, the subgroup ZS
2 = {I, S} is preserved at τ = i. The

second point is the left cusp in the fundamental domain of the modular group, which is invariant
under the ST transformation τ = −1/(τ+1). Indeed, ZST

3 = {I, ST, (ST )2} is one of subgroups of
A4 group. The right cusp at τ = −ω2 = 1/2+ i

√
3/2 is related to τ = ω by the T transformation.

There is also infinite point τ = i∞, in which the subgroup ZT
3 = {I, T, T 2} of A4 is preserved. We

summarize at three cases of the transformation:

S invariant : τ = i , ST invariant : τ = ω , T invariant : τ = i∞ . (4.9)

If a residual symmetry of S and T in A4 is preserved in mass matrices of leptons and quarks,
we have commutation relations between the mass matrices and the generator G ≡ S, T, ST as:

[M †
RLMRL, G] = 0 , (4.10)

where MRL denotes the mass matrix of charged leptons and quarks, ME and Mq (q = u, d).
Then the mass matrices M †

EME and M †
qMq could be diagonal in the diagonal basis of G at the

fixed points. Therefore, the hierarchical structures of flavor mixing are easily realized near those
fixed points.
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Insert holomorphic modular forms of weight 2 at τ = i

If a residual symmetry of S and T in A4 is preserved in mass matrices of leptons and quarks, we
have commutation relations between the mass matrices and the generator G ≡ S, T, ST as:

[M †
RLMRL, G] = 0 , (24)

where MRL denotes the mass matrix of charged leptons and quarks, ME and Mq (q = u, d).
Then the mass matrices M †

EME and M †
qMq could be diagonal in the diagonal basis of G at the

fixed points. Therefore, the hierarchical structures of flavor mixing are easily realized near those
fixed points.

4.2.1 Mass matrix and LR and RL operators at the fixed point τ = i

At τ = i, holomorphic and anti-holomorphic modular forms of weight 2 are given as:

Yq(τ = i) = Y1(i)




1

1−
√
3

−2 +
√
3



 , Y ∗
q (τ = i) = Y1(i)




1

−2 +
√
3

1−
√
3



 .

Ye(τ = i) = Y1(i)




1

1−
√
3

−2 +
√
3



 , Ye(τ = i) = Y1(i)




1

−2 +
√
3

1−
√
3



 . (25)

The left handed quarks and charged lepton fields are transformed as:

DL → DS
L ≡ US DL , D̄L → D̄S

L ≡ D̄LU
†
S ,

EL → ES
L ≡ US EL , ĒL → ĒS

L ≡ ĒL U
†
S , (26)

where the unitary matrix US is

US =
1

2
√
3




2 2 2√
3 + 1 −2

√
3− 1√

3− 1 −2
√
3 + 1



 , (27)

(see Eq. (117) of Appendix B.1) .
On the other hand, the right handed quarks and charged lepton fields are unchanged since ther

are A4 singlets.
Suppose that the down-type quark mass matrix is given by the weight 2 modular forms Yq(τ).

Then, it is expressed as

Md = vd




αd 0 0
0 βd 0
0 0 γd








Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1





RL

, (28)

where the VEV of the Higgs field Hd is denoted by vd. Parameters αd, βd, γd can be taken to be real
constant. At τ = i, under the transformation of Eq. (26) it becomes (see in Appendix C)

Md =
1

2




0 3(

√
3− 1)α̃d −(3−

√
3)α̃d

0 −3(
√
3− 1)β̃d −(3−

√
3)β̃d

0 0 2(3−
√
3)γ̃d





RL

,

M †
dMd =

1

2




0 0 0
0 9(2−

√
3)(α̃2

d + β̃2
d) 3(3− 2

√
3)(α̃2

d − β̃2
d)

0 3(3− 2
√
3)(α̃2

d − β̃2
d) 3(2−

√
3)(α̃2

d + β̃2
d + 4γ̃2d)





LL

, (29)
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Transrate

The flavor structure of the FC bilinear operators at τ = i
, then the left-handed fields are not yet the mass eigenstate, but close to it τ = i + ϵ

using approximate behaviors 

where α̃d = (6− 3
√
3)vdY1(i)2αd, β̃d = (6− 3

√
3)vdY1(i)2βd and γ̃d = (6− 3

√
3)vdY1(i)2γd and γ̃d is

supposed to be much larger than α̃d and β̃d.
Since two eigenvalues of S are degenerate such as (1,−1,−1), there is still a freedom of the

2–3 family rotation. Therefore, M †
dMd could be diagonal after the small 2–3 family rotation of

O(α̃2
d/̃γ

2
d , β̃

2
d/γ̃

2
d). The charged lepton mass matrix is the same one in Eq. (29) by replacing the

subscript d with e.
Let us the relevant semileptonic operators in the diagonal base of the genetator S. The A4 triplet

left-handed fields are transformed as in Eq. (26). Putting the modular forms of Eq. (25) into the
coefficients of Table 2, we can predict the flavor structure of the FC bilinear operators in the new
base of the transformation in Eq. (26). Those coefficients are listed in Table 3 at τ = i. The left-
handed fields are not yet the mass eigenstate, but close to it. We should move the left-handed fields
to the mass eigenstate by the small rotation in the flavor space.

4.2.2 In the mass eigenstate at nearby τ = i

In order to get the observed fermion masses and CKM elements, the modulus τ is deviated from
the fixed points τ = i. Indeed, the successfull quark mass matrices have been obtained at nearby
τ = i [47]. By using a small deimensionless parameter ε, we put the modulus value as τ = i + ε.
Then, approximate behaviors of the ratios of modular forms are [71]:

Y2(τ)

Y1(τ)
# (1 + ε1) (1−

√
3) ,

Y3(τ)

Y1(τ)
# (1 + ε2) (−2 +

√
3) , ε1 =

1

2
ε2 # 2.05 i ε . (30)

These approximate forms are agreement with exact numerical values within 0.1% for |ε| ≤ 0.05.
Since the modulus τ is different ones for the quark and lepton sectors each other, we use the notation
εq1 for the quark sector and ε!1 for the lepton sector hereafter.

Then, the quark mass matrix is diagonalized by the transformation which is shown in Appendix
C:

DL → Dm
L ≡ UT

SmdU
T
12(90

◦)US DL , D̄L → D̄m
L ≡ D̄L U

†
SU12(90

◦)USmd ,

EL → Em
L ≡ UT

SmeU
T
12(90

◦)US EL , ĒL → Ēm
L ≡ ĒL U

†
SU12(90

◦)USme , (31)

where

USmd #




1 sd12e

iηd 0
−sd12e−iηd 1 sd23
sd12s

d
23 −sd23 1



 #




1 O(εq1) 0

O(εq1) 1 O(εq1)
O(εq 21 ) O(εq1) 1



 , (32)

on the other hand,

USme #




1 se12e

iηe 0
−se12e−iηe 1 se23
se12s

e
23e

−iηe −se23 1



 #




1 O(εe1) 0

O(εe1) 1 O(εe1)
O(εe 21 ) O(εe1) 1



 , (33)

Details are presented in Appendix C.
Therefore, in the mass eigenstate, the coefficients of quark bilinear operators in Eq. (22) and Table

2 are given in terms of mixing angles sd12, s
d
23 and εq1 at τq = i+ εq1 as seen in Table 3.
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These approximate forms are agreement with exact numerical values within for 0.1 % |ϵ | ≤ 0.05

Mass eigenstate basis at  and τ = i τ = i + ϵ
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at  (  symmetry); Diagonalizationτ = i S
Mass eigenstate basis at  and τ = i τ = i + ϵ

The mixing matrices are parametrized as:

ULme ' P
⇤
e

0

@
1 s

e

L12 s
e

L13

�s
e

L12 1 s
e

L23

s
e

L12s
e

L23 � s
e

L13 �s
e

L23 1

1

A , URme '

0

@
1 s

e

R12 s
e

R13

�s
e

R12 1 s
e

R23

s
e

R12s
e

R23 � s
e

R13 �s
e

R23 1

1

A ,

(3.14)

where the phase matrix Pe is

Pe =

0

@
e
i⌘e 0 0

0 1 0

0 0 1

1

A , ⌘e = arg ✏1 . (3.15)

The mixing angles are given as seen in Appendix D:

s
e

L12 ' �|✏
⇤
1| , s

e

L23 ' �

p
3

4

↵̃
2
e(m)

�̃
2
e(m)

, s
e

L13 ' �

p
3

3
|✏

⇤
1| ,

s
e

R12 ' �
�̃e(m)

↵̃e(m)
, s

e

R23 ' �
1

2

↵̃e(m)

�̃e(m)
, s

e

R13 ' �
1

2

�̃e(m)

�̃e(m)
, (3.16)

where ↵̃e(m) = (6� 3
p
3)Y1(i)↵e(m), �̃e(m) = (6� 3

p
3)Y1(i)�e(m) and �̃e(m) = (6� 3

p
3)Y1(i)�e(m).

Indeed, the numerical fit was succeeded in the case of �̃2
e(m) � ↵̃

2
e(m) � �̃

2
e(m) [61]. In the mass

eigenstate, the A4 flavor coe�cients of charged lepton bilinear operators are given in terms of

mixing angles se12, s
e

13 and ✏1 at ⌧ = i+ ✏ in Table 2 5.

µ̄R�⌧L
µ̄L�⌧R

ēR�⌧L
ēL�⌧R

ēR�µL

ēL�µRp
3
2 (↵̃e + 2seR23�̃e)

(
p
3se23L + se12L|✏

⇤
1|)�̃e �

3
2s

e
R23↵̃e

p
3
2 (�̃e � se12R↵̃e + 2(seR13 � seR12s

e
R23)�̃e)

(
p
3se13L + |✏⇤1|)�̃e

3
2 (�̃e + se12R↵̃e)

1
2 (3s

e
12L �

p
3se13L + 2|✏⇤1|)↵̃e

Table 2: A4 flavor coe�cients of the FC lepton bilinear operators at ⌧ = i + ✏, where O(|✏|2)

is neglected because the modular forms are expanded in O(|✏|), and ↵̃e = (6 � 3
p
3)Y1(i)↵e,

�̃e = (6 � 3
p
3)Y1(i)�e, �̃e = (6 � 3

p
3)Y1(i)�e. A common overall factor (1 �

p
3) is omitted in

the coe�cients.

It is easily noticed that coe�cients of µ̄L�⌧R, ēL�⌧R and ēL�µR in Table 2 are much suppressed

in spite of ↵e 6= ↵e(m), �e 6= �e(m), �e 6= �e(m), by inputting mixing angles of Eq.(3.16) into them.

Indeed, we find that those coe�cients are O(✏1↵̃2
e
/�̃e) for µ̄L�⌧R and ēL�⌧R while O(�̃2

e
/↵̃e) for

ēL�µR after calculations of the next-to-leading terms. Numerical values of these parameter are

given at the best fit point as follows [61]:

⌧ = �0.080 + 1.007 i , |✏1| = 0.165 ,
↵̃e(m)

�̃e(m)
'

↵̃e

�̃e
= 6.82⇥ 10�2

,
�̃e(m)

↵̃e(m)
'

�̃e

↵̃e

= 1.50⇥ 10�2
.

(3.17)

5
These results are di↵erent from ones in the previous our works [30]. The previous result was obtained in a flavor

basis of leptons where the right-handed leptons are not rotated. However, the previous results are also justified

approximately due to the di↵erent condition from Eq.(3.10), such as ↵e � ↵e(m) ⇠ ↵e, etc..
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 : Best fit values of parameters in A4 modular invariant model 
to realize lepton mass matrix, neutrino data
τ, αe, βe, γe  
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→ predict flavor observables

The mixing matrices are parametrized as:

ULme ' P
⇤
e

0

@
1 s

e

L12 s
e

L13

�s
e

L12 1 s
e

L23

s
e

L12s
e

L23 � s
e

L13 �s
e

L23 1

1

A , URme '

0

@
1 s

e

R12 s
e

R13

�s
e

R12 1 s
e

R23

s
e

R12s
e

R23 � s
e

R13 �s
e

R23 1

1

A ,

(3.14)

where the phase matrix Pe is

Pe =

0

@
e
i⌘e 0 0

0 1 0

0 0 1

1

A , ⌘e = arg ✏1 . (3.15)

The mixing angles are given as seen in Appendix D:
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e
/↵̃e) for
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ēR�µL
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we have obtained de/e ' 2 ⇥ 10�16⇤2 sin�, where ⇤ denotes a certain mass scale, and � is an

unknown phase of O(1) in the Wilson coe�cient. Then, de/e is expected to be 2 ⇥ 10�14 (5 ⇥

10�13) TeV�1 for ⇤ = 10 (50)TeV. These are consistent with the present upper bound de/e <

5.6⇥ 10�13 TeV�1.

Thus, our Ansatz in the SMEFT with the modular symmetry of flavors is powerful to study

the leptonic phenomena of flavors comprehensively.
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Appendix

A Experimental constraints on the dipole operators

We summarize briefly the experimental constraints on the dipole operators given by Ref. [19].

Below the scale of electroweak symmetry breaking, the leptonic dipole operators are given as:

Oe�
rs

=
v
p
2
eLr�

µ⌫
eRsFµ⌫ , (A.1)

where {r, s} are flavor indices e, µ, ⌧ and Fµ⌫ is the electromagnetic field strength tensor. The

corresponding Wilson coe�cient is denoted by C
0
e�
rs

in the mass basis of leptons.

The combined result from the E989 experiment at FNAL [1] and the E821 experiment at

BNL [2] on the aµ = (g � 2)µ/2, together with the SM prediction in [3], implies

�aµ = a
Exp
µ

� a
SM
µ

= (251± 59)⇥ 10�11
. (A.2)

The tree-level expression for �aµ in terms of the Wilson coe�cient of the dipole operator is

�aµ =
4mµ

e

v
p
2

1

⇤2
Re [C 0

e�
µµ

] , (A.3)

where v ⇡ 246 GeV and ⇤ is a certain mass scale of NP. Here the Wilson coe�cient is understood

to be evaluated at the weak scale (we neglect the small e↵ect of running below the weak scale), and

the prime of the Wilson coe�cient indicates the flavor basis corresponding to the mass-eigenstate

basis of charged leptons 6. Inputting the experimental results leads to

1

⇤2
Re [C 0

e�
µµ

] ⇡ 1.0⇥ 10�5 TeV�2
. (A.4)

The tree-level expression of a radiative LFV rate in terms of the Wilson coe�cients is

B(`r ! `s�) =
m

3
`r
v
2

8⇡�`r

1
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✓
|C

0
e�
rs

|
2 + |C

0
e�
sr

|
2

◆
. (A.5)

6
The one-loop relation can be found in [175].
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 & (g − 2)μ μ → eγ
where EL and ER denote three flavors of left-handed and right-handed leptons, respectively, and v

denotes the vacuum expectation value (VEV) of the Higgs field H. Here the prime of the Wilson

coe�cient indicates the flavor basis corresponding to the mass-eigenstate basis of charged leptons.

The relevant e↵ective Lagrangian is written as:

Ldipole =
1

⇤2

✓
C
0
e�

LR

Oe�

LR

+ C
0
e�

RL

Oe�

RL

◆
, (3.2)

where ⇤ is a certain mass scale of NP in the e↵ective theory.

In the following discussions, we take the A4 modular symmetry for leptons. Most of modular

flavor models are supersymmetric models. Since we study the model below the supersymmetry

breaking scale, the light modes are exactly the same as the SM with two doublet Higgs models.

Note that the modular symmetry is still a symmetry of the low-energy e↵ective action below

the supersymmetry breaking scale, as confirmed in the moduli-mediated supersymmetry breaking

scenario.

3.1 Representation of charged leptons in A4 modular invariant model

We take a simple A4 modular-invariant flavor model of leptons, which is successful in reproducing

neutrino masses and mixing angles, as shown explicitly in Appendix C. In the model, the left-

handed charged leptons compose a A4 triplet 3 and the three right-handed ones are A4 three

di↵erent singlets. Then, those are expressed as follows:
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0

@
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1

A , ĒL =

0

@
ēL

⌧̄L

µ̄L

1

A , (ec
R
, µ

c

R
, ⌧

c

R
) = (1, 100, 10) , (eR, µR, ⌧R) = (1, 10, 100) . (3.3)

It is noticed that leptons of second and third families are exchanged each other in ĒL. As seen

in the Table of Appendix C, both EL and ĒL have the same modular weight, �k = �2. On the

other hand, k = 0 for ec
R
, eR, etc..

The holomorphic and anti-holomorphic modular forms of weight 2 compose the A4 triplet:

Y (⌧) =

0

@
Y1(⌧)

Y2(⌧)

Y3(⌧)

1

A , Y (⌧) ⌘ Y
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@
Y

⇤
1 (⌧)

Y
⇤
3 (⌧)

Y
⇤
2 (⌧)

1

A , (3.4)

where modular forms are given explicitly in Appendix B.2.

3.2 [ ĒR�EL ] and [ ĒL�ER ] bilinears in the flavor space

In order to investigate the flavor structure of the Wilson coe�cient of the dipole operator, let us be-

gin with discussing the holomorphic operator of charged leptons, [ ĒR�EL ] and anti-holomorphic

4

is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].
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where v ⇡ 246 GeV and ⇤ is a certain mass scale of NP. Here the Wilson coe�cient is understood

to be evaluated at the weak scale (we neglect the small e↵ect of running below the weak scale), and

the prime of the Wilson coe�cient indicates the flavor basis corresponding to the mass-eigenstate
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The one-loop relation can be found in [175].
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Using this expression, the experimental bound B(µ+
! e

+
�) < 4.2 ⇥ 10�13 (90% C.L.) obtained

by the MEG experiment [165] can be translated into the upper bound
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. (A.6)

Taking into account Eqs. (A.4) and (A.6), we have the ratio:
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B A4 modular symmetry

B.1 Modular flavor symmetry

We briefly review the models with A4 modular symmetry. The modular group �̄ is the group of

linear fractional transformations � acting on the modulus ⌧ , belonging to the upper-half complex

plane as:

⌧ �! �⌧ =
a⌧ + b

c⌧ + d
, where a, b, c, d 2 Z and ad� bc = 1, Im[⌧ ] > 0 , (B.1)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,�I} transformation. This modular transforma-

tion is generated by S and T ,
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which satisfy the following algebraic relations,
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For N = 2, we define �̄(2) ⌘ �(2)/{I,�I}. Since the element �I does not belong to �(N) for

N > 2, we have �̄(N) = �(N). The quotient groups defined as �N ⌘ �̄/�̄(N) are finite modular

groups. In these finite groups �N , TN = I is imposed. The groups �N with N = 2, 3, 4, 5 are

isomorphic to S3, A4, S4 and A5, respectively [31].

Modular forms fi(⌧) of weight k are the holomorphic functions of ⌧ and transform as

fi(⌧) �! (c⌧ + d)k⇢(�)ijfj(⌧) , � 2 �̄ , (B.5)
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Dipole operator 

is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].
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value of Eq.(A.2), the real part of the Wilson coe�cient of the muon C
0
e�
µµ

has been obtained as

seen in Eq.(A.4) [19]. Now, we can estimate the magnitude of the electron (g � 2)e anomaly by

using the relation in Eq.(4.1) as:

�ae =
4me

e

v
p
2
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⇤2
Re [C 0

e�
ee

] ' 5.8⇥ 10�14
, (4.2)

where ⇤ denotes a certain mass scale of NP. It is easily seen that �ae and �aµ are proportional

to the lepton masses squared. This result is agreement with the naive scaling �a` / m
2
`
[161].

In the electron anomalous magnetic moment, the experiments [162] give

a
Exp
e

= 1159 652 180.73(28)⇥ 10�12
, (4.3)

while the SM prediction crucially depends on the input value for the fine-structure constant ↵.

Two latest determination [163,164] based on Cesium and Rubidium atomic recoils di↵er by more

than 5�. Those observations lead to the di↵erence from the SM prediction
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,

�a
Rb

e
= a

Exp
e

� a
SM,Rb
e

= (4.8± 3.0)⇥ 10�13
. (4.4)

Our predicted value is small of one order compared with the present observed one at present. We

wait for the precise observation of the fine structure constant to test our framework.

4.2 (g � 2)µ and µ ! e�

The NP in the LFV process is severely constrained by the experimental bound B(µ+
! e

+
�) <

4.2 ⇥ 10�13 in the MEG experiment [165]. We can discuss the correlation between the anomaly

of the muon (g � 2)µ and the LFV process µ ! e� by using the Wilson coe�cients in Eqs.(3.18)

and (3.19). The ratio is given as:
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Let us introduce small parameters �↵, �� and �� as follows:
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Wilson coefficients in A4 modular symmetry in mass basis
However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
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3), which is omitted in Table 2, the coe�cients are given as:

C
0
e�
⌧µ

=

p
3

2
(1�

p
3)↵̃e

✓
1�

�̃e

�̃e(m)

↵̃e(m)

↵̃e

◆
,

C
0
e�
⌧e

=

p
3

2
(1�

p
3)�̃e

 
1 +

↵̃e

↵̃e(m)

�̃e(m)

�̃e

� 2
�̃e(m)

�̃e

�̃e

�̃e(m)

!
,

C
0
e�
µe

=
3

2
(1�

p
3)�̃e

 
1�

↵̃e

↵̃e(m)

�̃e(m)

�̃e

!
, (3.18)

where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and
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where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.

4.1 (g � 2)µ and (g � 2)e

The NP of (g�2)µ and (g�2)e appears in the diagonal components of the Wilson coe�cient of the

dipole operator at the mass basis. We have the ratios of the diagonal coe�cients from Eq.(3.19)

as:

C
0
e�
ee

C 0
e�
µµ

= 2
�̃e

↵̃e

|✏
⇤
1| ' 4.9⇥ 10�3

,

C
0
e�
µµ

C 0
e�
⌧⌧

=

p
3

2

↵̃e

�̃e
' 5.9⇥ 10�2

, (4.1)

where numerical values of Eq.(3.17) are put for �̃e/↵̃e, ↵̃e/�̃e and |✏
⇤
1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental
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flavor alignment

where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
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, (4.7)

which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).

We obtain the Wilson coe�cients by using Eq.(3.18):
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Therefore, ratios of the Wilson coe�cients are expected as:
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.

10

< 2.1 × 10−5
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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without tuning between  , δα,β

 & (g − 2)μ μ → eγ

value of Eq.(A.2), the real part of the Wilson coe�cient of the muon C
0
e�
µµ

has been obtained as

seen in Eq.(A.4) [19]. Now, we can estimate the magnitude of the electron (g � 2)e anomaly by

using the relation in Eq.(4.1) as:

�ae =
4me

e

v
p
2

1

⇤2
Re [C 0

e�
ee

] ' 5.8⇥ 10�14
, (4.2)

where ⇤ denotes a certain mass scale of NP. It is easily seen that �ae and �aµ are proportional

to the lepton masses squared. This result is agreement with the naive scaling �a` / m
2
`
[161].

In the electron anomalous magnetic moment, the experiments [162] give

a
Exp
e

= 1159 652 180.73(28)⇥ 10�12
, (4.3)

while the SM prediction crucially depends on the input value for the fine-structure constant ↵.

Two latest determination [163,164] based on Cesium and Rubidium atomic recoils di↵er by more

than 5�. Those observations lead to the di↵erence from the SM prediction

�a
Cs

e
= a

Exp
e

� a
SM,CS
e

= (�8.8± 3.6)⇥ 10�13
,

�a
Rb

e
= a

Exp
e

� a
SM,Rb
e

= (4.8± 3.0)⇥ 10�13
. (4.4)

Our predicted value is small of one order compared with the present observed one at present. We

wait for the precise observation of the fine structure constant to test our framework.

4.2 (g � 2)µ and µ ! e�

The NP in the LFV process is severely constrained by the experimental bound B(µ+
! e

+
�) <

4.2 ⇥ 10�13 in the MEG experiment [165]. We can discuss the correlation between the anomaly

of the muon (g � 2)µ and the LFV process µ ! e� by using the Wilson coe�cients in Eqs.(3.18)

and (3.19). The ratio is given as:

������
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Let us introduce small parameters �↵, �� and �� as follows:
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=
�̃e(m) + c�
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= 1 +
c�
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↵̃e(m)
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�̃e(m)
= 1 +

c�

�̃e(m)
⌘ 1 + �� , (4.6)
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where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
�����1�

↵̃e

↵̃e(m)

�̃e(m)

�̃e

����� ' |�� � �↵| < 1.4⇥ 10�3
, (4.7)

which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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0 †
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, (3.1)

2
The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].
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See also [153–156].
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Wilson coefficients in A4 modular symmetry in mass basis
However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall
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where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).
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where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.
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1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental
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where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
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which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).
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Therefore, ratios of the Wilson coe�cients are expected as:
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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the case that the additional unknown mode of m is the Higgs-like mode (δα ∼ δβ ∼ δγ)

Since the present upper bounds of B(τ → eγ) and B(τ → μγ) are 3.3 × 10−8 and 4.4 × 10−8, 
respectively, we expect the experimental test of this prediction for τ → μγ in the future 26
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Representation of down-type quark and charged leptons

Left Right

A4

 structure in the modular symmetry(L̄R)

stringy modes. We have already many modular flavor symmetric models, which lead to realistic
quark and lepton mass matrices separately. However, when we use the common value of the
modulus ⌧ for both quark and lepton sectors, the models are severely constrained and very di�cult
to realize all the experimental values of quark and lepton masses and their mixing angles at the
same time. In order to cover many modular flavor models, we assume that the A4 modular flavor
symmetry in the lepton sector is independent of the A4 symmetry in the quark sector, i.e., AE

4
⌦AQ

4

symmetry. They have two independent moduli, ⌧q and ⌧e for the quark sector and the lepton sector,
respectively. Such a setup can be realized through the compactification, that the compact space
includes T 2

⇥ T 2, and the flavor structure in the quark sector originates from one T 2, while the
lepton flavor structure originates from the other T 2. Indeed, a similar setup was studied e.g., in
Ref. [45]. Using this setup and Ansatz, we study their implications on flavor changing processes.

As examples, consider the semileptonic flavor changing neutral processes,

b ! s µ̄µ (s ēe) , b ! d µ̄µ (d ēe) , s ! d µ̄µ (d ēe) , (3.1)

which are caused by the flavor changing �F = 1 operator. Impose the modular A4 symmetry
on quarks and leptons, respectively, that is AE

4
⌦ AQ

4
. The triplet modular forms with weight 2

are denoted as Y (⌧q) and Y (⌧e), which are di↵erent for quarks and charged leptons because ⌧q
and ⌧e are di↵erent. In order to discuss relevant operators, we take a A4 modular model, which
leads to the successful fermion mass matrices. Suppose that three left-handed quark and lepton
doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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doublets are of a triplet of the A4 group. The three right-handed quarks and charged leptons are
di↵erent singlets of A4. On the other hand, the Higgs doublets are supposed to be singlets of
A4. The generic assignments of representations and modular weights to the fields are presented in
Table 1, where right-handed up-type quarks are omitted since those are not necessary in following
discussions.

QL (dc
R
, sc

R
, bc

R
) LL (ec

R
, µc

R
, ⌧ c

R
) Hd Y (⌧q), Y (⌧e)

SU(2) 2 1 2 1 2 1
A4 3 (1, 100, 10) 3 (1, 100, 10) 1 3
k 2 (0, 0, 0) 2 (0, 0, 0) 0 2

Table 1: The assignment of A4 representations and weights k for down-type quarks, charged
leptons, down-type Higgs doublet and the modular forms.

We discuss the semileptonic 4-fermion operators, which are categorized as

[ ĒL�EL ][ D̄L�DL ] : Q
(1)

`q
, Q(3)

`q
,

[ ĒR�ER ][ D̄R�DR ] : Qed ,

[ ĒL�EL][ D̄R�DR ] : Q`d , (3.2)

[ ĒR�ER ][ D̄L�DL ] : Qqe ,

[ ĒL�ER ][ D̄R�DL ] : Q`edq ,

where L and R denote the left-handed and the right-handed fields, and � denotes a generic
combination of Dirac matrices, color and SU(2)L generators, which play no role as far as the
flavor structure is concerned. Corresponding SMEFT operators Q of which explicit expression are
shown in Appendix A, are also listed.
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where ! = ei
2
3⇡, modular forms are given explicitly in terms of the Dedekind eta function ⌘(⌧)

and its derivative [20]:

Y1(⌧) =
i

2⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

◆
,

Y2(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !2

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
, (2.10)

Y3(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !2

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
.

Those are also expressed in the q expansions, q = exp(2i⇡⌧):
0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + . . .
�6q1/3(1 + 7q + 8q2 + . . . )
�18q2/3(1 + 2q + 5q2 + . . . )

1

A . (2.11)

2.3 Representation of down-type quarks and charged leptons

Assign the left-handed down-type quarks to A4 triplets 3 and the three right-handed ones to A4

three di↵erent singlets. Then, those are expressed as follows:

DL =

0

@
dL
sL
bL

1

A , D̄L =

0

@
d̄L
b̄L
s̄L

1

A , (dc
R
, sc

R
, bc

R
) = (1, 100, 10) , (dR, sR, bR) = (1, 10, 100) . (2.12)

It is noticed that quarks of second and third families are exchanged each other in D̄L. The weight
of DL and D̄L, k are assigned to 2 and �2, respectively. On the other hand, k = 0 for singlets dc

R
,

dR, etc..
The charged leptons are like down-type quarks as:

EL =

0

@
eL
µL

⌧L

1

A , ĒL =

0

@
ēL
⌧̄L
µ̄L

1

A , (ec
R
, µc

R
, ⌧ c

R
) = (1, 100, 10) , (eR, µR, ⌧R) = (1, 10, 100) . (2.13)

The weight of EL and ĒL, k, are also 2 and and �2, respectively. On the other hand, k = 0 for
ec
R
, eR, etc..
Most of modular flavor models, which have been studied, are supersymmetric models. In the

following sections, we study models below the supersymmetry breaking scale. We assume that the
light modes are exactly the same as the SM with two doublet Higgs models.

3 SMEFT 4-fermion operators in A4 modular symmetry

We write down 4-fermion operators as well as dipole operators in terms of modular forms Y (⌧).
We also follow the Ansatz (1.1) that those higher-dimensional operators are related with 3-point
couplings, e.g., Yukawa couplings with Higgs fields. Here, the higher-dimensional operators are
supposed to be generated by integrating out heavy superpartners, massive gauge bosons and
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The weight of EL and ĒL, k, are also 2 and and �2, respectively. On the other hand, k = 0 for
ec
R
, eR, etc..
Most of modular flavor models, which have been studied, are supersymmetric models. In the

following sections, we study models below the supersymmetry breaking scale. We assume that the
light modes are exactly the same as the SM with two doublet Higgs models.

3 SMEFT 4-fermion operators in A4 modular symmetry

We write down 4-fermion operators as well as dipole operators in terms of modular forms Y (⌧).
We also follow the Ansatz (1.1) that those higher-dimensional operators are related with 3-point
couplings, e.g., Yukawa couplings with Higgs fields. Here, the higher-dimensional operators are
supposed to be generated by integrating out heavy superpartners, massive gauge bosons and

7

where ! = ei
2
3⇡, modular forms are given explicitly in terms of the Dedekind eta function ⌘(⌧)

and its derivative [20]:

Y1(⌧) =
i

2⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)
�

27⌘0(3⌧)

⌘(3⌧)

◆
,

Y2(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !2

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
, (2.10)

Y3(⌧) =
�i

⇡

✓
⌘0(⌧/3)

⌘(⌧/3)
+ !

⌘0((⌧ + 1)/3)

⌘((⌧ + 1)/3)
+ !2

⌘0((⌧ + 2)/3)

⌘((⌧ + 2)/3)

◆
.

Those are also expressed in the q expansions, q = exp(2i⇡⌧):
0

@
Y1(⌧)
Y2(⌧)
Y3(⌧)

1

A =

0

@
1 + 12q + 36q2 + 12q3 + . . .
�6q1/3(1 + 7q + 8q2 + . . . )
�18q2/3(1 + 2q + 5q2 + . . . )

1

A . (2.11)

2.3 Representation of down-type quarks and charged leptons

Assign the left-handed down-type quarks to A4 triplets 3 and the three right-handed ones to A4

three di↵erent singlets. Then, those are expressed as follows:

DL =

0

@
dL
sL
bL

1

A , D̄L =

0

@
d̄L
b̄L
s̄L

1

A , (dc
R
, sc

R
, bc

R
) = (1, 100, 10) , (dR, sR, bR) = (1, 10, 100) . (2.12)

It is noticed that quarks of second and third families are exchanged each other in D̄L. The weight
of DL and D̄L, k are assigned to 2 and �2, respectively. On the other hand, k = 0 for singlets dc

R
,

dR, etc..
The charged leptons are like down-type quarks as:

EL =

0

@
eL
µL

⌧L

1

A , ĒL =
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Lepton flavor violation : Modular vs. U(2)

 flavor symmetry is good approximation in the SM YukawaU(2)3 = U(2)q × U(2)u × U(2)d

exact symmetry for mu, md, mc, ms = 0
acting on 1st & 2nd generations only  = ( 1, 2, 3)

U(2) doublet singlet

 flavor symmetryU(2)

2.2 Summary and discussion

The overall number of independent terms allowed by the MFV hypothesis with at most one “small”
Yukawa coupling, namely Yd and Ye, and up to two powers of Yu is shown in the last column of
Table 1.5 At this order we have all the operators necessary to describe deviations from the SM
in rare flavour-violating processes that do occur within the SM and, within the SM, receive sizeable
short-distance contributions induced by the large top-quark mass (such as B0–B̄0 and K0–K̄0 mixing,
b ! s�, b ! s`+`�, . . . ) [13]. As can be seen, the number of operators at this order is much smaller
than that obtained in absence of any symmetry (for three generations) and still remarkably close to
the single generation case.

Beside being a very strong hypothesis about the UV completion of the SM, a drawback of the
MFV hypothesis is that it does not allow us to define a clear power-counting in the SMEFT. This
is because one of the breaking term, namely yt, or better the 33 entries of YuY

†
u and Y †

uYu in the
basis (7), is large. It is therefore not obvious why one should not consider more powers of Yu in
the counting of independent operators, as for instance done in the non-linear realizations proposed
in [23,24]. However, it is only yt that is large, not the other entries of Yu. The insertion of an arbitrary
powers of yt triggers the following breaking pattern

U(3)q ⌦ U(3)u
yt
�! U(2)q ⌦ U(2)u ⌦ U(1)

q
3
L+tR

. (11)

A similar breaking to U(2) subgroups occurs if we allow the third generation Yukawa couplings of
down quarks and charged leptons to be large (a possibility that naturally occurs in models with an
extended Higgs sector). This observation, together with the more general argument that the third
generation of fermions might play a special role in extensions of the SM, naturally brings us to consider
a smaller symmetry group acting only on the light fermion families, that is what we discuss next.

3 The U(2)5 symmetry

The U(2)5 symmetry is the subgroup of U(3)5 that, by construction, distinguish the first two gen-
erations of fermions from the third one [14–16]. It provides a “natural” explanation of why third-
generation Yukawa couplings are large (being allowed by the symmetry) and, contrary to the MFV
case, it allows us to build an EFT where all the breaking terms are small, o↵ering a more precise
power counting for the operators.

Given a fermion species  f (f = `, q, e, u, d), the first two generations form a doublet of one of
the U(2) subgroups, whereas  3

f
transform as a singlet. The five independent flavour doublets are

denoted L,Q,E,U,D and the flavour symmetry is decomposed as

U(2)5 = U(2)L ⌦ U(2)Q ⌦ U(2)E ⌦ U(2)U ⌦ U(2)D . (12)

A set of symmetry breaking terms able to reproduce the observed SM Yukawa couplings, which is
minimal both in terms of the number of independent spurions, as well as in their size, is given by [14]

V` ⇠ (2, 1, 1, 1, 1) , Vq ⇠ (1, 2, 1, 1, 1) ,

�e ⇠ (2, 1, 2̄, 1, 1) , �u ⇠ (1, 2, 1, 2̄, 1) , �d ⇠ (1, 2, 1, 1, 2̄) . (13)

By construction, Vq,` are complex two-vectors and �e,u,d are complex 2⇥2 matrices. In terms of these
spurions, we can express the Yukawa matrices as

Ye = y⌧

✓
�e x⌧V`

0 1

◆
, Yu = yt

✓
�u xtVq

0 1

◆
, Yd = yb

✓
�d xbVq

0 1

◆
, (14)

where y⌧,t,b and x⌧,t,b are free complex parameters expected to be of order O(1). Alternative breaking
terms, and the embedding of U(2)5 in U(3)5, are discussed in Section 4.

5A detailed counting order by order in the insertions of di↵erent powers of the Yukawa couplings in presented in
Table 9 in Appendix C.
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Yukawa in U(2)Explicit form for the spurions. As already pointed out in the MFV case, the spurions can appear
with arbitrary powers both in the renormalizable (d = 4) part of the Lagrangian and in the dimension-
six e↵ective operators. In this case, we redefine the fields such that the kinetic terms are canonically
normalised and the Yukawa couplings assume the form in Eq. (14). This condition unambiguously
normalises the � spurions, but it leaves an O(1) freedom in the normalisation of the V spurions
(encoded by x⌧,t,b).

Using the residual U(2)5 invariance, we can transform the spurions to the following explicit form

Vq(`) = ei�̄q(`)

✓
0

✏q(`)

◆
, �e = O|

e

✓
�0e 0
0 �e

◆
, �u = U †

u

✓
�0u 0
0 �u

◆
, �d = U †

d

✓
�0
d

0
0 �d

◆
, (15)

The flavour basis where the spurions assume this form is what we define as interaction basis for the
fermion fields in the U(2)5 setup. Here O and U represent 2 ⇥ 2 orthogonal and complex unitary
matrices, respectively

Oe =

✓
ce se
�se ce

◆
, Uq =

✓
cq sq ei↵q

�sq e�i↵q cq

◆
, (16)

with si ⌘ sin ✓i and ci ⌘ cos ✓i. The ✏i and �(0)
i

are small positive real parameters controlling the
overall size of the spurions. From the observed hierarchies of the Yukawa couplings, we deduce

1 � ✏i � �i � �0i > 0 (17)

or, more precisely,

✏i = O

 
Tr(YuY

†
u )�

Tr(YuY
†
uYdY

†
d
)

Tr(YdY
†
d
)

!1/2

= O(yt|Vts|) = O(10�1) , (18)

�i = O

✓
yc
yt
,
ys
yb
,
yµ
y⌧

◆
= O(10�2) , (19)

�0i = O

✓
yu
yt

,
yd
yb

,
ye
y⌧

◆
= O(10�3) . (20)

Starting from the interaction basis, the Yukawa couplings in (14) are diagonalized by unitary trans-

formations of the type L†
f
YfRf = diag(Yf ), with f = u, d, e. The explicit form of these matrices

is reported in Appendix A. While the �(0)
i

are in one-to-one correspondence with the light Yukawa
eigenvalues, not all the other parameters appearing in the Yukawa and spurion decompositions in
Eqs. (14)–(16) can be put in correspondence with SM parameters (in particular with CKM elements).
Contrary to the MFV case, in the U(2)5 setup the structure of the spurions is not completely deter-
mined in terms of known parameters. However, once we impose the hierarchy among the size of the
spurions in Eq. (20), we e↵ectively “protect” quark mixing as in the MFV case [14].

3.1 Fermion bilinears

We can now proceed classifying the number of independent operators appearing at d = 6 in the
SMEFT with a U(2)5 flavour symmetry, minimally broken as discussed above. Our final goal is to
classify the operators up to O(V 3,�1V 1), namely with up to three V spurions (but no � terms),
or with one � and at most one V . Given the size of the spurions in Eq. (20), this corresponds to
neglecting terms which are at most of O(10�4) according to our main hypotheses.

We start the analysis from the operators of classes 5, 6 and 7, which contains a fermion bilinear.
To better illustrate how the hypothesis of a minimally broken U(2)5 symmetry acts on the di↵erent
flavour structures, in the case of left-handed and right-handed bilinears we analyse also the e↵ect of
subleading breaking terms up to O(�2V 2). More precisely, in the following we analyse how to span
the flavour structure of the independent fermion bilinears in terms of the U(2)5 breaking spurions.
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Lepton flavor violation : Modular vs. U(2)

where ε1 = 2.05 iε as seen in Eq. (30) and |ε| ! 0.08 as in Eq. (64). Inputting the current upperbound
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Table 8: Coefficients of the charged lepton FC bilinear operators at nearby fixed points, where
γ̃e % α̃e, β̃e, β̃e % γ̃e % α̃e and γ̃e % β̃e % α̃e for nearby τ = i,ω and i∞, respectively.

Let us compare above predictions and U(2)5 flavor symmetry. The chirality-flipped (i → (jγ
transitions allowed by different U(2) breaking terms are summarized in Table 9, where we follow the
result of Table 4 in Ref. [9]. Parameters are predented in Appendix X.

As seen in Table 9, OD
LR operator dominates the decay amplitude for µ→ eγ and τ → µγ while

OD
RL operator dominates the decay amplitude for τ → eγ. Then, we predict

BR(τ → µγ)% BR(µ→ eγ)% BR(τ → eγ) . (66)

This relation is completely different from both predictions of at nearby τ = i and towards i∞ in the
modular symmetry.
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Table 9: Left-right fermion bilinears allowed by different U(2) breaking terms.
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Predictions at  caseU(2)

BR(τ → μγ) ≫ BR(μ → eγ) ≫ BR(τ → eγ)

Predictions at  caseτ = i

Faroughy,Isidori,Wilsch,Yamamoto  ‘20

where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
�����1�

↵̃e

↵̃e(m)

�̃e(m)

�̃e

����� ' |�� � �↵| < 1.4⇥ 10�3
, (4.7)

which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:
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, (4.9)

where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).

We obtain the Wilson coe�cients by using Eq.(3.18):
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Therefore, ratios of the Wilson coe�cients are expected as:
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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Class 5–7: Fermion Bilinears operators (ψ̄ψ)
Class 5–7: Fermion Bilinears

(L̄R)

5: ψ2H3+ h.c. 6: ψ2XH+ h.c.

("̄e) QeH (H†H)("̄perH) QeW ("̄pσµνer)τ IHW I
µν

QeB ("̄pσµνer)HBµν

(q̄u) QuH (H†H)(q̄purH̃) QuG (q̄pσµνTAur)H̃GA
µν

QuW (q̄pσµνur)τ IH̃W I
µν

QuB (q̄pσµνur)H̃Bµν

(q̄d) QdH (H†H)(q̄pdrH) QdG (q̄pσµνTAdr)HGA
µν

QdW (q̄pσµνdr)τ IHW I
µν

QdB (q̄pσµνdr)HBµν

7: ψ2H2D

(L̄L) (R̄R) (R̄R′)

lepton Q(1)
H" (H†i

←→
D µH)("̄pγµ"r) QHe (H†i

←→
D µH)(ēpγµer)

Q(3)
H" (H†i

←→
D I

µH)("̄pτ Iγµ"r)

quark Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr) QHd (H†i

←→
D µH)(d̄pγµdr) QHud + h.c. i(H̃†DµH)(ūpγµdr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτ Iγµqr) QHu (H†i
←→
D µH)(ūpγµur)

Class 8: Fermion Quadrilinears

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

semi-leptonic Q(1)
"q ("̄pγµ"r)(q̄sγµqt) Qed (ēpγµer)(d̄sγµdt) Q"d ("̄pγµ"r)(d̄sγµdt)

Q(3)
"q ("̄pγµτ I"r)(q̄sγµτ Iqt) Qeu (ēpγµer)(ūsγµut) Q"u ("̄pγµ"r)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qqe (q̄pγµqr)(ēsγµet)

4-quark Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Q(1)

qu (q̄pγµqr)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt) Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(8)

qd (q̄pγµTAqr)(d̄sγµTAdt)

4-lepton Q"" ("̄pγµ"r)("̄sγµ"t) Qee (ēpγµer)(ēsγµet) Q"e ("̄pγµ"r)(ēsγµet)

(L̄R)(R̄L) + h.c. (L̄R)(L̄R) + h.c.

semi-leptonic Q"edq ("̄jper)(d̄sqtj) Q(1)
"equ ("̄jper)εjk(q̄

k
sut)

4-quark Q(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q(3)
"equ ("̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 11: List of all fermionic SMEFT operators in the Warsaw basis [8]. The division in classes is
adopted from [9]. The operator classes 1–4 contain no fermion fields and are not listed here.
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is the geometric symmetry of the torus T 2 as well as the orbifold T
2
/Z2

2. Recalling that the trans-

formation of matter zero-modes on toroidal backgrounds is also given by the finite subgroup of

the modular symmetry (see, e.g., for heterotic string theory [144–146] and for magnetized brane

models [147–152])3, the flavor symmetry of matter zero-modes is determined by the modular sym-

metry in the low-energy e↵ective action. Furthermore, the modular symmetry restricts the form of

n-point couplings in a modular symmetric way. Much larger symplectic modular symmetries are

possible in Calabi-Yau compactifications [157, 158] whose phenomenological aspects were studied

in Refs. [159, 160]. As a result, the flavor structure of Yukawa couplings and higher-dimensional

operators are controlled by the modular flavor symmetry in the various class of string compactifi-

cations. Note that the supersymmetry breaking sector also respects the flavor symmetry as seen

in the soft supersymmetry breaking terms induced by the moduli fields [141].

Let us ignore the dynamics of moduli fields, meaning that moduli-dependent couplings are

considered spurions under the modular symmetry. Then, the modular symmetry plays an impor-

tant role in the concept of the MFV. In the original MFV scenario, Yukawa couplings behave as

(3, 3̄, 1, 1, 1), (3, 1, 3̄, 1, 1), and (1, 1, 1,3, 3̄) in the U(3)5 = U(3)Q⌦U(3)U⌦U(3)D⌦U(3)L⌦U(3)E
flavor symmetry. On the other hand, in the string EFT at the leading order, U(2)5 flavor symmetry

is realized due to the rank 1 Yukawa couplings of matter fields [142]. It is interesting to analyze

the phenomenological aspects of string-derived low-energy e↵ective action with some modular

symmetries which would be realized in toroidal as well as Calabi-Yau compactifications. Indeed,

the modular symmetry and the Ansatz Eq.(2.1) are powerful to predict the leptonic phenomena

of flavors, as will be discussed in the next section. In this paper, for concreteness, we study the

SMEFT with the level 3 finite modular group �3 for the flavor symmetry by imposing the stringy

Ansatz Eq.(2.1) on the higher-dimensional operators. Remarkably, the lepton masses and mixing

angles are well fitted with the observed data when the modulus field ⌧ is close to the fixed point

⌧ = i in the SL(2,Z) moduli space. In subsequent sections, we discuss the higher-dimensional

operators relevant to the lepton sector in more detail.

3 Wilson Coe�cients of dipole operator in mass basis

We take the assumption that NP is heavy and can be given by the SMEFT Lagrangian. Let us

focus on the dipole operators of leptons and their Wilson coe�cients at the weak scale as:
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, (3.1)

2
The modular symmetries on higher-dimensional toroidal orbifolds were also discussed in Ref. [143].

3
See also [153–156].

3

Wilson coefficients in A4 modular symmetry in mass basis
However, the coe�cients of the bilinear R̄L operators µ̄R�⌧L, ēR�⌧L and ēR�µL are not so

suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
p
3), which is omitted in Table 2, the coe�cients are given as:
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where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and

⌧̄R�⌧L are given as:

C
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= 3 (1�
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1| , C

0
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=
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2
(1�
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0
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p
3 (1�

p
3)�̃e , (3.19)

where the phase of ✏1 is rotated away. These give the anomalous magnetic moment of leptons.

4 Phenomenology of (g � 2)µ, e, LFV and EDM

The anomalous magnetic moment of the muon, aµ = (g � 2)µ/2, is a powerful probe beyond the

SM. The recent experimental measurement of aµ by the E989 experiment at FNAL [1], combined

with the previous BNL result [2], has indicated the discrepancy with the SM prediction reported

in Ref. [3]. If this result is evidence of NP, we can relate it with other phenomena, (g � 2)e, LFV

processes and the electron EDM in the framework of the stringy Ansatz Eq. (2.1) with the modular

symmetry. We study the correlations among them in this section.

4.1 (g � 2)µ and (g � 2)e

The NP of (g�2)µ and (g�2)e appears in the diagonal components of the Wilson coe�cient of the

dipole operator at the mass basis. We have the ratios of the diagonal coe�cients from Eq.(3.19)

as:

C
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C 0
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�̃e

↵̃e
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1| ' 4.9⇥ 10�3

,
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' 5.9⇥ 10�2

, (4.1)

where numerical values of Eq.(3.17) are put for �̃e/↵̃e, ↵̃e/�̃e and |✏
⇤
1|. These predicted ratios are

almost agree with the charged lepton mass ratios me/mµ = 4.84⇥10�3 and mµ/m⌧ = 5.95⇥10�2.

If this dipole operator is responsible for the observed anomaly of (g � 2)µ, the magnitude of

its Wilson coe�cient can be estimated as shown in Appendix A. By inputting the experimental
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suppressed. Those operators may lead to the sizable LFV decays. Including a common overall

factor (1�
p
3), which is omitted in Table 2, the coe�cients are given as:

C
0
e�
⌧µ

=

p
3

2
(1�

p
3)↵̃e

✓
1�

�̃e

�̃e(m)

↵̃e(m)

↵̃e

◆
,

C
0
e�
⌧e

=

p
3

2
(1�

p
3)�̃e

 
1 +

↵̃e

↵̃e(m)

�̃e(m)

�̃e

� 2
�̃e(m)

�̃e

�̃e

�̃e(m)

!
,

C
0
e�
µe

=
3

2
(1�

p
3)�̃e

 
1�

↵̃e

↵̃e(m)

�̃e(m)

�̃e

!
, (3.18)

where ↵̃e/↵̃e(m) �̃e/�̃e(m) and �̃e/�̃e(m) are close to 1 due to the condition of Eq.(3.10).

On the other hand, the diagonal coe�cients of the bilinear R̄L operators ēR�eL, µ̄R�µL and
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 &  & τ → μγ τ → eγ μ → eγ

the case is that unknown mode of m is the flavor blind one (                       )

where c↵, c� and c� are tiny contributions from the unknown mode of m in Eq.(2.1). Putting the

experimental bound of this ratio in Eq.(A.7) with Eq.(3.17), we obtain
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which suggests

|�↵| < O(10�3) , |��| < O(10�3) , (4.8)

without tuning between �↵ and ��. Thus, additional contributions to ↵̃e(m) and �̃e(m) are at most

O(10�3).

It is emphasized that the NP signal of the µ ! e� process comes from the operator ēR�µ⌫µL

mainly in our scheme. The angular distribution with respect to the muon polarization can distin-

guish between µ
+
! e

+
L
� and µ

+
! e

+
R
� [166].

Let us consider the correlation among the LFV processes µ ! e�, ⌧ ! µ� and ⌧ ! e�. Since

it depends on �↵, �� and ��, we consider two cases for these parameters. The first one is the case

that the additional unknown mode of m is the Higgs-like mode, that is, �↵ ⇠ �� ⇠ ��. Then, we

obtain ratios of the Wilson coe�cients by using Eq.(3.18) as:
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where the numerical value in Eq.(3.17) is put. The decay rates are calculated in terms of Wilson

coe�cients as seen in Eq.(A.5). In this case, we have B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠

104 : 1 : 10, where we take account of the kinematical factor. Since the present upper bounds

of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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of B(⌧ ! e�) and B(⌧ ! µ�) are 3.3 ⇥ 10�8 and 4.4 ⇥ 10�8 [167], respectively, we expect the

experimental test of this prediction for ⌧ ! µ� in the future.

Another case is that unknown mode of m is the flavor blind one, that is c↵ = c� = c� = c in

Eq.(4.6). Therefore, we have |��| � |�↵| � |��| due to the hierarchy of �̃e(m) ⌧ ↵̃e(m) ⌧ �̃�(m).
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Therefore, ratios of the Wilson coe�cients are expected as:
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It results in B(⌧ ! µ�) : B(⌧ ! e�) : B(µ ! e�) ⇠ 1 : 1 : 10 for the case of c↵ = c� = c� = c.
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35

muon and electron  (g-2)

observations

Wait for future measurements !

This result is agreement with the naive mass scaling 

(g − 2)e


