

Reconstructing Organ Pharmacokinetics

Reconstructing Organ Pharmacokinetics

TIA = Time-integrated activity

Gerhard Glatting | Slide 2 | 26.09.22

- Accurate and precise calculation of time-integrated activity,
- as a prerequisite for dosimetry, -
- which is in turn a prerequisite for developing optimal treatment planning.

© 2021 CRC Press

All Rights Reserved.

Example: Different Temporal Samplings

Mono-Exponential (A)

Mono-Exponential (B)

Mono-Exponential (C)

with f(0)=0

96

120

Bi-Exponential

- number of data
- optimal time sampling
- uncertainty calculation

Mono-exponential fitted to 3 data points:

(A) (4, 24, 48) h	TIA = 308 %IA h
(B) (4, 24, 72) h	TIA = 164 %IA h
(C) (24, 48, 96) h	TIA = 163 %IA h

Underlying truth: Bi-exponential with TIA = 116 %IA h

Large differences for assumed noise-free measurements!

TIA = Time-Integrated Activity

0

24

48

72

Time (h)

% Injected Activity (%IA)

© 2021 CRC Press

All Rights Reserved.

Different monoexp fits for kidney A(t) in a patient

experimental data IEO - TP @ 6, 30, 96 and 170 h

Courtesy of Rachele Danieli, Master Thesis 2021

Gear JI *et al.* EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. *Eur J Nucl Med Mol Imag* **2018**;45:2456-74

Remark: The uncertainty of your data are also input data.

© 2021 CRC Press

All Rights Reserved.

© 2021 CRC Press

All Rights Reserved.

Input: Mathematical Models

= a priori Information

Mono-exponential fit all data points: TIA = 133 %IA h

Underlying truth: Bi-exponential with TIA = 116 %IA h

Relative deviation = 14 % Only by chance that low!

Large differences for assumed noise-free measurements!

TIA = Time-Integrated Activity

Biokinetic (or Pharmacokinetic) Modelling

Modelling approaches

- 1. Model-independent approach
- purely mathematical; just a function to "fit" the measured data, e.g. trapezoidal rule
- 2. Compartmental models
- No strict physiological or anatomical basis
- 3. Physiological models
 - Identify the compartments with actual body spaces; more complex; actual transfer and flow rates are employed
 - Can be used for simulations and predictions

Model Selection (Choosing an optimal fit function)

Criteria for choosing a model

- Purpose of the model
 - Just to calculate the area under the curve?
 - To more accurately understand/investigate the biological system?
- Number and precision of obtainable/obtained data points
 - Defines the maximum number of parameters one can determine
- Adequate model known from the literature?
- Is a priori knowledge available to be incorporated in a model?
- Parsimony principle

Burnham KP, Anderson DR (2002) Model Selection and Multimodel Interference -A practical Information-theoretic approach. New York: Springer. Glatting G et al. Choosing the optimal fit function: Comparison of the Akaike information criterion and the F-test. Med Phys 2007;34:4285-92

Why not use the data of a patient population instead of a single patient?

© 2021 CRC Press

All Rights Reserved.

Population Pharmacokinetic Modelling

(A) PBPK Modelling(B) NLME Modelling

Advantage?

Much higher ratio of number of data to number of model parameters!

Population Pharmacokinetic Modelling

(A) PBPK Modelling

(B) NLME Modelling

Modelling and Prediction of Tumour Response in RLT

Population Pharmacokinetic Modelling

(A) PBPK Modelling(B) NLME Modelling

Non-Linear Mixed-Effects (NLME) Modelling

Non-Linear Mixed Effects (**NLME**) modeling is a population-based estimation method that can identify drug disposition in terms of **intra-individual** and **inter-individual variability**.

Non-Linear Mixed-Effects (NLME) Modelling

Number of parameters (PRRT-PBPK model)

Inter-individual variability

- Fixed effect	7
- Random effect	7
Intra-individual variability	
-	1

Number of data

Patients
Organs
Time points
Serum data
9

Ratio 267/15 = 17.8 STP-Ratio 243/15 = 16.2

Single-Time-Point: Dependence on Fit Function

[¹⁷⁷Lu]Lu-PSMA-I&T

In reviion

© 2021 CRC Press

All Rights Reserved.

"Garbage in – Garbage out" paradigm

ulm

