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Fock Quantization

▶ The “radiative” degrees of freedom of gravity and EM fields can be quantized at
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0 . This is the source of all IR divergences!

▶ There are an uncountably infinite number of of ”in” and ”out” Fock spaces FI ±
∆

labeled by the ”in/out” memory ∆in/out . The memory is not conserved and so the
“standard” S-matrix does not exist! To go beyond “inclusive cross sections” and
have a well-defined S-matrix we need to include states with memory. 5 / 11



Memory Representations

▶ States with memory are perfectly legitimate states and a Hilbert space of states
with memory ∆ab can be constructed by starting with FI

0 and performing the
field redefinition:
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A Hilbert Space for Scattering

▶ What sort of Hilbert space should we choose? Need to include a sufficiently many
number of FI

∆ and ensure that the corresponding Hilbert space scatters into
itself.

▶ Problem: Memory is not conserved so any construction that just “stitches”
together these representations will not preserved under scattering.

▶ For example, one could consider the

(uncountable) Direct sum:
⊕
∆

FI
∆ or a “Direct integral”:

⊕∫
dµ∆FI

∆

but the scattering is still uncontrolled (i.e. non-vanishing “probability” to lie in a
different representation.)

Does there exist a (separable) space of states which scatters into itself?
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Massive QED - Faddeev-Kulish States

Qi0(λ) = Qi−(λ)−
1

4π

∫
S2

∆in
a Daλ

▶ Key Idea: The charge at spatial infinity is conserved. Therefore “in” Hilbert space
of eigenstates of the charge Qi0(λ) with eigenvalue Qi0(λ) will will map to an
“out” Hilbert space of eigenstates with eigenvalue Qi0(λ̃) [Faddeev & Kulish, ’70]
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with the incoming electrons. These are dressed states:∫

H

d3p w(p) |p⟩ ⊗ΨEM
∆(p,Qi0 )

The corresponding Hilbert space of dressed electrons is HQi0

▶ Qi0(λ) is not Lorentz invariant unless Qi0 = 0. Lorentz boosts cannot act on
HQi0

unless Qi0 = 0 [Frohlich, Morchio & Strocchi, ’79].
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Massive QED - Faddeev-Kulish States

▶ The angular momentum is undefined for all states in HQi0
unless Qi0 = 0. This

includes the total electric charge! Therefore, in order for this to work, one must
also put any extra charges “behind the moon” [Frohlich, Morchio & Strocchi, ’79].

8 / 11



Massive QED - Faddeev-Kulish States

▶ The angular momentum is undefined for all states in HQi0
unless Qi0 = 0. This

includes the total electric charge! Therefore, in order for this to work, one must
also put any extra charges “behind the moon” [Frohlich, Morchio & Strocchi, ’79].

▶ The Hilbert spaces H in
Qi0=0 and H out

Qi0=0

1. constitute states of finite energy-momentum and angular momentum

2. contains all “hard” scattering processes (since radiation field can have arbitrarily low
frequencies and all extra charges are behind the moon)

3. is separable (admits a countable basis)

Consequently, there is a well-defined unitary S-matrix in massive QED:

S : H in
Qi0=0 → H out

Qi0=0
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Failure of FK: Massless QED and Linearized Gravity

Qi0(λ) = J (λ)− 1

4π

∫
S2

∆in
a Daλ

▶ In massless QED, the analogous construction is to pair eigenstates of the
incoming charge-current flux with memory. However, the eigenvalue is now a
δ-function on S2. The required “dressings” have “collinear divergences” and
therefore have infinite energy! All “FK states” are unphysical except the vacuum
[Kinoshita,’62],[Lee & Nauenberg, ’64]
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QGR
i0 (f ) = − 1

8π

∫
S2

∆in
abD

aDbf (θ) +

∫
I −

f (θ)Tvv (v , θ)

▶ In linearized quantum gravity one can again repeat the FK construction. [Akhoury &

Choi, 2017] In this case there are no collinear divergences so the “dressings” are not
singular. However, we cannot set QGR

i0 = 0 since this would set the total
four-momenum to zero! (Can’t hide mass behind the moon!) All “FK states”
have undefined angular momentum except the vacuum
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Vacuum Gravity - Failure of Faddeev-Kulish Hilbert Space

QGR
i0 (f ) = − 1

8π

∫
S2

∆in
abD

aDbf (θ) +

∫
I −

f (θ)N2

▶ Can’t set QGR
i0 (f ) = 0 since this would set the total four-momentum to vanish.
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energy flux and so on...
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f (θ)N2

▶ Can’t set QGR
i0 (f ) = 0 since this would set the total four-momentum to vanish.

Theorem

The unique eigenstate of QGR
i0 (f ) is the vacuum with vanishing eigenvalue.

▶ Intuition: Memory and Energy flux are not independent! In gravity, the
gravitational radiation “sources” (i.e. via energy flux) its own memory. Matching
the memory to the energy flux introduces more radiation! This introduces more
energy flux and so on...

There is no ”preferred” Hilbert space for scattering in quantum gravity
(“Non-Faddeev-Kulish” representations also fail)
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Algebraic Scattering Theory

▶ The correlation functions of all states that arise in scattering theory are perfectly
well-defined, they simply do not fit into a single Hilbert space.
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▶ However, by considering states as lists of correlation functions one is now freed
from choosing in advance a particular Hilbert space. Starting with some “in” set
of correlation functions (with whatever memory or charges one wants) one should
then be able to calculation the “out” correlation functions by the same sort of
LSZ perturbative methods used in S-matrix calculations.

It would be interesting to further develop such an (IR-finite) scattering theory!
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Summary

▶ IR divergences arise from sticking a state in a Hilbert space to which it doesn’t
belong.

▶ In massive QED the Faddeev-Kulish representation is a preferred representation
but, as opposed to a “proof of principle” it is actually a “fluke”!

▶ Non-Faddeev-Kulish representations do not work

▶ A well-defined (IR-finite) scattering theory can be, in principal, constructed by
simply evolving “in” correlation functions to “out” correlation functions.
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Yang Mills

QYM
i0 (λ) = − 1

4π

∫
S2

∆YM,in
i ,a Daλi +

1

2π

∫
I +

qabλi (θ)[Aa,Eb]
i

▶ In Yang Mills theories, QYM
i0 (λ) is determined by the incoming gluon color-flux as

well as the incoming memory of the gluon field.

▶ The dressing procedure again introduces severe “collinear divergences” in the
dressing. Due to the nonlinearities of Yang Mills, the dressing further contributes
to the charge. However the color-flux of the dressing is infinite and so this
dressing procedure fails.

▶ One could consider some other procedure other than dressing. However,
eigenstates of the large gauge charges correspond to Casimirs of the Lie-algebra.
Therefore, for example,

⟨Ei ,a(x)⟩ = 0 , ⟨Ei ,a(x1)Ej ,b(x1)⟩ = kijWab(x1, x2) . . .

There are insufficiently many states to do scattering theory!
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Algebraic Scattering Theory

▶ A state ω : A → C on the algebra A is equivalent to specifying a list of
(positive) n-point correlation functions ω(Ea1(x1) . . .Ean(xn))

▶ Given Ain/out the “superscattering matrix” $ is defined as a map from “in”
algebraic states to “out” algebraic states

ωout = $ωin

▶ Conservation of Probability: If ωin is any normalised state (i.e. ωin(1) = 1 ) then
ωout = $ωin satisfies ωout(1) = 1.

▶ Pure to Pure evolution: If ωin is pure (i.e. cannot be expressed as the (convex)
sum of other states) then ωout is also pure.

▶ Probability of measuring any observable: A state ω specifies the expected value of
all powers of any smeared observable E (s). These moments uniquely determine a
probability distribution of measuring the field observable.
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