General O(D)-equivariant fuzzy hyperspheres via confining potentials and energy cutoffs

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

G. Fiore (+ F. Pisacane), Universitá Federico II & INFN, Napoli

Workshop on Noncommutative and generalized geometry... Mon Repos, Corfu, September 18-25, 2022, and and an another second

Introduction

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

Some motivations for noncommutative (NC) space(time) algebras:

- To avoid UV divergences in QFT [Snyder 1947,...].
- As an arena for formulating QG compatible with Δx ≥ L_p [Mead 1966, Doplicher et al 1994-95,...].
- As an arena for unifying interactions [Connes-Lott '92,...]

Given a quantum theory \mathcal{T} on a commutative space how to find NC candidates $\overline{\mathcal{T}}$ approximating \mathcal{T} ? One possible mechanism: Let $\mathcal{H} \equiv$ Hilbert space of the system S, $\mathcal{A} \equiv \text{Lin}(\mathcal{H}), \overline{\mathcal{H}} \subset \mathcal{H}$ a subspace, $\overline{P} : \mathcal{H} \mapsto \overline{\mathcal{H}}$ its projection. Then

$$\overline{\mathcal{A}} \equiv \mathsf{Lin}\left(\overline{\mathcal{H}}\right) = \{\overline{\mathcal{A}} \equiv \overline{\mathcal{P}} A \overline{\mathcal{P}} \mid A \in \mathcal{A}\} \neq \mathcal{A}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular, if $[x_i, x_j] = 0$, in general $[\overline{x_i}, \overline{x_j}] \neq 0$.

If $\overline{P}H = H\overline{P}$ ($H \equiv$ Hamiltonian of S) then no change in dynamics within $\overline{\mathcal{H}}$. If $\overline{\mathcal{H}} \equiv$ subspace with energies $E \leq \overline{E} \equiv$ cutoff, then $\overline{\mathcal{T}}$ is a low-energy effective approximation of \mathcal{T} . Prototype: Landau model in D=2; $\overline{E} = E_0$ implies $[\overline{x_1}, \overline{x_2}] = \frac{i\hbar c}{ieB}$.

When may this be useful? E. g.:

- If H[⊥] is practically not accessible in preparing the initial state, nor through the interactions with the environment or the measurement apparatus, then T on H (smaller) is enough.

If *H* is invariant under some group *G*, then $\overline{\mathcal{H}}, \overline{\mathcal{P}}, \overline{\mathcal{T}}$ will be.

INTRODUCTION CONSTRUCTING $\mathcal{H}_{\Lambda}, \mathcal{P}_{\Lambda}$ The observables $\overline{x}^{i}, \overline{L}_{hk}$ \mathcal{A}_{Λ} as fuzzy condition orbit Discussion Reference of Consider quantum mechanics (QM) on \mathbb{R}^{D} , Hamiltonian H(x, p). $\dim(\overline{\mathcal{H}}) \simeq \operatorname{Vol}(\mathcal{B}_{\overline{E}})/h^{D},$

 $\mathcal{B}_{\overline{E}} \equiv \{(x,p) \in \mathbb{R}^{2D} \mid H(x,p) \leq \overline{E}\} = \text{classical phase space below } \overline{E}.$

Adding a 'dimensional reduction' mechanism we can obtain a NC, fuzzy approximation of QM on submanifolds of \mathbb{R}^D . Here a sphere S^d , d = D-1 [GF, F. Pisacane 2017-19].

Consider a quantum particle in \mathbb{R}^D configuration space with Hamiltonian

$$H = -\frac{1}{2}\Delta + V(r); \qquad (1)$$

we fix the minimum $V_0 = V(1)$ of the the confining potential V(r) so that the ground state has energy $E_0 = 0$. • Choose V(r) and \overline{E} fulfilling

$$V(r) \simeq V_0 + 2k(r-1)^2$$
 (2)

if $V(r) \leq \overline{E}$; so that V(r) has a harmonic behavior for $|r-1| \leq \sqrt{\frac{\overline{E}-V_0}{2k}}$.

• The minimum on the sphere r=1 is sharp if $V''(1) \equiv 4k \gg 0$.

• \overline{E} low enough to *eliminate radial excitations* from Spectrum(*H*). Then: $\overline{H} = \overline{L^2}$; the x_i generate all \overline{A} , $[\overline{x_i}, \overline{x_j}] \sim \frac{iL_{ij}}{k}$ à la Snyder.

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , $\overline{\mathcal{L}}_{hk}$ \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

• Choose $\overline{E} = \overline{E}(\Lambda) \equiv \Lambda(\Lambda + d - 1)$, $k = k(\Lambda) \ge \Lambda^2(\Lambda + d - 1)^2$; diverging with $\Lambda \in \mathbb{N}$. Renaming $\overline{\mathcal{H}}, \overline{\mathcal{P}}, \overline{\mathcal{A}} \rightsquigarrow \mathcal{H}_{\Lambda}, \mathcal{P}_{\Lambda}, \mathcal{A}_{\Lambda}$, we find

$$(\mathcal{H}_{\Lambda},\mathcal{A}_{\Lambda}) \xrightarrow{\Lambda \to \infty} (\mathcal{H},\mathcal{A}) \equiv \left(\mathcal{L}^{2}(S^{d}), \operatorname{Lin}\left(\mathcal{L}^{2}(S^{d})\right)\right)$$

This is a O(D)-covariant fuzzy sphere $\{S_{\Lambda}^d\}_{\Lambda \in \mathbb{N}} \equiv \{(\mathcal{H}_{\Lambda}, \mathcal{A}_{\Lambda})\}_{\Lambda \in \mathbb{N}}$, i.e. sequence of finite-dim approximations of ordinary QM on S^d !¹

d = 1, 2 in [GF, F. Pisacane 2018-20]; d > 2 started in [F.Pis.20]. Here: its completion to all d, via simplification; as a complete set in $\mathcal{L}^2(S^d)$ we take polynomials in Cartesian coordinates t^i of $p \in S^d$, rather than spherical harmonics. Finally, I will compare our S^d_{Λ} with other fuzzy spheres.

¹A fuzzy space is a sequence $\{\mathcal{A}_n\}_{n\in\mathbb{N}}$ of *finite-dimensional* algebras such that $\mathcal{A}_n \xrightarrow{n\to\infty} \mathcal{A} \equiv$ algebra of regular functions on an ordinary_manifold.

Table of contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Constructing $\mathcal{H}_{\Lambda}, P_{\Lambda}$

The observables $\overline{x}^i, \overline{L}_{hk}$

 \mathcal{A}_{Λ} as fuzzy coadjoint orbit

Discussion

References

Constructing $\mathcal{H}_{\Lambda}, \mathcal{P}_{\Lambda}$

TION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

Let $\mathbf{x} := (x^1, ... x^D)$ be real Cartesian coordinates of \mathbb{R}^D ; abbreviate $\partial_i \equiv \partial/\partial x^i$. Then $r^2 = \mathbf{x}^2 \equiv x^i x^i$, $\Delta = \partial_i \partial_i$. The self-adjoint operators

$$L_{ij} := i(x^j \partial_i - x^i \partial_j) \tag{3}$$

on $\mathcal{L}^2(\mathbb{R}^D)$ (angular momentum components) generate rotations of \mathbb{R}^D ;

$$[iL_{ij}, \mathbf{v}^h] = \mathbf{v}^i \delta^h_j - \mathbf{v}^j \delta^h_i \tag{4}$$

hold for all vectors \mathbf{v} , in particular $v^h = x^h, \partial_h$, and

$$[iL_{ij}, iL_{hk}] = i \left(L_{ik} \delta_{hj} - L_{jk} \delta_{hi} - L_{ih} \delta_{kj} + L_{jh} \delta_{ki} \right).$$
(5)

These are equivariant under $x^i \mapsto x'^i = Q_j^i x^j$, with $Q \in O(D)$. All scalars S, in particular $S = \Delta, r^2, V(r), H$, are invariant, whence $[S, L_{ij}] = 0$.

$$\Delta = \partial_r^2 + (D-1)\frac{1}{r}\partial_r - \frac{1}{r^2}\mathbf{L}^2, \tag{6}$$

where $\partial_r := \partial/\partial r$ and $\mathbf{L}^2 := L_{ij}L_{ij}/2$ is the quadratic Casimir of Uso(D)and the Laplacian on the sphere S^d .

Solving the Schrödinger equation

The eigenvalues of L^2 on $\mathcal{L}^2(\mathbb{R}^D)$, $\mathcal{L}^2(S^d)$ are l(l+D-2), $l \in \mathbb{N}_0$. Let V_D^l be the $L^2 = l(l+D-2)$ eigenspace within $\mathcal{L}^2(S^d)$. Ansatz $\psi = T(\theta) f(r)$, $f(r) = r^{-d/2}g(r)$, $T \in V_D^l$ transforms the Schrödinger PDE $H\psi = E\psi$ into the ODE in the unknown g(r)

$$-g''(r) + \left[\frac{\left[D^2 - 4D + 3 + 4l(l+D-2)\right]}{4r^2} + V(r)\right]g(r) = Eg(r).$$
 (7)

Expanding [...] at lowest order in (r-1) we get the harmonic oscillator eq.

$$-g''(r) + g(r)k_l(r - \widetilde{r}_l)^2 = \widetilde{E}_l g(r), \qquad (8)$$

which approximates well (7) in the spherical shell $V(r) \leq \overline{E}$, because V(r) has a sharp minimum at r = 1. Here

$$\begin{split} \widetilde{r_l} &:= 1 + \frac{b(l,D)}{3b(l,D)+2k}, \quad \widetilde{E}_l := E - V(1) - \frac{2b(l,D)[k+b(l,D)]}{3b(l,D)+2k}, \\ k_l &:= 2k + 3b(l,D), \quad b(l,D) := \frac{D^2 - 4D + 3 + 4l(l+D-2)}{4}. \end{split}$$

The (Hermite functions) square-integrable solutions of (8) are

$$g_{n,l}(r) = M_{n,l} \ e^{-\frac{\sqrt{k_l}}{2}(r-\widetilde{r_l})^2} \cdot H_n\left((r-\widetilde{r_l})\sqrt[4]{k_l}\right) \quad \text{with } n \in \mathbb{N}_0$$

INTRODUCTION CONSTRUCTING \mathcal{H}_{h} , P_{h} The observables \overline{x}^{i} , \overline{L}_{hk} \mathcal{A}_{h} as fuzzy coadjoint orbit Discussion Reference

(here $M_{n,l}$ = normalization const., H_n = Hermite polynomials), whence

$$f_{n,l}(r) = \frac{M_{n,l}}{r^{\frac{D-1}{2}}} e^{-\frac{\sqrt{k_l}}{2}(r-\widetilde{r_l})^2} \cdot H_n\left((r-\widetilde{r_l})\sqrt[4]{k_l}\right) \quad \text{with } n \in \mathbb{N}_0.$$
(9)

The 'eigenvalues' in (8) are $\widetilde{E}_{n,l}=(2n+1)\sqrt{k_l}$, whence the energies

$$E_{n,l} = (2n+1)\sqrt{k_l} + V(1) + \frac{2b(l,D)[k+b(l,D)]}{3b(l,D) + 2k}$$

We fix V(1) requiring that $E_{0,0} = 0$. Then, at leading order in k:

$$E_{n,l} = \frac{2n\sqrt{2k} + l(l+D-2) + O\left(k^{-\frac{1}{2}}\right),}{\tilde{r}_l = 1 + \frac{b(l,D)}{2k} + O\left(k^{-2}\right).}$$
(10)

 $E_{0,l} = l(l+D-2) =: E_l$ are the eigenvalues of the Laplacian L^2 on S^2 , while $E_{n,l} \to \infty$ as $k \to \infty$ if n > 0. We can eliminate the latter (constrain n = 0) imposing a cutoff

$$\mathbf{E} \leq \mathbf{\Lambda}(\mathbf{\Lambda} + \mathbf{D} - \mathbf{2}) \equiv \overline{\mathbf{E}} < \mathbf{2}\sqrt{2\mathbf{k}}, \qquad \mathbf{\Lambda} \in \mathbb{N}$$
 (11)

 \mathcal{H}_{Λ} decomposes into eigenspaces of H, L^2 (irreps of O(D)) as follows

INTRODUCTION CONSTRUCTING \mathcal{H}_{h} , P_{h} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{h} as fuzzy coadjoint orbit Discussion Reference

$$\mathcal{H}_{\Lambda} = \bigoplus_{l=0}^{\Lambda} \mathcal{H}_{\Lambda}^{l}.$$
 (12)

Given an orthonormal basis $\mathcal{B}_{l} \equiv \{Y_{l}^{m}\}_{m \in I_{l}}$ of V_{D}^{l} (e.g. spherical harmonics), an orthonormal basis of $\mathcal{H}^{\prime}_{\Lambda}$ consists of the

$$\psi_l^{\mathbf{m}} := f_l(r) Y_l^{\mathbf{m}}(\theta) \tag{13}$$

(14)

with $f_l(r) \equiv f_{0,l}(r)$. The projection $\widetilde{P}_l : \mathcal{H} \to \mathcal{H}_{\Lambda}^l$ acts by

$$\left(\widetilde{P}_{l}\phi\right)(x)=\sum_{\mathbf{m}\in I_{l}}\psi_{l}^{\mathbf{m}}(x)\int_{\mathbb{R}^{D}}d^{D}x'\psi_{l}^{\mathbf{m}*}(x')\phi(x').$$

If $\phi(r, \theta) = \Theta_i(\theta) \phi(r)$ with $\Theta_i \in V_D^j$, then this simplifies to $\left(\widetilde{P}_{l}\boldsymbol{\phi}\right)(r,\boldsymbol{\theta})=\delta_{lj}\Theta_{j}(\boldsymbol{\theta})f_{l}(r)\int_{0}^{\infty}r'^{d}dr'f_{l}^{*}(r')\phi(r').$

Representations of O(D) via polynomials in x^i , t^i

INTRODUCTION CONSTRUCTING \mathcal{H}_{h} , P_{h} The observables \overline{x}^{i} , \overline{L}_{hk} \mathcal{A}_{h} as fuzzy coadjoint orbit Discussion Reference

 $\mathbb{C}[\mathbb{R}^D] \equiv \mathbb{C}[x^1, ...x^D] \equiv$ space of complex polynomial functions on \mathbb{R}^D , $W_D^I \equiv$ subspace of homogeneous ones of degree $l \in \mathbb{N}_0$ carries a representation of O(D) (and Uso(D)), which is reducible if $l \ge 2$: $r^2 W_D^{l-2} \subset W_D^l$ manifestly carries a smaller representation. Let \check{V}_D^l be the "trace-free" component of W_D^l : $W_D^l = \check{V}_D^l \oplus r^2 W_D^{l-2}$.

$$\dim(\check{V}_D^l) = \dim(W_D^l) - \dim(W_D^{l-2}) = \frac{(l+D-3)...(l+1)}{(D-2)!}(D+2l-2).$$
(15)

 \check{V}_D^l carries the irrep π_D^l of Uso(D) and O(D) within W_D^l characterized by the highest eigenvalue $\mathbf{L}^2 = l(l+D-2)$; it is also the subspace of W_D^l such that $\Delta\check{V}_D^l = 0$, i.e. of *harmonic* homogeneous polynomials. In fact, $X_{l,\pm}^{hk} \equiv (x^h \pm ix^k)^l \in W_D^l$ fulfill $\Delta X_{l,\pm}^{hk} = 0$, $\mathbf{L}^2 X_{l,\pm}^{hk} = l(l+D-2) X_{l,\pm}^{hk}$, $L_{hk} X_{l,\pm}^{hk} = \pm l X_{l,\pm}^{hk}$. $X_{l,\pm}^{hk}$, $X_{l,-}^{hk}$ as highest and lowest weight vectors. A complete set in \check{V}_D^l consists of trace-free homogeneous polynomials $X_l^{i_1i_2...i_l}$, which we obtain below applying the completely symmetric trace-free projector \mathcal{P}^l to the $x^{i_1}x^{i_2}...x^{i_l}$'s. Enlarge $\mathbb{C}[\mathbb{R}^D]$ slightly by new coordinates r, r^{-1} subject to $r^2 = x^i x^i$, $rr^{-1} = 1$. The elements

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

$$t^i := x^i r^{-1}$$
 (16)

can be regarded as coordinates of points of the unit sphere S^d , because

$$t^i t^i = 1. (17)$$

The algebra Pol_D of complex polynomials in t^i , endowed with the scalar product $\langle T, T' \rangle := \int_{S^d} d\alpha \ T^* T'$ is a pre-Hilbert space dense in $\mathcal{L}^2(S^d)$. $Pol_D^{\Lambda} \subset Pol_D \equiv$ subspace pol. of degree Λ , projection $P_{\Lambda} : Pol_D \to Pol_D^{\Lambda}$. $Pol_D^{\Lambda} = W_D^{\Lambda} r^{-\Lambda} \oplus W_D^{\Lambda-1} r^{1-\Lambda}$ decomposes into irreps of Uso(D)isomorphically to $W_D^{\Lambda} \oplus W_D^{\Lambda-1}$:

$$Pol_D^{\Lambda} = \bigoplus_{l=0}^{\Lambda} V_D^l, \qquad V_D^l = \check{V}_D^l r^{-l} \simeq \check{V}_D^l.$$
(18)

$$\dim \left(\operatorname{Pol}_{D}^{\Lambda} \right) = \frac{(D + \Lambda - 2) \dots (\Lambda + 1)}{(D - 1)!} \left(D + 2\Lambda - 1 \right) =: N = \dim \left(V_{D + 1}^{\Lambda} \right)$$

O(D)-irreps via trace-free completely symmetric projectors

Let (π, \mathcal{E}) be the *D*-dimensional irreducible unitary representation (irrep) of Uso(D) and O(D); $V_D^1 \simeq \mathcal{E}$. Under $\pi \otimes \pi$,

$$\mathcal{E} \otimes \mathcal{E} = \underbrace{\mathcal{P}^{-}(\mathcal{E} \otimes \mathcal{E})}_{\text{antisym. irrep}} \oplus \underbrace{\mathcal{P}(\mathcal{E} \otimes \mathcal{E}) \oplus \mathcal{P}^{t}(\mathcal{E} \otimes \mathcal{E})}_{\text{sym. red. rep. } \mathcal{P}^{+}(\mathcal{E} \otimes \mathcal{E})}$$
(20)

 $\mathcal{P}^t\equiv$ 1-dim trace projector. In an orthonormal basis of $\mathcal{E}~g_{ij}=g^{ij}=\delta_{ij},$

$$\mathcal{P}^{t\,ij}_{\ kl} = \frac{1}{D}\,\delta^{ij}\delta_{kl}.\tag{21}$$

The $\frac{1}{2}(D-1)(D+2)$ -dim trace-free symmetric projector \mathcal{P} is given by

$$\mathcal{P} := \mathcal{P}^+ - \mathcal{P}^t = \frac{1}{2} \left(\mathsf{id}_{D^2} + \mathsf{P} \right) - \mathcal{P}^t \tag{22}$$

 $(\mathsf{P} \equiv \mathsf{permutator}, \, \mathsf{id}_{\mathcal{D}^n} \equiv \mathsf{identity} \; \mathsf{operator} \; \mathsf{on} \; \mathcal{E}^{\otimes^n}). \; \mathcal{P}\mathcal{P}^- = 0 = \mathcal{P}^-\mathcal{P},$

$$\mathcal{P}\mathcal{P}^{t} = \mathbf{0} = \mathcal{P}^{t}\mathcal{P} \quad \Leftrightarrow \quad \mathcal{P}_{hk}^{ij}\delta^{hk} = \mathbf{0} = \delta_{ij}\mathcal{P}_{hk}^{ij} \tag{23}$$

▲□▶▲□▶▲□▶▲□▶ = のへの

The generalizations \mathcal{P}^{l} of \mathcal{P} acting on $\mathcal{E}^{\otimes^{l}}$ (trace-free completely symmetric projectors) are uniquely determined by requiring $(\mathcal{P}^{l})^{2} = \mathcal{P}^{l}$,

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

$$\mathcal{P}^{I}\mathcal{P}_{n(n+1)}^{-} = 0, \quad \mathcal{P}^{I}\mathcal{P}_{n(n+1)}^{t} = 0,$$

$$\mathcal{P}_{n(n+1)}^{-}\mathcal{P}^{I} = 0, \quad \mathcal{P}_{n(n+1)}^{t}\mathcal{P}^{I} = 0,$$

$$n = 1, ..., I-1$$
(24)

As a bonus $\operatorname{tr}_{1...l}(\mathcal{P}') = \operatorname{dim}(V_D')$. The right relations in (24) amount to $\mathcal{P}_{i_1...i_l}^{li_1...i_l} \delta^{j_n j_{n+1}} = 0, \quad \delta_{i_n i_{n+1}} \mathcal{P}_{j_1...j_l}^{li_1...i_l} = 0, \quad n = 1, ..., l-1.$ (25)

Proposition 1 \mathcal{P}^{H_1} can be recursively expressed as a polynomial in the permutators $\mathsf{P}_{12},...,\mathsf{P}_{(I-1)I}$ and trace projectors $\mathcal{P}_{12}^t,...,\mathcal{P}_{(I-1)I}^t$ via

$$\mathcal{P}^{H1} = \mathcal{P}'_{12...l} \mathcal{M}_{l(H1)} \mathcal{P}'_{12...l},$$
 (26)

$$= \mathcal{P}'_{2...(\mu_1)} M_{12} \mathcal{P}'_{2...(\mu_1)}, \qquad (27)$$

where
$$M \equiv M(l+1) = \frac{1}{l+1} \left[id_{D^2} + lP - \frac{2Dl}{D+2l-2} P^t \right]$$
 (28)

As a consequence, the \mathcal{P}' are symmetric, $(\mathcal{P}')^T = \mathcal{P}'_{\mathcal{P}} \cdot \mathcal{P}_{\mathcal{P}} \cdot \mathcal{P}_{\mathcal{P}}$

The homogeneous polynomials

$$X_{l}^{i_{1}...i_{l}} := \mathcal{P}_{j_{1}...j_{l}}^{l_{1}...i_{l}} x^{j_{1}} ... x^{j_{l}}$$
⁽²⁹⁾

are harmonic, i.e. satisfy $\Delta X_l^{i_1...i_l} = 0$, and are eigenvectors of L^2 :

$$\mathbf{L}^{2} X_{l}^{i_{1}...i_{l}} = I(D-2+I) X_{l}^{i_{1}...i_{l}}.$$
 (30)

They make up a complete set in \check{V}_D^I , but are not all independent: they are completely symmetric and trace-free, i.e. fulfill

INTRODUCTION CONSTRUCTING \mathcal{H}_{h} , P_{h} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{h} as fuzzy coadjoint orbit Discussion Reference

$$\delta_{i_n i_{n+1}} X_l^{i_1 \dots i_l} = 0, \qquad n = 1, \dots, l-1.$$
(31)

Proposition 2 The maps $L_{hk}: \check{V}_D^{\prime} \to \check{V}_D^{\prime}$ explicitly act as follows:

$$iL_{hk}X_{l}^{i_{1}...i_{l}} = I\mathcal{P}_{j_{1}...j_{l}}^{l_{j_{1}...j_{l}}}\left(\delta^{kj_{1}}X_{l}^{hj_{2}...j_{l}} - \delta^{hj_{1}}X_{l}^{kj_{2}...j_{l}}\right).$$
(32)

Proposition 3 The completely symmetric and trace-free polynomials

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

$$T_{l}^{i_{1}i_{2}...i_{l}} := \frac{1}{r^{l}} X_{l}^{i_{1}i_{2}...i_{l}} = \mathcal{P}_{j_{1}...j_{l}}^{i_{1}...i_{l}} t^{j_{1}}...t^{j_{l}}$$
(33)

make up a complete set \mathcal{T}_{l} in V_{D}^{l} (but not a basis: $\delta_{i_{1}i_{2}}\mathcal{T}_{l}^{i_{1}...i_{l}} = 0$, etc.). The actions of the operators \mathbf{L}^{2} , iL_{hk} , t^{h} on the $\mathcal{T}_{l}^{i_{1}...i_{l}}$ explicitly read

$$\mathbf{L}^{2} T_{l}^{i_{1}...i_{l}} = l(l+D-2) T_{l}^{i_{1}...i_{l}},$$
(34)

$$iL_{hk}T_{l}^{i_{1}...i_{l}} = I\mathcal{P}_{j_{1}...j_{l}}^{Ii_{1}...i_{l}}\left(\delta^{kj_{1}}T_{l}^{hj_{2}...j_{l}} - \delta^{hj_{1}}T_{l}^{kj_{2}...j_{l}}\right).$$
(35)

$$t^{h} T_{l}^{i_{1}...i_{l}} = T_{l+1}^{hi_{1}...i_{l}} + \frac{l}{D+2l-2} \mathcal{P}_{hj_{2}...j_{l}}^{li_{1}i_{2}...i_{l}} T_{l-1}^{j_{2}...j_{l}} \in V_{D}^{l+1} \oplus V_{D}^{l-1},$$
(36)

$$t^{i}T_{l}^{ii_{2}...i_{l}} = \frac{1}{D+2l-2} \left[D+l-1-\frac{2l-2}{D+2l-4} \right] T_{l-1}^{i_{2}...i_{l}} \in V_{D}^{l-1}, \quad (37)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Embedding $\mathbb{R}^D \hookrightarrow \mathbb{R}^{D+1}$, isomorphism $\mathsf{Pol}_D^{\wedge} \simeq V_{D+1}^{\wedge}$

Abbreviate $\mathbf{D} \equiv D + 1$. To avoid confusion, in dimension \mathbf{D} we add it as a subscript, e.g. the distance $r_{\mathbf{D}}$ from the origin in $\mathbb{R}^{\mathbf{D}}$, vs. $r \equiv r_{D}$ in \mathbb{R}^{D} . Henceforth (x^{i}) , (x^{i}) stand resp. for real Cartesian coordinates of \mathbb{R}^{D} , $\mathbb{R}^{\mathbf{D}}$: $h, i, j \in \{1, ..., D\}$, $H, I, J \in \{1, ..., \mathbf{D}\}$; we naturally embed $\mathbb{C}[\mathbb{R}^{D}] \hookrightarrow \mathbb{C}[\mathbb{R}^{\mathbf{D}}]$. We naturally embed $O(D) \hookrightarrow SO(\mathbf{D})$ identifying the subgroup O(D) as the little group of the \mathbf{D} -th axis; its Lie algebra is generated by the L_{hk} .

$$T^{I_1...I_{\Lambda}}_{\mathbf{D},\Lambda} := \mathcal{P}^{\Lambda I_1...I_{\Lambda}}_{\mathbf{D},J_1...J_{\Lambda}} t^{J_1}...t^{J_{\Lambda}} \in V^{\Lambda}_{\mathbf{D}}$$
(38)

make up a complete set in $V_{\mathbf{D}}^{\Lambda}$. Defining

$$F_{\mathbf{D},\Lambda}^{i_1\dots i_l} := \mathcal{P}_{j_1\dots j_l}^{\prime i_1\dots i_l} T_{\mathbf{D},\Lambda}^{j_1\dots j_l \mathbf{D}\dots \mathbf{D}},\tag{39}$$

one finds that these factorize as

$$F_{\mathbf{D},\Lambda}^{i_{1}...i_{l}} = p_{\Lambda,l}(t^{\mathbf{D}}) T_{l}^{i_{1}...i_{l}},$$

$$p_{\Lambda,l} = (t^{\mathbf{D}})^{\Lambda-l} + (t^{\mathbf{D}})^{\Lambda-l-2} b_{\Lambda,l+2} + (t^{\mathbf{D}})^{\Lambda-l-4} b_{\Lambda,l+4} + ...$$
(40)
$$(40)$$

Proposition 4 $V_{\mathbf{D}}^{\Lambda}$ decomposes into the following irreps under Uso(D):

$$V_{\mathbf{D}}^{\Lambda} = \bigoplus_{l=0}^{\Lambda} V_{D,\Lambda}^{l}, \qquad (42)$$

where $V_{D,\Lambda}^{l} \simeq V_{D}^{l}$ is spanned by the $F_{D,\Lambda}^{i_{1}...i_{l}}$. These are eigenvectors of L^{2} ,

$$\mathbf{L}^{2} F_{\mathbf{D},\Lambda}^{i_{1}...i_{l}} = I(I+D-2) F_{\mathbf{D},\Lambda}^{i_{1}...i_{l}},$$
(43)

transform under L_{hk} as the $T_l^{i_1...i_l}$, and under L_{hD} as follows:

$$iL_{h\mathbf{D}}F_{\mathbf{D},\Lambda}^{i_{1}...i_{l}} = (\Lambda - l)F_{\mathbf{D},\Lambda}^{hi_{1}...i_{l}} - \frac{l(\Lambda + l + D - 2)}{D + 2l - 2}\mathcal{P}_{hj_{2}...j_{l}}^{li_{1}i_{2}...i_{l}}F_{\mathbf{D},\Lambda}^{j_{2}...j_{l}}.$$
 (44)

Action of $\overline{\mathbf{x}}^i, \overline{\mathbf{L}}_{hk}$, and relations among them

$$\psi_{l}^{i_{1}i_{2}...i_{l}} := T_{l}^{i_{1}i_{2}...i_{l}}f_{l}(r)$$
(45)

 $(i_h \in \{1, ..., D\}$ for $h \in \{1, ..., I\}$) make up a complete set $S'_{D,\Lambda}$ in the eigenspace \mathcal{H}'_{Λ} of H, L^2 , with eigenvalues E_I , I(I+D-2). They are completely symmetric under permutation of the indices and fulfill

$$\delta_{i_n i_{n+1}} \psi_l^{i_1 \dots i_l} = 0, \qquad n = 1, \dots, l-1.$$
(46)

 $\mathcal{S}_{D,\Lambda} := \cup_{l=0}^{\Lambda} \mathcal{S}_{D,\Lambda}^{l}$ is a complete set in \mathcal{H}_{Λ} . By (45), (35), (14), (36),

$$i\overline{L}_{hk}\psi_{l}^{i_{1}i_{2}...i_{l}} = I\mathcal{P}_{j_{1}...j_{l}}^{Ii_{1}...i_{l}}\left(\delta^{kj_{1}}\psi_{l}^{hj_{2}...j_{l}} - \delta^{hj_{1}}\psi_{l}^{kj_{2}...j_{l}}\right).$$
(47)

$$\overline{x}^{i} \psi_{l}^{i_{1}i_{2}...i_{l}} = c_{l+1} \psi_{l+1}^{ii_{1}...i_{l}} + \frac{c_{l} l}{D+2l-2} \mathcal{P}^{li_{1}i_{2}...i_{l}}_{i_{2}...j_{l}} \psi_{l-1}^{j_{2}...j_{l}}.$$
 (48)

where
$$c_l := \begin{cases} \sqrt{1 + \frac{(2D-5)(D-1)}{2k} + \frac{(l-1)(l+D-2)}{k}} & \text{if } 1 \le l \le \Lambda, \\ 0 & \text{otherwise,} \end{cases}$$

up to $O(k^{-3/2})$ corrections that can be set to equal to zero by a suitable choice of V. Henceforth we adopt (47-48) as exact definitions of $\overline{L}_{hk}, \overline{X}_{=}^{i}$

Proposition. The $\overline{x}^i, \overline{L}_{hk} \in A_{\Lambda}$ are self-adjoint operators fulfilling

$$[i\overline{L}_{ij},\overline{x}^h] = \overline{x}^i \delta^h_j - \overline{x}^j \delta^h_i, \qquad \varepsilon^{i_1 i_2 i_3 \dots i_D} \overline{x}^{i_1} \overline{L}_{i_2 i_3} = 0,$$
(49)

$$[i\overline{L}_{ij}, i\overline{L}_{hk}] = i\left(\overline{L}_{ik}\delta^{j}_{h} - \overline{L}_{jk}\delta^{i}_{h} - \overline{L}_{ih}\delta^{j}_{k} + \overline{L}_{jh}\delta^{i}_{k}\right),$$
(50)

 $(\overline{x}^{h} \pm i\overline{x}^{k})^{2\Lambda+1} = 0, \quad (\overline{L}^{hj} + i\overline{L}^{kj})^{2\Lambda+1} = 0, \quad \text{if } h, i, j \text{ distinct}, \quad (51)$

$$\left[\overline{x}^{i}, \overline{x}^{j}\right] = \underbrace{\left(-\frac{l}{k} + K\widetilde{P}^{\Lambda}\right) i\overline{L}_{ij}}_{Snyder-like}, \quad K := \frac{1}{k} + \frac{1+B/k+(\Lambda-1)(\Lambda+D-2)/k}{D+2\Lambda-2}, \quad (52)$$

$$\overline{\mathbf{x}}^2 = 1 + \frac{\overline{\mathbf{L}}^2}{k} + \frac{B}{k} - \frac{\Lambda + D - 2}{2\Lambda + D - 2} \left[1 + \frac{B}{k} + \frac{\Lambda(\Lambda + d)}{k} \right] \widetilde{P}^{\Lambda} =: \chi(\mathbf{L}^2).$$
(53)

here $\widetilde{P}^{I} \equiv$ projection on $L^{2} = I(I+D-2)$ eigenspace, B := d(2d-3)/2.

Generalizes Proposition 4.1 in [GF, F. Pisacane18]. We obtain S^d_{Λ} choosing $k = k(\Lambda)$ respecting (??); the commutative limit is $\Lambda \to \infty$.

We remark that:

• $[\overline{x}^i, \overline{x}^j]$ depend only on the angular momentum (also \widetilde{P}^{Λ} can be expressed as a function of $\overline{\mathbf{L}}^2$) and are Snyder-like, i.e. are $\propto \overline{L}_{ij}$.

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

- The ordered monomials in xⁱ, L_{hk} make up a basis of the N²-dim vector space A_Λ: also the Pⁱ can be expressed as polynomials in L².
- Actually, \overline{x}^i generate the *-algebra $\mathcal{A}_{\Lambda} \equiv End(\mathcal{H}_{\Lambda})$: express also \overline{L}_{hk} as non-ordered polynomials in \overline{x}^i via (52).
- Eq. (49-53) are fully O(D)-equivariant, also under one or more $\overline{x}^i \mapsto -\overline{x}^i$ (e.g. parity), contrary to Madore-Hoppe FS.
- x̄² = χ(L̄²) ≠ const, eigenspaces H^I_Λ. All eigenvalues r²_I, except r²_Λ, are close to 1, slightly grow with I and collapse to 1 as Λ → ∞.

We slightly enlarge Uso(D) by introducing the new generator

$$\lambda = \frac{1}{2} \left[\sqrt{(D-2)^2 + 4\mathbf{L}^2} - D + 2 \right]$$
(54)

fulfilling $\lambda(\lambda+D-2) = \mathbf{L}^2$, so that V_D^I is a $\lambda = I$ eigenspace.

Theorem. There are a O(D)-module isomorphism $\varkappa_{\Lambda} : \mathcal{H}_{\Lambda} \to V_{\mathbf{D}}^{\Lambda}$ and a O(D)-equivariant algebra map $\kappa_{\Lambda} : \mathcal{A}_{\Lambda} \equiv \operatorname{End}(\mathcal{H}_{\Lambda}) \to \pi_{\mathbf{D}}^{\Lambda}[Uso(\mathbf{D})]$, s. t.

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , $\overline{\mathcal{L}}_{hk}$ \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

$$\varkappa_{\Lambda}(a\psi) = \kappa_{\Lambda}(a)\varkappa_{\Lambda}(\psi), \quad \forall \ \psi \in \mathcal{H}_{\Lambda}, \quad a \in \mathcal{A}_{\Lambda}.$$
 (55)

On the $\psi_l^{i_1...i_l}$ (spanning \mathcal{H}_{Λ}) and on generators $L_{hi}, \overline{x}^i \cdot$ of \mathcal{A}_{Λ} :

$$\varkappa_{\Lambda}\left(\psi_{l}^{i_{1}...i_{l}}\right) := a_{\Lambda,l}F_{\mathbf{D},\Lambda}^{i_{1}...i_{l}} = a_{\Lambda,l}p_{\Lambda,l}T_{l}^{i_{1}...i_{l}}, \quad l = 0, 1, ..., \Lambda, \quad (56)$$

$$\kappa_{\Lambda}\left(\overline{L}_{hi}\right) := \pi_{\mathbf{D}}^{\Lambda}(L_{hi}), \qquad \kappa_{\Lambda}\left(\overline{x}^{i}\right) := \pi_{\mathbf{D}}^{\Lambda}\left[m_{\Lambda}^{*}(\lambda)L_{\mathbf{D}i}m_{\Lambda}(\lambda)\right],$$
(57)

where $p_{\Lambda,l}$ are the polynomials in t^{D} of degree $\Lambda - l$ given in (41), and

$$a_{\Lambda,l} = a_{\Lambda,0} i^{l} \sqrt{\frac{\Lambda(\Lambda-1)...(\Lambda-l+1)}{(\Lambda+D-1)(\Lambda+D)...(\Lambda+l+D-2)}},$$

$$m_{\Lambda}(s) = \sqrt{\frac{\Gamma\left(\frac{\Lambda+s+d}{2}\right) \, \Gamma\left(\frac{\Lambda-s+1}{2}\right) \, \Gamma\left(\frac{s+1+d/2+iA}{2}\right) \, \Gamma\left(\frac{s+1+d/2-iA}{2}\right)}{\Gamma\left(\frac{\Lambda+s+D}{2}\right) \, \Gamma\left(\frac{\Lambda-s}{2}+1\right) \, \Gamma\left(\frac{s+d/2+iA}{2}\right) \, \Gamma\left(\frac{s+d/2-iA}{2}\right) \, \sqrt{k}}};$$

here $A := \sqrt{k + (D-1)(D-3)3/4}$, and Γ is Euler gamma function.

As known, the group of *-automorphisms of $\mathcal{A}_{\Lambda} \simeq M_{N}(\mathbb{C})$ is

$$b o gbg^{-1}, \qquad b \in \mathcal{A}_{\Lambda}, \quad g \in SU(N).$$

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , $\overline{\mathcal{L}}_{hk}$ \mathcal{A}_{Λ} as fuzzy coadjoint orbit Discussion Reference

We can identify a subgroup $\simeq SO(\mathbf{D})$, acting via the *N*-dim irrep $(V_{\mathbf{D}}^{\Lambda}, \pi_{\mathbf{D}}^{\Lambda})$; it consists of matrices $g = \pi_{\mathbf{D}}^{\Lambda} [e^{i\alpha}]$, where $\alpha \in so(\mathbf{D})$.

 $O(D) \subset SO(\mathbf{D}) \subset SU(N)$ plays the role of isometry subgroup of our fuzzy sphere. It includes parity.

SO(D) (rotations of \mathbb{R}^D): choosing $\alpha = \alpha^{ij}L_{ij} \in so(D)$; O(D) with determinant -1, (e.g. inverting one axis of \mathbb{R}^D): $\alpha = \alpha^{ij}L_{ij} + \beta^i L_{iD}$. Identifying \mathcal{A}_{Λ} as a fuzzy quantization of a coadjoint orbit of O(D+1)

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} As fuzzy coadjoint orbit Discussion Reference

If $G = \text{compact semisimple Lie group, and } \mathfrak{g} \equiv \text{Lie}(G), \lambda \in \mathfrak{g}^* \simeq \mathfrak{g}$, the coadjoint orbit \mathcal{O}_{λ} may be defined as

$$\mathcal{O}_{\boldsymbol{\lambda}} := G/G_{\boldsymbol{\lambda}} \quad \text{where} \quad G_{\boldsymbol{\lambda}} := \left\{ g \in G \mid g \boldsymbol{\lambda} g^{-1} = \boldsymbol{\lambda} \right\}.$$
 (58)

Clearly $G_{\Lambda\lambda} = G_{\lambda}$ if $\Lambda \neq 0$. If \mathcal{H}_{λ} carries irrep with highest weight λ , setting $\mathcal{A}_{\Lambda} \equiv \text{End}(\mathcal{H}_{\Lambda\lambda})$, one can regard [Hawkins 99] the sequence $\{\mathcal{A}_{\Lambda}\}_{\Lambda\in\mathbb{N}}$ as a fuzzy quantization of the symplectic space \mathcal{O}_{λ} .

Set $G = SO(\mathbf{D})$. Cartan subalgebra $\mathfrak{h} \subset so(\mathbf{D})$ with basis

$$H_{\sigma} \equiv L_{D\mathbf{D}}, \quad H_{\sigma-1} \equiv L_{(d-1)d}, \quad \dots, \quad H_1 = \begin{cases} L_{12} & \text{if } \mathbf{D} = 2\sigma, \\ L_{23} & \text{if } \mathbf{D} = 2\sigma+1. \end{cases}$$
(59)

 $\begin{array}{c} \text{Introduction} \\ \text{ocococo} \\ \text{ococococococo} \\ \text{ocococococococo} \\ \text{ococococococococo} \\ \text{ocococ} \\ \text{ococc} \\ \text{$

As a highest weight vector of the irrep $\pi_{\mathbf{D}}^{\Lambda}$ of $Uso(\mathbf{D})$ on $V_{\mathbf{D}}^{\Lambda} \simeq \mathcal{H}_{\Lambda}$ we choose $\Omega_{\mathbf{D}}^{\Lambda} \equiv (t^{D} + it^{\mathbf{D}})^{\Lambda}$. The associated weight, i.e. the joint spectrum of $H \equiv (H_{1}, ..., H_{\sigma})$, is $\Lambda \lambda$, where $\lambda = (0, ..., 0, 1) \in \mathfrak{h}^{*}$. Identifying λ with $H_{\lambda} \propto H_{\sigma} \in \mathfrak{h}$ via the Killing form, we find $G_{\lambda} = SO(2) \times SO(d)$, with so(2) spanned by H_{σ} , so(d) spanned by the L_{ij} with i, j < D. Hence $\mathcal{O}_{\lambda} = SO(\mathbf{D})/(SO(2) \times SO(d))$ has dimension

$$\frac{D(D+1)}{2} - 1 - \frac{d(d-1)}{2} = 2d,$$

exactly as the dimension of the cotangent space T^*S^d , i.e. the classical phase space over the sphere S^d ! Consistent with interpreting \mathcal{A}_{Λ} as the algebra of observables (quantized phase space) on the fuzzy sphere S^d_{Λ} . By other generic irrep of $Uso(\mathbf{D})$ the coadjoint orbit would have been some other equivariant bundle over S^d .

Discussion and conclusions

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{Λ} as fuzzy coadjoint orbit **Discussion** Reference

We have built a sequence $(\mathcal{A}_{\Lambda}, \mathcal{H}_{\Lambda})_{\Lambda \in \mathbb{N}}$ of finite-dim, O(D)-equivariant (D = d+1) approximations of QM of a zero-spin particle on the sphere S^d by imposing $E \leq \Lambda(\Lambda + d - 1)$ on QM of the particle in \mathbb{R}^D subject to a potential $V_{\Lambda}(r)$ with a sharp minimum on S^d .

 \mathcal{A}_{Λ} are fuzzy approximations of the *whole algebra of observables* of the particle on S^d (phase space algebra); $\mathbf{x}^2 \gtrsim 1$ collapses to 1 as $\Lambda \to \infty$. $\mathcal{A}_{\Lambda} \simeq \pi_{\mathbf{D}}^{\Lambda}[Uso(\mathbf{D})]$, with the irrep $V_{\mathbf{D}}^{\Lambda}, \pi_{\mathbf{D}}^{\Lambda}$ of $Uso(\mathbf{D}), \mathbf{D} \equiv D+1$. Can be regarded as a fuzzy quantization of a coadjoint orbit of $O(\mathbf{D}) \simeq T^*S^d$. $\mathcal{H}_{\Lambda} \simeq V_{\mathbf{D}}^{\Lambda}$ and the subspace $\mathcal{C}_{\Lambda} \subset \mathcal{A}_{\Lambda}$ of trace-free, completely symmetrized polynomials in the $\overline{\mathbf{x}}^i$ carry *reducible* representations of $O(\mathbf{D})$:

$$\mathcal{H}_{\Lambda} = \bigoplus_{l=0}^{\Lambda} \mathcal{H}_{\Lambda}^{l} \simeq V_{\mathbf{D}}^{\Lambda} = \bigoplus_{l=0}^{\Lambda} V_{D}^{l}, \qquad \mathcal{C}_{\Lambda} \simeq \bigoplus_{l=0}^{2\Lambda} V_{D}^{l}$$
(60)

As $\Lambda \to \infty$ these become the decompositions of $\mathcal{L}^2(S^d)$ and of $\mathcal{C}(S^d)$,

$$\mathcal{L}^{2}(S^{d}) = \bigoplus_{l=0}^{\infty} V_{D}^{l}, \qquad \qquad \mathcal{C}(S^{d}) = \bigoplus_{l=0}^{\infty} V_{D}^{l}. \tag{61}$$

 S^2_{Λ} vs. Madore-Hoppe Fuzzy Sphere S^2_n (seminal fuzzy space): $\mathcal{A}_n \simeq \mathcal{M}_n(\mathbb{C})$, generated by coordinates x^i (i = 1, 2, 3) fulfilling

$$[x^{i}, x^{j}] = \frac{2i}{\sqrt{n^{2}-1}} \varepsilon^{ijk} x^{k}, \quad r^{2} := x^{i} x^{i} = 1, \qquad n \in \mathbb{N} \setminus \{1\};$$
(62)

INTRODUCTION CONSTRUCTING \mathcal{H}_{Λ} , P_{Λ} The observables \overline{x}^{i} , \overline{L}_{hk} , \mathcal{A}_{Λ} as fuzzy coadjoint orbit **Discussion** Reference

(62) are SO(3)-equivariant, not O(3)-, e.g. not under parity $x^i \mapsto -x^i$. In fact $L^i = x^i \sqrt{n^2 - 1}/2$ make up the standard basis of so(3) in the irrep (π_3^l, V_3^l) characterized by $L^i L^i = l(l+1)$, n = 2l+1. Moreover, the irreducible carrier space V_3^l does not go to $\mathcal{L}^2(S^2)$, cf (60).

 S^2_{Λ} vs. fuzzy S^d with d = 4 [Grosse, Klimcik, Presnajder 1996], $d \ge 3$ [Ramgoolam 2001, Dolan, O'Connor 2003, ...]: based on End(V) where V carries an irrep of $Uso(\mathbf{D})$ that is also an *irrep* of Uso(D).

 $X^i \equiv L_{i\mathbf{D}}$ play the role of fuzzy Cartesian coordinates.

 $\mathbf{X}^2 := X^i X^i = \mathbf{L}^2_{\mathbf{D}} - \mathbf{L}^2$ is central, can be set=1.

Also Snyder-like commutation relations, hence O(D)-equivariant. However, the irreducible carrier space V_D^l does not go to $\mathcal{L}^2(S^d)$, cf (60).

In [Steinacker et al. 2016-17] fuzzy 4-spheres S_N^4 through reducible repr. of Uso(5) obtained decomposing irreps $\rho_{N,0,n}$ of Uso(6) with suitable highest weights (N, 0, n); so $End(V) \simeq \rho_{N,0,n}$ [Uso(6)]. Again the X^i play the role of fuzzy Cartesian coordinates.

The O(5)-scalar $\mathbf{X}^2 = X^i X^i$ is no longer central, but its spectrum is still very close to 1 *only if* $N \gg n$, in analogy with our result.

Again, the decomposition of V into irreps of Uso(D) does not go to (60). If n = 0 then $\mathbf{X}^2 \equiv 1$ (\Rightarrow irrep), and one recovers the fuzzy 4-sphere of [Grosse, Klimcik, Presnajder 1996].

 $\mathbf{x}^2 \simeq 1$ in our S^d_{Λ} is guaranteed by adopting $x^i = g(L^2)X^ig(L^2)$ rather than X^i as noncommutative cartesian coordinates, and $\mathbf{x}^2 = x^i x^i$.

Many directions for future investigations. In particular, it will be interesting to find optimally localized and coherent states on these S_{Λ}^{d} for general d, mimicking what has been done for d = 1, 2 [GF, F. Pisacane 2020]. More importantly, use them for QFT.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

- G. Fiore, F. Pisacane, *Fuzzy circle and new fuzzy sphere through confining potentials and energy cutoffs*, J. Geom. Phys. **132** (2018), 423-451,
- G. Fiore, F. Pisacane, *New fuzzy spheres through confining potentials and energy cutoffs*, PoS(CORFU2017)184
- G. Fiore, F. Pisacane, *The* x_i-eigenvalue problem on some new fuzzy spheres, J. Phys. A: Math. Theor. **53** (2020), 095201.
- G. Fiore, F. Pisacane, *On localized and coherent states on some new fuzzy spheres*, Lett. Math. Phys. **110** (2020), 1315
- G. Fiore, F. Pisacane, *Energy cutoff, noncommutativity, fuzzyness:* O(D)-covariant fuzzy spheres, PoS(CORFU2019)208.
- F.Pisacane, O(D)-equivariant fuzzy spheres, arXiv:2002.01901
- G. Fiore, F. Pisacane, *Fuzzy hyperspheres via confining potentials and energy cutoffs*, forthcoming paper.