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Introduction

Some motivations for noncommutative (NC) space(time) algebras:
¢ To avoid UV divergences in QFT [Snyder 1947,...].

® As an arena for formulating QG compatible with Ax 2 L,
[Mead 1966, Doplicher et al 1994-95,...].

¢ As an arena for unifying interactions [Connes-Lott '92,...]

Given a quantum theory 7 on a commutative space how to find
NC candidates 7 approximating 77  One possible mechanism:

Let H = Hilbert space of the system S, A = Lin(H), HCHa
subspace, P :H +— H its projection. Then

A=Lin(H)={A=PAP |Ac A} # A.

In particular, if [x;, xj] = 0, in general [X;,Xj] # 0.
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If PH = HP (H = Hamiltonian of S) then no change in dynamics
within . If H = subspace with energies E < E = cutoff,
then T is a low-energy effective approximation of 7.

Prototype: Landau model in D=2; E = Eg implies [x1,%] = <.

When may this be useful? E. g.:

L. . o . L
e If 7™ is practically not accessible in preparing the initial state,
nor through the interactions with the environment or the
measurement apparatus, then 7 on # (smaller) is enough.

e If at E > E we expect new physics not accountable by 7, then
T may also help to figure out a new theory 77 valid for all E.

(Of course, the two may co-exist.)

If H is invariant under some group G, then H, P, T will be.
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Consider quantum mechanics (QM) on RP, Hamiltonian H(x, p).
dim(#H) ~ Vol(Bg)/hP,
Be={(x,p) ER?P | H(x,p) <E} = classical phase space below E.

H=p’= I p? Be

p

dim(#) ~ Vol(.Z;) = oo

H=p2+@ ‘ -

confining

X2

‘ i

dim(%) ~ Vol(.B;)<ee

X;
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Adding a ‘dimensional reduction’ mechanism we can obtain a NC,
fuzzy approximation of QM on submanifolds of RP.
Here a sphere S9, d = D—1 [GF, F. Pisacane 2017-19].

Consider a quantum particle in RP
configuration space with Hamiltonian

H= —%A + V(r); (1)

we fix the minimum Vg = V(1) of the

the confining potential V(r) so that

the ground state has energy Ey = 0.
Choose V/(r) and E fulfilling

V(r)~ Vo +2k(r—1)*> (2)

if V(r) < E: so that V(r) has a har- Figure 1: Three-dimensional
E\, Plotof V(r)

monic behavior for [r—1[<y/=52.
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The minimum on the sphere r=1 is sharp if V"(1)=4k>0.

E low enough to eliminate radial excitations from Spectrum(H).
Then: H = [2; the x; generate all A, (X7, Xj] ~ —” a la Snyder.

Choose E = E(A) = A(A+d—1), k = k(A) > /\2(/\+d—1) ;

diverging with AeéN. Renaming H, P, A ~> Hp, Pa, Ap, we find
(Hp, An) 2% (H, A) = (,c2(5d), Lin<£2(5d)>>

This is a O(D)-covariant fuzzy sphere {S¢aen = {(Ha, An) I ren,
i.e. sequence of finite-dim approximations of ordinary QM on S911

d=1,2in [GF, F. Pisacane 2018-20]; d > 2 started in [F.Pis.20].
Here: its completion to all d, via simplification; as a complete set
in £2(S9) we take polynomials in Cartesian coordinates t' of

pe S9 rather than spherical harmonics.

Finally, | will compare our 5,‘\’ with other fuzzy spheres.

LA fuzzy space is a sequence {An}nen of finite-dimensional algebras such
that A, =3 A =algebra of regular functions on an ordinary-manifold.
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Constructing Ha, Pa

Let x := (x%,...xP) be real Cartesian coordinates of R”; abbreviate
0; = 0/0x". Then r?> = x? = x'x', A = 9;0;. The self-adjoint operators

Li = i(x0; — x'0j) (3)
on L2(RP) (angular momentum components) generate rotations of R?;
[iLij, vh] = viéjh — vj(S,h (4)
hold for all vectors v, in particular vh = xh,a,,, and
[iLgs ikl = i (LS — Lidni — Lindsg + Lindxs) - (5)

These are equivariant under x' — x'" = Q/x/, with Q € O(D). All scalars
S, in particular S = A, r?, V(r), H, are invariant, whence [S, L;] = 0.

1

1
A:@E+(D—1);ar—72L2, (6)

where 0, := 0/0r and L? := L;iL;/2 is the quadratic Casimir of Uso(D)
and the Laplacian on the sphere S9.
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Solving the Schrodinger equation

The eigenvalues of L2 on £2(RP), £2(59) are I (I + D —2), | € No.
Let V) be the L% = /(/4+D—2) eigenspace within £2(59).

Ansatz = T(0)f(r), f(r)=r"92g(r), T € V/, transforms the
Schrodinger PDE Hv = E) into the ODE in the unknown g(r)

()4 |[EADEIEMIED ALy i) — Eg(r). ()

Expanding [...] at lowest order in (r—1) we get the harmonic oscillator eq.

—g"(r) +g(r)ki (r — 7)* = Eig(r), (8)

which approximates well (7) in the spherical shell V(r) < E, because
V(r) has a sharp minimum at r = 1. Here

= b(1,D Eo._ 2b(1,D)[k+b(I,D
=1+ 3b(lfD)J)r2k’ E=E-V()- (3b(3,[D)+(2k L,

ki =2k +3b(I,D), b(l,D) := D2—4D+3-Z4I(I+D—2).
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The (Hermite functions) square-integrable solutions of (8) are

Vi . .
&ni(r) = Mn, e T L H, ((r - r/){’/?,) with n € Ny
(here M, ; = normalization const., H, = Hermite polynomials), whence

My, _Va,_ - ~ .
foi(r) = D,’ll e \/f(r 7?2 H, ((r — r/){‘/?/) with n € Ng.  (9)

r—
The ‘eigenvalues’ in (8) are E,; = (2n+ 1)y/k;, whence the energies

2b(1, D)[k + b(/, D)]

Eni=(2n+ 1)k + V(1) + 357, 0) 1 2k

We fix V(1) requiring that Egg = 0. Then, at leading order in k:

Eni =202k + (1 +D —2)+ O (k—%),
b(l, D)
2k

Eo = I(I+D—2) =: E are the eigenvalues of the Laplacian L? on S2,
while E, ; — 00 as k—o0 if n>0.

) (10)

n=1+

+0(k7?).
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We can eliminate the latter (constrain n = 0) imposing a cutoff
, ANeN (11)

Ha decomposes into eigenspaces of H, L? (irreps of O(D)) as follows

A
Ha =P Hh. (12)
1=0

Given an orthonormal basis Bj = {Y}me), of V), (e.g. spherical
harmonics),an orthonormal basis of ’H,f\ consists of the

Y= Ai(r) Y™ (6) (13)
with fi(r) = fy,4(r). The projection P :H — H), acts by

(Pi8) () = L) [ dPxu (<)o),

mel,

If ¢(r,0) = ©;(0) ¢(r) with ©; € VL, then this simplifies to

(Pis) (r.0) = 5;0,(0) (1) /Ooj’ddr' £(F)o(r). (14)
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Representations of O(D) via polynomials in x', t'

C[RP] = C[x?, ...xP] = space of complex polynomial functions on RP,
W), = subspace of homogeneous ones of degree /€Ny carries a
representation of O(D) (and Uso(D)), which is reducible if / > 2:

r? W,’;Z C WB manifestly carries a smaller representation.

Let V) be the “trace-free” component of W): W) = V5@ rPwi2.

(1+D—3)...(1+1)

dim(V5) = dim(Wp) ~dim(Wj~*) = “—75=75)

(D+21-2). (15)

V) carries the irrep 7}, of Uso(D) and O(D) within W), characterized by
the highest eigenvalue L2 = /(/+D—2); it is also the subspace of W),
such that A\V/E’, =0, i.e. of harmonic homogeneous polynomials. In fact,
Xhi —( htixk) e W, fulfill AX,hk =0, L2X = /(/+D—2)X,'7’i,
LieX[5 = 1 XA XK, XPX as highest and Iowest weight vectors.

A complete set in VD consists of trace-free homogeneous polynomials
X"“‘2 i which we obtain below applying the completely symmetric
trace-free projector P’ to the xix%...x/'s,
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Enlarge C[RP] slightly by new coordinates r, r=! subject to r? = x'x’,

rr~! = 1. The elements

thi=xrt (16)
can be regarded as coordinates of points of the unit sphere S9, because
tt' =1. (17)

The algebra Po/D of complex polynomials in t, endowed with the scalar
product (T,T’):= [q,da T*T’ s a pre-Hilbert space dense in £(57).

Po/é C Polp = subspace pol. of degree A, projection Py : Polp — Po/D.

Pol\ = Whr—" @ WA= r'=" decomposes into irreps of Uso(D)
isomorphically to W[)\ &) WE/)\_I:

A
Polp =P Vp, Vb= Vhr '~V (18)

(D+A-2)...(A+1)
(D-1)!

dim (Polp) = (D+2A-1) =: N =dim (V},,)

(19)
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O(D)-irreps via trace-free completely symmetric projectors

Let (w, &) be the D-dimensional irreducible unitary representation (irrep)
of Uso(D) and O(D); V} ~ . Under @,

EQE =P (E@E)BP(ERE) BP(ERE) (20)

antisym. irrep sym. red. rep. P+ (5@5)
Pt = 1-dim trace projector. In an orthonormal basis of £ gjj = gl = dij,
Pt = L595,. (21)
The $(D—1)(D+2)-dim trace-free symmetric projector P is given by
P =P —Pt= % (idp2 + P) — P! (22)
(P = permutator, idp» = identity operator on £2"). PP~ =0=P P,

PP'=0=P'P <« Pl =0=05P) (23)
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The generalizations P! of P acting on £® (trace-free completely

symmetric projectors) are uniquely determined by requiring (P’)2 =P
Ip—
P 73 =0, P ’Pt (1) = =0,

1

/ t n=1,..1-1 (24)
Pn(nH P'=0, PP =0

As a bonus try.(P') =dim(V}). The right relations in (24) amount to
Vit st Vi B
Pl gt =0, 6, P+ =, n=1,..,1-1. (25)
Proposition 1 P! can be recursively expressed as a polynomial in the
permutators P1a, ..., P, 1) and trace projectors Pp,, ...,P(t, 1y via

pH Pla..iMig) Pia..1» (26)
Py h1yM2Ps (1) (27)
1 2D!
h M= M(I+1) = —|i IP— ———Pt 28
where (1+1) 1 idp2 + D—|—2/—2P (28)
As a consequence, the P’ are symmetric, (P')7 = P'.
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The homogeneous polynomials

Xlil...i/ = Pl (29)

Jiedi
are harmonic, i.e. satisfy AX,"I'“’" =0, and are eigenvectors of L:
L2 X[ = [(D—2+1) X0 (30)

They make up a complete set in \V/[’,, but are not all independent: they
are completely symmetric and trace-free, i.e. fulfill

Siinn X[ =0, n=1,..1-1. (31)

Proposition 2 The maps Lp : \V/EI) — \7[’) explicitly act as follows:

I'Lth,il"'i' — /7)//:1---/'_/ (5kj1thjz---j/ _ 5hj1Xij2--~j/> ) (32)

Ji-di
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Proposition 3 The completely symmetric and trace-free polynomials

..y . T ...l __ liv...ip g1 Ji
T = X =Pt (33)

make up a complete set 77 in VJ, (but not a basis: &, T = 0, etc.).
The actions of the operators L2, iLp, t"- on the T, explicitly read

L2 T " = I(I+D—2) T/, (34)
il Tli1---"/ _ /Plﬁf, (5‘9’1 Tlhjzmj/ _ §hi le.iz-~~.i/) ] (35)
/

h ... hiy...ij
t Tl | — T 1 |
’ S S N Y

L 1
tl TIIQ...I/ —
! D+2/-2

ivia.ooiy o2 141 o /-1
Pz TR € Vit e Vgt (36)

2/-2

Dyl—1- 22
{ R > N TR

[T e vt
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Embedding RP — RP*L isomorphism Po/,’J\ ~ VE/)\Jrl

Abbreviate D = D 4+ 1. To avoid confusion, in dimension D we add it as
a subscript , e.g. the distance rp from the origin in RP, vs. r = rp in RP.
Henceforth (x), (x') stand resp. for real Cartesian coordinates of R RP:
h,i,j € {1,..,D}, H,I,J € {1,...,.D}; we naturally embed C[RP]— C[RP].
We naturally embed O(D) — SO(D) identifying the subgroup O(D) as
the little group of the D-th axis; its Lie algebra is generated by the L.

TR =Pphh ththe vy
make up a complete set in V). Defining

e . ayliteei) 1o J/D...D
FD,/\ =P TD,/\ )

one finds that these factorize as

Foi' = paa(t?) T,

oy = ()" () T by + () T b e

(38)
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Proposition 4 V[’)\ decomposes into the following irreps under Uso(D):

A
Ve =D Vo (42)
=0

where VAA ~ VA is spanned by the FS','\"". These are eigenvectors of L2,
L2Fg " = I(1+D=2)Fg ", (43)
transform under L, as the T,il"'i’, and under L;p as follows:

IAN+1+D=2) .0 . . .
( +1+ )7)/1112...1/ FIJDZ}./.\.J/. (44)

. P hiy...i
iLipFp 'y = (AN=1) Fon ™" — PESTES e
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Action of X', Lpk, and relations among them

¢l/'1i2...i/ — T/lizmi/f}(r) (45)
(in € {1,...,D} for h € {1,...,/}) make up a complete set S, , in the
eigenspace H) of H, L2, with eigenvalues E;, /(/+D—2). They are
completely symmetric under permutation of the indices and fulfill

Siinn Pl =0, n=1,..,1-1. (46)
Sp.a :=UjoSp a is a complete set in Ha. By (45), (35), (14), (36),
izhk ,lp;'liz...i/ — /zp/ﬁ -I,// (5kjl,¢'hjz i 6hj11p}kj2...j/) . (47)
—i it iy cl Jivi.. it jj2eenii
X' 1, = C/+1¢,+1 + D—|—2/—2PU2 G (48)
where \/1 + 2&5) 2y (H)(fﬂw) if 1 <1 <A,
otherwise,

up to O (k’3/2) corrections that can be set to equal to zero by a suitable
choice of V. Henceforth we adopt (47-48) as exact definitions of Ly, X..
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Proposition. The X', Ly, € A are self-adjoint operators fulfilling

[iLy, X" =%x'67 x5,  ehhxh[,, =0, (49)
[T ol = i (L0~ L~ Lind) + Lind, ) (50)

(xM£ix)ME =0, (LMW4i[M)?MY =0, if h,i,j distinct, (51)

_ / ~A
x| = (ﬁKPA) Ty, K= HEHGEREORN (52)

[ —
Snyder— like
—2
_ L B AN+D -2 B AA+d)] =
24— 4 - tTF — =2 PN =y (L2).
It T2 TR T & X(L)- (53)

here P! = projection on L2 = I(I+D—2) eigenspace, B := d(2d—3)/2.

Generalizes Proposition 4.1 in [GF, F. Pisacanel8]. We obtain S¢
choosing k = k(A) respecting (?7); the commutative limit is A — oo.
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We remark that:

e [x',%/] depend only on the angular momentum (also P* can be

. =2 o -
expressed as a function of L™) and are Snyder-like, i.e. are o< Ljj.

® The ordered monomials in x/, L,x make up a basis of the N2-dim
. p! L. T2
vector space Aa: also the P’ can be expressed as polynomials in L™.

® Actually, X' generate the *-algebra A/\EEnd(H/\): express also
Lpx as non-ordered polynomials in X' via (52).

® Eq. (49-53) are fully O(D)-equivariant, also under one or more
X' —X' (e.g. parity), contrary to Madore-Hoppe FS.

_ =2 . :
e x*> = x(L") # const, eigenspaces H},. All eigenvalues r?, except rZ,
are close to 1, slightly grow with / and collapse to 1 as A — oc.

We slightly enlarge Uso(D) by introducing the new generator

A= [VID 2P 4l - D +2) (54)

fulfilling A(A+D—2) = L2, so that V/, is a A =/ eigenspace.
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Theorem. There are a O(D)-module isomorphism », : Ha — V) and a
O(D)-equivariant algebra map ra : Ax = End(Ha) — w5 [Uso(D)], s. t.

wp(a) = ra(a)za (), Vi eHpr acAan. (55)
On the 4" (spanning Ha) and on generators Lp;, X'+ of An:

P2 ( ;1"'i') = 3/\,/’:3,'/'\';/ =anipns T, 1=0,1,..,A, (56)

ki (Lni) := 75 (Lai) K (X7) == mp [mA(M)Loima(N)], (57)

where pp ; are the polynomials in tP of degree A—/ given in (41), and

o AA—1)..(A—1+1)
M= AN AT D—1)(A+D)...(A+1+D—2)’

r(A+§+d) r(A—25+1) r(s+1+c;/2+iA) r(s+l+c;/2fiA)

F(W) [—(/\;5 +1) r(s+d/22+iA> r(s+d/22fiA> \/;;

mp(s) =

here A:= \/k+(D—1)(D—3)3/4, and I is Euler gamma function.
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As known, the group of %-automorphisms of Ap ~ My(C) is
b — gbg™ !, be Ax, g€ SU(N).

We can identify a subgroup ~ SO(D), acting via the N-dim irrep
(VB,mp); it consists of matrices g = 7 [¢/*], where a € so(D).
O(D) € SO(D) c SU(N) plays the role of isometry subgroup of our
fuzzy sphere. It includes parity.

SO(D) (rotations of RP): choosing o = aL;; € so(D);

O(D) with determinant —1, (e.g. inverting one axis of RP):

o= Oé/jL,'J' + ﬁiL,'D.
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Identifying An as a fuzzy quantization of a coadjoint orbit of O(D+1)

If G = compact semisimple Lie group, and g=Lie(G), A € g* ~ g, the
coadjoint orbit Oy may be defined as

Ox:=G/Gx where Gy :={g € G|gAg ' =A}. (58)

Clearly Gax = Gx if A #£ 0. If H carries irrep with highest weight A,
setting Ax = End (Hax), one can regard [Hawkins 99] the sequence
{Ar}aen as a fuzzy quantization of the symplectic space Oj.

Set G = SO(D). Cartan subalgebra h C so(D) with basis

Hs = Lpp, Ho-1=Lg-1)a,

ety Hl_{L12 if D =20,

L23 if D= 20+1. (59)
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As a highest weight vector of the irrep TI'S of Uso(D) on V,S\ ~ Hp we
choose Q/[\) = (tP+itP)). The associated weight, i.e. the joint spectrum
of H=(Hy,...,H;), is A\, where A = (0, ...,0,1) € h*. Identifying A
with Hx o H, € b via the Killing form, we find Gy = SO(2) x SO(d),
with so(2) spanned by H,, so(d) spanned by the L; with i,j < D. Hence
Ox = 50(D)/(50(2) x SO(d)) has dimension

D(D2+ 1) q_ d(d2— 1) 24,

exactly as the dimension of the cotangent space T*S9, i.e. the classical
phase space over the sphere S9! Consistent with interpreting Ap as the
algebra of observables (quantized phase space) on the fuzzy sphere S,‘(.

By other generic irrep of Uso(D) the coadjoint orbit would have been
some other equivariant bundle over S9.
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Discussion and conclusions

We have built a sequence (Ap, Ha)aen of finite-dim, O(D)-equivariant
(D = d+1) approximations of QM of a zero-spin particle on the sphere
S9 by imposing E < A(A+d—1) on QM of the particle in R? subject to
a potential Vj(r) with a sharp minimum on S¢.

Ap are fuzzy approximations of the whole algebra of observables of the
particle on S¢ (phase space algebra); x2? > 1 collapses to 1 as A — co.
Ap ~ w[Uso(D)], with the irrep V), 5 of Uso(D), D = D+1. Can be
regarded as a fuzzy quantization of a coadjoint orbit of O(D) ~ T*S9.

Ha >~ Vé\ and the subspacg Cp C Ap of trace-free, completely symme-
trized polynomials in the X' carry reducible representations of O(D):

2A
Ha=PHN =V =P VL. =PV (60)
1=0

As A — oo these become the decompositions of £2(S?) and of C(S¢),

(s =P Vb s =P _ b (61)



Sk vs. Madore-Hoppe Fuzzy Sphere S; (seminal fuzzy space):
A, ~ M,(C), generated by coordinates x' (i = 1,2, 3) fulfilling

o 2 . o
X' K = ———=clkxk = xx" =1, neN\{1l}; 62
o] = YT

(62) are SO(3)-equivariant, not O(3)-, e.g. not under parity x' — —x'.

In fact L' = x'\/n2—1/2 make up the standard basis of so(3) in the irrep

(mk, Vi) characterized by L'L" = I(/ + 1), n = 2/+1.

Moreover, the irreducible carrier space V4 does not go to £2(S5?), cf (60).

5,2\ vs. fuzzy S? with d = 4 [Grosse, Klimcik, Presnajder 1996], d > 3
[Ramgoolam 2001, Dolan, O'Connor 2003, ...]: based on End(V) where
V carries an irrep of Uso(D) that is also an irrep of Uso(D).

X' = Lip play the role of fuzzy Cartesian coordinates.
X2 := X'X" = L3 — L? is central, can be set=1.

Also Snyder-like commutation relations, hence O(D)-equivariant.
However, the irreducible carrier space V/, does not go to £2(5%), cf (60).

)BSERVABLES X', Ly Ap AS FUZZY COADJOINT ORBIT ~DISCUSSION REFERENC
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In [Steinacker et al. 2016-17] fuzzy 4-spheres Sy, through reducible repr.
of Uso(5) obtained decomposing irreps pn o, of Uso(6) with suitable
highest weights (N, 0, n); so End(V) ~ pn.o., [Uso(6)]. Again the X'
play the role of fuzzy Cartesian coordinates.

The O(5)-scalar X2 = X' X' is no longer central, but its spectrum is still
very close to 1 only if N >> n, in analogy with our result.

Again, the decomposition of V into irreps of Uso(D) does not go to (60).
If n=0 then X2 =1 (= irrep), and one recovers the fuzzy 4-sphere of
[Grosse, Klimcik, Presnajder 1996].

x? =~ 1 in our S¢ is guaranteed by adopting x’ = g(L?)X'g(L?) rather
than X’ as noncommutative cartesian coordinates, and x2 = x'x'.

Many directions for future investigations. In particular, it will be
interesting to find optimally localized and coherent states on these S¢ for
general d, mimicking what has been done for d = 1,2 [GF, F. Pisacane
2020]. More importantly, use them for QFT.
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