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Motivation

We are interested in scales of the power spectrum of cosmological
perturbations much smaller than the CMB scale.

Observational data for such scales are related to:
1 Possible production of primordial black holes (PBHs)

(B. J. Carr and S. W. Hawking (1974))
2 Gravitational waves induced during the collapse of scalar density

perturbations at 2nd order in perturbation theory
(S. Matarrese, O. Pantano and D. Saez (1993), S. Matarrese, O. Pantano
and D. Saez (1994), S. Matarrese, S. Mollerach and M. Bruni (1998), ...)

In order for such phenomena to be detectable, the amplitude of the
primordial power spectrum must be larger by several orders of magnitude
than the value favored by the CMB.

Features of the inflaton potential that can generate such an enhancement
of the curvature power spectrum are:

1 inflection points
2 steps
3 turns in field space (multi-field phenomenon)
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The Mukhanov-Sasaki equation

The Mukhanov-Sasaki equation

The most general scalar metric perturbation around the FRW background takes
the form

ds2 = a2(τ)
{

(1 + 2φ)dτ 2 − 2B,i dx
idτ − ((1− 2ψ)δij + 2E,ij) dx

idx j
}

with B,i = ∂iB, E,ij = ∂i∂jE .
If we write the inflaton field as ϕ(τ) + δϕ(τ, x), we can define a
gauge-invariant perturbation as

v = a

(
δϕ+

ϕ′

Hψ
)
,

which satisfies the Mukhanov-Sasaki equation (in Fourier space):

v ′′k (τ) +

(
k2 − z ′′

z

)
vk(τ) = 0.

where z = aϕ′/H.
The comoving curvature perturbation R = −v/z satisfies

R ′′k + 2
z ′

z
R ′k + k2Rk = 0
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The Mukhanov-Sasaki equation

It is more convenient to use the number of efoldings N as the independent
variable. Then the Hubble parameter and the slow-roll parameters take the
form:

H2 =
V (ϕ)

3M2
Pl −

1
2
ϕ2
,N

εH = −d lnH

dN
=

ϕ2
,N

2M2
Pl

ηH = εH −
1

2

d ln εH
dN

=
ϕ2
,N

2M2
Pl

− ϕ,NN
ϕ,N

.

The evolution of the background field is governed by the equation

ϕ,NN + 3ϕ,N −
1

2M2
Pl

ϕ3
,N +

(
3M2

Pl −
1

2
ϕ2
,N

)
V,ϕ
V

= 0,

while the equation for the curvature perturbation becomes:

Rk,NN + f (N)Rk,N +
k2

e2NH2
Rk = 0,

where

f (N) = 3 +
2ϕ,NN
ϕ,N

−
ϕ2
,N

2M2
Pl

= 3 + εH − 2ηH
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Features of the inflaton potential

Features of the inflaton potential

We want to induce an amplification of the spectrum of curvature
perturbations by several orders of magnitude.

We keep only the minimal number of elements required for addressing the
problem.

In single-field inflation, the features of interest are:
1 An inflection point, at which the first and second derivatives of the effective

potential vanish. This requires the fine tuning of the parameters of the
potential.

2 One or more field values at which the potential decreases sharply (steps).
Such steps can occur at transition points at which the vacuum energy
jumps from one constant value to another.
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Features of the inflaton potential
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Features of the inflaton potential
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Features of the inflaton potential
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Features of the inflaton potential
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Features of the inflaton potential
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Specific inflationary setups

The framework of α-attractors

In the framework of α-attractors (Kallosh, Linde, Roest 2014), the Lagrangian
has the typical form

L =
√
−g
[

1

2
R(g)− 1

2
∂µϕ∂

µϕ− F 2

(
tanh

ϕ√
6α

)]
.

A constant value of F results in a cosmological constant.
However, transitions between two constant values are possible, if F takes the
typical form

F (x) = xn +
∑
i

Ai Θ(x − xi ),

for which the potential features n step-like transitions.
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Specific inflationary setups
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Specific inflationary setups

Induced gravitational waves
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Specific inflationary setups

Primordial black holes

Radiation (1 step & inflection point )

Matter (3 steps)

Matter (Double pulse)

10-17 10-15 10-13 10-11 10-9 10-7 10-5 10-3 10-1 10 103
10-6

10-5

10-4

0.001

0.010

0.100

1

M / M⊙

Ω
P
B
H
/
Ω
D
M

GC

EGB

V HSC

O
E

M

LIGO/VIRGO

PA

XB

Er

WB

SN

GWB

16 / 19



Amplification and oscillations in the power spectrum from features in the inflaton potential 17 / 19

Conclusions

Conclusions

The amplification or suppression of the spectrum is determined by the
function f (N).

Apart from inflection points, a significant amplification is also caused by
steep steps in the inflaton potential.

The number of steps, the distance from each other and their steepness
affect the total amplification of the spectrum.

A distinctive feature is the appearance of oscillations in the spectrum.

Inflationary models that include such features can be constructed in the
framework of α-attractors.

The form of the curvature spectrum is reflected on the abundance of
PBHs and the spectrum of induced gravitational waves.

Similar phenomena occur in two-field models with sharp turns in field
space during the field evolution.
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Conclusions

Thank you for your attention!
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Backup

The origin of Oscillations

The origin of the oscillations can be understood if one considers the
evolution of the curvature perturbation for constant f (N) = κ. Its solution
has the form

Rk(N) = Ae−
1
2
κN

(
Jκ/2

(
e−N k

H

)
+ c J−κ/2

(
e−N k

H

))
.

The evolution of the perturbation during the initial slow-roll regime
corresponds to κ = 3 and c = i . The amplitude of Rk(N) does not have
oscillatory behaviour.

If κ varies strongly, the relative coefficient of the Bessel functions varies as
well. The phase difference between the real and imaginary part changes,
which leads to oscillations of the amplitude of Rk(N).

The freezing of Rk at horizon exit can occur at any stage of the oscillatory
cycle, depending on the value of k. Eventually, this is reflected in the
strong oscillatory behaviour of the spectrum as a function of k.
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