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THE BACKGROUND GEOMETRY (1)
• Framework: Ishibashi, Kawai, Kitazawa, Tsuchiya (IKKT) matrix 

theory. 
• The background spacetime  can be described semi-

classically  as a projection of the fuzzy four-dimensional 
hyperboloid, which is obtained from five matrices 

 interpreted as quantizations of five embedding 
functions   

Convenient parametrization of the four-dimensional hyperboloid 

ℳ3,1

Xa (a = 0,…,4)
xa
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course a↵ect some of the results of the present paper, however we expect that the qualitative
features of the present classical analysis will also apply after including quantum e↵ects.

The paper is morally divided into two parts, a classical and a quantum one. The two parts
are consistent with each other. In the classical part, we study some aspects of the present
FLRW geometry, with special emphasis on the near-BB regime. In particular, we elaborate
the geodesics, and show that they extend smoothly across the BB. The BB singularity is
found to be rather “mild” in a sense that will be explained below. The propagator is obtained
in the quantum setting, by computing explicitly the (free) path integral of modes as defined
by the matrix model. At late times, we recover again the standard Feynman propagator
with the appropriate i" structure. At early times near the BB, the propagator also turns
out to be well-defined, and allows to study the propagation of a scalar particles across the
BB. This result agrees with the classical analysis regarding null and timelike geodesic.

Notations. We use metric signature p´,`,`,`q. Greek indices take values 0, 1, 2, 3. The
flat metric is indicated by ⌘↵� “ ⌘↵� “ diagp´1, 1, 1, 1q.

2 The background geometry

We recall [? ] that M3,1 is obtained as a projection of fuzzy H4
n
, which is obtained from 5

matrices Xa „ xa which are considered as quantizations of 5 embedding functions

xa : H4 ãÑ R4,1 (1)

where a “ 0, ..., 4. A convenient parametrization of this 4-dimensional hyperboloid is as
follows

»

————–

x0

x1

x2

x3

x4

fi

����fl
“ R

»

————–
coshp⌘q

¨

˚̊
˝

coshp�q
sinhp�q sinp✓q cosp'q
sinhp�q sinp✓q sinp'q

sinhp�q cosp✓q

˛

‹‹‚

sinhp⌘q

fi

����fl
, (2)

for ⌘ P R. Note that � can be restricted to be positive. Projecting this along the x4 axis
leads to a 2-sheeted cover of the following region

xµx
µ § ´R2, (3)

where the upper sheet (“post-BB”, corresponding to x4 ° 0) is covered by ⌘ ° 0, while the
lower sheet (“pre-BB”, corresponding to x4 † 0) is covered by ⌘ † 0. The BB separates
these sheets, and corresponds to xµxµ “ ´R2. This leads to the following parametrization
of M3,1

¨

˚̊
˝

x0

x1

x2

x3

˛

‹‹‚“ R coshp⌘q

¨

˚̊
˝

coshp�q
sinhp�q sinp✓q cosp'q
sinhp�q sinp✓q sinp'q

sinhp�q cosp✓q

˛

‹‹‚ . (4)

Note that the flow of time will be along increasing ⌘ on both sheets; this arises from the i"
regularization discussed in Sec. 5.

In principle, we can restrict � to be either positive or negative on either sheet. However, we
will see in Secs. 4 and 5 that it is convenient to choose � ° 0.
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THE BACKGROUND GEOMETRY (2)
• The projection along the  axis leads to a two-sheeted cover of 

the region . 

• Parametrization of  

x4

xμxμ ≤ R2, (μ = 0,…,3)
ℳ3,1

4

Before giving the explicit mathematical realization, we briefly explain the idea. As illustrated in
the previous examples, noncommutative or quantum geometries are described by two structures:
one is a (noncommutative) algebra, interpreted as quantized algebra of functions C1(M) of a
classical manifold. This algebra encodes the abstract manifold, and it is always End(H) in the
present framework, for some separable Hilbert space H. In addition we need to define a metric
structure, corresponding to a Riemannian or Lorentzian manifold. This is defined here through
a matrix Laplacian or d’Alembertian7 ⇤ which acts on End(H), as in (4.7) and (5.30). Thus the
same algebra End(H) can describe very di↵erent geometries, even with di↵erent signatures, as the
same abstract manifold can have di↵erent metrics.

In this spirit, the cosmological space-time M3,1
n under consideration coincides with the fuzzy

hyperboloid H4
n as a (quantized) manifold, but it inherits a Lorentzian e↵ective metric through

a di↵erent matrix d’Alembertin ⇤ (6.3), which governs the fluctuations around the background
solution (6.37) in the matrix model. An intuitive picture of M3,1

n is obtained in terms of quantized
embedding functions from the manifold into target space, as in the case of fuzzy S2

N
(4.2) and

fuzzy H4
n (5.3). More specifically, we consider four generators Xµ of H4

n as quantized embedding
functions into target space

Xµ ⇠ xµ : M3,1 ,! R3,1, µ = 0, ..., 3 , (6.1)

where Greek indices µ, ⌫ will run from 0 to 3 from now on. This can be interpreted as a brane M3,1

embedded in R3,1. Dropping X4 means that the same abstract manifold is now embedded in R3,1

(rather than R4,1 as for H4
n), so that M3,1

n can be interpreted as squashed hyperboloid projected
to R3,1, as sketched in figure 1. Accordingly, (5.16) is rewritten as

Figure 1: Projection ⇧ from H4 to M3,1 with Minkowski signature.

⌘µ⌫X
µX⌫ = �R21l�X2

4  �R21l . (6.2)

It is easy to see that the Xµ alone generate the full algebra End(Hn) of (quantized) functions on
CP 1,2, which is now viewed as quantized algebra of functions on an S2-bundle over M3,1. The
Xµ ⇠ xµ define an embedding of this bundle in R3,1 which is degenerate along the fibers. Although
we will largely focus on the 3+1-dimensional base manifold, M3,1 is understood to carry this bundle
structure.

The above picture strongly suggests that M3,1 will carry an e↵ective metric with Lorentzian
signature. That metric is encoded in the matrix d’Alembertian

⇤� ⌘ ⇤T� = [Tµ, [T
µ,�]] = (C2[so(4, 1)]� C2[so(3, 1)])� , (6.3)

7
Alternatively one could use a Dirac operator, as in Connes axiomatic approach [25].

12

Big bounce:  η = 0

Projection  from  to Π H4 ℳ3,1

Post-bounce:  η > 0

Pre-bounce:  η < 0
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THE BACKGROUND GEOMETRY (3)
• The background solution  of the matrix model leads to the 

following kinetic term, valid for any field  

Using the semiclassical relation , this can be 
written in the standard form 

Tμ

Φ

[Tμ, . ] ∼ i{tμ, . }

5

S[Φ] = − Tr[Tμ, Φ][Tμ, Φ]

S[Φ] = − Tr[Tμ, Φ][Tμ, Φ] ∼ ∫ d4x |G | Gμν∂μΦ∂νΦ



THE BACKGROUND GEOMETRY (4)
• -invariant FRW metric 

where

SO(3,1)

6

2.1 E↵ective metric and d’Alembertian

In the matrix model framework, the e↵ective metric on any given background is obtained
by rewriting the kinetic term in covariant form [? ? ]. For the M

3,1 background under
consideration, this is

Sr�s “ ´TrrT µ,�srTµ,�s „
ª
d4x

a
|G|Gµ⌫Bµ�B⌫� (5)

and one obtains [? ]

Gµ⌫ “ | sinhp⌘q|´3 �µ⌫ , �↵� “ ⌘µ⌫✓
µ↵✓⌫� “ sinh2p⌘q⌘↵� (6)

dropping some irrelevant constant (here �µ⌫ is an auxiliary metric which is relevant for the
torsion). This metric can be recognized as SOp3, 1q-invariant FLRW metric,

ds2
G

“ Gµ⌫dx
µdx⌫ “ ´R2| sinhp⌘q|3d⌘2 ` R2| sinhp⌘q| cosh2p⌘q d⌃2

“ ´dt2 ` a2ptqd⌃2 . (7)

where

d⌃2 “ d�2 ` sinh2 �pd✓2 ` sin2 ✓d'2q, (8)

is the invariant length element on the space-like hyperboloids H3 (with ´8 § � † 8,
0 § ✓ † ⇡, 0 § ' † 2⇡). Equivalently, we can write

d⌃2 “ dr2

1 ` r2
` r2pd✓2 ` sin2 ✓d'2q, (9)

with
r “ sinh�. (10)

From Eq. (7), we can read o↵ the cosmic scale parameter ap⌘q and the relation linking the
di↵erentials dt and d⌘, i.e.,

|ap⌘q| “ R coshp⌘q| sinhp⌘q|1{2, (11)

dt “ R| sinhp⌘q|3{2d⌘. (12)

For late times, we have

a2ptq tÑ8„ R2| sinhp⌘q|3 . (13)

This is a reasonable FLRW cosmology given the simplicity of the model, which is asymptot-
ically coasting at late time with aptq „ 3

2t, cf. [? ? ]. Note that it arises directly from the
matrix model, without using or assuming general relativity.

3 Classical analysis of the FLRW spacetime

In this section, we perform a classical investigation of the FLRW geometry (7). Curvature
invariants are considered in Sec. 3.1, whereas null and timelike geodesics are studied in Sec.
3.2. We conclude the section with the analysis of some cosmological observables (see Sec.
3.3).
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CLASSICAL ANALYSIS (1)
• Null and timelike geodesics of the FRW geometry having  

constant. 
θ, φ

7

3.1 Curvature invariants

In order to describe the behaviour of the spacetime near the BB, we begin our analysis with
the investigation of some curvature invariants. Starting from the metric (7), we find that
the Kretschmann scalar is

Rµ⌫⇢�R
µ⌫⇢� “ 3

32R4 sinh10 p⌘q r171 ´ 60 cosh p2⌘q ` 25 cosh p4⌘qs , (14)

the squared Ricci tensor reads as

Rµ⌫R
µ⌫ “ 3

512R4 sinh10 p⌘q cosh4 p⌘q
”
1635 ´ 488 cosh p6⌘q ` 97 cosh p8⌘q ´ 384 sinh4 p⌘q

` 4 cosh p4⌘q
`
287 ´ 288 sinh4 p⌘q

˘
` 8 cosh p2⌘q

`
320 sinh4 p⌘q ´ 91

˘ı
, (15)

whereas the (topological) Euler invariant is [? ? ? ]

‹R‹
µ⌫⇢�

Rµ⌫⇢� “ 3

4R4 sinh10 p⌘q cosh2 p⌘q
“
11 ´ 12 cosh p2⌘q ` 9 cosh p4⌘q ´ 32 sinh4 p⌘q

‰
,

(16)

the star indicating the duality operation. It is clear that the scalars (14)–(16) blow up at
the BB, i.e., at ⌘ “ 0.

3.2 Null and timelike geodesics

In this section, we investigate null and timelike geodesics of the FLRW geometry having ✓
and ' constant.

Null geodesics can be described in terms of the function �p⌘q. We seek a solution which
reaches the BB at ⌘ “ 0 after having travelled toward it for ⌘ † 0 and away from it when
⌘ ° 0. Therefore, it follows from Eq. (7) that the motion in the outward �-direction is
parametrized by the di↵erential equation

d�

d⌘
“ | tanh ⌘|, (17)

which, with the boundary condition �p⌘ “ 0q “ 0, leads to

�p⌘q “
"

log pcosh ⌘q , ⌘ • 0,
´ log pcosh ⌘q , ⌘ † 0.

(18)

The behaviour of the solution (18) is shown in Fig. 1, whereas Fig. 2 represents the plot
obtained by means of the embedding functions (2). Having obtained a continuous geodesic
solution which can be extended uniquely at ⌘ “ 0, we can conclude that light (and hence
the physical information) can safely travel across the BB, despite the singularity occurring
in the invariants (14)–(16).
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` 4 cosh p4⌘q
`
287 ´ 288 sinh4 p⌘q

˘
` 8 cosh p2⌘q

`
320 sinh4 p⌘q ´ 91

˘ı
, (15)

whereas the (topological) Euler invariant is [? ? ? ]

‹R‹
µ⌫⇢�

Rµ⌫⇢� “ 3

4R4 sinh10 p⌘q cosh2 p⌘q
“
11 ´ 12 cosh p2⌘q ` 9 cosh p4⌘q ´ 32 sinh4 p⌘q

‰
,

(16)

the star indicating the duality operation. It is clear that the scalars (14)–(16) blow up at
the BB, i.e., at ⌘ “ 0.

3.2 Null and timelike geodesics

In this section, we investigate null and timelike geodesics of the FLRW geometry having ✓
and ' constant.

Null geodesics can be described in terms of the function �p⌘q. We seek a solution which
reaches the BB at ⌘ “ 0 after having travelled toward it for ⌘ † 0 and away from it when
⌘ ° 0. Therefore, it follows from Eq. (7) that the motion in the outward �-direction is
parametrized by the di↵erential equation

d�

d⌘
“ | tanh ⌘|, (17)

which, with the boundary condition �p⌘ “ 0q “ 0, leads to

�p⌘q “
"

log pcosh ⌘q , ⌘ • 0,
´ log pcosh ⌘q , ⌘ † 0.

(18)

The behaviour of the solution (18) is shown in Fig. 1, whereas Fig. 2 represents the plot
obtained by means of the embedding functions (2). Having obtained a continuous geodesic
solution which can be extended uniquely at ⌘ “ 0, we can conclude that light (and hence
the physical information) can safely travel across the BB, despite the singularity occurring
in the invariants (14)–(16).

6

-1.5 -1.0 -0.5 0.5 1.0 1.5
�

-0.6

-0.4

-0.2

0.2

0.4

0.6

� (�)

Figure 1: Null geodesic motion having ✓ and ' constants (cf. Eq. (18)). It is clear that the
function �p⌘q is continuous at the BB.

Figure 2: Null geodesic motion obtained by means of Eqs. (2) and (18). The following values
have been chosen: R “ 1, ✓ “ ⇡{2, and ' “ 0.

It is interesting to work out the solution � “ �ptq of null geodesics (with ✓ and ' constant)
for early times, i.e., when t Ñ t0 (with t0 P R) or, equivalently ⌘ Ñ 0. First of all, from Eq.
(12) jointly with the condition tp⌘ “ 0q “ t0, we obtain

tp⌘q ´ t0
⌘Ñ0„ 2

5
R⌘|⌘|3{2 “

$
’&

’%

2

5
R⌘5{2, ⌘ • 0,

2

5
R⌘ p´⌘q3{2 , ⌘ † 0.

(19)

7

Figure 1: Null geodesic motion having ✓ and ' constants (cf. Eq. (18)). It is clear that the
function �p⌘q is continuous at the BB.

Figure 2: Null geodesic motion obtained by means of Eqs. (2) and (18). The following values
have been chosen: R “ 1, ✓ “ ⇡{2, and ' “ 0.

It is interesting to work out the solution � “ �ptq of null geodesics (with ✓ and ' constant)
for early times, i.e., when t Ñ t0 (with t0 P R) or, equivalently ⌘ Ñ 0. First of all, from Eq.
(12) jointly with the condition tp⌘ “ 0q “ t0, we obtain

tp⌘q ´ t0
⌘Ñ0„ 2

5
R⌘|⌘|3{2 “

$
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’%
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R⌘5{2, ⌘ • 0,
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5
R⌘ p´⌘q3{2 , ⌘ † 0.

(19)
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χ(η = 0) = 0

Null geodesics

course a↵ect some of the results of the present paper, however we expect that the qualitative
features of the present classical analysis will also apply after including quantum e↵ects.

The paper is morally divided into two parts, a classical and a quantum one. The two parts
are consistent with each other. In the classical part, we study some aspects of the present
FLRW geometry, with special emphasis on the near-BB regime. In particular, we elaborate
the geodesics, and show that they extend smoothly across the BB. The BB singularity is
found to be rather “mild” in a sense that will be explained below. The propagator is obtained
in the quantum setting, by computing explicitly the (free) path integral of modes as defined
by the matrix model. At late times, we recover again the standard Feynman propagator
with the appropriate i" structure. At early times near the BB, the propagator also turns
out to be well-defined, and allows to study the propagation of a scalar particles across the
BB. This result agrees with the classical analysis regarding null and timelike geodesic.

Notations. We use metric signature p´,`,`,`q. Greek indices take values 0, 1, 2, 3. The
flat metric is indicated by ⌘↵� “ ⌘↵� “ diagp´1, 1, 1, 1q.

2 The background geometry

We recall [? ] that M3,1 is obtained as a projection of fuzzy H4
n
, which is obtained from 5

matrices Xa „ xa which are considered as quantizations of 5 embedding functions

xa : H4 ãÑ R4,1 (1)

where a “ 0, ..., 4. A convenient parametrization of this 4-dimensional hyperboloid is as
follows

»

————–

x0

x1

x2

x3

x4

fi

����fl
“ R

»

————–
coshp⌘q

¨

˚̊
˝

coshp�q
sinhp�q sinp✓q cosp'q
sinhp�q sinp✓q sinp'q

sinhp�q cosp✓q

˛

‹‹‚

sinhp⌘q

fi

����fl
, (2)

for ⌘ P R. Note that � can be restricted to be positive. Projecting this along the x4 axis
leads to a 2-sheeted cover of the following region

xµx
µ § ´R2, (3)

where the upper sheet (“post-BB”, corresponding to x4 ° 0) is covered by ⌘ ° 0, while the
lower sheet (“pre-BB”, corresponding to x4 † 0) is covered by ⌘ † 0. The BB separates
these sheets, and corresponds to xµxµ “ ´R2. This leads to the following parametrization
of M3,1

¨

˚̊
˝

x0

x1

x2

x3

˛

‹‹‚“ R coshp⌘q

¨

˚̊
˝

coshp�q
sinhp�q sinp✓q cosp'q
sinhp�q sinp✓q sinp'q

sinhp�q cosp✓q

˛

‹‹‚ . (4)

Note that the flow of time will be along increasing ⌘ on both sheets; this arises from the i"
regularization discussed in Sec. 5.

In principle, we can restrict � to be either positive or negative on either sheet. However, we
will see in Secs. 4 and 5 that it is convenient to choose � ° 0.
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Early-time ( ) solution  for null geodesics t → t0 χ(t)
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The inversion of the above function yields

⌘ptq tÑt0„

$
’’’&

’’’%

ˆ
5

2R

˙2{5
pt ´ t0q2{5 , t • t0,

´
ˆ

5

2R

˙2{5
pt ´ t0q2{5 , t † t0,

(20)

where we note that ⌘pt “ t0q “ 0.

We are now ready to obtain the expression of the cosmic scale factor valid near the BB.
Indeed, by means of Eqs. (11) and (20), we have

aptq tÑt0„

$
’’’&

’’’%

R

ˆ
5

2R

˙1{5
|t ´ t0|1{5, t • t0,

´R

ˆ
5

2R

˙1{5
|t ´ t0|1{5, t † t0,

“ R

ˆ
5

2R

˙1{5
pt ´ t0q1{5, (21)

which vanishes at t “ t0. We note that aptq is positive (resp. negative) for t ° t0 (resp.
t † t0). The sign of aptq drops out in the metric (7), but the above choice has no cusp. The
equation of null geodesics (with ✓ and ' constant) can be written in the equivalent form

d�

dt
“ 1

|aptq| , (22)

which in view of (21) gives the desired early-time solution

�ptq tÑt0„

$
’’’&

’’’%

1

2

ˆ
5

2R

˙4{5
pt ´ t0q4{5 , t • t0,

´1

2

ˆ
5

2R

˙4{5
pt ´ t0q4{5 , t † t0,

(23)

see Fig. 3. The above solution can also be obtained if we first expand Eq. (18) about ⌘ “ 0,
and then exploit Eq. (20).

At this stage, we analyze the timelike geodesics of a non-comoving observer. Hence, let

u↵ “ dx↵p⌧q
d⌧

, (24)

denote the unit timelike four-velocity vector of such observer, whose proper time is indicated
with ⌧ . If we suppose, like before, that the observer moves along the direction of constant ✓
and ', then from the normalization condition

g↵�u
↵u� “ ´1, (25)

we obtain

R2| sinh ⌘|3
ˆ
d⌘p⌧q
d⌧

˙2

“ 1 ` a2p⌘q
ˆ
d�p⌧q
d⌧

˙2

. (26)

Furthermore, if we consider the �-translational Killing vector ⇠↵, the conserved momentum
⇧ of the non-comoving observer is given by

⇧ “ ⇠↵u↵ “ a2p⌘qd�p⌧q
d⌧

. (27)
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Figure 3: The function (23) describing early-time null geodesic having ✓ and ' constant. We
have chosen R “ 1 and t0 “ 0.

Figure 4: Timelike geodesic of the non-comoving observer obtained by solving numerically
Eq. (28) with the boundary condition �p⌘ “ 0q “ 0. The following constants have been
chosen: R “ 1 and ⇧ “ 1.

The above equation gives a relation to express d�p⌧q{d⌧ in terms of ⇧ and ap⌘q, which can
be exploited in Eq. (26). In this way, after some manipulations, we end up with the geodesic
equation in terms of the function �p⌘q, i.e.,

d�p⌘q
d⌘

“ d�p⌧q{d⌧
d⌘p⌧q{d⌧ “ | tanh ⌘|a

1 ` a2p⌘q{⇧2
. (28)

We have solved numerically Eq. (28) with the boundary condition �p⌘ “ 0q “ 0. As it
is clear from Fig. 4, the non-comoving observer can freely travel along the BB, likewise a
massless particle.

We can provide the analytic solution for the timelike geodesic of the non-comoving observer
moving in the �-direction in the regime of small times. First of all, it is easy to see that the
equation of the timelike geodesic of the non-comoving observer in terms of the cosmic time
variable is

d�ptq
dt

“ 1

|aptq|
1a

1 ` a2ptq{⇧2
. (29)
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Figure 4: Timelike geodesic of the non-comoving observer obtained by solving numerically
Eq. (28) with the boundary condition �p⌘ “ 0q “ 0. The following constants have been
chosen: R “ 1 and ⇧ “ 1.

The above equation gives a relation to express d�p⌧q{d⌧ in terms of ⇧ and ap⌘q, which can
be exploited in Eq. (26). In this way, after some manipulations, we end up with the geodesic
equation in terms of the function �p⌘q, i.e.,

d�p⌘q
d⌘

“ d�p⌧q{d⌧
d⌘p⌧q{d⌧ “ | tanh ⌘|a

1 ` a2p⌘q{⇧2
. (28)

We have solved numerically Eq. (28) with the boundary condition �p⌘ “ 0q “ 0. As it
is clear from Fig. 4, the non-comoving observer can freely travel along the BB, likewise a
massless particle.

We can provide the analytic solution for the timelike geodesic of the non-comoving observer
moving in the �-direction in the regime of small times. First of all, it is easy to see that the
equation of the timelike geodesic of the non-comoving observer in terms of the cosmic time
variable is

d�ptq
dt

“ 1

|aptq|
1a

1 ` a2ptq{⇧2
. (29)
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Figure 5: The function (30) describing the early-time timelike geodesic of the non-comoving
observer with t0 “ 0, R “ 1, and ⇧ “ 1 and the boundary condition �pt “ 0q “ 0.

Bearing in mind Eq. (21) and considering, for simplicity, t0 “ 0, R “ 1, and ⇧ “ 1, the
solution of Eq. (29) with the boundary condition �pt “ 0q “ 0 reads as

�ptq tÑ0„

$
’’&

’’%

5

3

”
2 ´ 2

?
1 ` t2{5 ` t2{5?1 ` t2{5

ı
, t • 0,

´5

3

”
2 ´ 2

?
1 ` t2{5 ` t2{5?1 ` t2{5

ı
, t † 0.

(30)

The plot of the function (30) is given in Fig. 5.

Although we have shown that both null and timelike geodesics have no pathological be-
haviour, it should be noted that the corresponding velocities blow up at the BB, as it is clear
from Eqs. (22) and (29).

3.2.1 Singularity or not? “Mild singularity” or a new kind of singularity

In the general relativity framework, singularity theorems are based on the criterion that
timelike and null geodesic completeness are minimum conditions for a spacetime to be con-
sidered singularity-free [? ? ? ]. However, these theorems do not prove that singularities of
spacetime are necessarily related to unboundedly large curvature. Indeed, the characteriza-
tion of singularities via the divergent behaviour of the curvature can be inadequate in some
situations (e.g., the case of conical singularity).

Our model is not framed in general relativity, but emerges in the semiclassical limit of
the matrix theory. In other words, the cosmic scale factor occurring in the metric (7)
is not a solution of Einstein field equations. In our analysis, ap⌘q vanishes at the BB,
where, in addition, the invariants (14)–(16) blow up. Furthermore, the e↵ective metric
(7) is zero (and hence is degenerate) at ⌘ “ 0. Despite that, no pathological behaviour
occur in the analysis of null and timelike geodesics, as we have shown before. Therefore, if
we are to make a comparison with the recipes of general relativity, we could say that our
FLRW solution features a “mild singularity”4 which does not prevent both massless particles
and non-comoving observers from crossing the BB, but introduces some diverging curvature

4By “mild singularity” we do not refer to the kind of singularities studied in Refs. [? ? ].
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solution of Eq. (29) with the boundary condition �pt “ 0q “ 0 reads as
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ı
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The plot of the function (30) is given in Fig. 5.

Although we have shown that both null and timelike geodesics have no pathological be-
haviour, it should be noted that the corresponding velocities blow up at the BB, as it is clear
from Eqs. (22) and (29).

3.2.1 Singularity or not? “Mild singularity” or a new kind of singularity

In the general relativity framework, singularity theorems are based on the criterion that
timelike and null geodesic completeness are minimum conditions for a spacetime to be con-
sidered singularity-free [? ? ? ]. However, these theorems do not prove that singularities of
spacetime are necessarily related to unboundedly large curvature. Indeed, the characteriza-
tion of singularities via the divergent behaviour of the curvature can be inadequate in some
situations (e.g., the case of conical singularity).

Our model is not framed in general relativity, but emerges in the semiclassical limit of
the matrix theory. In other words, the cosmic scale factor occurring in the metric (7)
is not a solution of Einstein field equations. In our analysis, ap⌘q vanishes at the BB,
where, in addition, the invariants (14)–(16) blow up. Furthermore, the e↵ective metric
(7) is zero (and hence is degenerate) at ⌘ “ 0. Despite that, no pathological behaviour
occur in the analysis of null and timelike geodesics, as we have shown before. Therefore, if
we are to make a comparison with the recipes of general relativity, we could say that our
FLRW solution features a “mild singularity”4 which does not prevent both massless particles
and non-comoving observers from crossing the BB, but introduces some diverging curvature

4By “mild singularity” we do not refer to the kind of singularities studied in Refs. [? ? ].
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In our model, it follows from Eqs. (10)–(12) that the luminosity distance can be expressed
as

dLp⌘e; ⌘0q “ a2p⌘0q
ap⌘eq

sinh

„ª
⌘0

⌘e

d⌘ tanh ⌘

⇢
“ a2p⌘0q

ap⌘eq
sinh rlog pcosh ⌘0q ´ log pcosh ⌘eqs , (35)

where ⌘e ” ⌘pteq ° 0 and ⌘0 ” ⌘pt0q ° ⌘e. It is easy to see that

lim
⌘eÑ0`

dLp⌘e; ⌘0q “ `8, (36)

which represents an expected result since the cosmic scale factor ap⌘q vanishes at the BB.

4 The scalar modes on M
3,1

In this second part of the paper, we would like to compute the propagator for a scalar field
on the above background, and see if there are any interesting e↵ects due to the BB. A priori
it is not evident how to define the propagator, due to the boundary provided by the BB.
We take as starting point the definition as 2-point function defined by a Gaussian integral
in the matrix model (or rather its semi-classical limit). Schematically,

x�pxq�pyqy “
ª
dk x�kpxq�kpyqy, (37)

where

x�kpxq�kpyqy “ 1

Z

ª
d��kpxq�kpyqeiSr�ks . (38)

The necessary details for this computation will be provided below.

4.1 Relevant Operators

In this section, we introduce some relevant wave operators which will play a crucial role in
our forthcoming analysis.

4.1.1 The e↵ective d’Alembertian lG

The metric (7) is encoded in the “matrix” d’Alembertian

l “ rT µ, rTµ, .ss „ ´ttµ, ttµ, .uu, (39)

which governs the propagation of a scalar fields �, and is related to the metric d’Alembertian
through

l „ | sinh3 ⌘|lG, (40a)

lG “ ´ 1a
|G|

Bµ
`a

|G|Gµ⌫B⌫
˘
. (40b)

12

semi-classical limit

4.1.3 Relations between �G and �p3q
⌘ and lG and �p3q

⌘

The Laplacian �G on the four-dimensional hyperboloid H4 and the Laplacian �p3q
⌘ on the

spacelike three-dimensional hyperboloid H3 are related by (cf. Eqs. (44) and (48))

�G “ 1

R2

`
3 tanhp⌘qB⌘ ` B2

⌘

˘
´ �p3q

⌘
. (49)

On the other hand, the e↵ective d’Alembertian lG is related to �p3q
⌘ as (cf. Eq. (43))

| sinh3 ⌘|lG “ 1

R2

`
3 tanhp⌘qB⌘ ` B2

⌘

˘
`

`
sinh2 ⌘

˘
�p3q

⌘
. (50)

Last, we observe that the e↵ective d’Alembertian lG is related to the Laplacian �G on H4

as follows (cf. Eqs. (43) and (48))

R2| sinh3 ⌘|lG “ R2�G ´
ˆ

2

tanh�
B� ` B2

�

˙
´ 1

sinh2 �

ˆ
1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙
. (51)

An inspection of Eqs. (49)–(51) reveals that the eigenfunctions of the operators �G , �p3q,
and l share the same building blocks. The eigenfunctions of d’Alembertian operator l are
derived in the next section, while those of �G and �p3q can be found in Appendix A.

4.2 Eigenfunctions of the d’Alembertian operator l

It is convenient to work out the eigenfunctions of the operator l instead of lG for at least
two reasons. First of all, the d’Alembertian l is self-adjoint with respect to the symplectic
volume form (42); secondly, the operator l admits handier eigenfunctions than lG.

Bearing in mind Eqs. (40a), (43), and (44), the d’Alembertian operator l reads as

l� “ 1

R2

«
3 tanhp⌘qB⌘ ` B2

⌘
´ tanh2 ⌘

ˆ
2

tanh�
B� ` B2

�

˙

´ tanh2 ⌘

sinh2 �

ˆ
1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙�
�. (52)

The eigenfunctions of the d’Alembertian operator are defined by the equation

l� “ ��, (53)

whose resolution can be tackled via the separation ansatz

�p⌘,�, ✓,'q “ �̃p⌘,�qY m

l
p✓,'q, (54a)

�̃p⌘,�q “ fp⌘qgp�q, (54b)

where the spherical harmonic functions Y m

l
p✓,'q of degree l and order m (with l • |m|)

satisfy the well-known property [? ]
ˆ

1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙
Y m

l
p✓,'q “ ´lpl ` 1qY m

l
p✓,'q. (55)
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This can be seen by rewriting the action (5) as follows

Sr�s “ ´
ª
⌦�tT µtTµ,�uu “ ´

ª
d4x

a
|G|�lG� (41)

where

⌦ “ 1

| sinhp⌘q|d
4x “ cosh3p⌘qd⌘ sinh2p�qd� sinp✓qd✓d' (42)

is the SOp4, 1q-invariant volume form on H4 in Cartesian and hyperbolic coordinates (4),
respectively (hereafter, we suppose that � ° 0). Explicitly, one finds

lG� “ 1

R2| sinh3 ⌘| cosh3 ⌘
B⌘

`
cosh3p⌘qB⌘�

˘
` 1

| sinh ⌘|�
p3q
⌘
�,

“ 1

R2

ˆ
3

sinh ⌘| sinh ⌘| cosh ⌘B⌘ ` 1

| sinh ⌘|3B2
⌘

˙
� ` 1

| sinh ⌘|�
p3q
⌘
�, (43)

(cf. (2.32) in [? ]) where �p3q
⌘ is the Laplacian on the space-like three-dimensional hyper-

boloid H3

�p3q
⌘
� “ ´ 1

R2 cosh2 ⌘

«ˆ
2

tanh�
B� ` B2

�

˙
` 1

sinh2 �

ˆ
1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙�
�

” ´ 1

R2 cosh2 ⌘
�p3q�, (44)

where we have defined

�p3q� ”
«ˆ

2

tanh�
B� ` B2

�

˙
` 1

sinh2 �

ˆ
1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙�
�. (45)

We note that to derive Eq. (44) we have exploited that the metric on the space-like H3 is

ds2|H3 “ R2 cosh2p⌘qd⌃2. (46)

4.1.2 The Laplacian operator �G on H4

The induced metric on the four-dimensional hyperboloid H4 is (cf. Eq. (2))

ds2|H4 “ Gµ⌫dx
µdx⌫ “ R2d⌘2 ` R2 cosh2p⌘qd⌃2, (47)

where the length element d⌃2 on a spatial standard three-dimensional hyperboloid H3 has
been given in Eq. (8). By means of the metric (47), the Laplacian operator �G on a generic
function � “ �p⌘,�, ✓,'q reads as

�G� “ 1?
G

Bµ
´?

G G µ⌫B⌫�
¯

“ 1

R2

#
3 tanhp⌘qB⌘ ` B2

⌘
` 1

cosh2p⌘q

«
2

tanhp�qB� ` B2
�

` 1

sinh2p�q

ˆ
1

tanp✓qB✓ ` B2
✓

` 1

sin2p✓qB2
'

˙�+
�, (48)

where
?

G “ R4 cosh3p⌘q sinh2p�q sinp✓q.
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 :  SO(4,1)-invariant  
volume form

Ω

5 Path integral quantization

In this section we compute the propagator of a scalar field �pxq in the FLRW geometry (7).
After having investigated the action in Sec. 5.1, the propagator of �pxq is explicitly worked
out in Sec. 5.2.

5.1 The action

In the semi-classical limit, the action for a scalar field �pxq having mass m can be written as

S" r�s “
ª
⌦�˚pxq

`
´l ´ m2 ` i"

˘
�pxq, (111)

where the expression of ⌦ can read from Eq. (42) and, as usual, " is a small positive number
which should be let tend to zero after integration. The exact matrix version of the action
has the same form with the trace Tr replacing the integral

≥
d⌦, and the i" term ensures that

the matrix path integral
≥
D� eiS is well-defined [? ]. We can evaluate S" r�s by employing

the following decomposition of �pxq in the basis of eigenmodes (82):

�pxq “
ÿ

l,m

ª
dsdq

”
�`
s,q,l,m

⌥s`,q

l,m
pxq ` �´

s,q,l,m
⌥s´,q

l,m
pxq

ı
, (112)

�`
s,q,l,m

,�´
s,q,l,m

being the coe�cients of such a decomposition. In order to ease the notation,
in our forthcoming calculations we will set

�˘ ” �˘
s,q,l,m

,

�1˘ ” �˘
s1,q1,l1,m1 . (113)

Bearing in mind Eqs. (79) and (112), the action (111) becomes

S" r�s “
ÿ

l,m

ª
dsdq

„
´ 1

R2

ˆ
q2 ´ s2 ´ 5

4

˙
´ m2 ` i"

⇢

ˆ
ª
⌦�˚pxq

“`
�`˘

⌥s`,q

l,m
pxq `

`
�´˘

⌥s´,q

l,m
pxq

‰

“
ÿ

l,m

ÿ

l1,m1

ª
dsdqds1dq1

„
´ 1

R2

ˆ
q2 ´ s2 ´ 5

4

˙
´ m2 ` i"

⇢

ˆ
ª
⌦

”`
�1`˘

⌥
s

1
`,q

1

l1,m1 pxq `
`
�1´˘

⌥
s

1
´,q

1

l1,m1 pxq
ı˚ “`

�`˘
⌥s`,q

l,m
pxq `

`
�´˘

⌥s´,q

l,m
pxq

‰
. (114)

Thanks to the orthogonality relations (105), the above equation gives

S" r�s “
ÿ

l,m

ÿ

l1,m1

ª
dsdqds1dq1

„
´ 1

R2

ˆ
q2 ´ s2 ´ 5

4

˙
´ m2 ` i"

⇢ «
`
�1`˘˚

�`x⌥s
1
`,q

1

l1,m1 ,⌥
s`,q

l,m
y

`
`
�1`˘˚

�´x⌥s
1
`,q

1

l1,m1 ,⌥
s´,q

l,m
y `

`
�1´˘˚

�`x⌥s
1
´,q

1

l1,m1 ,⌥
s`,q

l,m
y `

`
�1´˘˚

�´x⌥s
1
´,q

1

l1,m1 ,⌥
s´,q

l,m
y
�

“
ÿ

l,m

ÿ

l1,m1

ª
dsdqds1dq1

#„
´ 1

R2

ˆ
q2 ´ s2 ´ 5

4

˙
´ m2 ` i"

⇢
e´2⇡qp⇡{2q2 �ll1�mm1

q sinhp⇡qq �pq ´ q1q
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4.1.3 Relations between �G and �p3q
⌘ and lG and �p3q

⌘

The Laplacian �G on the four-dimensional hyperboloid H4 and the Laplacian �p3q
⌘ on the

spacelike three-dimensional hyperboloid H3 are related by (cf. Eqs. (44) and (48))

�G “ 1

R2

`
3 tanhp⌘qB⌘ ` B2

⌘

˘
´ �p3q

⌘
. (49)

On the other hand, the e↵ective d’Alembertian lG is related to �p3q
⌘ as (cf. Eq. (43))

| sinh3 ⌘|lG “ 1

R2

`
3 tanhp⌘qB⌘ ` B2

⌘

˘
`

`
sinh2 ⌘

˘
�p3q

⌘
. (50)

Last, we observe that the e↵ective d’Alembertian lG is related to the Laplacian �G on H4

as follows (cf. Eqs. (43) and (48))

R2| sinh3 ⌘|lG “ R2�G ´
ˆ

2

tanh�
B� ` B2

�

˙
´ 1

sinh2 �

ˆ
1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙
. (51)

An inspection of Eqs. (49)–(51) reveals that the eigenfunctions of the operators �G , �p3q,
and l share the same building blocks. The eigenfunctions of d’Alembertian operator l are
derived in the next section, while those of �G and �p3q can be found in Appendix A.

4.2 Eigenfunctions of the d’Alembertian operator l

It is convenient to work out the eigenfunctions of the operator l instead of lG for at least
two reasons. First of all, the d’Alembertian l is self-adjoint with respect to the symplectic
volume form (42); secondly, the operator l admits handier eigenfunctions than lG.

Bearing in mind Eqs. (40a), (43), and (44), the d’Alembertian operator l reads as

l� “ 1

R2

«
3 tanhp⌘qB⌘ ` B2

⌘
´ tanh2 ⌘

ˆ
2

tanh�
B� ` B2

�

˙

´ tanh2 ⌘

sinh2 �

ˆ
1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙�
�. (52)

The eigenfunctions of the d’Alembertian operator are defined by the equation

l� “ ��, (53)

whose resolution can be tackled via the separation ansatz

�p⌘,�, ✓,'q “ �̃p⌘,�qY m

l
p✓,'q, (54a)

�̃p⌘,�q “ fp⌘qgp�q, (54b)

where the spherical harmonic functions Y m

l
p✓,'q of degree l and order m (with l • |m|)

satisfy the well-known property [? ]
ˆ

1

tan ✓
B✓ ` B2

✓
` 1

sin2 ✓
B2
'

˙
Y m

l
p✓,'q “ ´lpl ` 1qY m

l
p✓,'q. (55)
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Bearing in mind Eqs. (54) and (55), the eigenvalue problem (53) gives

1

f

`
3 tanhp⌘qB⌘ ` B2

⌘

˘
f ´ tanh2 ⌘

g

ˆ
2

tanh�
B� ` B2

�

˙
g ` lpl ` 1q tanh2 ⌘

sinh2 �
“ �R2, (56)

where we have divided both sides by �̃p⌘,�qY m

l
p✓,'q. After having performed some manip-

ulations, the above equation can be solved through the method of separation of variables,
yielding the following two ordinary di↵erential equations:

`
B2
⌘

` 3 tanhp⌘qB⌘ ´ � tanh2 ⌘ ´ �R2
˘
fp⌘q “ 0, (57a)

ˆ
B2
�

` 2

tanh�
B� ´ lpl ` 1q

sinh2 �
´ �

˙
gp�q “ 0, (57b)

� being a real-valued constant.

The solution of Eq. (57) and the eigenfunctions of the d’Alembertian operator (52) will be
provided in the next sections.

4.2.1 The time-like equation

It is instructive to work out the details of the solution of Eq. (57a). If we introduce the
variable

w “ tanh ⌘ P p´1, 1q, (58)

then the derivative operators read as

B⌘ “ p1 ´ w2qBw,
B2
⌘

“ ´2wp1 ´ w2qBw ` p1 ´ w2q2B2
w
, (59)

and hence Eq. (57a) becomes
„

p1 ´ w2qB2
w

` wBw ´ �
w2

1 ´ w2
´ �R2

1 ´ w2

⇢
fpwq “ 0. (60)

If we write

fpwq “ p1 ´ w2q3{4hpwq, (61)

then we end up with the general Legendre equation [? ? ]

p1 ´ w2qB2
w
h ´ 2wBwh `

„ˆ
3

4
` �

˙
´

ˆ 9
4 ` � ` �R2

1 ´ w2

˙⇢
h “ 0, (62)

which can be solved via the associated Legendre functions of the first and second kind Pµ

⌫
pwq

and Qµ

⌫
pwq, respectively, having degree ⌫ and order µ given by

⌫ “ 1

2

´
2
a
1 ` � ´ 1

¯
, (63a)

µ “ 1

2

a
9 ` 4� ` 4�R2. (63b)

Therefore, bearing in mind Eqs. (58) and (61), the solution of Eq. (57a) in terms of the
variable ⌘ is

fp⌘q “ p1 ´ tanh2 ⌘q3{4 rc1Pµ

⌫
ptanh ⌘q ` c2Q

µ

⌫
ptanh ⌘qs , (64)

c1 and c2 being integration constants. Here Qµ

⌫
can equivalently be replaced by P´µ

⌫
, which

will be done in the following.
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 : spherical harmonics  
degree , order 

Ym
l (θ, φ)

l m

  β ∈ ℝ



QUANTUM ANALYSIS (4)
Eigenmodes of d’Alembertian operator ( )q ∈ ℝ, s > 0, χ > 0
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 : Legendre functions  
of first kind ( ).  

 : order,  : degree

𝖯±is
ν (tanh η)

tanh(η) ∈ (−1,1)
±is ν

 ν =
1
2 (2 1 + β − 1) = −

1
2

+ i |q | ,

s = −( 9
4

+ β + λR2) > 0.

 : Legendre functions of  
second kind ( ).  

 : order,  : degree

𝒬iq
l (coth χ)

coth χ ∈ (1, + ∞)
iq l

 q = ± −(1 + β)

Eigenvalue:   λ = (q2 − s2 − 5/4)R−2

 Υs±,q
l,m (η, χ, θ, φ) :=

1
cosh3 η sinh χ

𝖯±is
ν (tanh η) 𝒬iq

l (coth χ) Ym
l (θ, φ),

 β < − 1



QUANTUM ANALYSIS (5)
Consider the following “flat” regime (FR) 

FR:      
In FR we have

χ < 1, q ≫ l
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4.2.4 Flat regime

Now consider the following “flat” regime5

FR : � † 1, q " l, (86)

where “FR” stands for “flat regime”, and q will be a typical momentum. Then the Q
iq

l

reduces to the spherical Bessel functions,

Re

«
Q

iq

l
pcoth�q
sinh�

ql

e´⇡q�piq ` l ` 1q

�
�†1„
q"l

jlpq�q. (87)

This should be expected, since the eigenfunctions (83) should reduce to the standard ones
on R3,1. For � Ñ 0, the relation (87) is guaranteed by the standard expansion formulas for
Q

iq

l
pcoth�q and jlpq�q6; here, we have verified that it works very well in the range � P p0, 1q

for q " l. Moreover, it also holds that

Im

«
Q

iq

l
pcoth�q
sinh�

ql

e´⇡q�piq ` l ` 1q

�
�†1„ 0, (88)

and hence we can conclude that

Q
iq

l
pcoth�q
sinh�

ql

e´⇡q�piq ` l ` 1q
�†1„
q"l

jlpq�q. (89)

Due to the relation [54]

Pµ

⌫
pxq xÑ1´„ 1

�p1 ´ µq

ˆ
1 ` x

1 ´ x

˙
µ{2

, (90)

we easily obtain

P˘is

⌫
ptanh ⌘q ⌘Ñ`8„ 1

�p1 ¯ isqe
˘i⌘s. (91)

Thus, bearing in mind Eqs. (89) and (91), the eigenmodes (83) for large times (i.e., ⌘ Ñ `8)
and in the flat regime (86) become

⌥s˘,q

l,m
p⌘,�, ✓,'q ⌘Ñ`8„

FR

1a
cosh3 ⌘

e´⇡qjl pq�q�piq ` l ` 1q
ql

e˘i⌘s

�p1 ¯ isqY
m

l
p✓,'q. (92)

4.3 Orthogonality relations

The orthogonality relations for the eigenfunctions (83) of the d’Alembertian operator (53)
are written via the SOp4, 1q-invariant inner product as

x⌥s
1
`,q

1

l1,m1 ,⌥
s`,q

l,m
y p⌘,�, ✓,'q :“

ª
⌦

”
⌥

s
1
`,q

1

l1,m1 p⌘,�, ✓,'q
ı˚ ”

⌥s`,q

l,m
p⌘,�, ✓,'q

ı
, (93)

5We will consider this regime also in the computation of the propagator for ⌘ Ñ 0, where the geometry
is strictly speaking no longer flat.

6The expansion of Qiq
l pcoth�q when � Ñ 0 can be read o↵ from Eq. (B.8); for jlpq�q we refer the reader

to Ref. [51].
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 : spherical  
Bessel functions
jl(qχ)
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 : Euler  
gamma function

Γ(x)

The expansion about ⌘ “ 0 of the hypergeometric function occurring above can be written
as

2F1

ˆ
1

2
´ iq,

1

2
` iq; 1 ¯ is;

1

2
´ 1

2
tanh ⌘

˙
“ 2F1

ˆ
1

2
´ iq,

1

2
` iq; 1 ¯ is;

1

2

˙
` O p⌘q

“
?
⇡ p2q˘is � p1 ¯ isq

�

„
1

2

ˆ
3

2
´ iq ¯ is

˙⇢
�

„
1

2

ˆ
3

2
` iq ¯ is

˙⇢

` O p⌘q , (139)

where we have exploited Eq. (15.1.26) in Ref. [52]. Therefore, from Eqs. (137) and (139),
we find

P˘is

⌫
ptanh ⌘q ⌘Ñ0„ e˘i⌘s

?
⇡ p2q˘is

�

„
1

2

ˆ
3

2
´ iq ¯ is

˙⇢
�

„
1

2

ˆ
3

2
` iq ¯ is

˙⇢ . (140)

Thus, from the last relation jointly with Eq. (89), the early-time expression of the eigen-
functions (83) evaluated in the flat regime (86) become

⌥s˘,q

l,m
p⌘,�, ✓,'q ⌘Ñ0„

FR

?
⇡ 2˘is e˘i⌘s

�

ˆ
3

4
´ iq

2
¯ is

2

˙
�

ˆ
3

4
` iq

2
¯ is

2

˙ e´⇡qjl pq�q�piq ` l ` 1q
ql

Y m

l
p✓,'q .

(141)

As a consequence of Eqs. (124) and (141), we find that the early-time propagator can be
written as

x�pxq�˚px1qy ⌘Ñ0„
FR

x�pxq�˚px1qyFRET1 ` x�pxq�˚px1qyFRET2, (142)

where “ET” means “early-time” propagator. The first term reads as

x�pxq�˚px1qyFRET1 “ ´8R2
ÿ

l,m

Y m

l
p✓,'q rY m

l
p✓1,'1qs˚

ª
dsdq

jl pq�q jl pq�1q
q2l

ˆ s q coshp⇡qq sinhp⇡qq |�piq ` l ` 1q|2

sinhp⇡sq
ˆ
s2 ´ q2 ` 5

4
´ m2R2 ` i"

˙
rcoshp2⇡qq ` coshp2⇡sqs

ˆ Re

»

——–
2´2is e´isp⌘`⌘

1q �´1

ˆ
1

2
´ iq ´ is

˙
�´1

ˆ
1

2
` iq ´ is

˙

�2

ˆ
3

4
´ iq

2
` is

2

˙
�2

ˆ
3

4
` iq

2
` is

2

˙

fi

��fl . (143)
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QUANTUM ANALYSIS (6)
• Late-time ( ) local propagator in position space 

Leading contribution 

This resembles the standard Feynman propagator on a flat 
Minkowski space recalling that 

η → + ∞

16

5.2.1 The propagator in the flat regime and with ⌘ Ñ `8

We are mainly interested in the local propagator for distances far below the curvature scale,
but keeping the oscillating nature of the modes in the late-time regime ⌘ Ñ `8. This is the
flat regime FR defined in (86), where the eigenmodes (83) reduce to (92). It then follows
from Eq. (124) that the late-time local propagator can be written as the sum of a leading
piece and a subleading part, i.e.,

x�pxq�˚px1qy ⌘Ñ`8„
FR

x�pxq�˚px1qy⌘Ñ`8,FR
L ` x�pxq�˚px1qy⌘Ñ`8,FR

SL , (125)

where “L” and “SL” stand for “leading” and “subleading”, respectively. The leading term
reads as8

x�pxq�˚px1qy⌘Ñ`8,FR
L “ 2R2

⇡3

ÿ

l,m

Y m

l
p✓,'q rY m

l
p✓1,'1qs˚

b`
cosh3 ⌘

˘ `
cosh3 ⌘1˘

ª
dsdq

jl pq�q jl pq�1q

q2l
ˆ
s2 ´ q2 ` 5

4
´ m2R2 ` i"

˙

ˆ 2 cos rs p⌘ ´ ⌘1qs |� piq ` l ` 1q|2 q sinhp⇡qq. (126)

The above equation can be simplified by means of the identity

|�piq ` l ` 1q|2 “ ⇡

q sinhp⇡qq
lπ

n“0

“
q2 ` pl ´ nq2

‰
, (127)

which can be proved via the recurrence relation �p1`zq “ z�pzq [52] along with Eq. (B.2a).
Moreover, the formula (127) leads to (cf. (86))

q sinhp⇡qq |� piq ` l ` 1q|2 q"l„ ⇡ q2l`2. (128)

The restriction to q " l means that we ignore the extreme IR regime of the propagator,
which is justified for the typical applications of (quantum) field theory.

Therefore, by exploiting (128) and after some calculation, Eq. (126) becomes

x�pxq�˚px1qy⌘Ñ`8,FR
L “ 2R2

⇡2

ÿ

l,m

Y m

l
p✓,'q rY m

l
p✓1,'1qs˚

b`
cosh3 ⌘

˘ `
cosh3 ⌘1˘

ª `8

´8
ds eisp⌘´⌘

1q

ˆ
ª `8

´8
dq

q2jl pq�q jl pq�1qˆ
s2 ´ q2 ` 5

4
´ m2R2 ` i"

˙

“ 4R2

⇡2

ÿ

l,m

Y m

l
p✓,'q rY m

l
p✓1,'1qs˚

b`
cosh3 ⌘

˘ `
cosh3 ⌘1˘

ª `8

´8
ds eisp⌘´⌘

1q

ˆ
ª `8

0

dq
q2jl pq�q jl pq�1qˆ

s2 ´ q2 ` 5

4
´ m2R2 ` i"

˙ , (129)

8Notice that if we would keep here only the asymptotic behavior of the spherical Bessel functions jl
rather than their full form, the propagator would be ill-defined, as the sum over l,m would lead to a singular
dependence on ✓,'.
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⟨ϕ(x)ϕ*(x′ )⟩η→+∞,FR
L =

4R2

π2 ∑
l,m

Ym
l (θ, φ)[Ym

l (θ′ , φ′ )]*

(cosh3 η) (cosh3 η′ ) ∫
+∞

−∞
ds eis(η − η′ ) ∫

+∞

0

dq q2 jl (qχ) jl (qχ′ )

(s2 − q2+
5
4

−m2R2 + iε)
,

ei ⃗q ⋅ ⃗x = 4π∑
l,m

iljl(qr)Ym
l ( ̂q)[Ym

l ( ̂x)]*,
  q = | ⃗q | , r = | ⃗x | , ̂x = ⃗x /r, ̂q = ⃗q /q

∫ d3q
ei ⃗q ⋅( ⃗x − ⃗x ′ )

s2 − q2 − M2
= (4π)2 ∑

l,m
[Ym

l ( ̂x)]* Ym
l ( ̂x′ )∫

+∞

0
dq

q2

s2 − q2 − M2
jl(qr)jl(qr′ ) .

Rayleigh 
equation

“SL”: subleading“L”: leading



QUANTUM ANALYSIS (7)
Subleading contribution to the late-time propagator 

17

  

 

⟨ϕ(x)ϕ*(x′ )⟩η→+∞,FR
SL =

4R2

π4 ∑
l,m

Ym
l (θ, φ)[Ym

l (θ′ , φ′ )]*

(cosh3 η) (cosh3 η′ ) ∫
+∞

−∞
ds eis(η + η′ )

× ∫
+∞

0
dq

jl (qχ) jl (qχ′ ) q2s cosh(πq)sinh(πs)

(s2 − q2+
5
4

−m2R2 + iε)
Γ ( 1

2
− iq − is) Γ ( 1

2
+ iq − is) Γ2 (is) .



QUANTUM ANALYSIS (8)
• Local propagator in position space near the big bounce 

( ) 

The early-time propagator:  

• bounded and well-defined ; 
• Standard correlation between points  lying on the same 

sheet of ;  
• Propagation between points located on opposite sheets of  

near the big bounce.

η, η′ → 0

x, x′ 

ℳ3,1

ℳ3,1

18

The last term occurring in the above equation can be arranged as follows

s

sinhp⇡sq

„
eisp⌘´⌘

1q ´ coshp⇡qqeisp⌘`⌘
1q

coshp⇡qq ´ i sinhp⇡sq

⇢

“ s

sinhp⇡sq

“
eisp⌘´⌘

1q ´ eisp⌘`⌘
1q‰ coshp⇡qq ´ i eisp⌘´⌘

1q sinhp⇡sq
coshp⇡qq ´ i sinhp⇡sq

⌘,⌘
1Ñ0„ ´is

rcoshp⇡qq ´ i sinhp⇡sqse
isp⌘´⌘

1q, (153)

and hence, for ⌘, ⌘1 Ñ 0, we get the final formula

x�pxq�˚px1qy ⌘,⌘
1Ñ0„
FR

4R2
ÿ

l,m

Y m

l
p✓,'q rY m

l
p✓1,'1qs˚

`8ª

´8

ds

`8ª

0

dq
q2jl pq�q jl pq�1q eisp⌘´⌘

1q
ˆ
s2 ´ q2 ` 5

4
´ m2R2 ` i"

˙

ˆ ´is

rcoshp⇡qq ´ i sinhp⇡sqs
1

ˇ̌
ˇ̌�

ˆ
3

4
` iq

2
` is

2

˙
�

ˆ
3

4
` iq

2
´ is

2

˙ˇ̌
ˇ̌
2 .

The early-time propagator (??) turns out to be bounded and well-defined owing to the upper
bound (149). It gives rise to a more-or-less standard correlation between points x, x1 lying
on the same sheet of the projected spacetime M

3,1. More remarkably, it also gives rise to
a well-defined correlation and in fact a propagation between two points located on opposite
sheets of M3,1 near the BB; for larger |⌘| and |⌘1| this is suppressed compared to the case of
two points on the same sheet, due to the oscillating term eisp⌘´⌘

1q.

The observation that a scalar particle can cross the BB agrees at least qualitatively with the
classical analysis regarding null and timelike geodesics of Sec. 3.2. A more detailed analysis
of this fascinating result is left for future work.

6 Conclusions

In this paper, we elaborated in detail the scalar modes and the propagator on a quantum
version of a 3+1-dimensional FLRW spacetime with BB, in the semi-classical limit. The
underlying framework of matrix models provides a clean setup to work with a spacetime
which is singular as a classical manifold, but well-defined as a quantum geometry.

The most interesting conclusion is that the physics of scalar fluctuations is perfectly well-
defined even at or near the classical singularity, and it is possible to relate the pre- and
post-BB eras in a meaningful way. This implies some intriguing correlation between the
two sides of the BB, which remain to be worked out in detail. The framework of matrix
models provides a clear prescription how to define and compute the propagator, and the
causal structure of a Feynman propagator is obtained automatically, at least at late times.
This is remarkable, since time emerges on the same footing as space from the underlying
matrix model, and there is no a priori notion of classical time.

This work should be seen in the context of emergent spacetime and gravity within the
IKKT matrix model, which is closely related to string theory [33]. The present background

31



CONCLUDING REMARKS (1)
• Classical analysis of FRW geometry: general-relativity tools;  

investigation of null and timelike geodesics;   

• Quantum analysis of FRW geometry: quantum-field-theory 
techniques;  evaluation of the scalar field propagator. 

• Future perspectives and open problems: 

1. Our analysis is restricted to non-interacting test particles. For a 
physical particle near the big bounce, there would be infinitely 
strong interactions with the infinite matter density;  
2. Investigation of the correlation between pre-big bounce and 
post-big bounce eras; 
3. Propagation of fermions 
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CONCLUDING REMARKS (2)
Further details can be found in 

Emmanuele Battista and Harold C. Steinacker,  
“On the propagation across the big bounce  

in an open quantum FLRW cosmology”,  
arXiv:  2207.01295 [gr-qc]  (2022). 

20


