Moduli stabilization at h^{2,1}=50

Erik Plauschinn

Utrecht University

Workshop on Holography and the Swampland

Corfu — 08.09.2022

This talk is based on ::

- The tadpole conjecture at large complex-structure
 E. Plauschinn arXiv:2109.00029
- Moduli Stabilization in Asymptotic Flux Compactifications
 T. Grimm, D. van de Heisteeg, E. Plauschinn
 arXiv:2110.05511
- The tadpole conjecture in asymptotic limits
 M. Graña, T. Grimm, D. van de Heisteeg, A. Herraez, E. Plauschinn arXiv:2204.05331
- Moduli stabilization in type IIB orientifolds at h^{2,1}=50
 E. Plauschinn, K. Tsagkaris arXiv:2207.13721

Some motivation.

motivation — the landscape

Compactifications of string theory give rise to an abundance of lower-dimensional theories — the string theory landscape.

Famous estimates for its size are 10⁵⁰⁰, 10⁹³⁰, 10¹⁵⁰⁰, 10²⁷²⁰⁰⁰.

Bousso, Polchinski — 2000 Schellekens — 2016 Lerche, Lüst, Schellekens — 1987 Taylor, Wang — 2015

But often one is only interested in four-dimensional theories with no or few massless scalar fields.

motivation — moduli stabilization

In type IIB orientifold compactifications on Calabi-Yau three-folds, **fluxes** generate a mass-term for the complex-structure and axio-dilaton moduli.

An underlying assumption of the KKLT and Large-Volume scenarios is that all of these moduli can be stabilized in a suitable regime.

It became clear recently that this assumption can fail.

Bena, Dudas, Graña, Lüst — 2018 Betzler, EP — 2019 Braun, Valandro — 2020 Bena, Blabäck, Graña, Lüst - 2020 Junghans — 2022 Gao, Hebecker, Schreyer, Venken — 2022

The tadpole conjecture states that for a large number of complex-structure moduli, not all of them can be consistently stabilized by fluxes.

Bena, Blåbäck, Graña, Lüst — 2020

Goal for this talk ::

- Review the status of the tadpole conjecture, and
- study it for a concrete example.

outline

- 1. motivation
- 2. tadpole conjecture
- 3. moduli stabilization
- 4. $h^{2,1}=50$
- 5. summary

D-branes and O-planes are charged under Ramond-Ramond gauge potentials and therefore contribute to Bianchi identities as sources. The integrated expressions are the tadpole cancellation conditions.

In F-theory, the D3-brane tadpole equation reads (with χ the Euler number of the four-fold)

$$N_{\rm D3} + \frac{N_{\rm flux}}{2} = \frac{\chi}{24}$$

$$N_{\rm D3} + \frac{N_{\rm flux}}{2} = \frac{\chi}{24}$$
 $N_{\rm D3} + \frac{N_{\rm flux}}{2} = \frac{\chi}{24}$ $\frac{N_{\rm flux}}{2} \le \frac{h^{3,1}}{4}$.

$$\frac{N_{\text{flux}}}{2} \le \frac{h^{3,1}}{4} \,.$$

The tadpole conjecture states that in the large $h^{3,1}$ -limit, the flux number satisfies

$$\frac{N_{\mathrm{flux}}}{2} > \frac{n_{\mathrm{stab}}}{3}$$

$$n_{\text{stab}} < \frac{3}{4} h^{3,1}$$
.

Comments ::

- The tadpole conjecture also applies to type IIB orientifold compactifications.
- If true, the conjecture implies that the landscape of theories with no massless scalar fields is smaller than expected.
- The KKLT and Large Volume scenarios propose mechanisms to obtain de-Sitter vacua in string theory. A crucial step is moduli stabilization by fluxes — the tadpole conjecture scrutinizes this step.

Status ::

• The conjecture has been verified for smooth F-theory compactifications on $K3 \times K3$.

Bena, Blåbäck, Graña, Lüst – 2020 & 2021

• It has been verified for F-theory compactifications on CY_4 with a weak Fano base.

Bena, Brodie, Graña — 2021

It has been argued that for type IIB compactifications in the large-complex-structure limit the conjecture is satisfied.

EP - 2021

It has been argued that for F-theory compactifications in any asymptotic regime the conjecture is satisfied.

Graña, Grimm, v.d. Heisteeg, Herraez, EP — 2022

 \blacksquare The conjecture has been verified for a type IIB compactification with $h_-^{2,1}=50$.

EP, Tsagkaris — 2022

Criticism ::

■ A linear scenario that can violate the tadpole conjecture has been proposed — and opposed. Currently no corresponding explicit model is known.

```
Marchesano, Prieto, Wiesner — 2021

Lüst - 2021

Graña, Grimm, v.d. Heisteeg, Herraez, EP — 2021

EP, Tsagkaris — 2022
```

The tadpole conjecture applies to smooth compactifications, but could be violated for spaces with singularities.

Bena, Blåbäck, Graña, Lüst — 2020 Gao, Hebecker, Schreyer, Venken — 2022

 A database of orientifold compactifications with large negative tadpole charge has been published. Though, currently no explicit model violating the conjecture is known.

Crinò, Quevedo, Schachner, Valandro — 2022

see also Junghans — 2022

outline

- 1. motivation
- 2. tadpole conjecture
- 3. moduli stabilization
- 4. $h^{2,1}=50$
- 5. summary

Consider type IIB Calabi-Yau orientifold compactifications on \mathcal{X} with O3-/O7-planes. The effective four-dimensional theory contains

$$h_{-}^{2,1}$$
 complex-structure moduli $z^{i} = u^{i} + iv^{i}$,

$$1 \qquad \text{axio-dilaton} \qquad \qquad \tau = c + i \, s \, ,$$

$$h^{1,1}$$
 Kähler-sector moduli $T_a\,,\,G_{\hat a}\,.$

The dynamics of the moduli fields (at weak string coupling) is described by the Kähler potential

$$\mathcal{K} = -\log[-i(\tau - \bar{\tau})] - \log\left[+i\int_{\mathcal{X}} \Omega \wedge \bar{\Omega}\right] - 2\log \mathcal{V}.$$

The holomorphic three-form depends on the complex-structure moduli z^i and can be expanded in an integral symplectic basis as $(I=0,\ldots,h^{2,1}_-)$

$$\Omega = X^I \alpha_I - \mathcal{F}_I \beta^I \,, \qquad z^i = X^i / X^0 \,.$$

In the large-complex-structure limit the periods $\mathcal{F}_I = \partial_I \mathcal{F}$ of Ω can be determined from the prepotential

$$\mathcal{F}_{\text{pert}} + \mathcal{F}_{\text{inst}}, \qquad \qquad \mathcal{F}_{\text{pert}} = -\frac{1}{3!} \frac{\tilde{\kappa}_{ijk} X^i X^j X^k}{X^0} + \frac{1}{2!} a_{ij} X^i X^j + b_i X^i X^0 + \frac{1}{2!} c(X^0)^2,$$

$$\mathcal{F}_{\text{inst}} = -\frac{1}{(2\pi i)^3} (X^0)^2 \sum_{\vec{q}} N_{\vec{q}} \operatorname{Li}_3 \left(e^{2\pi i q_i X^i / X^0} \right).$$

Three-form fluxes F_3 and H_3 generate a potential for the moduli z^i and τ . It is encoded in the superpotential

$$W = \int_{\mathcal{X}} \Omega \wedge (F_3 - \tau H_3).$$

The scalar potential in the four-dimensional theory (for a no-scale Kähler potential) reads (with $\alpha = (\tau, z^i)$)

$$V = e^{\mathcal{K}} F_{\alpha} G^{\alpha \overline{\beta}} \overline{F}_{\overline{\beta}},$$

$$F_{\alpha} = \partial_{\alpha} W + (\partial_{\alpha} \mathcal{K}) W,$$

$$G_{\alpha \overline{\beta}} = \partial_{\alpha} \partial_{\overline{\beta}} \mathcal{K}.$$

Global minima of this potential are given by $F_{\alpha}=0$. These conditions can fix moduli.

D-branes and O-planes are charged under Ramond-Ramond gauge potentials and therefore contribute to Bianchi identities as sources. The integrated expressions are the tadpole cancellation conditions.

Relevant here is the D3-brane tadpole condition

$$0 = N_{\text{flux}} + 2N_{\text{D3}} + Q_{\text{D3}}.$$

$$Q_{\text{D3}} \leq \theta \frac{N_{\text{O3}}}{2} - \sum_{\text{D7}_{\text{i}}} \left[\int_{\Gamma_{\text{D7}_{\text{i}}}} \text{tr} \left[\mathsf{F}_{\text{D7}_{\text{i}}}^{2} \right] + N_{\text{D7}_{\text{i}}} \frac{\chi(\Gamma_{\text{D7}_{\text{i}}})}{12} \right] - \sum_{\text{O7}_{\text{j}}} \frac{\chi(\Gamma_{\text{O7}_{\text{j}}})}{6}$$

$$N_{\text{D3}} \geq 0$$

$$N_{\text{flux}} = \int_{\mathcal{X}} F_{3} \wedge H_{3} \geq 0$$

Moduli stabilization ::

- Fluxes stabilize the axio-dilaton and complex-structure moduli.
- Fluxes are restricted by the tadpole cancellation condition.

Tadpole problem ::

Can all moduli be stabilized by fluxes within the tadpole bound?

outline

- 1. motivation
- 2. tadpole conjecture
- 3. moduli stabilization
- 4. $h^{2,1}=50$
- 5. summary

The setting.

Consider an example with $h_{-}^{2,1}=50$ complex-structure moduli (to which the tadpole conjecture applies).

The data of the (perturbative) prepotential in the large-complex-structure-limit is determined from an example in the Kreuzer-Skarke list using CYTools.

Demirtas, McAllister, Rios-Tascon

Numerical solutions to the minimum conditions are extremely difficult to find. A new algorithm has been developed and 10^5 solutions we constructed.

EP, Tsagkaris — 2022

Solutions to the minimum conditions are valid in the weak-string-coupling and large-complex-structure limit

$$\operatorname{Im} \tau = s \gg 1,$$

$$\frac{\mathcal{F}_{\text{inst }I}}{\mathcal{F}_{\text{pert }I}} \ll 1 \qquad \longrightarrow \qquad c \gg 10^{-2} \,.$$

thanks to J. Moritz

For $h_{-}^{2,1}=50$ a bound on the orientifold charge Q_{D3} can be estimated as

$$Q_{\rm D3} \gtrsim -1000$$
 \longrightarrow $N_{\rm flux} \lesssim 1000$.

Crinò, Quevedo, Schachner, Valandro — 2022

Results.

	$s \ge 1$	$s \ge 2$	$s \geq 5$	$s \ge 10$
$c \ge 10^{-3}$	1400	1991	3023	6157
$c \ge 10^{-2}$	1400	1991	3023	6157
$c \ge 10^{-1}$	1405	1992	3304	6157
$c \ge 0.5$	2993	3912	4886	13218
$c \ge 1$	3717	5379	9345	21384

Smallest values for $N_{\rm flux}$ for given bounds on c and s. Tadpole cancellation requires $N_{\rm flux}\lesssim 1000$.

outline

- 1. motivation
- 2. tadpole conjecture
- 3. moduli stabilization
- 4. $h^{2,1}=50$
- 5. summary

Summary ::

- String-theory compactifications provide a large number effective four-dimensional theories — the string-theory landscape.
- The tadpole conjecture suggests that the landscape of theories with no/few massless scalar fields is smaller than expected.
- The tadpole conjecture has been verified for a concrete example with $h^{2,1}$ =50. Technical challenges were addressed.

$$\frac{N_{\mathrm{flux}}}{2} > \frac{n_{\mathrm{stab}}}{3}$$

