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Motivation
Divergences in QFT, Early Universe, singularities of BHs = QG = Quantum
space-time.

One possibility: Noncommutative (NC) and/or nonassociative (NA) space-time.

Original motivation: Heisenberg, regularization of divergent electron
self-energy. Nowdays we now that quantization of NC field theories introduses
new divergences: UV/IR mixing.

Scalar ¢% field theory and the Moyal-Weyl %-product (motivated by string
theory...)
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Planar diagrams: usual (quadratic divergent) UV behaviour, no improvement
from NC deformation.
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Non-planar diagrams: (consequence of NC deformation) introduce UV/IR
mixing.
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with p A k = i6"*"p,k,. UV convergent due to the oscilating factor elPre),
However, for ¢ — 0 or a very small external momentum p — 0 the quadratic
UV divergence appears again! Nonrenormalizable theory [(Minwalla, Van
Raamsdonk, Seiberg '99)], see also [Bahns et al. '03].

Modification of the action by an oscilator term, renormalizable
Grosse-Wulkenhaar model [Grosse, Wulkenhaar '04; Rivasseau et al. '05].
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Gauge theories: no renormalizeble model has been constructed so far [Blaschke
'16].



Our approach is based on:

Deformation

a well defined way to deform a (Hopf) algebra of
classical symmetries to a twisted (noncommutative, defomed) Hopf algebra.
Module algebras (differential forms, tensors...) are consistently deformed into
*-module algebras: [Aschieri et al.
'05...'18].

Construction of NC field theories

Any classical (gauge) field theory described by the corresponding
L algebra [Hohm, Zwiebach '17; Jurco et. al '19]. NC field theories can be
encoded in a [MDC, Giotopoulos, Radovanovic, Szabo '21;
Giotopoulos, Szabo ’22].

Quantization

algebraic techniques for
quantization, can be generalized to NC (braided) field theories [Nguyen,
Schenkel, Szabo '21].



Overview

Motivation

Tools
Deformation by a twist
Loo-algebra
Braided BV and homological perturbation theory

Examples of braided QFT
Braided ¢} theory
Braided electrodynamics

Outlook



NC geometry via the twist deformation

Start from a symmetry algebra g and its universal covering algebra Ug. Then
define a twist operator F as:

-an invertible element of Ug ® Ug
-fulfills the 2-cocycle condition (ensures the associativity of the x-product).

FRLUA®Id)F =1 F(id® A)F.
-additionaly: F =1® 1+ O(h); h-deformation parameter.
Braiding (noncommutativity): controled by the R-matrix R = F~2 = R* @ Ry;

triangular Ro; = R~ = R, @ RX.

Symmetry Hopf algebra Ug Twisted symmetry Hopf algebra Ug”
Module algebra A

abcA a-bec A 5 axb=-0F '(a®b)=Rk(b)*R(a).

_F
%
F
= % module algebra A,
F

Well known example: Moyal-Weyl twist F = e~ 29770,@9
frxg(x)="- o]:fl(f@)g)

—f.g+ éepv(apf) (8og) + O(0%)= Ryg + RXf # g x f.

Associative, noncommutative: R ' = R, @ R* encodes the noncommutativity.



L, algebra and gauge field theory

Lo-algebra (strong homotopy algebra): generalization of a Lie algebra with
higher order brackets.

-Higher spin gauge theories with field-dependent gauge parameters [Berends,
Burgers, van Dam '85]

(0adp — 050a)® = dc(a,6,0)®-

-Generalized gauge symmetries of closed string field theory involve higher
brackets [Zwiebach '15].

-Any classical field theory with generalized gauge symmetries is determined by
an Loo-algebra, due to duality with BV-BRST [Hohm, Zwiebach 17; Juréo,
Raspollini, Sdmann, Wolf 18].

-NC gauge field theories in the L setting discussed in [Blumenhagen et al.'18;
Kupriyanov '19].

-L-algebras of ECP gravity, classical and noncommutative [MDC, Giotopoulos,
Radovanovié, Szabo '20, ’21].



L-algebra: Z-graded vector space V = @, ., Vi with graded antisymmetric
multilinear maps, n-brackets

én:®nV*>V, ViQ - @V — Lp(va,..., Va)
/ (I /
Ln(oeyv, v, .) (-1) Ln(ceoyviv,ail),

where |v| is a degree of v € V.

n-brackets fulfil homotopy relations:

n=1: £1(£1(v)) =0, (V,£1)isa cochain complex ,
n=2: £1(€a(vi, ) = L2(1(v1), v2) + (—1)“/1‘ £2(v1, £1(v2)) £1 is a derivation of 45 ,
n=3: £1(t3(v1,v2,3)) = —L3(L1(v1), v2, v3) — (71)|V1‘ £3(v1, £1(v2), v3), Jacobi up to homotopy
— (—)M2l g5 (v, v, £1(vs))
— & (C2(v1, v2), v3) — (D)D) (05 (v, 1), v2)

_ (,1)(|V2|+\V3\) [vil £3(82(va, v3), v1)

Cyclic Loo-algebra: graded symmetric non-degenerated bilinear pairing
(= —): VeV =R

n—1
V0, €n(v, va, -« -, vm)) = (—1)"FOIHI D bl i 1l g(vg, v, V), n 2 L



How do we use this in (gauge) field theories?

Start with V=WV Vi & Vo & V5. Then
-gauge parameters p € V,
-(gauge) fields A € V4,

-equations of motion Fy € V5,
-1l Noether identites (Bianchi identites) daFa € V5.

1
Gauge transformations: 6,A = (1(p) + L2(p, A) — §E3(p, AA) + ...

o

STAAA) + ..

EoM: Fa = £1(A) — %ZQ(A,A) -

.

(A 6(A) - 5

(A, l2(A, A)) + ...

N[ —

Action: S(A) =

Noether identities: daFa = (1(Fa) + l2(Fa, A) + ...

Using the cyclicity of the pairing (, ), the variational principle is easily

implemented
0S(A) = (0A, Fa) .



Example: 3D non-Abelian Chern-Simons theory
We define: p=p’T? € Vo, A=A’T? € V4, Fa € Vo and daFa € V5

The non-vanishing ¢, brackets are given by:
1-bracket /1
t(p)=dp € Vi, t1(A)=dA € Vu, 1(Fa) =dFa € Vs
2-bracket />
b(p1, p2) = ilp1, p2],  La(p, A) = ilp, Al,  L2(p, Fa) = i[p, Fa]
0(A1, Az) = i[A1, A2],  L2(A, Fa) = i[A, Fal.

These reproduce:

pA = bp) +(p,A) =dp+ip, Al
[”ﬁw@ﬂi = O—ty(p1,p2) = O—ilp1.pal >
Fio= 4(A)- AN =dA- S [AA)
dpFa = La(p, Fa) = i[p, Fal,
daFa = 1(Fa) — £o(A, Fa) = dFs — é [A, Fal,

LA, 6 (A)) - %(A,EZ(A, A)) = % /

5 MTr(A/\dAféA/\[A,A]).

How do we deform this?



Braided L..-algebra

Generalization of a quantum Lie algebra [Woronowicz '89; Majid '94].

Rigorously: A braided Loo-algebra is an Lo-algebra (V,{¢,}) in the symmetric
monoidal category xM?*. What does it means, how does it work?

e 7Z-graded real vector space V =, _, Vi. Usually we work with
V=WVWeVied V.® V5.
e maps/brackets: ¢}, : RV = v
G ® @ Vn) = Lln(vi ®s -+ B Vi),

with v @, v/ i= F 1 (v@ V') = f*(v) @ fa (V') for v, v/ € V. The
brackets are graided and braied symmetric!

GV ) = = (=) (L Re(V), RE(V), L)
For example: 3D CS gauge theory £2(p, A) = i[p, A] is deformed to

G (p, A) =i[f“(p), F(A)] = ilp, Alx = —i[Re(A), R“(p)]«
=ip® x AP[T?, T"].

The braided commutator closes in the corresponding Lie algebral



e braided homotopy relations:

G (6 (v) =0,
G (G (vi, v2)) = 45 (0 (v1), v2) + (—1)11 g5 (v, 25 (v2))

5 (63 (v1, v2), v3) — (=)0l g5 (65 (va, Ri(v3)), R*(v2))
+ (_1)(IV2\+\V3\) (vl 25 (05 (Re(v2), R (v3)), Rka(vl))
=05 (6 (), v, v3) — (1)1 25 (ve, €5 (v2), v3)
— (=1)ll+lv] 05 (v, va, €5 (v3)) — 45 (€5 (v1, v2, v3))

e To have a well defined variational principle, we demand strict cyclicity:

(va, i) = {, )o]:fl(vg Qvi) = (Rk(vl),Rk(vg))* = (v1, V2) &,

(Vo, £ (vi, vay ooy Vi)Y = (Vi O (VO, VI, « ooy V1)) s

Twist operator fulfilling this is a compatible Drinfel'd twists. It define a
strictly cyclic braided Lo-algebra.



Braided gauge theory via braided L..-algebra

Just like in the classical (commutative) case, a braided L..-algebra defines a
braided field theory.

Braided gauge transformations

1
5;A = ff(p) ++Z§(p’ A) - Ezg(pﬂ A, A) +o

Braided equations of motion

1 1
Braided 3D CS:  Fj = ({(A)—165(AA)=dA— é [A Al =0.

Braided Noether identity does not follow from the variation of an action.
Instead it is obtained as a combination of homotopy relations

dAFA = G(F) = 5 (B(A F2) — B(FA, A) + 3 & (Re(A), B(RE(A), A)) + - -

Braided 3D CS:
i

diF; = dFf — 2 [A FAle + 2 [F3 Al + § [Re(A), R (A), AlLL. = 0.



Braided gauge invariant action

1

S(A) Z CE] 1)| )27 (DA (A, A))

Braided 3D CS:  S,(4) = (A,é{(A)>* = <A,E§(A, A)),
1 i
- 3 /M Tr(A/\* dA- 2 AN, [A,A]*> .
It is braided gauge invariant §;5,(A) = 0.

Comments on the braided 3D CD theory

-"naive” deformation of the classical theory

-braided Il Noether identity: new term (inhomogeneous in EoM), vanishes in
the commutative limit. Important, introduce interdependence of EoM,
consequence of braided gauge symmetry.

-braided gauge transformations have braided Leibniz rule:

85 (1% ¢2) = d5¢1 % P2 + Ridr * g, P2-



Braided BV formalism

Developed in [Nguyen, Schenkel, Szabo '21], following [Costello, Gwilliam '16)] and
[Jurco et al. '19].

e Start from the (braided, cyclic) Lo algebra that defines the theory
(V7£;7 < ’ >*)

e Introduce the braided symmetric algebra Symy V' and extend the L
structure to it:

v Ox (v2) = (~1)11112IR, (v2) O R¥ (1)
and

(a1 ®@v) = a1 ®4(v1),
£5(a1 ® v1,32 @ v2) = (a1 O« Ri(a2)) ® 5 (R¥(v1), v2)

(a1 ® v1, @2 ® vo) =(a1 O« Ri(a2)) (R¥(v1), va)x

for a1, a € Symy V[2], vi, w2 € V.

Compare with extending the Lie algebra [T?, Tb] = if?PCTC to the algebra of differential forms with A
product

[A1, A] = [AIT2, ABTE] = A2 A AB[T?, TP



e The contracted coordinate functions £ € (Sym V/[2]) @ V are construced
using the basis in V, 7«, and the corresponding dual (via pairing) basis in

V[3], 7 and (7i,7) = &

§:ZTk®Tk.
k

e The braided BV action Sjy € Symy V[2] is defined as
Sty =316, L — 6. BEO - € EEEON + ...
=S + Sine-
Sy satisies the classical master equation
{SEv, SEv}x =0

with {¢1, P2}« = (@1, Pp2)« for ¢1,2 € V[2] and extended (braided,
gradied) to the full Symg V[2].

o The operator Q = ¢f + {55, }. satisfies Q> =0 and

Q{p1, d2}+ = {Q1, d2}x + (—1)121{¢1, Qo).

e The algebra of classical observables: (Symg V[2], Q,{, }+).



The (braided) algebra of quantum observables: (Symg V[2]), Qev,{, }«)
with

Qv = 0 + {Sh, }« + iRABy.
The braided BV Laplacian Agvy

Apv(1) =0, Apv(#1) =0, Apv(d1 Ox $2) = {01, 02}« ,

ABV(¢1 Ox -+ Ox ¢n) = Z == <¢av Rka+1 c Rkb_1(¢'b)>* P1 Ox -+ Ox Pa—1
a<b

Ox Rk‘”l (¢a+1) O * Ox Rkb71(¢b71) Ox ¢b+1 O Ox ¢n .
i Apy + Apyly =0, A%, =0, Apy(S%,)=0.
These properties enable Q]23v =0!

The braided BV laplacian Agy encodes the braided Wick theorem and the

interaction action S} . encodes interaction (vertices).



Braided homological perturbation theory
How do we calculate corelation functions? We use the (braided) homological
perturbation lemma.

e On V, algebra V[2]: propagators h define (braided) strong deformation
retracts:

b ) (i i) )
<

e This can be extended to the space of observables h — H:

H

I ERT LR 11 e Rl \
L2 ATSTN AR atif | UL s
N ,,,\/ ! L ) é’”j«“ ( ﬁdme /V 23 a/]/

e A preturbation ¢ defines a new (braided) strong deformation retract

b
(?j/ ?(,‘\.. ¢ L (ﬁ\ u‘ / TN\



Braided homological perturbation lema defines the perturbed projection map
P =P + Ps with .
Ps =P (idSymR vy — 6 H)7 oH

In the classical case (no NC deformation) gives the path integral [Doubek,
Juréo, Pulmann '17].

The new projection Ps gives correlation functions for the braided QFT:
Gr(x1y---yxn) = (O T[pp(x1) * - - - * p(xn)]|0)x := P (dx; O« -+ Ox Ix,)
oo
=Y P((BH)P(3g @x -+ Ox 0x,))
p=1

where d,,(x) := §(x — x,) are Dirac distributions supported at the insertion
points x, of the physical field ¢ € V.



Braided ¢? theory

For simplicity: 4D Minkowski space-time, Moyal-Weyl twist and a real massive
scalar field ¢ with ¢* interaction.

Classical theory is given by the graided vector space V = Vi @& V. with
Vi=W = QO(R1’3) and the brackets

4(¢) = —(O+mP)g, L3(¢1, 2, $3) = —Ap126s.
The cyclic pairing

(6.6" = [ dx o7,
for ¢ € V! and ¢t € V2 then defines the usual action

1 1 1 A
S(6) = 5(0.4(6).6) = 2 (6,0a(8,6,0)) = [ d'x (36(~D =) o— 26",

Braided NC scalar field theory: the same vector space V with

6G(¢) =— (O +m’)p, L35(b1,02,$3) = A1 * da * b3

S.(9) =5 (6, 4(6)s — 57 (6,5(8,6,8)) = So(6) + Sima(9)

_/ (14X<%¢(_D—m2)¢+%¢*¢*(f)*¢).

The same as the usual ¢} theory!



P and H maps:
P(1)=1 and P(p1 G- - Oxpn) =0, H(1)=0,

1
H(<P1 @*"'@*Son) :E Ziﬂol Ox " Ox Pa—1 Ox h(@a)@*@aJrl@*"'

a=1

for all p, = ¢, + ¢ € V[1] and h(¢1)(x) = _D+1m2 ¢t (x).

Quantization, free theory: perturbation d = i h Ay

Ox ©n ,

G (xt, -, xn) O = (OIT[(x1) - % $(xa)]|0) := P (Jx O -+~ Ox I,

(oo}
=Y P((ihApy H)P (55 Ox -+ Ox 0x,))
p=1

2-point function: free propagator

:¢&¢>24

4-point function: braided Wick theorem
Gf (x1, %2, %3, x8)Q) =(i B Apy H)? (6, O 8xy Ox x5 O Gy

1—x2)

—Ak (x
G (x1, %)@ =i h Apy H(6x, O 6x) = —iAG(x1 — x2) = _,n/ s

=¢1¢2¢3 ¢4 + ¢1 Ra§¢3) R(¢2) ¢4 + b1 a2 ¢3 -



Quantization, interacting theory: perturbation § = i h Ay + {Sin, — }+ with

Ste = —m (€, £5(&, € €

and
¢ :/ (ex ® e + ek @ex), o = e, ok = e
K

contracted coordinate functions £ € (Symg L[2]) ® L. The explicit form of Siy;
is

Sht Z/k . V(ki, ko, k3, ka) el O, &2 @, e} @, M
-

with

A BT kabky .
V(kl,kg,k3,k4) :E e a<b (27I') 5(k1+k2+k3+k4).

The interacting n-point function is defined as

Gy (xt, )™ = (O T[(x1) x - - % §(xn)]|0) ™
=

P((ihABy H+ {Sint, =}« H)P(6x; Ox -+ Ox Ox,)) -
1



2-point function at 1-loop:

G5 (x1,32) M) =(i i Ay H)? {Sing, H(dx; @ 6x,) 1

"2\ e—iki(x1—x)

2 Sk (K~ m2)? (- m2)

is the same as in the commutative case!

No nonplanar diagrams and no UV/IR mixing at 1-loop. Consistent with
[Oeckel ’00], discussed in [Balachandran et al. '06; Bu et al. '06; Fiore, Wess ’07].



Braided 4D electrodynamics

4D Minkowski space-time, Moyal-Weyl twist, massive spinor field ¥, U(1)
gauge field A,. An example of L., algebra with gauge and matter fields. More
examples discussed in [Gomes et al. '20].

The braided L. algebra of spinor electrodynamics:

(i) (&)
A= b » Fa= Fy >
Ap (Fa)p

. 0 . — iR (1) * R*(p)
0 (p) = 1{;1 » (e A) = [i/;]*w )
<Oup ilp, Alx =0

GFR) = 0u(FA)", (A, FR) = —ie(h x F — Ri(Fy) » RE()),

. i 0,0 R e [ AT x Y2+ Ry Ay RNy
0 (A) = 7,'1“0” B y (A Ap) = =35 s YH Az + Riapa x YER*AL |-
—0uduA” + 8,0% Ay P17k x by + RpgpayH « Ry

Braided action

1 - _ .
= / dtx { = F*xFiay + i 0utp + 2 (0 % Apy 51 + 0 % Ri(Au)r" « RA(0)) }.



Comments:
-braided NC electrodynamics remains abelian: no photon self-interactions.

-the photon-fermion verteks is different compared to the x-electrodynamics.

Quantization: homological perturbation theory. Preeliminary results: 1-loop
photon self energy

G, (x1,22)® = (O T[AL (x1) * Ay (2)]0)
= (ihApy H)? {Sine, H {Sine, H(82" @+ 60)},},
+ ik Ay H {Sint, H (i B Apy H){Sint, H( W O« 0} )

Q}W(XLXQ) + 9,2“,(X17 x2) .

O O O
/ d*k cos? (401 p k)
(

2m)* ((p— k)2 — m?) (k2 — m?)

Unlike in the x electrodynamics:

*

= HW(P) Tr((p—Kk—m) " (k+m)~") .

-fermion bubble gives a nontrivial NC contribution.
-no non-planar diagrams, but UV/IR mixing present.



Outlook

e We deformed the Loo-algebra to a braided L.o-algebra (mathematically
well defined in a proper category).

-well defined way to construct a braided L..-algebra starting from the
classical one.

-enables constructions of new NC field theories (unexpected deformations,
different from the "naive” expectations).

e Quantization
-no UV/IR mixing (no non-planar diagram) in ¢} braided QFT
-no non-planar diagrams in braided QED, but UV/IR mixing seems to be
present at 1-loop.

e Future work
-better understanding of braided symmetries and classical braided field
theories, new solutions of the classical equations (in gravity)
-better understanding of braided QFT: relations between non-planar
diagrams, UV/IR mixing, (braided) gauge symmetry
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