Corfu Summer Institute 2022: Workshop on Noncommutative and generalized geometry in string theory, gauge theory and related physical models, September 2022

Quantization of braided noncommutative field theories

Marija Dimitrijević Ćirić

University of Belgrade, Faculty of Physics, Belgrade, Serbia

based on:

MDC, G. Giotopoulos, V. Radovanović, R. J. Szabo, Braided L_{∞} -Algebras, Braided Field Theory and Noncommutative Gravity, arXiv:2103.08939.

MDC, N. Konjik, V. Radovanović, R. J. Szabo, M. Toman, L_{∞} -algebra of braided electrodynamics, arXiv: 2204.06448.

MDC, N. Koniik, V. Radovanović, R. J. Szabo, M. Toman, in preparation.

Motivation

Divergences in QFT, Early Universe, singularities of BHs \Rightarrow QG \Rightarrow Quantum space-time.

One possibility: Noncommutative (NC) and/or nonassociative (NA) space-time.

Original motivation: Heisenberg, regularization of divergent electron self-energy. Nowdays we now that quantization of NC field theories introduses new divergences: UV/IR mixing.

Scalar ϕ_{\star}^4 field theory and the Moyal-Weyl *-product (motivated by string theory...)

$$S_{\star}(\phi) = \int \,\mathrm{d}^4 x \Big(\frac{1}{2}\,\phi\,\big(-\Box - m^2\big)\,\phi + \frac{\lambda}{4!}\,\phi\star\phi\star\phi\star\phi\Big).$$

Planar diagrams: usual (quadratic divergent) UV behaviour, no improvement from NC deformation.

$$\Pi_1(p) \sim \int rac{\mathrm{d}^4 k}{(2\pi)^4} rac{1}{(p^2-m^2)^2(k^2-m^2)}.$$

Non-planar diagrams: (consequence of NC deformation) introduce ${\sf UV/IR}$ mixing.

$$\Pi_2(p) \sim \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \frac{\mathrm{e}^{(p \wedge k)}}{(p^2 - m^2)^2 (k^2 - m^2)},$$

with $p \wedge k = i\theta^{\mu\nu}p_{\mu}k_{\nu}$. UV convergent due to the oscilating factor $e^{(p\wedge k)}$. However, for $\theta \to 0$ or a very small external momentum $p \to 0$ the quadratic UV divergence appears again! Nonrenormalizable theory [(Minwalla, Van Raamsdonk, Seiberg '99)], see also [Bahns et al. '03].

Modification of the action by an oscilator term, renormalizable Grosse-Wulkenhaar model [Grosse, Wulkenhaar '04; Rivasseau et al. '05].

$$S_{\star}(\phi) = \int d^{4}x \left(\frac{1}{2}\phi\left(-\left(\Box + \frac{1}{2}\omega^{2}\tilde{x}^{2}\right) - m^{2}\right)\phi + \frac{\lambda}{4!}\phi \star \phi \star \phi \star \phi\right),$$

where $\tilde{x}^{\mu} = 2(\theta^{-1}x)^{\mu}$.

Gauge theories: no renormalizeble model has been constructed so far [Blaschke '16].

Our approach is based on:

Deformation

Drinfeld twist formalsim: a well defined way to deform a (Hopf) algebra of classical symmetries to a twisted (noncommutative, defomed) Hopf algebra. Module algebras (differential forms, tensors...) are consistently deformed into \star -module algebras: noncommutative differential geometry [Aschieri et al. '05...'18].

Construction of NC field theories

 L_{∞} algebra: Any classical (gauge) field theory described by the corresponding L_{∞} algebra [Hohm, Zwiebach '17; Jurco et. al '19]. NC field theories can be encoded in a braided L_{∞} algebra [MDC, Giotopoulos, Radovanovic, Szabo '21; Giotopoulos, Szabo '22].

Quantization

BV formalism, homological perturbation theory: algebraic techniques for quantization, can be generalized to NC (braided) field theories [Nguyen, Schenkel, Szabo '21].

Overview

Motivation

Tools

Deformation by a twist L_{∞} -algebra Braided BV and homological perturbation theory

Examples of braided QFT

Braided ϕ_{\star}^4 theory Braided electrodynamics

Outlook

NC geometry via the twist deformation

Start from a symmetry algebra g and its universal covering algebra Ug. Then define a twist operator $\mathcal F$ as:

- -an invertible element of $\textit{Ug} \otimes \textit{Ug}$
- -fulfills the 2-cocycle condition (ensures the associativity of the *-product).

$$\mathcal{F} \otimes 1(\Delta \otimes \mathrm{id})\mathcal{F} = 1 \otimes \mathcal{F}(\mathrm{id} \otimes \Delta)\mathcal{F}.$$

-additionaly: $\mathcal{F} = 1 \otimes 1 + \mathcal{O}(h)$; h-deformation parameter.

Braiding (noncommutativity): controlled by the *R*-matrix $\mathcal{R} = \mathcal{F}^{-2} = R^k \otimes R_k$; triangular $\mathcal{R}_{21} = \mathcal{R}^{-1} = R_k \otimes R^k$.

Symmetry Hopf algebra $Ug \xrightarrow{\mathcal{F}} \mathsf{Twisted}$ symmetry Hopf algebra $Ug^{\mathcal{F}}$ $\mathsf{Module} \ \mathsf{algebra} \ \mathcal{A} \xrightarrow{\mathcal{F}} \star \mathsf{module} \ \mathsf{algebra} \ \mathcal{A}_{\star}$ $\mathsf{a}, b \in \mathcal{A}, \ \mathsf{a} \cdot b \in \mathcal{A} \xrightarrow{\mathcal{F}} \mathsf{a} \star b = \cdot \circ \mathcal{F}^{-1}(\mathsf{a} \otimes b) = \mathsf{R}_k(b) \star \mathsf{R}^k(\mathsf{a}).$

Well known example: Moyal-Weyl twist $\mathcal{F}=e^{-\frac{i}{2} heta^{
ho\sigma}\partial_{
ho}\otimes\partial_{\sigma}}$

$$f \star g(x) = \cdot \circ \mathcal{F}^{-1}(f \otimes g)$$

$$= f \cdot g + \frac{i}{2} \theta^{\rho \sigma}(\partial_{\rho} f) \cdot (\partial_{\sigma} g) + \mathcal{O}(\theta^{2}) = \mathsf{R}_{k} g \star \mathsf{R}^{k} f \neq g \star f.$$

Associative, noncommutative: $\mathcal{R}^{-1} = R_k \otimes R^k$ encodes the noncommutativity.

L_{∞} algebra and gauge field theory

 L_{∞} -algebra (strong homotopy algebra): generalization of a Lie algebra with higher order brackets.

-Higher spin gauge theories with field-dependent gauge parameters [Berends, Burgers, van Dam '85]

$$(\delta_{\alpha}\delta_{\beta} - \delta_{\beta}\delta_{\alpha})\Phi = \delta_{C(\alpha,\beta,\Phi)}\Phi.$$

- -Generalized gauge symmetries of closed string field theory involve higher brackets [Zwiebach '15].
- -Any classical field theory with generalized gauge symmetries is determined by an L_{∞} -algebra, due to duality with BV-BRST [Hohm, Zwiebach 17; Jurčo, Raspollini, Sämann, Wolf 18].
- -NC gauge field theories in the L_{∞} setting discussed in [Blumenhagen et al.'18; Kupriyanov '19].
- $-L_{\infty}$ -algebras of ECP gravity, classical and noncommutative [MDC, Giotopoulos, Radovanović, Szabo '20, '21].

 L_{∞} -algebra: \mathbb{Z} -graded vector space $V=\bigoplus_{k\in\mathbb{Z}}V_k$ with graded antisymmetric multilinear maps, *n*-brackets

$$\ell_n: \bigotimes^n V \longrightarrow V , \quad v_1 \otimes \cdots \otimes v_n \longmapsto \ell_n(v_1, \ldots, v_n)$$

 $\ell_n(\ldots, v, v', \ldots) = -(-1)^{|v| |v'|} \ell_n(\ldots, v', v, \ldots) ,$

where |v| is a degree of $v \in V$.

n-brackets fulfil homotopy relations:

$$\begin{split} n = & 1: \quad \ell_1\big(\ell_1(v)\big) = 0, \quad (V, \ell_1) \text{ is a cochain complex }, \\ n = & 2: \quad \ell_1\big(\ell_2(v_1, v_2)\big) = \ell_2\big(\ell_1(v_1), v_2\big) + (-1)^{|v_1|} \, \ell_2\big(v_1, \ell_1(v_2)\big) \, \ell_1 \text{ is a derivation of } \ell_2 \;, \\ n = & 3: \quad \ell_1\big(\ell_3(v_1, v_2, v_3)\big) = -\ell_3\big(\ell_1(v_1), v_2, v_3\big) - (-1)^{|v_1|} \, \ell_3\big(v_1, \ell_1(v_2), v_3\big), \quad \text{Jacobi up to homotopy} \\ & \qquad - (-1)^{|v_1| + |v_2|} \, \ell_3\big(v_1, v_2, \ell_1(v_3)\big) \\ & \qquad - \ell_2\big(\ell_2(v_1, v_2), v_3\big) - (-1)^{(|v_1| + |v_2|)} \, |v_3| \, \ell_2\big(\ell_2(v_3, v_1), v_2\big) \\ & \qquad - (-1)^{(|v_2| + |v_3|)} \, |v_1| \, \ell_2\big(\ell_2(v_2, v_3), v_1\big) \end{split}$$

Cyclic L_{∞} -algebra: graded symmetric non-degenerated bilinear pairing $\langle -, - \rangle: V \otimes V \to \mathbb{R}$

$$\langle v_0, \ell_n(v_1, v_2, \dots, v_n) \rangle = (-1)^{n + (|v_0| + |v_n|)} \frac{1}{n + |v_n|} \sum_{i=0}^{n-1} \frac{|v_i|}{|v_n|} \langle v_n, \ell_n(v_0, v_1, \dots, v_{n-1}) \rangle, \quad n \ge 1.$$

How do we use this in (gauge) field theories?

Start with $V = V_0 \oplus V_1 \oplus V_2 \oplus V_3$. Then

- -gauge parameters $\rho \in V_0$,
- -(gauge) fields $A \in V_1$,
- -equations of motion $F_A \in V_2$,
- -II Noether identites (Bianchi identites) $d_A F_A \in V_3$.

Gauge transformations:
$$\delta_{\rho}A = \ell_1(\rho) + \ell_2(\rho, A) - \frac{1}{2}\ell_3(\rho, A, A) + \dots$$

EoM:
$$F_A = \ell_1(A) - \frac{1}{2}\ell_2(A, A) - \frac{1}{3!}\ell_3(A, A, A) + \dots$$

Action:
$$S(A) = \frac{1}{2} \langle A, \ell_1(A) \rangle - \frac{1}{3!} \langle A, \ell_2(A, A) \rangle + \dots$$

Noether identities:
$$d_A F_A = \ell_1(F_A) + \ell_2(F_A, A) + \dots$$

Using the cyclicity of the pairing $\langle \, , \, \rangle,$ the variational principle is easily implemented

$$\delta S(A) = \langle \delta A, F_A \rangle$$
.

Example: 3D non-Abelian Chern-Simons theory

We define: $\rho=\rho^aT^a\in V_0$, $A=A^aT^a\in V_1$, $F_A\in V_2$ and $\mathrm{d}_AF_A\in V_3$

The non-vanishing ℓ_n brackets are given by:

1-bracket ℓ_1

$$\ell_1(\rho) = d\rho \in V_1, \ \ell_1(A) = dA \in V_2, \ \ell_1(F_A) = dF_A \in V_3.$$

2-bracket ℓ₂

$$\ell_2(\rho_1, \rho_2) = i[\rho_1, \rho_2], \quad \ell_2(\rho, A) = i[\rho, A], \quad \ell_2(\rho, F_A) = i[\rho, F_A]$$

 $\ell_2(A_1, A_2) = i[A_1, A_2], \quad \ell_2(A, F_A) = i[A, F_A].$

These reproduce:

$$\begin{array}{rcl} \delta_{\rho}A & = & \ell_{1}(\rho) + \ell_{2}(\rho,A) = \mathrm{d}\rho + i[\rho,A], \\ \left[\delta_{\rho_{1}},\delta_{\rho_{2}}\right] & = & \delta_{-\ell_{2}(\rho_{1},\rho_{2})} = \delta_{-i[\rho_{1},\rho_{2}]} \;, \\ F_{A} & = & \ell_{1}(A) - \frac{1}{2}\,\ell_{2}(A,A) = \mathrm{d}A - \frac{i}{2}\,[A,A], \\ \delta_{\rho}F_{A} & = & \ell_{2}(\rho,F_{A}) = i[\rho,F_{A}], \\ \mathrm{d}_{A}F_{A} & = & \ell_{1}(F_{A}) - \ell_{2}(A,F_{A}) = \mathrm{d}F_{A} - \frac{i}{2}\,[A,F_{A}], \\ S & = & \frac{1}{2}\langle A,\ell_{1}(A)\rangle - \frac{1}{3!}\langle A,\ell_{2}(A,A)\rangle = \frac{1}{2}\int_{\mathcal{M}} \mathrm{Tr}\Big(A\wedge\mathrm{d}A - \frac{i}{3}\,A\wedge[A,A]\Big). \end{array}$$

Braided L_{∞} -algebra

Generalization of a quantum Lie algebra [Woronowicz '89; Majid '94].

Rigorously: A braided L_{∞} -algebra is an L_{∞} -algebra $(V, \{\ell_n\})$ in the symmetric monoidal category $_{\mathcal{F}}\mathcal{M}^{\sharp}$. What does it means, how does it work?

• \mathbb{Z} -graded real vector space $V = \bigoplus_{k \in \mathbb{Z}} V_k$. Usually we work with

$$V = V_0 \oplus V_1 \oplus V_2 \oplus V_3$$
.

• maps/brackets: $\ell_n^{\star} : \bigotimes^n V \to V$

$$\ell_n^{\star}(v_1 \otimes \cdots \otimes v_n) = \ell_n(v_1 \otimes_{\star} \cdots \otimes_{\star} v_n),$$

with $v \otimes_{\star} v' := \mathcal{F}^{-1}(v \otimes v') = \overline{f}^{\alpha}(v) \otimes \overline{f}_{\alpha}(v')$ for $v, v' \in V$. The brackets are graided and braied symmetric!

$$\ell_n^{\star}(\ldots, v, v', \ldots) = -(-1)^{|v| |v'|} \ell_n^{\star}(\ldots, \mathsf{R}_k(v'), \mathsf{R}^k(v), \ldots) .$$

For example: 3D CS gauge theory $\ell_2(\rho, A) = i[\rho, A]$ is deformed to

$$\ell_2^{\star}(\rho, A) = i[\overline{\mathbf{f}}^k(\rho), \overline{\mathbf{f}}_k(A)] = i[\rho, A]_{\star} = -i[\mathbf{R}_k(A), \mathbf{R}^k(\rho)]_{\star}$$
$$= i\rho^a \star A^b[T^a, T^b].$$

The braided commutator closes in the corresponding Lie algebra!

braided homotopy relations:

$$\begin{split} &\ell_1^{\star}\big(\ell_1^{\star}(v_1)\big) = 0 \ , \\ &\ell_1^{\star}\big(\ell_2^{\star}(v_1,v_2)\big) = \ell_2^{\star}\big(\ell_1^{\star}(v_1),v_2\big) + (-1)^{|v_1|}\,\ell_2^{\star}\big(v_1,\ell_1^{\star}(v_2)\big) \ , \\ &\ell_2^{\star}\big(\ell_2^{\star}(v_1,v_2),v_3\big) - (-1)^{|v_2|\,|v_3|}\,\ell_2^{\star}\big(\ell_2^{\star}(v_1,\mathsf{R}_k(v_3)),\mathsf{R}^k(v_2)\big) \\ &+ (-1)^{(|v_2|+|v_3|)\,|v_1|}\,\ell_2^{\star}\big(\ell_2^{\star}(\mathsf{R}_k(v_2),\mathsf{R}_j(v_3)),\mathsf{R}^j\mathsf{R}^k(v_1)\big) \\ &= -\ell_3^{\star}\,(\ell_1^{\star}(v_1),v_2,v_3) - (-1)^{|v_1|}\,\ell_3^{\star}\big(v_1,\ell_1^{\star}(v_2),v_3\big) \\ &- (-1)^{|v_1|+|v_2|}\,\ell_3^{\star}\big(v_1,v_2,\ell_1^{\star}(v_3)\big) - \ell_1^{\star}\big(\ell_3^{\star}(v_1,v_2,v_3)\big) \ , \end{split}$$

• To have a well defined variational principle, we demand strict cyclicity:

$$\begin{split} \langle v_2, v_1 \rangle_{\star} &= \langle \;,\; \rangle \circ \mathcal{F}^{-1}(v_2 \otimes v_1) = \langle \mathsf{R}_k(v_1), \mathsf{R}^k(v_2) \rangle_{\star} = \langle v_1, v_2 \rangle_{\star}, \\ \langle v_0, \ell_n^{\star}(v_1, v_2, \dots, v_n) \rangle_{\star} &= \langle v_n, \ell_n^{\star}(v_0, v_1, \dots, v_{n-1}) \rangle_{\star}. \end{split}$$

Twist operator fulfilling this is a compatible Drinfel'd twists. It define a strictly cyclic braided L_{∞} -algebra.

Braided gauge theory via braided L_{∞} -algebra

Just like in the classical (commutative) case, a braided L_{∞} -algebra defines a braided field theory.

Braided gauge transformations

$$\delta_{
ho}^{\star} A = \ell_{1}^{\star}(
ho) + + \ell_{2}^{\star}(
ho,A) - \frac{1}{2} \ell_{3}^{\star}(
ho,A,A) + \dots$$

Braided equations of motion

$$\begin{array}{rcl} F_A^\star & = & \ell_1^\star(A) - \frac{1}{2}\ell_2^\star(A,A) - \frac{1}{6}\ell_3^\star(A,A,A) + \ldots \, = 0, \\ \\ \text{Braided 3D CS:} & F_A^\star & = & \ell_1^\star(A) - \frac{1}{2}\,\ell_2^\star(A,A) = \mathrm{d}A - \frac{i}{2}\,[A,A]_\star = 0 \ . \end{array}$$

Braided Noether identity does not follow from the variation of an action. Instead it is obtained as a combination of homotopy relations

$$d_A^{\star} F_A^{\star} = \ell_1^{\star}(F_A^{\star}) - \frac{1}{2} \left(\ell_2^{\star}(A, F_A^{\star}) - \ell_2^{\star}(F_A^{\star}, A) \right) + \frac{1}{4} \ell_2^{\star} \big(R_k(A), \ell_2^{\star}(R^k(A), A) \big) + \dots = 0$$

Braided 3D CS:

$$d_A^{\star} F_A^{\star} = dF_A^{\star} - \frac{i}{2} [A, F_A^{\star}]_{\star} + \frac{i}{2} [F_A^{\star}, A]_{\star} + \frac{1}{4} [R_k(A), [R^k(A), A]_{\star}]_{\star} = 0.$$

Braided gauge invariant action

$$\begin{split} \mathcal{S}(A) &= \sum_{n=1}^{\infty} \frac{1}{(n+1)!} \left(-1\right)^{\frac{1}{2} \, n \, (n-1)} \left\langle A, \ell_n^{\star}(A, \dots, A) \right\rangle \,, \\ \text{Braided 3D CS:} & S_{\star}(A) &= \left. \frac{1}{2} \left\langle A, \ell_1^{\star}(A) \right\rangle_{\star} - \frac{1}{6} \left\langle A, \ell_2^{\star}(A, A) \right\rangle_{\star} \\ &= \left. \frac{1}{2} \int_{M} \text{Tr} \Big(A \wedge_{\star} \, \mathrm{d}A - \frac{i}{3} \, A \wedge_{\star} \, [A, A]_{\star} \Big) \,. \end{split}$$

It is braided gauge invariant $\delta_{\rho}^{\star} S_{\star}(A) = 0$.

Comments on the braided 3D CD theory

- -"naive" deformation of the classical theory
- -braided II Noether identity: new term (inhomogeneous in EoM), vanishes in the commutative limit. Important, introduce interdependence of EoM, consequence of braided gauge symmetry.
- -braided gauge transformations have braided Leibniz rule:

$$\delta_{\rho}^{\star}(\phi_1 \star \phi_2) = \delta_{\rho}^{\star}\phi_1 \star \phi_2 + \mathsf{R}_k\phi_1 \star \delta_{\mathsf{R}^k(\rho)}^{\star}\phi_2.$$

Braided BV formalism

Developed in [Nguyen, Schenkel, Szabo '21], following [Costello, Gwilliam '16)] and [Jurco et al. '19].

- Start from the (braided, cyclic) L_{∞} algebra that defines the theory $(V, \ell_n^*, \langle , \rangle_{\star})$.
- Introduce the braided symmetric algebra $\operatorname{Sym}_{\mathcal{R}} V$ and extend the L_{∞} structure to it:

$$v_1 \odot_{\star} (v_2) = (-1)^{|v_1||v_2|} \mathsf{R}_k(v_2) \odot_{\star} \mathsf{R}^k(v_1)$$

and

$$\begin{aligned} \boldsymbol{\ell}_{1}^{\star}(\boldsymbol{a}_{1} \otimes \boldsymbol{v}_{1}) &= \boldsymbol{a}_{1} \otimes \boldsymbol{\ell}_{1}^{\star}(\boldsymbol{v}_{1}) \;, \\ \boldsymbol{\ell}_{2}^{\star}(\boldsymbol{a}_{1} \otimes \boldsymbol{v}_{1}, \boldsymbol{a}_{2} \otimes \boldsymbol{v}_{2}) &= \left(\boldsymbol{a}_{1} \odot_{\star} \mathsf{R}_{k}(\boldsymbol{a}_{2})\right) \otimes \boldsymbol{\ell}_{2}^{\star}\left(\mathsf{R}^{k}(\boldsymbol{v}_{1}), \boldsymbol{v}_{2}\right) \;, \\ & \cdots \\ \left\langle\!\left(\boldsymbol{a}_{1} \otimes \boldsymbol{v}_{1}, \boldsymbol{a}_{2} \otimes \boldsymbol{v}_{2}\right)\!\right\rangle_{\star} &= \left(\boldsymbol{a}_{1} \odot_{\star} \mathsf{R}_{k}(\boldsymbol{a}_{2})\right) \left\langle\mathsf{R}^{k}(\boldsymbol{v}_{1}), \boldsymbol{v}_{2}\right\rangle_{\star} \;, \end{aligned}$$

for $a_1, a_2 \in \operatorname{Sym}_{\mathcal{R}} V[2]$, $v_1, v_2 \in V$.

Compare with extending the Lie algebra $[T^a, T^b] = i f^{abc} T^c$ to the algebra of differential forms with \land product

$$[A_1, A_2] = [A_1^a T^a, A_2^b T^b] = A_1^a \wedge A_2^b [T^a, T^b].$$

• The contracted coordinate functions $\xi \in (\operatorname{Sym}_{\mathcal{R}} V[2]) \otimes V$ are construced using the basis in V, τ_k , and the corresponding dual (via pairing) basis in V[3], τ^k and $\langle \tau_k, \tau^j \rangle = \delta^j_k$

$$\boldsymbol{\xi} = \sum_{k} \tau_{k} \otimes \tau^{k}.$$

• The braided BV action $\mathcal{S}_{\mathrm{BV}}^{\star} \in \mathrm{Sym}_{\mathcal{R}} V[2]$ is defined as

$$\begin{split} \mathcal{S}_{\mathrm{BV}}^{\star} &= \frac{1}{2} \langle\!\langle \xi \,, \, \ell_{1}^{\star}(\xi) \rangle\!\rangle_{\star} - \frac{1}{3!} \langle\!\langle \xi \,, \, \ell_{2}^{\star}(\xi, \xi) \rangle\!\rangle_{\star} - \frac{1}{4!} \langle\!\langle \xi \,, \, \ell_{3}^{\star}(\xi, \xi, \xi) \rangle\!\rangle_{\star} + \dots \\ &= \mathcal{S}_{(0)}^{\star} + \mathcal{S}_{\mathrm{int}}^{\star}. \end{split}$$

 $S_{
m BV}^{\star}$ satisfes the classical master equation

$$\{S_{\mathrm{BV}}^{\star}, S_{\mathrm{BV}}^{\star}\}_{\star} = 0$$

with $\{\phi_1, \phi_2\}_{\star} = \langle \phi_1, \phi_2 \rangle_{\star}$ for $\phi_{1,2} \in V[2]$ and extended (braided, gradied) to the full $\operatorname{Sym}_{\mathcal{R}} V[2]$.

• The operator $Q = \ell_1^{\star} + \{S_{\rm int}^{\star}, \}_{\star}$ satisfies $Q^2 = 0$ and

$$Q\{\phi_1, \phi_2\}_{\star} = \{Q\phi_1, \phi_2\}_{\star} + (-1)^{|a_1|} \{\phi_1, Q\phi_2\}_{\star}.$$

• The algebra of classical observables: $(\operatorname{Sym}_{\mathcal{R}} V[2], Q, \{,\}_{\star})$.

• The (braided) algebra of quantum observables: $(\mathrm{Sym}_{\mathcal{R}} V[2]), Q_{\mathrm{BV}}, \{\,,\,\}_{\star})$ with

$$Q_{\rm BV} = \ell_1^\star + \{S_{\rm int}^\star,\ \}_\star + i\hbar \Delta_{\rm BV}. \label{eq:QBV}$$

The braided BV Laplacian Δ_{BV}

$$\begin{split} \Delta_{\mathrm{BV}}(1) = & 0, \quad \Delta_{\mathrm{BV}}(\phi_1) = 0, \quad \Delta_{\mathrm{BV}}(\phi_1 \odot_{\star} \phi_2) = \{\phi_1, \phi_2\}_{\star} \ , \\ \Delta_{\mathrm{BV}}(\phi_1 \odot_{\star} \cdots \odot_{\star} \phi_n) = & \sum_{a < b} \pm \langle \phi_a, \mathsf{R}_{k_{a+1}} \cdots \mathsf{R}_{k_{b-1}}(\phi_b) \rangle_{\star} \ \phi_1 \odot_{\star} \cdots \odot_{\star} \phi_{a-1} \\ & \odot_{\star} \ \mathsf{R}^{k_{a+1}}(\phi_{a+1}) \odot_{\star} \cdots \odot_{\star} \ \mathsf{R}^{k_{b-1}}(\phi_{b-1}) \odot_{\star} \phi_{b+1} \odot_{\star} \cdots \odot_{\star} \phi_n \ . \\ \ell_1^{\star} \Delta_{\mathrm{BV}} + \Delta_{\mathrm{BV}} \ell_1^{\star} = & 0, \quad \Delta_{\mathrm{BV}}(\mathcal{S}_{\mathrm{int}}^{\star}) = & 0. \end{split}$$

These properties enable $Q_{\rm BV}^2=0!$

• The braided BV laplacian Δ_{BV} encodes the braided Wick theorem and the interaction action $\mathcal{S}_{\mathrm{int}}^{\star}$ encodes interaction (vertices).

Braided homological perturbation theory

How do we calculate corelation functions? We use the (braided) homological perturbation lemma.

• On V_{∞} algebra V[2]: propagators h define (braided) strong deformation retracts:

$$(V. \mathbb{N}, \ell_i^k)$$
 $(H^*(V. \mathbb{N}), 0)$

• This can be extended to the space of observables $h \rightarrow H$:

• A preturbation δ defines a new (braided) strong deformation retract

Braided homological perturbation lema defines the perturbed projection map $\tilde{P}=P+P_{\delta}$ with

$$\mathsf{P}_{oldsymbol{\delta}} = \mathsf{P} \left(\mathrm{id}_{\mathrm{Sym}_{\mathcal{R}} \, V[1]} - oldsymbol{\delta} \, \mathsf{H} \right)^{-1} oldsymbol{\delta} \, \mathsf{H} \; .$$

In the classical case (no NC deformation) gives the path integral [Doubek, Jurčo, Pulmann '17].

The new projection P_{δ} gives correlation functions for the braided QFT:

$$\begin{split} G_n^{\star}(x_1,\ldots,x_n) &= \langle 0|\mathrm{T}[\phi(x_1)\star\cdots\star\phi(x_n)]|0\rangle_{\star} := \mathsf{P}_{\delta}(\delta_{x_1}\odot_{\star}\cdots\odot_{\star}\delta_{x_n}) \\ &= \sum_{p=1}^{\infty} \mathsf{P}\big((\delta\,\mathsf{H})^p(\delta_{x_1}\odot_{\star}\cdots\odot_{\star}\delta_{x_n})\big) \;, \end{split}$$

where $\delta_{x_a}(x) := \delta(x - x_a)$ are Dirac distributions supported at the insertion points x_a of the physical field $\phi \in V^1$.

Braided ϕ_{\star}^{4} theory

For simplicity: 4D Minkowski space-time, Moyal-Weyl twist and a real massive scalar field ϕ with ϕ^4 interaction.

Classical theory is given by the graided vector space $V=V_1\oplus V_2$ with $V_1=V_2=\Omega^0(\mathbb{R}^{1,3})$ and the brackets

$$\ell_1(\phi) = -(\Box + m^2)\phi, \quad \ell_3(\phi_1, \phi_2, \phi_3) = -\lambda \phi_1 \phi_2 \phi_3.$$

The cyclic pairing

$$\langle \phi, \phi^+ \rangle = \int d^4 x \ \phi \ \phi^+ \ ,$$

for $\phi \in V^1$ and $\phi^+ \in V^2$ then defines the usual action

$$S(\phi) = \frac{1}{2} \langle \phi, \ell_1(\phi), \phi \rangle - \frac{1}{24} \langle \phi, \ell_3(\phi, \phi, \phi) \rangle = \int \, \mathrm{d}^4 x \, \left(\frac{1}{2} \, \phi \left(- \Box - \textit{m}^2 \right) \phi - \frac{\lambda}{24} \phi^4 \right) .$$

Braided NC scalar field theory: the same vector space V with

$$\ell_1^{\star}(\phi) = -(\Box + m^2)\phi, \quad \ell_3^{\star}(\phi_1, \phi_2, \phi_3) = \lambda \phi_1 \star \phi_2 \star \phi_3$$

$$\begin{split} S_{\star}(\phi) &= \frac{1}{2} \left\langle \phi, \ell_1(\phi) \right\rangle_{\star} - \frac{1}{24} \left\langle \phi, \ell_3^{\star}(\phi, \phi, \phi) \right\rangle_{\star} =: S_0(\phi) + S_{\mathrm{int}}(\phi) \\ &= \int \, \mathrm{d}^4 x \Big(\frac{1}{2} \, \phi \, \big(- \Box - m^2 \big) \, \phi + \frac{\lambda}{4!} \, \phi \star \phi \star \phi \star \phi \Big). \end{split}$$

The same as the usual ϕ_{\star}^{4} theory!

P and H maps:

$$P(1) = 1$$
 and $P(\varphi_1 \odot_{\star} \cdots \odot_{\star} \varphi_n) = 0$, $H(1) = 0$,

$$\mathsf{H}(\varphi_1\odot_\star\cdots\odot_\star\varphi_n) = \frac{1}{n}\,\sum_{\mathsf{a}=1}^n\,\pm\,\varphi_1\odot_\star\cdots\odot_\star\,\varphi_{\mathsf{a}-1}\odot_\star\,\mathsf{h}(\varphi_\mathsf{a})\odot_\star\,\varphi_{\mathsf{a}+1}\odot_\star\cdots\odot_\star\,\varphi_n\;,$$

for all $\varphi_{\mathsf{a}} = \phi_{\mathsf{a}} + \phi_{\mathsf{a}}^+ \in V[1]$ and $\mathsf{h}(\phi^+)(x) = -\frac{1}{\Box + m^2} \phi^+(x)$.

Quantization, free theory: perturbation $\delta = i \, \hbar \, \Delta_{\rm BV}$

$$G_n^{\star}(x_1,\ldots,x_n)^{(0)} = \langle 0|\mathrm{T}[\phi(x_1)\star\cdots\star\phi(x_n)]|0\rangle_{\star} := \mathsf{P}_{\delta}(\delta_{x_1}\odot_{\star}\cdots\odot_{\star}\delta_{x_n})$$

$$= \sum_{p=1}^{\infty} \mathsf{P}\big((i\hbar\Delta_{\mathrm{BV}}\,\mathsf{H})^p(\delta_{x_1}\odot_{\star}\cdots\odot_{\star}\delta_{x_n})\big)\;,$$

2-point function: free propagator

$$G_2^{\star}(x_1, x_2)^{(0)} = i \, \hbar \, \Delta_{\text{BV}} \, \mathsf{H}(\delta_{x_1} \odot_{\star} \delta_{x_2}) = -i \hbar \, \mathsf{G}(x_1 - x_2) = -i \, \hbar \, \int_k \frac{e^{-i \, k \cdot (x_1 - x_2)}}{k^2 - m^2}$$
$$= \phi_1 \, \phi_2.$$

4-point function: braided Wick theorem

$$\begin{split} G_4^{\star}(x_1, x_2, x_3, x_4)^{(0)} = & (i \, \hbar \, \Delta_{\mathrm{BV}} \, \mathsf{H})^2 \, (\delta_{x_1} \, \odot_{\star} \, \delta_{x_2} \, \odot_{\star} \, \delta_{x_3} \, \odot_{\star} \, \delta_{x_4}) \\ = & \phi_1 \, \phi_2 \, \phi_3 \, \phi_4 + \phi_1 \, \mathsf{R}_{\alpha}(\phi_3) \, \mathsf{R}^{\alpha}(\phi_2) \, \phi_4 + \phi_1 \, \phi_4 \, \phi_2 \, \phi_3 \; . \end{split}$$

Quantization, interacting theory: perturbation $\delta = i \, \hbar \, \Delta_{\rm BV} + \{\mathcal{S}_{\rm int}^{\star}, -\}_{\star}$ with

$$\mathcal{S}_{\mathrm{int}}^{\star} = -\frac{1}{24} \, \langle\!\!\langle \boldsymbol{\xi} \,,\, \boldsymbol{\ell}_{3}^{\star}(\boldsymbol{\xi},\boldsymbol{\xi},\boldsymbol{\xi}) \rangle\!\!\rangle_{\!\!\! \star}$$

and

$$\boldsymbol{\xi} = \int_{k} (\mathbf{e}_{k} \otimes \mathbf{e}^{k} + \mathbf{e}^{k} \otimes \mathbf{e}_{k}), \quad \mathbf{e}_{k} = \mathbf{e}^{-ikx}, \ \mathbf{e}^{k} = \mathbf{e}^{ikx}$$

contracted coordinate functions $\boldsymbol{\xi} \in (\operatorname{Sym}_{\mathcal{R}} L[2]) \otimes L$. The explicit form of $\mathcal{S}_{\operatorname{int}}^{\star}$ is

$$\mathcal{S}_{\mathrm{int}}^{\star} = \int_{k_1, \dots, k_4} V(k_1, k_2, k_3, k_4) e^{k_1} \odot_{\star} e^{k_2} \odot_{\star} e^{k_3} \odot_{\star} e^{k_4}$$
 with

$$V(k_1, k_2, k_3, k_4) = \frac{\lambda}{41} e^{\frac{j}{2} \sum_{a < b} k_a \cdot \theta k_b} (2\pi)^4 \delta(k_1 + k_2 + k_3 + k_4).$$

The interacting *n*-point function is defined as

$$\begin{split} G_n^{\star}(x_1,\ldots,x_n)^{\mathrm{int}} &= \langle 0 | \mathrm{T}[\phi(x_1) \star \cdots \star \phi(x_n)] | 0 \rangle^{\mathrm{int}} \\ &= \sum_{n=1}^{\infty} \mathsf{P}\big((i \, \hbar \, \Delta_{\mathrm{BV}} \, \mathsf{H} + \{\mathcal{S}_{\mathrm{int}}, -\}_{\star} \, \mathsf{H})^p \big(\delta_{x_1} \odot_{\star} \cdots \odot_{\star} \delta_{x_n}) \big) \; . \end{split}$$

2-point function at 1-loop:

$$\begin{split} G_2^{\star}(x_1,x_2)^{(1)} &= (i\,\hbar\,\Delta_{\rm BV}\,\mathsf{H})^2\,\{\mathcal{S}_{\rm int},\mathsf{H}(\delta_{x_1}\odot_{\star}\delta_{x_2})\}_{\star} \\ &= \dots \\ &= \frac{\hbar^2\,\lambda}{2}\,\int_{k_1,k_2} \frac{e^{-i\,k_1\cdot(x_1-x_2)}}{\left(k_1^2-m^2\right)^2\left(k_2^2-m^2\right)}\;. \end{split}$$

is the same as in the commutative case!

No nonplanar diagrams and no UV/IR mixing at 1-loop. Consistent with [Oeckel '00], discussed in [Balachandran et al. '06; Bu et al. '06; Fiore, Wess '07].

Braided 4D electrodynamics

4D Minkowski space-time, Moyal-Weyl twist, massive spinor field ψ , U(1) gauge field A_{μ} . An example of L_{∞} algebra with gauge and matter fields. More examples discussed in [Gomes et al. '20].

The braided L_{∞} algebra of spinor electrodynamics:

$$\begin{split} \mathcal{A} &= \left(\begin{array}{c} \bar{\psi} \\ \psi \\ A_{\mu} \end{array} \right), \quad F_{\mathcal{A}} &= \left(\begin{array}{c} F_{\bar{\psi}} \\ F_{\psi} \\ (F_{A})_{\mu} \end{array} \right), \\ \ell_{1}^{\star}(\rho) &= \left(\begin{array}{c} 0 \\ 0 \\ \frac{1}{e} \partial_{\mu} \rho \end{array} \right), \quad \ell_{2}^{\star}(\rho, \mathcal{A}) &= \left(\begin{array}{c} -i R_{k}(\bar{\psi}) \star R^{k}(\rho) \\ i \rho \star \psi \\ i [\rho, \mathcal{A}]_{\star} &= 0 \end{array} \right), \\ \ell_{1}^{\star}(F_{\mathcal{A}}^{\star}) &= \partial_{\mu}(F_{\mathcal{A}}^{\star})^{\mu}, \quad \ell_{2}^{\star}(\mathcal{A}, F_{\mathcal{A}}^{\star}) &= -i e (\bar{\psi} \star F_{\bar{\psi}} - R_{k}(F_{\psi}) \star R^{k}(\psi)), \end{split}$$

$$\ell_1^{\star}(\mathcal{A}) = \left(\begin{array}{c} i \gamma^{\mu} \partial_{\mu} \psi \\ -i \gamma^{\mu} \partial_{\mu} \bar{\psi} \\ -\partial_{\mu} \partial_{\nu} A^{\nu} + \partial_{\nu} \partial^{\nu} A_{\mu} \end{array} \right), \quad \ell_2^{\star}(\mathcal{A}_1, \mathcal{A}_2) = -\frac{e}{2} \left(\begin{array}{c} \gamma^{\mu} A_1_{\mu} \star \psi_2 + \mathsf{R}_k \gamma^{\mu} A_2_{\mu} \star \mathsf{R}^k \psi_1 \\ \bar{\psi}_1 \star \gamma^{\mu} A_2_{\mu} + \mathsf{R}_k \bar{\psi}_2 \star \gamma^{\mu} \mathsf{R}^k A_1_{\mu} \\ \bar{\psi}_1 \gamma^{\mu} \star \psi_2 + \mathsf{R}_j \bar{\psi}_2 \gamma^{\mu} \star \mathsf{R}^j \psi_1 \end{array} \right).$$

Braided action

$$S = \int \mathrm{d}^4 x \, \Big\{ -\frac{1}{4} F^{\mu\nu} \star F_{\mu\nu} + \bar{\psi} \star i \gamma^\mu \partial_\mu \psi + \frac{e}{2} \Big(\bar{\psi} \star A_\mu \gamma^\mu \star \psi + \bar{\psi} \star \mathsf{R}_k (A_\mu) \gamma^\mu \star \mathsf{R}^k (\psi) \Big) \Big\}.$$

Comments:

- -braided NC electrodynamics remains abelian: no photon self-interactions.
- -the photon-fermion verteks is different compared to the ⋆-electrodynamics.

 $\label{eq:Quantization: homological perturbation theory. Preeliminary results: 1-loop photon self energy$

$$\begin{split} G_{A\mu,A\nu}^{\star}(x_1,x_2)^{(1)} &= \langle 0|\mathrm{T}[A_{\mu}(x_1)\star A_{\nu}(x_2)]|0\rangle_{\star}^{(1)} \\ &= (i\,\hbar\,\Delta_{\mathrm{BV}}\,\mathsf{H})^2\,\big\{\mathcal{S}_{\mathrm{int}},\mathsf{H}\,\big\{\mathcal{S}_{\mathrm{int}},\mathsf{H}\,\big(\delta_{x_1}^{A_{\mu}}\odot_{\star}\delta_{x_2}^{A_{\nu}}\big)\big\}_{\star}\big\}_{\star} \\ &+ i\,\hbar\,\Delta_{\mathrm{BV}}\,\mathsf{H}\,\big\{\mathcal{S}_{\mathrm{int}},\mathsf{H}\,(i\,\hbar\,\Delta_{\mathrm{BV}}\,\mathsf{H})\big\{\mathcal{S}_{\mathrm{int}},\mathsf{H}\big(\delta_{x_1}^{A_{\mu}}\odot_{\star}\delta_{x_2}^{A_{\nu}}\big)\big\}_{\star}\big\}_{\star} \\ &=: \mathcal{G}_{\mu\nu}^{1}(x_1,x_2) + \mathcal{G}_{\mu\nu}^{2}(x_1,x_2)\;. \end{split}$$

$$\frac{i}{\hbar} \, \Pi^{\mu\nu}_{\star 2}(p) = -q^2 \, \int \, \frac{\mathrm{d}^4 k}{(2\pi)^4} \quad \frac{\cos^2\left(\frac{i}{2} \theta^{\mu\nu} p_\mu k_\nu\right)}{\left((p-k)^2 - m^2\right) \left(k^2 - m^2\right)} \, \mathrm{Tr}\!\left(\left(\not p - \not k - m\right) \gamma^\mu \left(\not k + m\right) \gamma^\nu\right) \, .$$

Unlike in the ★ electrodynamics:

- -fermion bubble gives a nontrivial NC contribution.
- -no non-planar diagrams, but UV/IR mixing present.

Outlook

- We deformed the L_{∞} -algebra to a braided L_{∞} -algebra (mathematically well defined in a proper category).
 - -well defined way to construct a braided L_{∞} -algebra starting from the classical one.
 - -enables constructions of new NC field theories (unexpected deformations, different from the "naive" expectations).

Quantization

- -no UV/IR mixing (no non-planar diagram) in ϕ_{\star}^4 braided QFT
- -no non-planar diagrams in braided QED, but UV/IR mixing seems to be present at 1-loop.

Future work

- -better understanding of braided symmetries and classical braided field theories, new solutions of the classical equations (in gravity)
- -better understanding of braided QFT: relations between non-planar diagrams, UV/IR mixing, (braided) gauge symmetry