Université catholique de Louvain

Corfu Summer Institute 2022 A reduced basis for CP violation in SMEFT at colliders and its application to diboson production based on JHEP 04 (2021) 032

Céline Degrande

Julien Touchèque

August 30th 2022

Quick Motivation

$$\mathcal{L}_{SM} \longrightarrow rac{\eta_{exp}}{\eta_{SM}(J_4)} \sim 10^{10}$$

Solution : Inject "CP violation" by increasing the number of CP-odd complex phases invariant under unphysical phase redefinitions.

[2112.03889]

$$\mathcal{L}_{SMEFT} \sim \mathcal{L}_{SM} + \sum_{i}^{N} \frac{C_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{6} \longrightarrow \frac{\eta_{exp}}{\eta_{SMEFT}(J_{4},...)} < 10^{10}.$$

Goal : Limit the $C\!\!/\!P$ d.o.f. by selecting dominant contributions. Problem : In the Warsaw basis, there are still 1149 CP-odd operators. [1008.4884,1312.2014]

Warsaw Basis : CP-odd operators

(X^{3})		$(\psi^2 \phi^3)$		$(\psi^2 \phi^2 D)$	
$O_{\tilde{G}GG}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$O_{u\phi}$	$(\phi^{\dagger}\phi)(\overline{q}u\tilde{\phi})$	$O_{\phi ud}$	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\overline{u}\gamma^{\mu}d)$
$O_{\tilde{W}WW}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$O_{d\phi}$	$(\phi^{\dagger}\phi)(\overline{q}d\phi)$		
	. ,	$O_{e\phi}$	$(\phi^{\dagger}\phi)(ar{l}e\phi)$		
	$(X^{2}\phi^{2})$		(ψ^4)	$(X\psi^2\phi)$	
$O_{\phi \tilde{G}}$	$\phi^{\dagger}\phi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	O_{ledq}	$(\overline{l}^j e)(\overline{d}q^j)$	O_{uG}	$(\overline{q}\sigma^{\mu\nu}T^A u)\tilde{\phi}G^A_{\mu\nu}$
$O_{\phi \tilde{W}}$	$\phi^{\dagger}\phi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	$O_{lequ}^{(1)}$	$(\overline{l}^{j}e)\epsilon_{jk}(\overline{q}^{k}u)$	O_{uW}	$(\bar{q}\sigma^{\mu\nu}u)\tau^I\tilde{\phi}W^I_{\mu\nu}$
$O_{\phi \tilde{B}}$	$\phi^{\dagger}\phi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	$O_{lequ}^{(3)}$	$(\bar{l}^j \sigma^{\mu\nu} e) \epsilon_{jk} (\bar{q}^k \sigma_{\mu\nu} u)$	O_{uB}	$(\bar{q}\sigma^{\mu\nu}u)\tilde{\phi}B_{\mu\nu}$
$O_{\phi \tilde{W}B}$	$\phi^{\dagger} \tau^{I} \phi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	$O_{quqd}^{(1)}$	$(\overline{q}^j u)\epsilon_{jk}(\overline{q}^k d)$	O_{dG}	$(\bar{q}\sigma^{\mu\nu}T^Ad)\phi G^A_{\mu\nu}$
		$O_{quqd}^{(8)}$	$(\overline{q}^{j}T^{A}u)\epsilon_{jk}(\overline{q}^{k}T^{A}d)$	O_{dW}	$(\overline{q}\sigma^{\mu\nu}d)\tau^{I}\phi W^{I}_{\mu\nu}$
				O_{dB}	$(\overline{q}\sigma^{\mu\nu}d)\phi B_{\mu\nu}$
				O_{eW}	$(\bar{l}\sigma^{\mu\nu}e)\tau^{I}\phi W^{I}_{\mu\nu}$
				O_{eB}	$(\bar{l}\sigma^{\mu\nu}e)\phi B_{\mu\nu}$

$$\frac{\left[\mathcal{O}_{i}^{6}\right]}{\left[\mathcal{O}_{SM}\right]} \sim \frac{E^{2}}{\Lambda^{2}} \leqslant 1 \quad \rightarrow \quad E \leq \Lambda$$

Contributions with a ratio of $\frac{m_f^2}{\Lambda^2}$ are irrelevant if m_f is small.

Reduced Basis under $U(1)^{14}$

Impose $U(1)^{14}$ symmetry on massive fermionic fields and absorb CP-phases by rephasing the fields : 10 operators

(X^3)		$(\psi^2 \phi^3)$		$(\psi^2 \phi^2 D)$	
$O_{\tilde{G}GG}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{ ho}$	$O_{t\phi}$	$(\phi^{\dagger}\phi)(\overline{q}_{r}t_{r}\tilde{\phi})$	- / /	////
$O_{ ilde WWW}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
	$(X^{2}\phi^{2})$		(ψ^4)		$(X\psi^2\phi)$
$O_{\phi \tilde{G}}$	$\phi^{\dagger}\phi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	- / /	/////	O_{tG}	$(\overline{q}_3 \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu}$
$O_{\phi \tilde{W}}$	$\phi^{\dagger}\phi\widetilde{W}^{I}_{\mu u}W^{I\mu u}$			O_{tW}	$(\overline{q}_3 \sigma^{\mu\nu} t) \tau^I \tilde{\phi} W^I_{\mu\nu}$
$O_{\phi \tilde{B}}$	$\phi^{\dagger}\phi\widetilde{B}_{\mu u}B^{\mu u}$			O_{tB}	$(\overline{q}_3 \sigma^{\mu\nu} t) \tilde{\phi} B_{\mu\nu}$
$O_{\phi \tilde{W} B}$	$\phi^{\dagger} \tau^{I} \phi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$				

Also done for $U(1)^{13}$: 17 operators

Sign of the Interference : Illustration

$$\left|\mathcal{M}_{tot}\right|^{2} = \left|\mathcal{M}_{SM}\right|^{2} + 2Re\left\{\frac{C_{i}}{\Lambda^{2}}\mathcal{M}_{i} \times \mathcal{M}_{SM}^{*}\right\} + \mathcal{O}\left(\Lambda^{-4}\right)$$

5 of 14

Diboson production in ATLAS

First application of the model : $\textit{pp} \rightarrow \textit{WZ}/\gamma$

- Large cross section
- Good reconstruction in the dileptonic channels $(W \rightarrow e\nu_e, Z \rightarrow \mu^- \mu^+)$
- Almost CP-even processes

- $\mathcal{O}_{\widetilde{W}WW}, \mathcal{O}_{\phi\widetilde{W}B}$ ($C_i = 1$, $\Lambda = 1$ TeV)
- At partonic level and LO
- Cuts from ATLAS

1606.04017,1205.2531

Theoretical asymmetry

Full absolute interference contribution :

$$\sigma^{|int|} \equiv \int d\Phi \left| \frac{d\sigma}{d\Phi}(\mathcal{O}_i) \right|$$

Example : $\mathcal{O}_{\widetilde{W}WW}$ in $pp \to W^+Z$

Process	W^+Z
σ_{SM}	15.74(2) fb
$\sigma_{\Lambda^{-2}}(\mathcal{O}_{\widetilde{W}WW})$	0.047(4) fb
$\sigma_{\Lambda^{-4}}\left(\mathcal{O}_{W\widetilde{W}W} ight)$	4.133(5) fb
Schwartz Bound	16.13 fb
$\sigma^{ int }(\mathcal{O}_{\widetilde{W}WW})$	3.302(4) fb

Measurable asymmetry

Visible interference contribution :

$$\sigma^{|meas|} \equiv \int d\Phi_{meas} \left| \sum_{\{um\}} \frac{d\sigma}{d\Phi}(\mathcal{O}_i) \right|$$

ı.

 $\mathsf{Example}:\,\mathcal{O}_{\widetilde{W}WW}\,\,\mathsf{in}\,\,pp\to W^+Z$

- Direction of quarks
- Quarks flavours and momenta in PDFs
- Unpolarized matrix elements
- Integrate over possible p^z's for neutrino

Process	W^+Z
σ_{SM}	15.74(2) fb
$\sigma_{\Lambda^{-2}}(\mathcal{O}_{\widetilde{W}WW})$	0.047(4) fb
$\sigma_{\Lambda^{-4}}(\mathcal{O}_{\widetilde{W}WW})$	4.133(5) fb
Schwartz Bound	16.13 fb
$\sigma^{ int }(\mathcal{O}_{\widetilde{W}WW})$	3.302(4) fb
$\sigma^{ meas }(\mathcal{O}_{\widetilde{W}WW})$	1.084(4) fb

Triple product

• Definition :

$$p_{\perp}(p_e,p_q)=ec{p_e}.\left(ec{p_Z} imesec{p_q}
ight)$$

- Lot of configurations explored, 4 of them presented here.
- Best is $p_{\perp}(p_e, p_{\Sigma}^z)$ where p_{Σ} is the sum of visible particles.

Other CP-odd observables in diboson

• [2009.13394] : ϕ azimuthal angle

$$\Delta \phi_{pp'} = \phi_{p'} - \phi_p \text{ if } \eta_{p'} > \eta_p.$$

• [1901.04821] : ϕ angle between scattering and decay planes

$$\sin \phi_{WZ} \equiv \sin 2\phi_Z + \sin 2\phi_W$$

 $\sin \phi_{W\gamma} \equiv \sin 2\phi_W$

• [0801.2891]: triple product

$$\Xi^z_{\pm} = sign\left(p^z_Z
ight)sign\left[\left(p_I imes p_Z
ight)^z
ight] \sim p_{\perp}(p_e,p^z_Z)$$

Asymmetries

We define the asymmetry in X as

$$\Delta X = \sigma_{X>0} - \sigma_{X<0} \approx \Delta \sigma_X(SM) + \frac{C_i}{\Lambda^2} \Delta \sigma_X(\mathcal{O}_i),$$

 $\mathsf{Example}:\,\mathcal{O}_{\widetilde{W}WW}\,\,\mathsf{in}\,\,pp\to W^+Z$

Process	W^+Z				
Operators	SM	$\mathcal{O}_{\widetilde{W}WW}$	$ X/\sigma^{ meas } $		
$\Delta p_{\perp}(p_e,p_q)$	-0.04(2) fb	-1.612(4) fb	149%		
$\Delta p_{\perp}(p_e, p_{\Sigma}^z)$	-0.02(2) fb	-0.628(4) fb	58%		
$\Delta p_{\perp}(p_e, p_e^z)$	0.0(2) fb	-0.535(4) fb	16%		
$\Delta \Xi^z_\pm$	-0.01(2) fb	-0.527(4) fb	16%		
$\Delta \sin \phi_{WZ}$	-0.03(2) fb	-0.321(4) fb	10%		
$\Delta (\Delta \phi_{eZ})$	0.07(2) fb	0.196(4) fb	6%		

Most sensitive asymmetries in diboson

۱ ا	V^+Z		W^-Z		
Operator	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$	Operator	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$
$\Delta p_{\perp}(p_e, p_{\Sigma}^z)$	58%	67%	$\Delta p_{\perp}(p_e, p_{\sum}^z)$	52%	74%
I	$N^+\gamma$		$W^-\gamma$		
	(2				
Operator	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$	Operator	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$

NB : we can also look at differential distributions.

Constraints and Luminosity

Conclusion

- Reducing dim-6 basis with U(1) symmetries
- $\mathcal{M}_{int,i} \equiv 2Re\left\{\frac{C_i}{\Lambda^2}\mathcal{M}_i \times \mathcal{M}^*_{SM}\right\}$ is not positive-definite over phase-space \rightarrow Asymmetries of simple observables
- The most sensitive observables to build asymmetry are

• for
$$pp \rightarrow WZ$$
 : $p_{\perp}(p_e, p_{\Sigma}^z)$.

• for
$$pp \to W\gamma$$
 : $\Delta \phi_{e\gamma}$.

If you know other CP-odd observables relevant for WZ/γ , we will be glad to compare their asymmetries with our results.

Back-up Slides

- Example of reduction of the basis and limitation
- Reduced Basis under $U(1)^{13}$
- Configurations of triple products in W^+Z
- Results in all channels
- Differential distributions w.r.t $\sqrt{\hat{s}}$
- Cuts

Basis Reduction under $U(1)^{14}$

- SM is unaffected except in the mass terms.
- CP-odd \mathcal{O}_i^6 in :
 - $\{X^3, X^2\phi^2\}$ remain.
 - $\{\psi^2\phi^3, \psi^4, \psi^2\phi^2 D, X\psi^2\phi\}$ disappear unless t_R .
- Example non-hermitian : $\mathcal{O}_{ledq} = \left(ar{l}^{j} e
 ight) \left(ar{d} q^{j}
 ight)$
 - Extract the phase $C_{ledq} = e^{i\varphi_{ledq}} |C_{ledq}|$,
 - Fix the gauge $e_r
 ightarrow e^{-i arphi_{\textit{ledg}}} e_r'$,
 - Absorb the phase

 $\mathcal{C}_{\textit{ledq}}\mathcal{O}_{\textit{ledq}} = e^{i arphi_{\textit{ledq}}} |\mathcal{C}_{\textit{ledq}}| (\overline{l}^{j} e) (\overline{d} q^{j})
ightarrow |\mathcal{C}_{\textit{ledq}}| (\overline{l}^{j} e') (\overline{d} q^{j}).$

Reduced Basis under $U(1)^{13}$

Impose $U(1)^{13}$ symmetry on massive fermionic fields.

- Light fermions become massless.
- Top & bottom massive.
- Bosons unaffected.

- Light SM Yukawa vanish.
- $\{X^3, X^2\phi^2\}$ remain.
- { $\psi^2 \phi^3, \psi^4, \psi^2 \phi^2 D, X \psi^2 \phi$ } disappear unless t_R or b_R .

(X^{3})		$(\psi^2 \phi^3)$		$(\psi^2 \phi^2 D)$	
$O_{\tilde{G}GG}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$O_{t\phi}$	$(\phi^{\dagger}\phi)(\overline{q}_{3}t\tilde{\phi})$	$O_{\phi tb}$	$i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\bar{t}\gamma^{\mu}b)$
$O_{ ilde{W}WW}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$O_{b\phi}$	$(\phi^{\dagger}\phi)(\overline{q}_{3}b\phi)$		
	$(X^2\phi^2)$		(ψ^4)		$(X\psi^2\phi)$
$O_{\phi \tilde{G}}$	$\phi^{\dagger}\phi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	$O_{qtqb}^{(1)}$	$(\bar{q}_3^j t) \epsilon_{jk} (\bar{q}_3^k b)$	O_{tG}	$(\overline{q}_3 \sigma^{\mu\nu} T^A t) \tilde{\phi} G^A_{\mu\nu}$
$O_{\phi \tilde{W}}$	$\phi^{\dagger}\phi\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	$O_{qtqb}^{(8)}$	$(\bar{q}_3^j T_A t) \epsilon_{jk} (\bar{q}_3^k T_A b)$	O_{tW}	$(\overline{q}_3 \sigma^{\mu\nu} t) \tau^I \tilde{\phi} W^I_{\mu\nu}$
$O_{\phi \tilde{B}}$	$\phi^{\dagger}\phi\widetilde{B}_{\mu u}B^{\mu u}$			O_{tB}	$(\overline{q}_3 \sigma^{\mu\nu} t) \tilde{\phi} B_{\mu\nu}$
$O_{\phi \tilde{W}B}$	$\phi^{\dagger} \tau^{I} \phi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$			O_{bG}	$(\overline{q}_3 \sigma^{\mu\nu} T^A b) \phi G^A_{\mu\nu}$
				O_{bW}	$(\overline{q}_3 \sigma^{\mu\nu} b) \tau^I \phi W^I_{\mu\nu}$
				O_{bB}	$(\overline{q}_3 \sigma^{\mu\nu} b) \phi B_{\mu\nu}$

Limitations

Only valid for one operator at a time. Otherwise, phase passed to other operator.

Example of 2 non-hermitian : $\mathcal{O}_{\textit{ledq}} = \left(ar{l}^{j} e
ight) \left(ar{d} q^{j}
ight)$ and $\mathcal{O}_{e\phi}$

- Extract the phase $C_{e\phi}=e^{iarphi_{e\phi}}\left|C_{e\phi}
 ight|$,
- Absorb the phase

$$\mathcal{C}_{\textit{ledq}}\mathcal{O}_{\textit{ledq}} = e^{i arphi_{\textit{ledq}}} | \mathcal{C}_{\textit{ledq}} | (\overline{l}^{j} e) (\overline{d} q^{j})
ightarrow | \mathcal{C}_{\textit{ledq}} | (\overline{l}^{j} e') (\overline{d} q^{j}).$$

• Transfer the phase $e^{i\varphi_{e\phi}}|C_{e\phi}|(\phi^{\dagger}\phi)(\bar{l}e\phi) \rightarrow e^{i(\varphi_{e\phi}-\varphi_{ledq})}|C_{e\phi}|(\phi^{\dagger}\phi)(\bar{l}e\phi).$

Combinations

$$p_{\perp}(p_e, p_q) = \vec{p}_e. \left(\vec{p}_{Z/\gamma} \times \vec{p}_q \right)$$

- Different possibilities for the lepton in *WZ*.
- Explore substitutes of $\vec{p}_{Z/\gamma}$.
- Need to find a surrogate to the unobservable p
 q
 i
 - *î*-axis : [0,0,1],
 - lepton : [0, 0, p_l^z],
 - neutral boson Z/γ : $[0, 0, p_{Z/\gamma}^{z}]$,
 - sum of visible particles : $[0, 0, p_{\sum}^{z}].$

Triple products configurations	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$
$(\vec{p}_{q}, \vec{p}_{Z}, \vec{p}_{e})$	-1.612(4)	-0.3888(7)
$(ec{p_q},ec{p_Z},ec{p_{\mu^-}})$	-0.184(4)	-0.0271(7)
$([0, 0, p_{\Sigma}^{z}], \vec{p}_{Z}, \vec{p}_{e})$	-0.628(4)	-0.1207(7)
$(\vec{p}_W, \vec{p}_{\mu^-}, \vec{p}_e)$	0.535(4)	0.0965(7)
$(\vec{p}_{W}, \vec{p}_{\mu^{+}}, \vec{p}_{e})$	0.511(4)	0.1009(7)
$([0, 0, p_W^z], \vec{p_e}, \vec{p_{\mu^-}})$	-0.227(4)	-0.0594(7)
$(ec{p}_W,ec{p}_{\mu^-},ec{p}_{\mu^+})$	-0.080(4)	-0.0110(7)
$([0, 0, p_{\Sigma}^{z}], \vec{p}_{W}, \vec{p}_{Z})$	-0.045(4)	-0.0086(7)
$([0, 0, p_e^z], \vec{p}_{\mu^-}, \vec{p}_W)$	0.028(4)	0.0061(7)
$(\vec{p_e}, \vec{p}_{\mu^-}, \vec{p}_{\mu^+})$	-0.025(4)	-0.004(7)
$([0, 0, p_e^z], \vec{p}_{\mu^-}, \vec{p}_{\mu^+})$	-0.029(4)	-0.0061(7)
$([0, 0, p_{\mu^-}^z], \vec{p}_e, \vec{p}_{\mu^+})$	-0.213(4)	-0.0244(7)
$([0,0,p_{\mu^+}^z],\vec{p}_{\mu^-},\vec{p}_e)$	0.252(4)	0.0327(7)
$([0, 0, p_{\Sigma}^{z}], \vec{p}_{e} + \vec{p}_{\mu^{-}}, \vec{p}_{\mu^{+}})$	-0.362(4)	-0.0582(7)
$([0, 0, p_{\Sigma}^{z}], \vec{p}_{e} + \vec{p}_{\mu^{+}}, \vec{p}_{\mu^{-}})$	-0.300(4)	-0.0481(7)
$([0, 0, p_{\Sigma}^{z}], \vec{p}_{e} - \vec{p}_{\mu^{-}}, \vec{p}_{\mu^{+}})$	-0.047(4)	-0.0097(7)
$([0, 0, p_{\Sigma}^{z}], \vec{p}_{e} - \vec{p}_{\mu^{+}}, \vec{p}_{\mu^{-}})$	-0.160(4)	-0.0279(7)

Results WZ

Process	$W^+Z ightarrow \mu^-\mu^+ e^+ \nu_e$	$W^-Z ightarrow \mu^-\mu^+ e^- \tilde{ u_e}$	
$\sigma(SM)$	15.74(2) fb	9.88(1) fb	
δ_{PDF}	3.45%	3.78%	
$\sigma(\mathcal{O}_{\widetilde{W}WW})$	0.047(4) fb	-0.033(3) fb	
$\sigma_{\Lambda^{-4}}(\mathcal{O}_{\widetilde{W}WW})$	4.133(5) fb	1.982(3) fb	
Schwartz Bound	16.13 fb	8.85 fb	
$\sigma^{ int }(\mathcal{O}_{\widetilde{W}WW})$	3.302(4) fb	2.028(3) fb	
$\sigma^{ meas }(\mathcal{O}_{\widetilde{W}WW})$	1.084(4) fb	0.634(3) fb	
$\sigma(\mathcal{O}_{\phi \widetilde{W}B})$	0.0086(7) fb	-0.0066(4) fb	
$\sigma_{\Lambda^{-4}}(\mathcal{O}_{\phi\widetilde{W}B})$	0.0231(3) fb	0.0145(2) fb	
Schwartz Bound	1.21 fb	0.76 fb	
$\sigma^{ int }(\mathcal{O}_{\phi\widetilde{W}B})$	0.5467(7) fb	0.3533(4) fb	
$\sigma^{ meas }(\mathcal{O}_{\phi\widetilde{W}B})$	0.1807(7) fb	0.1100(4) fb 20 of 1	

Results $W\gamma$

Process	$W^+\gamma ightarrow \gamma e^+\nu_e$	$W^-\gamma ightarrow \gamma e^- \tilde{\nu_e}$	
$\sigma(SM)$	715.1(8) fb	589.1(7) fb	
δ_{PDF}	2.99%	3.43%	
$\sigma(\mathcal{O}_{\widetilde{W}WW})$	-2.07(4) fb	1.61(6) fb	
$\sigma_{\Lambda^{-4}}\left(\mathcal{O}_{\widetilde{W}WW}\right)$	39.78(5) fb	18.54(6) fb	
Schwartz Bound	337.3 fb	209.0 fb	
$\sigma^{ int }(\mathcal{O}_{\widetilde{W}WW})$	33.83(4) fb	24.76(6) fb	
$\sigma^{ meas }(\mathcal{O}_{\widetilde{W}WW})$	6.07(4) fb	6.57(6) fb	
$\sigma(\mathcal{O}_{\phi \widetilde{W}B})$	2.75(4) fb	-2.09(3) fb	
$\sigma_{\Lambda^{-4}}\left(\mathcal{O}_{\phi\widetilde{W}B} ight)$	3.239(4) fb	2.878(3) fb	
Schwartz Bound	96.3 fb	82.4 fb	
$\sigma^{ int }(\mathcal{O}_{\phi\widetilde{W}B})$	34.00(4) fb	26.37(3) fb	
$\sigma^{ \text{meas} }(\mathcal{O}_{\phi\widetilde{W}B})$	9.43(4) fb	9.53(3) fb	

21 of 14

 ${\color{red}{\leftarrow}} \Box \rightarrow$

Results WZ

<u> </u>	<u> </u>	<i>(</i> 2	<i>(</i> 2	
Operators	SM	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$	
Process	$W^+Z \rightarrow \mu^-\mu^+e^+\nu_e$			
$\Delta p_{\perp}(p_e, p_q)$	-0.04(2)	-1.612(4)	-0.3888(7)	
$\Delta p_{\perp}(p_e, p_{\Sigma}^z)$	-0.02(2)	-0.628(4)	-0.1207(7)	
$\Delta p_{\perp}(p_e, p_e^z)$	0.0(2)	-0.535(4)	-0.1173(7)	
$\Delta p_{\perp}(p_e, p_Z^z)$	-0.01(2)	-0.527(4)	-0.0874(7)	
$\Delta \sin \phi_{WZ}$	-0.03(2)	-0.321(4)	0.0031(7)	
$\Delta (\Delta \phi_{eZ})$	0.07(2)	0.196(4)	0.0688(7)	
Process	W	$^-Z ightarrow \mu^-\mu^+$	$e^{-}\tilde{\nu}_{e}$	
$\Delta p_{\perp}(p_e, p_q)$	-0.08(1)	1.006(3)	0.2522(4)	
$\Delta p_{\perp}(p_e, p_{\Sigma}^z)$	-0.03(1)	-0.331(3)	0.0810(4)	
$\Delta p_{\perp}(p_e, p_e^z)$	-0.01(1)	0.295(3)	0.0514(4)	
$\Delta p_{\perp}(p_e, p_Z^z)$	0.00(1)	0.295(3)	0.0627(4)	
$\Delta \sin \phi_{WZ}$	-0.02(1)	-0.190(3)	0.0013(4)	
$\Delta (\Delta \phi_{eZ})$	-0.05(1)	0.022(3)	0.0109(4)	

22 of 14

Results $W\gamma$

Operators	SM	$\mathcal{O}_{\widetilde{W}WW}$	$\mathcal{O}_{\phi \widetilde{W}B}$		
Process	$W^+\gamma ightarrow \gamma e^+ u_e$				
$\Delta p_{\perp}(p_e,p_q)$	7.7(8)	-13.81(4)	22.23(4)		
$\Delta p_{\perp}(p_e, p_{\sum}^z)$	0.8(8)	-4.60(4)	5.59(4)		
$\Delta p_{\perp}(p_e, p_{\gamma}^z)$	0.5(8)	-5.62(4)	7.59(4)		
$\Delta p_{\perp}(p_e, p_e^z)$	0.6(8)	1.11(4)	0.42(4)		
$\Delta \sin \phi_{W\gamma}$	-0.1(8)	-0.31(4)	-0.79(4)		
$\Delta(\Delta\phi_{e\gamma})$	-4.5(8)	-5.85(4)	7.16(4)		
Process		$W^-\gamma ightarrow \gamma e^-$	$\tilde{\nu}_e$		
$\Delta p_{\perp}(p_e,p_q)$	5.3(7)	10.65(3)	-17.27(3)		
$\Delta p_{\perp}(p_e, p_{\sum}^z)$	1.2(7)	2.34(3)	-4.15(3)		
$\Delta p_{\perp}(p_e, p_{\gamma}^z)$	0.1(7)	-1.68(3)	1.48(3)		
$\Delta p_{\perp}(p_e, p_e^z)$	0.9(7)	5.09(3)	-7.07(3)		
$\Delta \sin \phi_{W\gamma}$	-0.4(7)	-1.87(3)	1.22(3)		
$\Delta(\Delta\phi_{e\gamma})$	1.2(7)	-6.17(3)	8.46(3)		

 ${\color{red}{\leftarrow}} \Box \rightarrow$

Differential distributions w.r.t. $\sqrt{\hat{s}}$

Example : $\mathcal{O}_{\widetilde{W}WW}$ in $pp \to W^+ Z \to \mu^- \mu^+ e^+ \nu_e$

- The PDF set exploited in the event generation is the NNPDF2.3 in which $\alpha_S(M_Z) = 0.119$.
- We fix the SM parameters at the Z pole mass :

$$m_Z = 91.1876, \ (\alpha_{EM})^{-1} = 127.9, \ G_F = 1.166370^{-5},$$

 $\Gamma_Z = 2.4952, \ \Gamma_W = 2.085.$

WZ events:

$$\begin{split} p_{T}(\mu) &> 15 \text{GeV}, \quad |\eta(\mu)| < 2.5, \quad p_{T}(e) > 20 \text{GeV}, \quad |\eta(e)| < 2.5, \\ \Delta R(\mu^{+}\mu^{-}) &> 0.2, \quad \Delta R(e\mu^{-}) > 0.3, \quad \Delta R(e\mu^{+}) > 0.3, \\ |m_{\mu^{-}\mu^{+}} - m_{Z}| < 10 \text{GeV}, \quad m_{T}(e\nu_{e}) > 30 \text{GeV}. \end{split}$$

• $W\gamma$ events :

$$\begin{split} p_T(e) &> 25 \text{GeV}, \quad |\eta(e)| < 2.47, \quad E_T(\gamma) > 15 \text{GeV}, \quad |\eta(\gamma)| < 2.37, \\ E_T^{miss} &> 35 \text{GeV}, \quad \Delta R(e\gamma) > 0.7, \quad m_T(e\nu_e) > 40 \text{GeV}, \\ |m(e\gamma) - m_Z| > 10 \text{GeV}. \end{split}$$