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Introduction

m Renormalisation group (RG) functions for scalar theories
known to high orders

m Also RG functions for supersymmetric theories

m But g functions for general scalar-fermion theory only
recently derived to 3 loops

m Use supersymmetric results to constrain general result
m N = 1 supersymmetry in d = 4 not very helpful

m Formally Gross-Neveu-Yukawa theory with Ny scalars and
N; = 1Ny Dirac fermions has a supersymmetric fixed-point
in the e-expansion - “emergent supersymmetry” or “N = %
supersymmetry”. Can use this!

m This puts numerous constraints on RG functions.
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General fermion-scalar theory

Consider renormalisable 4-d fermion/scalar theory: Fields ¢2,
1 with Yukawa and quartic scalar interactions
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Yukawa g function can be written as
BE =B+ Y + vy + ¥y

where 32 is determined by 1Pl diagrams and v, 7, are
anomalous dimensions. Similarly

B5 abcd 5 abed | e(a \bed)e

Use diagrammatic notation for tensor structures, e.g.

%(;) = Y61t (y2y°) = 75,1 "Q"
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General fermion-scalar theory

Up to two loops
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General fermion-scalar theory
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General fermion-scalar theory
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U(1) theory

Complex fields with a U(1) symmetry = far fewer diagrams.
Take

®? =(p1,7) = 00" = ;P + ' ¢,
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Now have directed lines with basic vertices now represented by
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U(1) theory

Now have just

-

, ~

Yo =Vt > "1 Y24 *%"*"f’-' +Yp20 > Y

~ -’

~—€

,——‘\ ‘)m ,4—‘\
Y =Vp,1 U + Vy,2a > +Yp2p >t :
v

A\ /\\
~ s % ", A AR N
5y :/By,Za + ﬁy,Zi

plus scalar diagrams (except /3, »r) — several ways to assign
arrows.

with Hugh Osborn, Colin Poole, Tom Steudtner



Constraints from N = 1 supersymmetric theory

N = 1 supersymmetric theory for scalars and fermions
obtained by equating numbers of scalar and fermion fields and
restricting the couplings of the U(1) theory so that

y'ab — yik — ylik) Vias — Yik = y/( ) » )\ijkl — Yim ymkl
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Supersymmetry, non-renormalisation theorem require

or

Yo' = Yo = s} Bk =o0, Bri =2 Vimy™n Y™.
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Constraints from N = 1 supersymmetric theory

At one loop this involves diagrammatically

N /"(‘\ . N PRGN ., ->- >--
\k l' \ 1/ :A\ l' \\ 1/
5,\,1a< A [ 4 P é \w> + Bx1b
’ \\\_«/’ S 4 \\*’/, A -« —<-
— 5A,1a><©>< + (4812 + Ba1b)
so we have
VS = YW1 = Vo1, 4Bx1a+Brip=0, Bria=27s1-

4 1-loop coefficients in the U(1) theory and 3 N = 1 constraints
= 1 U(1) coefficient undetermined.
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Constraints from N = 1 supersymmetric theory

At two loops the necessary conditions are

’
YS2 = Yw2a +Yw2b = 3Vo2a + Yo 2b = Eﬁx,zby

By,Za + By,Zf =0 s
2 Brpa+ Brod =4 Br2a+208x2c+ Br2g = Br2a+ Brzp + Broe = 0.

11 2-loop coefficients in the U(1) theory and 6 N = 1
constraints = 5 U(1) coefficients undetermined.
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Constraints from N = % supersymmetric theory

Special case of real general scalar-fermion
theory[Fei,Giombi,Klebanov, Tarnopolsky; Liendo and Rong]
with

(ya)aﬁ N Yabc’ )\abcd N YabeYCde—l—permS
For a 2-component Majorana fermion this is
N = 1-supersymmetric in d = 3. Can access this in an ¢
expansion around d = 4 by formally taking N; = 1N, Dirac

fermions (modified fermion trace). Now By # 0 and one-loop
constraints involve diagrammatically

5A,1a>—©—< + (48x1a+ Bx,1p) + 4B>\,1aj>—'
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Constraints from N = % supersymmetric theory

leading to

Vs =Yo 1 =W, By =By,
Bria =27s1, 4PBx1a=28y1,
4 Bx1a+ Ba1p =0,

where

18 =151~ D BV =By K}

5 1-loop coefficients in the general scalar-fermion theory and 4
N = I constraints = 1 general coefficient undetermined.
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Constraints from N = % supersymmetric theory

At two loops equality of vo, yw and symmetry of 3, requires

Vs 2A4 = 3V ,2a + Vo ,2b = VW22 + YW,2b
V5,28 = 670,22 + Vo,2¢ = YW 2¢

5Y,2A = /By,Zb = /By,ZC

5Y,ZB = 6y,2a + /By72d - By,Ze

By 2c = By2a+ By af

where

7(32,) = 78’,2A@ + 73/,25@,

55}2) = <5Y,2A + By 28 + perms) + By 2c :X%
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Constraints from N = % supersymmetric theory

Determining 3, in terms of 8y and v imposes the restrictions

Brza=27g 24 = By2a= 5By 28, 0=1vs28=Byz2c,
4 Br2a=40Br20 = —2Br2d = —2Bx2e = —Br2f = —Br2g;
Brzc=0.

19 2-loop coefficients in the general scalar-fermion theory and
15 N = } constraints = 4 general 2-loop coefficients
undetermined.
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a-function constraints)

m a-theorem = existence of a-function which is monotonic
between RG fixed points

m “Strong” a-theorem :> oc 6]

m Proposed explicit form for N = 1 supersymmetric
a-function

m = constraints on supersymmetric anomalous dimension
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The a-function

For a general theory with couplings g’ can show [Osborn] there
is a function a such that

0 a=oa=Tur). F@) =pnlg’

ag MdTLg

d
Fa sloja=Gyp's’, Gy = Ty

The existence of the a-function also imposes constraints on the
B-function coefficients[Antipin,Gillioz,Krog,Molgaard,Sannino;
Poole, Thomsen; Steudiner]. For the general fermion-scalar
theory there are no constraints at one loop and 4 at two loops.
However only 2 are independent of those found already.
Altogether we only have two 2-loop coefficients undetermined
in the general theory!
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Constraints on N = 1 §-functions

At three loops there are 143 coefficients, 106 N = } conditions
and 42 a-function conditions. However the “overlap” has not
been determined = don’t know how many coefficients are
unconstrained.
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Constraints on N = 1 §-functions

Now look at constraints imposed by a-function on g-functions of
N = 1 supersymmetry. In fact, up to three loops there are no
constraints from the mere existence of a. However, a proposed
explicit all-orders result for the N = 1 supersymmetric
a-function is

1
a=15nc — 5 (1) + 31r(y%) + Ao By + By o He By

[Barnes, Intriligator, Wecht, Wright; Kutasov and Schwimmer;
Osborn, Freedman] where

YoV = YKy
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Constraints on N = 1 §-functions

a-function constraint can be written

4 a:dYOTOﬁy

dyaE dYo 6Y

Assume H = 0. We have
dya = tr[dyy((YA) — v +~3)] + dyAe By,

where (YA); = YiAKD. This will satisfy the consistency
condition if B
(YN)=v—-72+0:p8y

for some © (sufficient but not necessary). Call this the
“A-equation”.
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Constraints on N = 1 §-functions
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Constraints on N = 1 §-functions

At three loops

756) = ’Y&@ + 7598@ + 73%*@*
+73SD‘>{X}'F>
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Constraints on N = 1 §-functions

The A-equation requires

1 1
’Ye?A - 273?5 - 57380 - o

which is satisfied by the DRED results

1 1 3
’YsSA:—Zv ’Y:;SB:—§7 ’Yégc:"v ’Y:}gozéC(s)-

At four loops the A equation imposes 3 constraints, which are
all satisfied.
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Conclusions

m The existence of N = 1 and even more N = }
supersymmetry can be used to determine a majority of the
coefficients in the RG functions; especially when
augmented with the existence of the a-function.

m The proposed explicit form for the N = 1 a-function is
consistent with RG results up to four loops.

m Recently the N = 1 anomalous dimension has been
computed to 5 loops for the Wess-Zumino model|Gracey],
providing further data for testing this result.
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