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Motivation

• Mathematical formulation of quantum gravity?

• Signatures of quantum gravity in low energy EFTs?

These two questions can be addressed together!
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No global symmetries in quantum gravity

• Not any EFT is consistent with quantum gravity
⇒ Swampland Program [Vafa, ’05]

• There are no global symmetries in quantum gravity
[Misner, Wheeler ’57; Banks, Dixon ’88; Kallosh, Linde, Linde, Susskind

’95; Harlow, Ooguri ’18].
Among the most solid swampland conjectures.

• Recent proposal [McNamara, Vafa ’19]:
cobordism conjecture, generalising no global symmetries.

The cobordism conjecture relates the two questions to one another.
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Cobordism
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Cobordism: definition

Consider n-dim compact manifolds M and N without boundary.
A bordism is a (n + 1)-dim compact manifold W such that

∂W = M ⊔ N

M N
W

Being bordant is an equivalence relation, [M] ∼ [N].

Set of equivalence classes is an abelian group, cobordism group

Ωn = {compact n-dim manifolds without boundary}/ ∼
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Cobordim as generalized homology

• (Co)Homology groups of point carry no information

Hn(pt) = 0 (if n > 0)

since every cycle on pt of positive dimension is a boundary.

• Cobordism groups of point do carry information

Ωn(pt) ̸= 0

since not every compact manifold is a boundary.

• This information is topological and physical.

A (co)homology theory whose groups of pt are generically
non-vanishing is called generalized (co)homology.
Cobordism and K-theory are examples.
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Simple examples

• Ω0(pt) = Z2.
M = ⊔mpt and N = ⊔npt bordant iff m + n is even

M N

bordant

M N

not bordant

• Ω1(pt) = 0. Indeed the circle is a boundary. Notice 0 = [∅]

S1 ∅
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Spin and Spinc structures

Manifolds can be endowed with structure. This is inherited by the
bordism group Ωξ

n. We will consider mainly

• Spin structure: w2(TM) = 0

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2

• Spinc structure: W3(TM) = 0

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpinc
n Z 0 Z 0 2Z 0 2Z 0 4Z 0 4Z

These are examples of stable tangential structures.
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Bordism invariants

They are maps
µn : Ωξ

n → A,

with A an abelian group (e.g. Z).
They take the same value within the whole class [M] (invariant).

In some cases, they admit an integral representation in terms of
(generalised) cohomology classes

µ =

∫
[M]

ω where ω ∈ Hn(M,A)

Example: the bordism invariants of ΩSpinc

6 = Z⊕ Z are∫
M6

td6 =

∫
M6

c2c1
24

and

∫
M6

c31
2
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Cobordism conjecture
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The cobordism conjecture
[McNamara, Vafa ’19]

For any d-dim EFT, ∃ quantum gravity structure QG such that

ΩQG
n (pt) = 0, ∀n ≤ d ,

i.e. the groups contain just the trivial element 0 = [∅].

• The QG-structure need not to be unique.

• If ΩQG
n (pt) ̸= 0, then there is a global (d − n − 1)-form

symmetry in the EFT. Not allowed in quantum gravity.

• If ΩQG
n (pt) = 0, all compactifications on any manifold in the

unique class 0 = [MQG
n ] are bordant. Uniqueness of QG.
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How to proceed?
[McNamara, Vafa ’19]

QG-structure is not known. Try with educated guess Q̃G .

If ΩQ̃G
n ̸= 0 we have a global symmetry.

• Breaking: ∃ defect with correct charge such that

ΩQ̃G
n → ΩQ̃G+defects

n = 0 killed

• Gauging: The class 0 = [M] ∈ ΩQ̃G
n ̸= 0 gives a consistent

EFT. Then, introduce gauge fields to kill the group

0 = ΩQ̃G+gauge fields
n → ΩQ̃G

n co-killed

(In [NC, Andriot, Carqueville ’22] we propose to use the Whitehead
tower as organizing principle pointing towards QG structure.)
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• Cobordism: language to classify compact manifolds (closed
string backgrounds) without fixing topology

• K-theory: proper language for D-branes (open strings)
[Witten ’98]

Is there an “open-closed” correspondence between them?
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Cobordism and K-theory
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K-theory: intuitive definition
[Witten ’98]

• Consider n D9-D9 branes with U(n) bundles E and F

(E ,F ) = E − F

• Creation/annihilation of m pairs with same bundle H leaves
(E,F) invariant

(E ⊕ H,F ⊕ H) ∼ (E ,F )

• The set of equivalence classes is the (reduced) K-theory group

K (X ) = {vector bundles over X}/ ∼
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D-branes and K-theory

D-branes are classified by K-theory. [Witten ’98]

Dp-branes on R10 with p = 9− n are classified by

• Type I: real K-theory KO−n(pt)

n 0 1 2 3 4 5 6 7 8 9 10

KO−n(pt) Z Z2 Z2 0 Z 0 0 0 Z Z2 Z2

D-brane D9 D̂8 D̂7 - D5 - - - D1 D̂0 D̂(−1)

• Type II: complex K-theory K−n(pt)

n 0 1 2 3 4 5 6 7 8 9

K−n(pt) Z 0 Z 0 Z 0 Z 0 Z 0

D-brane D9 - D7/D8 - D5/D6 - D3/D4 - D1/D2 -
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Cobordism vs K-theory

n

0
1
2
3
4
5
6
7
8

ΩSpin
n KO−n

Z Z
Z2 Z2

Z2 Z2

0 0
Z Z
0 0
0 0
0 0

2Z Z

ΩSpinc
n K−n

Z Z
0 0
Z Z
0 0

2Z Z
0 0
2Z Z
0 0
4Z Z
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Atiyah-Bott-Shapiro orientation

Relation between cobordism and K-theory dates back to
ABS-orientation [Atiyah, Bott, Shapiro ’64]

αn : ΩSpin
n (pt) → KO−n(pt)

αc
n : ΩSpinc

n (pt) → K−n(pt)

explicitly given by the refined A-roof and Todd genus

αn([M]) =


Â(M) n = 8k
1
2 Â(M) n = 8k + 4

dimH mod 2 n = 8k + 1
dimH+ mod 2 n = 8k + 2

0 otherwise

αc
n([M]) = Td(M)

Starting point to prove theorem by [Hopkins, Hovey ’92],
see also [Conner, Floyd ’66; Landweber ’76; Kreck, Stolz ’93].

Note: αn, α
c
n are bordism invariants.
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Physical consequences

• Cobordism and K-theory charges are related.
They must undergo the same fate in quantum gravity
(see also [Uranga ’00; Blumenhagen, Brinkmann, Makridou ’19;

Damian, Loaiza-Brito ’19])

• The combination of cobordism and K-theory charges should
be either gauged or broken. Schematically

cobordism + K-theory = 0

closed strings + open strings = 0

In the following, I will discuss gauging.
For breaking, see A. Makridou’s talk tomorrow.
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Tadpoles from bottom-up
[Blumenhagen, NC ’21; Blumenhagen, NC, Kneißl, Makridou ’22]
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Gauging cobordism

• In [Blumenhagen, NC ’21] it is shown that gauging cobordism +
K-theory can lead to string theory tadpoles.

• Generalisation pt→ X in [Blumenhagen, NC, Kneißl, Makridou ’22].
Results interpreted as dimensional reduction of EFT on X.

Tadpole: integrated Bianchi identity

0 =

∫
M
dFn−1 =

∫
M
Jn

Total charge on a compact manifold should vanish

Goal: To reconstruct Jn without knowing string theory.
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Constructing the current
αc
n is natural candidate for the current

0 =

∫
M
dFn−1 = αc

n(M) + . . .

however there can be additional contributions.

1 Bordism charge might not be detected by αc
n completely.

⇒ Add all bordism invariants (αc
n is just one)

0 =
∫
M dFn−1 =

∑
i∈inv ai µ

i
n

2 There might be defects: branes classified by K−n(pt).
⇒ Include defects.

Thus we get a combination of cobordism and K-theory

0 =

∫
[M]

dFn−1 =
∑
i∈inv

ai µ
i
n +

∑
j∈def

∫
[M]

Qj δ
n(∆10−n,j)
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Example: gauging ΩSpinc

6

We have ΩSpinc

6 = Z⊕ Z with invariants

µ1
6 ≡ αc

6 =

∫
td6 =

∫
1

24
c1c2, µ2

6 =

∫
1

2
c31

• (Magnetic) 5-form global symmetry, gauged by C4

• K−6(pt) classifies D3-branes

Combining we get

∫
B

∑
i Qi δ

(6)(∆4,i ) =
∫
B

(
a1
24 c2(B) c1(B) +

a2
2 c31 (B)

)
≡ χ(Y )

24

Matching with known D3-brane tadpole cancellation in F-theory
for a1 = 12 and a2 = 30. [Sethi, Vafa, Witten ’96]

Notice that c3 cannot appear since it is not bordism invariant.
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From groups of pt to groups of X
[Blumenhagen, NC, Kneißl, Makridou ’22]
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• The above discussion is just for groups of pt.
It can be generalised pt → X , with X a topological space.

• The groups are enlarged

Ω(X ) = Ω(pt)⊕ Ω̃(X ), K (X ) = K (pt)⊕ K̃ (X ),

so potentially more global symmetries.

• What is their interpretation?

• X = BG used for anomalies of G .
Instead, we take X to be a manifold, such as spheres, tori, CY.
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Some results

For X = {Sk ,T k ,K3,CY3}, we find (k = dim(X ))

K−n(X ) =
k⊕

m=0

bk−m(X )K−n−m(pt)

ΩSpinc

n+k (X ) =
k⊕

m=0

bm(X )ΩSpinc

n+k−m(pt)

• We show that they reproduce pattern of global symmetries
stemming from dimensional reduction on X .

• They classify (d − 1− k − n)-form charges in D = d − k
dimensions, arising from dimensional reduction of d − 1− n,
d − 2− n, . . . , d − 1− k − n form charges along the k , k − 1,
. . . , 0 cycles X .
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Example: X = CY3

K 0(CY3) = K6(CY3) = b6 K
0(pt)︸ ︷︷ ︸
Z

⊕ b4 K
−2(pt)︸ ︷︷ ︸
Z

⊕ b2 K
−4(pt)︸ ︷︷ ︸
Z

⊕ b0 K
−6(pt)︸ ︷︷ ︸
Z

ΩSpinc

6 (CY3) = b6Ω
Spinc

0 (pt)︸ ︷︷ ︸
Z

⊕ b4Ω
Spinc

2 (pt)︸ ︷︷ ︸
Z

⊕ b2Ω
Spinc

4 (pt)︸ ︷︷ ︸
Z⊕Z

⊕ b0Ω
Spinc

6 (pt)︸ ︷︷ ︸
Z⊕Z

• All terms give 3-form symmetries in 4D

• Combining groups of pt with same (0, 2, 4, 6) index, we can
construct tadpoles in 4D.

• In fact, they are the dimensional reduction of tadpoles for the
10D (9,7,5,3)-form symmetries.

Niccolò Cribiori (MPP Munich) Cobordism, K-theory and tadpoles 28 / 32



Interpretation for −k ≤ n < 0 less clear (no K-theory groups)
In [Blumenhagen, NC, Kneißl, Makridou ’22] we propose that

• ΩEVEN(X ), gauged: contribute to tadpoles of n ≥ 0 groups.
New contributions?

• ΩODD(X ), broken

Ω6(X ) b6Ω0(pt) b4Ω2(pt) b2Ω4(pt) b0Ω6(pt)

C10 C8 C6 C4

O9 F(CY4)c1(M6) tr(R ∧ R)D9,O9 F(CY4)c1c2,c31 (M6)

Ω4(X ) b4Ω0(pt) b2Ω2(pt) b0Ω4(pt) −

C8 C6 C4 −

O7 N7c1(M4) tr(R ∧ R)D7,O7 −

Ω2(X ) b2Ω0(pt) b0Ω2(pt) − −

C6 C4 − −

O5 N5c1(M2) − −

Ω0(X ) b0Ω0(pt) − − −

C4 − − −

O3 − − −
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Conclusion

• The absence of global symmetries seems to be a fact of QG.
It holds true also when enlarging notion of symmetry, such as
to include cobordism

• Cobordism and K-theory are closed-open string versions of
global symmetries

• Their combination must be either broken or gauged

• This statement has predictive power.
[Montero, Vafa ’20; Dierigl, Heckmann ’20; Hamada, Vafa, ’21;

Blumenhagen, NC, Kneißl, Makridou ’22]
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Outlook

• Cobordism groups with more structure (gauge fields, compact
manifolds, . . . )
[Blumenhagen, NC, Kneißl, Makridou, ’22]

• Clarify origin of tadpoles from bottom-up

• Is cobordism conjecture combined with K-theory enough to
reconstruct tadpoles in string theory (String Lamppost
Principle)?

• Are there new objects in string theory detected by cobordism?
This can happen when breaking but also when gauging.
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Thank you!
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Extra slides
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Example: gauging ΩSpin
1

Torsion charges require care. Consider ΩSpin
1 = Z2 = KO−1(pt)

with invariant
µ1 ≡ α1

and KO−1(pt) classifies D̂8-branes.

We get Z2-valued charge neutrality condition∫
M

∑
i

Qiδ
(1)(∆9,i ) = aα1 mod 2

• a=even: RHS decouples. Even number of D̂8-branes needed
and KO−1(pt) is gauged. New defect needed to break ΩSpin

1 .

• a=odd: single D̂8-brane on S1
p (having α1(S

1
p ) = 1) allowed

since vanishing total charge, 1 + 1 = 0 mod 2.
Unlikely: S1

p valid background without D̂8.
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Computing groups of X

The groups Ω(X ), K (X ) can be computed using the
Atiyah-Hirzebruch spectral sequence.
It is a tool to calculate generalised (co)homology theories.

• Start from ordinary (co)homology

• Refine the approximation by means of differentials

• Eventually, solve an extension problem
(extra information needed)

Certain differentials are physically associated to Freed-Witten
anomalies. [Diaconescu, Moore, Witten ’00; Maldacena, Moore, Seiberg ’01]
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Interpretation: K-theory

K−n(X ) =
k⊕

m=0

bk−m(X )K−n−m(pt)

• They classify codimension (n +m)-branes wrapping
(k −m)-cycles of X . Consistent with expectation from
dimensional reduction.

• By construction, these branes do not suffer from FW
anomalies, otherwise they would not survive the spectral
sequence.

• All sites populated. Completeness hypothesis.

• Simlar result for KO-theory, for X = {Sk ,T k ,K3}
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Interpretation: Cobordism

ΩSpinc

n+k (X ) =
k⊕

m=0

bm(X )ΩSpinc

n+k−m(pt)

Each non-vanishing term in the RHS means that the
(n + k)-manifold M is wrapped around non-trivial m-cycle of X .

Two qualitatively different cases:

• n ≥ 0: There is associated K-theory group
Kn+k(X ) = K−n(X ) with string interpretation.

Cobordism reproduces expectation from dim. reduction.

• −k ≤ n < 0: No K-theory analogous in physics.

Cobordism interpretation more speculative
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Breaking cobordism

• Breaking a cobordism symmetry requires the presence of
defects to cancel the charge

• This statement has predictive power: already in [McNamara,

Vafa ’19] new defects are predicted in string theory

• More developments in [Montero, Vafa ’20; Dierigl, Heckmann ’20;

Hamada, Vafa, ’21; Debray, Dierigl, Heckmann, Montero ’21]
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Dynamical cobordism
[Angius, Buratti, Calderon-Infante, Delgado, Huertas, Uranga ’21; ’21; ’22]

• Breaking cobordism can be intertwined with dynamics of
scalar fields

• Setups with net amount of energy in the vacuum (NS
tadpole), giving rise to a scalar potential driving scalars at
infinite distance in field space

• If this happens at finite spacetime distance, spacetime
effectively ends!

• At the end of the world we find the defects (branes)
predicted by the cobordism conjectures and such that

∆ ∼ e−
δ
2
D , |R| ∼ eδD
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A picture

scalar profile

finite size interval

S1
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Some examples

• 10d massive IIA. ETW defects are O8/D8

• 10d USp(32) theory (namely IIB with D9/O9).
[Sugimoto ’99; Dudas, Mourad ’00]

ETW defects are 8-branes (see also [Antonelli, Basile ’19])

• T-dual of [Sugimoto ’99] namely IIA with D8/O8.
[Blumenhagen, Font ’00] ETW defects are 7-branes.

• More in [Angius, Calderón-Infante, Delgado, Huertas, Uranga ’22]

We took [Blumenhagen, Font ’00] and looked at solutions of the
EOMs with singularities at the end of the world.

We interprete these singularities as the 7-branes expected from
the cobordism conjecture.
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Backreacted T-dual Sugimoto model
[Blumenhagen, Font ’00]

Setup: RR-tadpole-free stack of D8/08 in type IIA.
Study the backreaction of the stack on spacetime.

ds2 = e2A(r ,y)ds28 + e2B(r ,y)(dr2 + dy2)

Three solutions were found. All have circle r ∈ [−R/2,R/2], with
eϕ0 ∼ 1/R, but singularities at y = ±∞

• Solution I : Ly is infinite - ETW at infinite distance

• Solution II−: Ly is infinite - ETW at infinite distance

• Solution II+: Ly is finite - ETW at finite distance!

According to Dynamical Cobordism, we can now interpret the
singularities of Solution II+ as ETW 7-branes (needed to break

ΩSpin
1 = Z2). How do they look like?
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Non-isotropic 7-brane solution
[Blumenhagen, NC, Kneißl, Makridou ’22]

Ansatz preserving 8D Poincaré invariance but breaking 2D
rotational symmetry

ds2 = e2Â(ρ,φ)ds28 + e2B̂(ρ,φ)(dρ2 + ρ2dφ2)

We found solutions of gravity+dilaton EOMs consistent with the
presence of a 2D delta source.
One of these seems to have right properties.

• Same kind of singularity as the backreacted D8/O8 stack

• Scalings proposed in [Angius, Calderón-Infante, Delgado, Huertas,

Uranga ’22] satisfied with same δ as the D8/O8 stack!

Moreover: Coupling to the dilaton ∼ e−2ϕ in string frame.
New object in string theory?
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