Cobordism, K-theory and tadpoles

Niccolò Cribiori

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Unterstützt von / Supported by

(日) (部) (目) (日)

Alexander von Humboldt Stiftung/Foundation

Workshop on Holography and the Swampland, Corfu, 8th September 2022

Based on **2112.07678** with R. Blumenhagen and on **2208.01656** with R. Blumenhagen, C. Kneißl, A. Makridou

Introduction

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Motivation

• Mathematical formulation of quantum gravity?

• Signatures of quantum gravity in low energy EFTs?

These two questions can be addressed together!

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

No global symmetries in quantum gravity

- Not any EFT is consistent with quantum gravity ⇒ Swampland Program [Vafa, '05]
- There are no global symmetries in quantum gravity [Misner, Wheeler '57; Banks, Dixon '88; Kallosh, Linde, Linde, Susskind '95; Harlow, Ooguri '18]. Among the most solid swampland conjectures.
- Recent proposal [McNamara, Vafa '19]: cobordism conjecture, generalising no global symmetries.

The cobordism conjecture relates the two questions to one another.

Cobordism

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Cobordism: definition

Consider *n*-dim compact manifolds M and N without boundary. A **bordism** is a (n + 1)-dim compact manifold W such that

 $\partial W = M \sqcup N$

Being bordant is an equivalence relation, $[M] \sim [N]$.

Set of equivalence classes is an abelian group, cobordism group

 $\Omega_n = \{ \text{compact } n \text{-dim manifolds without boundary} \} / \sim$

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

・ロト ・ 同ト ・ ヨト ・ ヨト

Cobordim as generalized homology

• (Co)Homology groups of point carry no information

$$H_n(\text{pt}) = 0 \qquad (\text{if } n > 0)$$

since every cycle on pt of positive dimension is a boundary.

• Cobordism groups of point do carry information

$$\Omega_n(\mathrm{pt}) \neq 0$$

since not every compact manifold is a boundary.

• This information is topological and physical.

A (co)homology theory whose groups of pt are generically non-vanishing is called generalized (co)homology. Cobordism and K-theory are examples.

Niccolò Cribiori (MPP Munich)

Simple examples

• $\Omega_0(\mathrm{pt}) = \mathbb{Z}_2$. $M = \sqcup_m \mathrm{pt}$ and $N = \sqcup_n \mathrm{pt}$ bordant iff m + n is even

• $\Omega_1(pt) = 0$. Indeed the circle is a boundary. Notice $0 = [\emptyset]$

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Spin and Spin^c structures

Manifolds can be endowed with *structure*. This is inherited by the bordism group Ω_n^{ξ} . We will consider mainly

• Spin structure: $w_2(TM) = 0$

n	0	1	2	3	4	5	6	7	8	9	10
Ω_n^{Spin}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	$2\mathbb{Z}_2$	$3\mathbb{Z}_2$

• Spin^c structure: $W_3(TM) = 0$

n	0	1	2	3	4	5	6	7	8	9	10
$\Omega_n^{ m Spin^c}$	\mathbb{Z}	0	\mathbb{Z}	0	$2\mathbb{Z}$	0	$2\mathbb{Z}$	0	4Z	0	4ℤ

These are examples of stable tangential structures.

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

A ロ ト 4 回 ト 4 三 ト 4 三 ト 9 0 0 0

Bordism invariants

They are maps

$$\mu_n: \ \Omega_n^{\xi} \to A,$$

with A an abelian group (e.g. \mathbb{Z}). They take the same value within the whole class [M] (**invariant**).

In some cases, they admit an integral representation in terms of (generalised) cohomology classes

$$\mu = \int_{[M]} \omega$$
 where $\omega \in H^n(M, A)$

Example: the bordism invariants of $\Omega_6^{\rm Spin^c} = \mathbb{Z} \oplus \mathbb{Z}$ are

$$\int_{M_6} td_6 = \int_{M_6} \frac{c_2 c_1}{24} \quad \text{and} \quad \int_{M_6} \frac{c_1^3}{2}$$

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Cobordism conjecture

Cobordism, K-theory and tadpoles

The cobordism conjecture [McNamara, Vafa '19]

For any *d*-dim EFT, \exists quantum gravity structure QG such that

$$\Omega_n^{\mathrm{QG}}(\mathrm{pt}) = 0, \qquad \forall n \leq d,$$

i.e. the groups contain just the trivial element $0 = [\varnothing]$.

- The QG-structure need not to be unique.
- If Ω^{QG}_n(pt) ≠ 0, then there is a global (d − n − 1)-form symmetry in the EFT. Not allowed in quantum gravity.
- If $\Omega_n^{\text{QG}}(\text{pt}) = 0$, all compactifications on any manifold in the unique class $0 = [M_n^{\text{QG}}]$ are bordant. Uniqueness of QG.

Niccolò Cribiori (MPP Munich)

How to proceed? [McNamara, Vafa '19]

QG-structure is not known. Try with educated guess $Q\overline{G}$. If $\Omega_n^{\widetilde{QG}} \neq 0$ we have a global symmetry.

• **Breaking**: ∃ defect with correct charge such that

$$\Omega_n^{\widetilde{QG}} o \Omega_n^{\widetilde{QG} + \mathsf{defects}} = 0$$
 killed

• **Gauging**: The class $0 = [M] \in \Omega_n^{\widetilde{QG}} \neq 0$ gives a consistent EFT. Then, introduce gauge fields to kill the group

$$0 = \Omega_n^{\widetilde{QG} + \mathsf{gauge fields}} o \Omega_n^{\widetilde{QG}}$$
 co-killed

(In [NC, Andriot, Carqueville '22] we propose to use the Whitehead tower as organizing principle pointing towards QG structure.)

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

• Cobordism: language to classify compact manifolds (closed string backgrounds) without fixing topology

 K-theory: proper language for D-branes (open strings) [Witten '98]

Is there an "open-closed" correspondence between them?

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Cobordism and K-theory

・ロト ・四ト ・ヨト ・ヨト

K-theory: intuitive definition [Witten '98]

• Consider $n D9-\overline{D9}$ branes with U(n) bundles E and F

$$(E,F)=E-F$$

• Creation/annihilation of *m* pairs with *same* bundle H leaves (E,F) invariant

$$(E \oplus H, F \oplus H) \sim (E, F)$$

• The set of equivalence classes is the (reduced) K-theory group

$$K(X) = \{$$
vector bundles over X $\}/ \sim$

イロト 不得 トイヨト イヨト

D-branes and K-theory

D-branes are classified by K-theory. [Witten '98] Dp-branes on \mathbb{R}^{10} with p = 9 - n are classified by

• **Type I**: real K-theory $KO^{-n}(\text{pt})$

n	0	1	2	3	4	5	6	7	8	9	10
$KO^{-n}(\mathrm{pt})$	Z	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2
D-brane	D9	D8	D7	-	D5	-	-	-	D1	$\widehat{D0}$	$\widehat{D(-1)}$

• **Type II**: complex K-theory $K^{-n}(\text{pt})$

n	0	1	2	3	4	5	6	7	8	9
$K^{-n}(\mathrm{pt})$	\mathbb{Z}	0								
D-brane	D9	-	D7/D8	-	D5/D6	-	D3/D4	-	D1/D2	-

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Cobordism vs K-theory

<u>n</u>	$\Omega_n^{\rm Spin}$	KO^{-n}	$\Omega_n^{{ m Spin}^c}$	K^{-n}
0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}
1	\mathbb{Z}_2	\mathbb{Z}_2	0	0
2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	\mathbb{Z}
3	0	0	0	0
4	\mathbb{Z}	\mathbb{Z}	$\bar{2}\overline{\mathbb{Z}}$	$\bar{\mathbb{Z}}^{-1}$
5	0	0	0	0
6	0	0	$2\mathbb{Z}$	\mathbb{Z}
7	0	0	0	0
8			4ℤ	\mathbb{Z}

Atiyah-Bott-Shapiro orientation

Relation between cobordism and K-theory dates back to **ABS-orientation** [Atiyah, Bott, Shapiro '64]

$$\begin{array}{rcl} \alpha_n & : & \Omega_n^{\mathrm{Spin}}(\mathrm{pt}) \to \mathrm{KO}^{-\mathrm{n}}(\mathrm{pt}) \\ \alpha_n^{\mathsf{c}} & : & \Omega_n^{\mathrm{Spin}^{\mathsf{c}}}(\mathrm{pt}) \to \mathrm{K}^{-\mathrm{n}}(\mathrm{pt}) \end{array}$$

explicitly given by the refined A-roof and Todd genus

$$\alpha_n([M]) = \begin{cases} \hat{A}(M) & n = 8k \\ \frac{1}{2}\hat{A}(M) & n = 8k + 4 \\ \dim H \mod 2 & n = 8k + 1 \\ \dim H^+ \mod 2 & n = 8k + 2 \\ 0 & \text{otherwise} \end{cases} \alpha_n^c([M]) = \mathrm{Td}(M)$$

Starting point to prove theorem by [Hopkins, Hovey '92], see also [Conner, Floyd '66; Landweber '76; Kreck, Stolz '93].

Note: α_n , α_n^c are bordism invariants.

Niccolò Cribiori (MPP Munich)

Physical consequences

 Cobordism and K-theory charges are related. They must undergo the same fate in quantum gravity (see also [Uranga '00; Blumenhagen, Brinkmann, Makridou '19; Damian, Loaiza-Brito '19])

• The **combination** of cobordism and K-theory charges should be either gauged or broken. Schematically

cobordism + K-theory = 0

closed strings + open strings = 0

In the following, I will discuss **gauging**. For breaking, **see A. Makridou's talk** tomorrow.

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Tadpoles from bottom-up

[Blumenhagen, NC '21; Blumenhagen, NC, Kneißl, Makridou '22]

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Gauging cobordism

- In [Blumenhagen, NC '21] it is shown that gauging cobordism + K-theory can lead to string theory **tadpoles**.
- Generalisation $pt \rightarrow X$ in [Blumenhagen, NC, Kneißl, Makridou '22]. Results interpreted as dimensional reduction of EFT on X.

Tadpole: integrated Bianchi identity

$$0=\int_{M}dF_{n-1}=\int_{M}J_{n}$$

Total charge on a compact manifold should vanish

Goal: To reconstruct J_n without knowing string theory.

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Constructing the current

 α_n^c is natural candidate for the current

$$0 = \int_M dF_{n-1} = \alpha_n^c(M) + \dots$$

however there can be additional contributions.

1 Bordism charge might not be detected by α_n^c completely. \Rightarrow Add all bordism invariants (α_n^c is just one)

$$0 = \int_M dF_{n-1} = \sum_{i \in inv} a_i \mu_n^i$$

2 There might be defects: branes classified by K⁻ⁿ(pt).
 ⇒ Include defects.

Thus we get a combination of cobordism and K-theory

$$0 = \int_{[M]} dF_{n-1} = \sum_{i \in inv} a_i \mu_n^i + \sum_{j \in def} \int_{[M]} Q_j \, \delta^n(\Delta_{10-n,j})$$

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

イロト 不得 トイヨト イヨト 二日

Example: gauging $\Omega_6^{\rm Spin^c}$

We have $\Omega_6^{\rm Spin^c} = \mathbb{Z} \oplus \mathbb{Z}$ with invariants

$$\mu_6^1 \equiv \alpha_6^c = \int t d_6 = \int \frac{1}{24} c_1 c_2, \qquad \mu_6^2 = \int \frac{1}{2} c_1^3$$

- (Magnetic) 5-form global symmetry, gauged by C_4
- $K^{-6}(\text{pt})$ classifies D3-branes

Combining we get

$$\int_{B} \sum_{i} Q_{i} \,\delta^{(6)}(\Delta_{4,i}) = \int_{B} \left(\frac{a_{1}}{24} \,c_{2}(B) \,c_{1}(B) + \frac{a_{2}}{2} \,c_{1}^{3}(B) \right) \equiv \frac{\chi(Y)}{24}$$

Matching with known D3-brane tadpole cancellation in F-theory for $a_1 = 12$ and $a_2 = 30$. [Sethi, Vafa, Witten '96]

Notice that c_3 cannot appear since it is **not bordism invariant**.

Niccolò Cribiori (MPP Munich)

From groups of pt to groups of X

[Blumenhagen, NC, Kneißl, Makridou '22]

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- The above discussion is just for groups of pt.
 It can be generalised pt → X, with X a topological space.
- The groups are enlarged

$$\Omega(X) = \Omega(\mathrm{pt}) \oplus \tilde{\Omega}(X), \qquad \mathcal{K}(X) = \mathcal{K}(\mathrm{pt}) \oplus \tilde{\mathcal{K}}(X),$$

so potentially more global symmetries.

- What is their interpretation?
- X = BG used for anomalies of G.
 Instead, we take X to be a manifold, such as spheres, tori, CY.

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

イロト 不得 トイヨト イヨト 二日

Some results

For $X = \{S^k, T^k, K3, CY_3\}$, we find (k = dim(X))

$$egin{aligned} &\mathcal{K}^{-n}(X)=\bigoplus_{m=0}^k b_{k-m}(X)\mathcal{K}^{-n-m}(\mathrm{pt})\ &\Omega^{\mathrm{Spin}^c}_{n+k}(X)=\bigoplus_{m=0}^k b_m(X)\Omega^{\mathrm{Spin}^c}_{n+k-m}(\mathrm{pt}) \end{aligned}$$

- We show that they reproduce pattern of global symmetries stemming from dimensional reduction on *X*.
- They classify (d 1 k n)-form charges in D = d k dimensions, arising from dimensional reduction of d - 1 - n, d - 2 - n, ..., d - 1 - k - n form charges along the k, k - 1, ..., 0 cycles X.

Niccolò Cribiori (MPP Munich)

Example: $X = CY_3$

$$\begin{split} \mathcal{K}^{0}(CY_{3}) &= \mathcal{K}_{6}(CY_{3}) = b_{6}\underbrace{\mathcal{K}^{0}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{4}\underbrace{\mathcal{K}^{-2}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{2}\underbrace{\mathcal{K}^{-4}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{0}\underbrace{\mathcal{K}^{-6}(\mathrm{pt})}_{\mathbb{Z}} \\ \Omega^{\mathrm{Spin}^{c}}_{6}(CY_{3}) &= b_{6}\underbrace{\Omega^{\mathrm{Spin}^{c}}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{4}\underbrace{\Omega^{\mathrm{Spin}^{c}}(\mathrm{pt})}_{\mathbb{Z}} \oplus b_{2}\underbrace{\Omega^{\mathrm{Spin}^{c}}(\mathrm{pt})}_{\mathbb{Z}\oplus\mathbb{Z}} \oplus b_{0}\underbrace{\Omega^{\mathrm{Spin}^{c}}(\mathrm{pt})}_{\mathbb{Z}\oplus\mathbb{Z}} \end{split}$$

- All terms give 3-form symmetries in 4D
- Combining groups of pt with same (0, 2, 4, 6) index, we can construct tadpoles in 4D.
- In fact, they are the dimensional reduction of tadpoles for the 10D (9,7,5,3)-form symmetries.

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Interpretation for $-k \le n < 0$ less clear (no K-theory groups)

In [Blumenhagen, NC, Kneißl, Makridou '22] we propose that

- $\Omega_{\text{EVEN}}(X)$, gauged: contribute to tadpoles of $n \ge 0$ groups. New contributions?
- $\Omega_{ODD}(X)$, broken

$\Omega_6(X)$	$b_6\Omega_0(\mathrm{pt})$	$b_4\Omega_2(\mathrm{pt})$	$b_2\Omega_4(\mathrm{pt})$	$b_0\Omega_6(\mathrm{pt})$
	C ₁₀	C ₈	C ₆	<i>C</i> ₄
	<i>O</i> 9	$F(CY_4)_{c_1(M_6)}$	$\operatorname{tr}(R \wedge R)_{\mathrm{D9,O9}}$	$F(CY_4)_{c_1c_2,c_1^3(M_6)}$
$\Omega_4(X)$	$b_4\Omega_0(\mathrm{pt})$	$b_2\Omega_2(\mathrm{pt})$	$b_0\Omega_4(\mathrm{pt})$	-
	C ₈	<i>C</i> ₆	<i>C</i> ₄	—
	07	$N7_{c_1(M_4)}$	$\operatorname{tr}(R \wedge R)_{\mathrm{D7,O7}}$	-
$\Omega_2(X)$	$b_2\Omega_0(\mathrm{pt})$	$b_0\Omega_2(\mathrm{pt})$	_	-
	C ₆	<i>C</i> ₄	—	—
	<i>O</i> 5	$N5_{c_1(M_2)}$	—	—
$\Omega_0(X)$	$b_0\Omega_0(\mathrm{pt})$	-	—	-
	<i>C</i> ₄	-	—	—
	<i>O</i> 3	-	_	_

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Conclusion

- The absence of global symmetries seems to be a fact of QG. It holds true also when enlarging notion of symmetry, such as to include cobordism
- Cobordism and K-theory are closed-open string versions of global symmetries
- Their combination must be either broken or gauged
- This statement has predictive power.
 [Montero, Vafa '20; Dierigl, Heckmann '20; Hamada, Vafa, '21; Blumenhagen, NC, Kneißl, Makridou '22]

Niccolò Cribiori (MPP Munich)

イロト イポト イヨト イヨト 三日

Outlook

- Cobordism groups with more structure (gauge fields, compact manifolds, ...) [Blumenhagen, NC, Kneißl, Makridou, '22]
- Clarify origin of tadpoles from bottom-up
- Is cobordism conjecture combined with K-theory enough to reconstruct tadpoles in string theory (String Lamppost Principle)?
- Are there new objects in string theory detected by cobordism? This can happen when breaking but also when gauging.

Niccolò Cribiori (MPP Munich)

イロト 不得下 イヨト イヨト 二日

Thank you!

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Extra slides

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Example: gauging $\Omega_1^{\rm Spin}$

Torsion charges require care. Consider $\Omega_1^{\rm Spin}=\mathbb{Z}_2=\textit{KO}^{-1}(\rm{pt})$ with invariant

 $\mu_1 \equiv \alpha_1$

and $KO^{-1}(\text{pt})$ classifies $\widehat{D8}$ -branes.

We get $\mathbb{Z}_2\text{-valued}$ charge neutrality condition

$$\int_M \sum_i Q_i \delta^{(1)}(\Delta_{9,i}) = \mathbf{a} \, lpha_{\mathbf{1}} \mod 2$$

- a=even: RHS decouples. Even number of D
 ⁸-branes needed and KO⁻¹(pt) is gauged. New defect needed to break Ω^{Spin}₁.
- a=odd: single D
 8-brane on S¹_p (having α₁(S¹_p) = 1) allowed since vanishing total charge, 1 + 1 = 0 mod 2. Unlikely: S¹_p valid background without D

Niccolò Cribiori (MPP Munich)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computing groups of X

The groups $\Omega(X)$, K(X) can be computed using the Atiyah-Hirzebruch spectral sequence. It is a tool to calculate generalised (co)homology theories.

- Start from ordinary (co)homology
- Refine the approximation by means of differentials
- Eventually, solve an **extension problem** (extra information needed)

Certain differentials are physically associated to Freed-Witten anomalies. [Diaconescu, Moore, Witten '00; Maldacena, Moore, Seiberg '01]

Interpretation: K-theory

$$\mathcal{K}^{-n}(X) = \bigoplus_{m=0}^{k} b_{k-m}(X) \mathcal{K}^{-n-m}(\mathrm{pt})$$

- They classify codimension (n + m)-branes wrapping (k - m)-cycles of X. Consistent with expectation from dimensional reduction.
- By construction, these branes do not suffer from FW anomalies, otherwise they would not survive the spectral sequence.
- All sites populated. Completeness hypothesis.
- Simlar result for KO-theory, for $X = \{S^k, T^k, K3\}$

Niccolò Cribiori (MPP Munich)

Interpretation: Cobordism

$$\Omega_{n+k}^{\mathrm{Spin^{c}}}(X) = \bigoplus_{m=0}^{k} b_{m}(X) \Omega_{n+k-m}^{\mathrm{Spin^{c}}}(\mathrm{pt})$$

Each non-vanishing term in the RHS means that the (n + k)-manifold M is wrapped around non-trivial m-cycle of X.

Two qualitatively different cases:

• $n \ge 0$: There is associated K-theory group $K_{n+k}(X) = K^{-n}(X)$ with string interpretation.

Cobordism reproduces expectation from dim. reduction.

• $-k \le n < 0$: No K-theory analogous in physics.

Cobordism interpretation more speculative

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Breaking cobordism

- Breaking a cobordism symmetry requires the presence of defects to cancel the charge
- This statement has predictive power: already in [McNamara, Vafa '19] new defects are predicted in string theory
- More developments in [Montero, Vafa '20; Dierigl, Heckmann '20; Hamada, Vafa, '21; Debray, Dierigl, Heckmann, Montero '21]

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

イロト 不得 トイヨト イヨト

Dynamical cobordism

[Angius, Buratti, Calderon-Infante, Delgado, Huertas, Uranga '21; '21; '22]

- Breaking cobordism can be intertwined with dynamics of scalar fields
- Setups with net amount of energy in the vacuum (NS tadpole), giving rise to a scalar potential driving scalars at infinite distance in field space
- If this happens at **finite spacetime distance**, spacetime effectively ends!
- At the **end of the world** we find the defects (branes) predicted by the cobordism conjectures and such that

$$\Delta \sim e^{-rac{\delta}{2}D}, \qquad |R| \sim e^{\delta D}$$

Niccolò Cribiori (MPP Munich)

イロト 不得下 イヨト イヨト 二日

A picture

Cobordism, K-theory and tadpoles

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Some examples

- 10d massive IIA. ETW defects are O8/D8
- 10d USp(32) theory (namely IIB with D9/O9).
 [Sugimoto '99; Dudas, Mourad '00]
 ETW defects are 8-branes (see also [Antonelli, Basile '19])
- T-dual of [Sugimoto '99] namely IIA with D8/O8.
 [Blumenhagen, Font '00] ETW defects are 7-branes.
- More in [Angius, Calderón-Infante, Delgado, Huertas, Uranga '22]

We took [Blumenhagen, Font '00] and looked at solutions of the EOMs with **singularities** at the end of the world.

We interprete these singularities as the **7**-branes expected from the cobordism conjecture.

Niccolò Cribiori (MPP Munich)

Cobordism, K-theory and tadpoles

Backreacted T-dual Sugimoto model [Blumenhagen, Font '00]

Setup: RR-tadpole-free stack of $\overline{D8}/08$ in type IIA. Study the backreaction of the stack on spacetime.

$$ds^{2} = e^{2\mathcal{A}(r,y)}ds_{8}^{2} + e^{2\mathcal{B}(r,y)}(dr^{2} + dy^{2})$$

Three solutions were found. All have circle $r \in [-R/2, R/2]$, with $e^{\phi_0} \sim 1/R$, but singularities at $y = \pm \infty$

- Solution I : L_y is infinite ETW at infinite distance
- Solution II⁻: L_y is infinite ETW at infinite distance
- Solution II⁺: L_y is finite ETW at finite distance!

According to Dynamical Cobordism, we can now interpret the singularities of Solution II⁺ as ETW 7-branes (needed to break $\Omega_1^{Spin} = \mathbb{Z}_2$). How do they look like?

Niccolò Cribiori (MPP Munich)

Non-isotropic 7-brane solution

[Blumenhagen, NC, Kneißl, Makridou '22]

Ansatz preserving 8D Poincaré invariance but breaking 2D rotational symmetry

$$ds^2 = e^{2\hat{\mathcal{A}}(\rho,\varphi)} ds_8^2 + e^{2\hat{\mathcal{B}}(\rho,\varphi)} (d\rho^2 + \rho^2 d\varphi^2)$$

We found solutions of gravity+dilaton EOMs consistent with the presence of a 2D delta source.

One of these seems to have right properties.

- Same kind of singularity as the backreacted $\overline{D8}/O8$ stack
- Scalings proposed in [Angius, Calderón-Infante, Delgado, Huertas, Uranga '22] satisfied with same δ as the $\overline{D8}/O8$ stack!

Moreover: Coupling to the dilaton $\sim e^{-2\phi}$ in string frame. New object in string theory?

Niccolò Cribiori (MPP Munich)