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Quantum superposition of two different stationary mass distributions
R. Penrose, Gen. Rel. Grav. 8, 5, (1996).
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Aim and motivation

Aim:
@ 1.To provide a consistent formulation of quantum mechanics in
noncommutative space-time, where time is also an operator.

@ 2.To study the effect of space-time non-commutativity on the
dynamics of a time-dependent system.
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Aim and motivation

Aim:
@ 1.To provide a consistent formulation of quantum mechanics in
noncommutative space-time, where time is also an operator.
@ 2.To study the effect of space-time non-commutativity on the
dynamics of a time-dependent system.

Motivation:
The dynamics of a time independent system is unaffected if we place it in
a NC space-time.

So it is interesting to study a time dependent system placed in a
non-commutative space-time!
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Aim and motivation

Aim:
@ 1.To provide a consistent formulation of quantum mechanics in
noncommutative space-time, where time is also an operator.

@ 2.To study the effect of space-time non-commutativity on the
dynamics of a time-dependent system.

Motivation:
The dynamics of a time independent system is unaffected if we place it in
a NC space-time.

So it is interesting to study a time dependent system placed in a
non-commutative space-time!

Although the effect of non-commutativity becomes significant at very
high energy scale, it is intriguing to speculate that there should be some
relics of this effect at low energy level.

Anwesha ChakrabortyS. N. Bose National Centre for Basic sciences, Kolkata Fingerprints of the quantum space-time in time-dependent quantum mechanic



Summary of our work

We have shown that a time dependent displaced harmonic oscillator
system when placed in a NC space-time, gives rise to geometrical phase
shift, if evolved adiabatically.
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Plan of the talk

Development of usual quantum mechanics from classical toy model:
A brief review.

o Noncommutative symplectic structure of space-time through a
classical model

Quantum mechanics of Non-commutative (NC) space-time
Displaced harmonic oscillator in NC space-time

Adiabatic evolution and emergence of geometric phase

Comments
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Time reparametrization invariant form of action

To treat time and space at equal footing:
—Introduce 7, a monotonically increasing function of t :

@
dr

( )
sz/dtu:/dTU

o 1 [dx\’ 1 %
L(x,x,t)zim p —V(x,t)=L :Em—i—tV(x,t) (1)

i‘:ﬁ>0 and)'<,-:< ); i=0,1,x=1tx =x
dr

Example:

. X
Canonical Momenta: p, = m?
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Constraint: ¢o=pt+H=0 (3)

Total Hamiltonian: T=H +o(r)p=0c(r)p (4)

H™ = 0 is the canonical Hamiltonian corresponding to L7.
First Order Form of Lagrangian:

Lf = pux* — o(7)(pe + H) (5)
Constraint Analysis — Computation of Dirac Bracket:
{X#7XV}D =0= {p;mpu}D; {XH7PV}D :5'”1/ (6)

The system is still left with a first class constraint ¢ = p; + H = 0, which
is basically the generator of gauge transformation and responsible for the
7 evolution in the system.
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Quantization:
[£,8] = 0 = [, A, [,8] = i = [%, B (h=1) (7)
We introduce simultaneous eigen-state of £ and X :
t)t,x) =t|t,x), K|t,x)=x|t,x). (8)
The representations of the phase space operators in this Hilbert space:

<t7X\>A<|1/’> = Xw(tvx); <t,X|f|1/}> = t1/}(t',X)
(Bxlth) = —iOxtp(t, x);  (t,x|Pe|tp) = —i0ep(t, X) (9)

Inner product - < ¥|¢ >_ /dtdxz/;*(t,x)d)(t,x) (10)

and ¥(t,x) = (t,x|v) € L3(R?) [¥(t,x) — Ofort,x — oo]
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Quantization:
[, %] = 0= [pe, ], [£:pe] =i =[%,Bx] (h=1) (7)
We introduce simultaneous eigen-state of £ and X :
t)t,x) =t|t,x), K|t,x)=x|t,x). (8)
The representations of the phase space operators in this Hilbert space:
(t,x|X[) = xp(t, x);  (t,x|Eep) = tip(t, x)
(Bulp) = =i0xip(t,x); (b, x|Pe|t)) = —iBrip(t, x) (9)
Inner product :- < t¢|¢ >_ /dtdxz/;*(t,x)d)(t,x) (10)
and ¥(t,x) = (t,x|v) € L3(R?) [¥(t,x) — Ofort,x — oo]

However to find a consistent probabilistic interpretation, we identify the
physical Hilbert space states by imposing Schrodinger’s Constraint:
(p: + H)|v; phy) = 0 Gauge invariance of the physical states !
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Quantization:
[£,8] = 0 = [, A, [,8] = i = [%, B (h=1) (7)
We introduce simultaneous eigen-state of £ and X :
t)t,x) =t|t,x), K|t,x)=x|t,x). (8)
The representations of the phase space operators in this Hilbert space:

<t7X\>A<|1/’> = Xw(tvx); <t,X|f|1/}> = t1/}(t',X)
(Bxlth) = —iOxtp(t, x);  (t,x|Pe|tp) = —i0ep(t, X) (9)

Inner product :- < t¢|¢ >_ /dtdxz/;*(t,x)d)(t,x) (10)
and ¥(t,x) = (t,x|v) € L3(R?) [¥(t,x) — Ofort,x — oo]

However to find a consistent probabilistic interpretation, we identify the
physical Hilbert space states by imposing Schrodinger’s Constraint:
(p: + H)|v; phy) = 0 Gauge invariance of the physical states !

1 9?2
2m Ox?

o (t) = | R
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Now to get a probabilistic interpretation, we derive the continuity
equation :
op 0
ot Ox

A * * H
with p = 1/Jphy(x, Dbl o — ﬁ/m( phy(x, t) Ox Yphy (X, t)).

0 (12)

Perfoming spatial integration,

at/oo pdx = — /OO (0dy)dx = 0 (13)

— 00 — 0o

Only by considering 1,y (X, t) — 0 as x — 00, we can show the
conservation of total probability.

Induced inner product for the Hilbert space L?(R!)

(16; phy|; phy)e = / dx 5, (% Dbpmy(x, 1) <00 (14)
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Quantum Space-time: A toy model

L0 = 1+ 9 pupy, iy =0,1 (15)
Dirac Brackets:
{(x*x"}p = 0" {pu,p}p =0 {x*,p,}p=25",  (16)
Non-commutative Heisenberg Algebra:
[£,%] = i0; [pe, px] = 0, [E,pe] = i = [%, Bx] (17)
Hilbert Space:
(b)"
V!

_t+iR

0); b= Nerk b|0>:0} (18)

He = 5pan{|n> =
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Quantum Space-time: A toy model

L0 = 1+ 9 pupy, iy =0,1 (15)
Dirac Brackets:
{(x*x"}p = 0" {pu,p}p =0 {x*,p,}p=25",  (16)
Non-commutative Heisenberg Algebra:
[£,%] = i0; [pe, px] = 0, [E,pe] = i = [%, Bx] (17)
Hilbert Space:

He = 5pan{|n> =

Ao = {|W) = W(2,%) = W(b,b") = Y co.m|m)(nl} (19)

(non-commutative associative algebra,not a Hilbert space as yet !)

Anwesha ChakrabortyS. N. Bose National Centre for Basic sciences, Kolkata Fingerprints of the quantum space-time in time-dependent quantum mechanic



Quantum Space-time: A toy model

L0 = 1+ 9 pupy, iy =0,1 (15)
Dirac Brackets:
{(x*x"}p = 0" {pu,p}p =0 {x*,p,}p=25",  (16)
Non-commutative Heisenberg Algebra:
[£,%] = i0; [pe, px] = 0, [E,pe] = i = [%, Bx] (17)
Hilbert Space:

) £t ix
’HC:5pan{|n>: (\b/% 10); b= t\j@; b|0>:0} (18)

Ao = {|W) = W(2,%) = W(b,b") = Y co.m|m)(nl} (19)

Blins = /ere() < oo} c Ao

(20)
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Coherent states

AR

The actions of phase space operators on |¢(t, X)) are given by,
Tlp(E %)) = E(E %)), X[P(E %)) = K[p(F, %)),
BU(E.2)) = 5[ 0(E 2], Pt R) = g1 0(ER] (21)
Coherent state basis:Maximally localized space time event

|z) = e~ |0y € H. (22)

~>

ik t4ix

N TR

b|z) = z|z), where b=
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Coherent states
The actions of phase space operators on |t)(£, %)) are given by,

AW(’?’ )A())v XW}(Ea )A()) = )?|1/)(f, )?))7

Tly(E %) = ¢
BU(E.2)) = 5[ 0(E 2], Pt R) = g1 0(ER] (21)
Coherent state basis:Maximally localized space time event
|z) = e~ |0y € H. (22)
t+i% t+ ix
b|z) = z|z), where b= 738 ; Z= 729 ;
(23)

t = (z|t|z), x = (z|%|z)
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Coherent states
X)) are given by,

The actions of phase space operators on |¢)(t,
Tly(2,2)) = |w(t 8)), X[W(t,2) = 2 (£,2),
A N n A o 1 .
'DXWJ(L)/&)) = _éltvw(tv)?)]y Ptlw(tv)?)) = E[Qaw(tﬁ?)] (21)

Coherent state basis:Maximally localized space time event

|z) = e~ |0y € H. (22)

t+ix t+ ix

b|z) = z|z), where b = oz = :
t = (z|t]z),x = (z|%|2) (23)
(24)

V270 |x,t)y € Hq

|2,2) = |2) = |2)(z] =
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Coherent states
X)) are given by,

The actions of phase space operators on |¢)(t,
Tly(2,2)) = |w(t 8)), X[W(t,2) = 2 (£,2),
A N n A o 1 .
'DXWJ(L)/&)) = _éltvw(tv)?)]y Ptlw(tv)?)) = E[Qaw(tﬁ?)] (21)

Coherent state basis:Maximally localized space time event

|2) = e 2+ |0) € H, (22)

blzY = 2[z), where b= f\j;; z= tjjg(;
t = (z|t|z), x = (z|%]z) (23)
|2,2) = |2) = |2)(2] = V270 |x, t)v € Hq (24)
(25)

2
/ d—|z Z) xv (z,2z| = /dtdx|x t) *v (x, t] = 1g,
T
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where the product *y is given by,
i b wrg
oy = D% _ B —ibte)BT. g (26)

Inner Product:L?,(R?)

(@]¢) = / dtdx 7 (x, £) v B(x, £) (27)

~

For (%, 1) € Hq : (2, Z[1)) is the corresponding symbol.

(2, 21(% 1) = — (PR D) (28)

27 B V21l

Isomorphism between operator algebra and symbol algebra

w(X’ t) =

3

(219(%, D)(%, 1)) = (21d(%, £)) *v (2]d(%, 1)) (29)
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Physical Hilbert space and Induced Inner-product

First class constraint: (P; + H)[((K, £))pry = 0 (30)
Space-time representation of Schrédinger’s equation:

(2, 2|(Pe + A) (%, £))phy =0 (31)

Otpg + O0xJy =0 (32)

where
Po = w;hy(xv t) *v wphy(xv t) > 07
X 1 * *
55 = Wy wv (Bt — (Ot »v ] (39)

Inner product in L2(R!) (Physical Hilbert Space)

oo

<1Z)phy|(2)phy>t = / dx 1/);hy(X7 t) *v ¢phy(xa t) < oo. (34)

— 00
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Displaced Harmonic Oscillator in Quantum Space-time

Hamiltonian of a displaced harmonic oscillator is given by-
H= 2+ Zmw?22 + f(t)% + g(t)px (35)
m

where [&, pi| = i.

On quantum space-time ['f,X] = if, the Hamiltonian can be-

A

A= 4 om R4 (DX + RA(D] +a(P)P (36)

I.at(Z,ZIII,thy) = (272“:/'1&[3/7}’)
:iatwphy()@ t) =
2
(X, T DX {F(T)X 4 XF(T)} + 8(T)P) * Uy (. )
(37)
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Space-time representation

2
1Ot phy (X, t) = [ﬁ+§mw2X3+%{f(Tg)Xe+ng( Tg)}+g(T9)PX} Dohy (%, 1)
(38)
~ " 1 1 ~
(R V(3 ) = (2, 2159) = = (2I712) »v (2, 21V(%, )
— XpV(x, t) (39)
P, = —i0,
Xy = g(a —i0;) = SxS7!

To=t+= (at+ i0) = STt(SsT)7!

] 2 2 i .
where S = e3(%19)e=7399« _y A non-unitary operator
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This helps us to introduce the following map:
STL2(RY) — [3(RY)
Silwphy(xv t) = ¢C(X7 t)

It can be shown, for any generic states,

/ ¢ oty (%, 1) % oty (3, ) = / dx Y3 (x oe(x,t)  (40)

t t

Note that, the integrands are not however equal!
iath(ta X)

- [ampi b M 9 (6)(xp+ px) + F(E)x -+ g(t)px] Yol 1)
(41)
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The adiabatic and periodic evolution

He = a(t)p3 + Bx* + (1) (xpx + pxx) + F(t)x + g(t)px

= Hy o+ F(t)x + ()P (42)
where
a(t) = 5 — 041
1 2
8= Emw
1) = 307 (2) (43)

We consider R = («(t), 8,7(t)) to be the time dependent parameter
space , which varies periodically with time period of T .

The system Hamiltonian changes adiabatically through this parameter so
that they make a closed loop I' in the parameter space, and the
Hamiltonian comes back to its initial value.
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Diagonalization

\f{ ( *’)Px]: Q(t) = 2v/af =7

= A(t)lx + (B(t) +iC(t))px] (44)

H. = Q(t)(a'a + %) + P(t)a + P(t)a' (45)

where,
P(t) = A(t)[C(2)f(t) + i(B(£)f(t) — &(1))]

Further, we give a time dependent unitary transformation:
He — He = U(t)HU (t) — itd(£)8U1 (1) (46)

so that H e = ids1pe, where 1) = U(t)te
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with L
Z/[(t) _ ef(wafwa Jrll)’ weC, | eR (47)

where w and / are given by,
= fie"f dtQ(t)/ dt P(t)ef"f dt Q(t)

| = / dt Q(t)|w|? (48)

A, = Q(t)(ata + %) — e (49)
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The Heisenberg equation of motion for the operators a and a' are given

by, .
‘i/it — &(t)al + X(£)a (50)
and
93 _ (t)a+ X(t)a" (51)
dt

where X, £ contains first and higher order time derivative of the

parameters «(t),v(t). As they are slowly varying with time, we will drop
the second and higher order derivatives.

We finally obtain the leading behaviour for adiabatic transport around a
closed loop ' accomplished in time T, to get

al(T) = af(0)exp li /OTQ dr + i/OT <§12) szT] (52)

Anwesha ChakrabortyS. N. Bose National Centre for Basic sciences, Kolkata

Fingerprints of the quantum space-time in time-dependent quantum mechanic



Dependence on non-commutative parameter

In terms of the original parameters,

p 1
epll=—5 [ |V
slr] 2//5 i 2/ Emuw?( L — 64(2) — L F2(2)

2 2m

= Whenever a system can be written in terms of Lie group generators,
the occurance of geometrical phase is a natural consequence.

The Hamiltonian of the system can be written in terms of the generator
of the su(1,1) algebra elements.

fe = AL(t)K, (54)

where Kju = (x2, p2, xpx + pxx).
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Comments

@ Forced Harmonic Oscillator placed in Quantum space-time =
Dilatation term =- gives rise to Berry phase.

e § =0 = Berry phase = &g = 0.

@ It has been shown that two separated harmonic oscillator states,
only interacting via linearalized gravitational field get entangled.
Essentially this indicates the nature of quantum nature of gravity,
which is seen in the non-relativistic regime.

Future Work:

It will be interesting to study the effect of linearized gravity when it
interacts with the same system placed in a noncommutative
space-time background.
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THANK YOU !
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