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There is a strong intuitive understanding of renormalization. due to Wilson, in terms of the
scaling of cffective lagrangians, We show that this can be made the basis for a proof of
perturbative renormalization. We first study renormalizability in the language of renormalization
group flows for a toy renormalization group equation. We then derive an exact renormalization
group equation for a four-dimensional Aé* theory with a momentum cutoff. We organize the cutoff
dependence of the cffective lagrangian into relevant and irrelevant parts. and derive a lincar
cquation for the irrelevant part. A lengthy but straightforward argument establishes that the picee
identified as irrelevant actually is so in perturbation theory. This implies renormalizability. The
method extends immediatelv to any system in which a momentum-space cutoff can be used. but
the principle is more general and shoutd apply for any physical cutoff. Neither Weinberg's theorem
nor arguments based on the wpology of graphs are needed.

QFT contains an ultimate scale Ayyys = E,\phys

(For notational convenience : Appys — A)
Below A:  Effective Field Theory (EFT): ok L,
Above A: UV completion needed : %
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Standard Model

EFT valid up to a certain scale A (Mp, Mgyr, ...) = physical cut-off
Effective Lagrangian 5(5//\\3/ describes processes for momenta p < A
Un-suppressed quantum fluctuations = m% ~ A?
“Quadratic sensitivity” to the ultimate scale of the theory
Note: m% ~ A? is m? (1) at = A
If A too large = m3Z(A) “unnaturally” large

= problem of “hierarchy” with Fermi scale pf
where m%(ur) ~ (125 GeV)?

Several attempts to “solve” this naturalness/hierarchy (NH) problem.

Let's focus on some of them ...
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1. Quantum Gravity Miracle
see for instance Giudice, PoS EPS-HEP2013, 163 (2013)

Assumption - The UV completion of the SM provides the condition
mp(A) < N

Conspiracy among the SM couplings at A (example: Veltman condition)

In this scenario
(i) Naturalness “solved” from physics “outside” the SM realm: the condition
is a left-over of its UV completion

(i) Hierarchy solved “inside” the SM: the perturbative RG equation for
m#(w) is considered (y < 1 is the perturbative anomalous mass dimension)

d
udfumﬁ(u) = v mp()

= m}(ur) and mi(A) of the same order = no problem of hierarchy
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2. Self-organized criticality

see for instance Pawlowski, Reichert, Wetterich, M. Yamada, Phys. Rev. D99, 086010 (2019)

The key equation is again the RG equation for the running Higgs mass m?% (1)

d
udfumﬁ(u) = 7 miy(p)

but now assumed that gravity provides a non-perturbative value for v (~ 2)

In this case, the large hierarchy between the Fermi scale pr and the UV scale
A can be accommodated = no Naturalness / Hierarchy NH problem
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3. Dimensional Regularization

see for instance Salvio, Strumia, JHEP 06, 080 (2014)

Some authors suggest DR endowed with special physical properties that
make it the correct “physical” way to calculate the radiative corrections in
QFT. If no new heavy particles are coupled to the Higgs boson, the NH
problem would seems to be absent from the beginning
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These approaches cannot solve the NH problem

Why?
The EFT nature of the SM not properly and fully taken into account
Statement: The SM in an Effective Theory
Meaning:

(A) the parameters (masses, couplings) gi(A) in [l(sl,\\}, result from integrating
out the higher energy dof related to the UV completion of the SM

(B) the same parameters gi(1) at scales 1 < A result from integrating out the
modes of the fields that appear in Eg,\&, in the range [u, A].

Wilson Lesson
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Effective Field Theory (Wilson)

Action Sa[®] :/ddxﬁA with d(x) = Z v, e

0<|p|<A

() =)+ () w)= D> g™ Gx)= D g™

0<|p| <k k<|p|<A

Wilsonian Action at k <A Sip] <« e = /D[(p']efs/‘[“"“",]

Wilsonian Action at k — 0k Sy_si[p] <« e okl = /D[cp']efsk[“””/]

o(x) = Z p,e™ @' (x) = Z p,e™

0< |p|<k—&k k—8k<|p|<k

Legendre Effective Action [[p] = Sk—o[p] ; Action Sap] = Sk=a[¥]
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Sk—sk[p] = —In (/ D[(p/]esk[#”rw’])

P = Y e = Y g

0<|p|<k—3dk k—8k<|p|<k

Skl = / dx (Uk(‘P) + Zky) D e + Yi(9) (B 0 9)? + Wi(9) (¢ 8.0u)* + - )

Local Potential Approximation Zx(p) =1, Yi(p) = Wi(e)=---=0

2
Homogeneous background ¢(x) = ¢o (UL’(¢) = 8%;2‘”)

1 d’p P> + U/ (¢0)
Uk—sk(w0) = Ui(wo) + = / In
2 Jik—sk.n (2m)d p%+ U}/ (0)

d k9 k2 + U (o)
k—U, =— In i
st =iy (o)
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Non-perturbative RG equation for Ux(¢o). Inserting in this equation the

polynomial expansion (Z(2) symmetry @9 — —(q assumed)

1 M 4 A(G) )\(8)
Uk(go) = *mk%‘*‘ ,SDO—F 6l 05+ ?%4‘
= RG Equations for the couplings (Np = 2/(47)"/?r(D/2))

kdm2(k) _ KPNo (k)

dk 2 k24 m2(k)
LIMK) ~ kPNp Xe(k) X2 (k)

dk 2 | k2+m2(k) (k24 m2(k))?
kdxﬁ(k) _ KPNp Xe(k) A(K) e (k) +30 X3 (k)

dk 2 | k24 m2(k) (k2 4+ m2(k))2 (k2 4+ m2(k))3

|
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Scalar Theory in d = 4 dimensions

Wilsonian action Sulg) = [d*x (% O Oud + Uk(qﬁ))

Truncating the potential ~ Ui(¢) = 2m’¢” + £\, ¢* =

dmi _ K" M
dk — 16m2 K2+ m?
di K* 32

dk 1672 (k2 + m2)?

When m? < k? in the whole range of integration, well approximated by

dm? Ak 2, Ak o
gk = 1em < T igm™
LM _ 3N
dk — 1672

Taking “SM-like" boundaries, m(ur) = 125.7 GeV and A(ur) = 0.1272,
numerical solutions to the two systems coincide with great accuracy (!)
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dmiy X 2. M o
gk~ 16m2< T 1gm M
dhe _ 3
dk  16n2

Can be solved analytically with no further approximations. Second Equation:

A
Ap) = :
1- #)‘A log (%)

Inserting in the First Equation = Non-perturbative RG equation for m?(p)

(E2(x) is the generalized exponential integral function E,(x) with p = %)
3

1
R (30, log (&) — 1672)

A
3272 u 3072 L
x |22\ x (167° —3x,log [ = ) ) Ez —2log [ =
A 335, A
2
1 2> 3272 " 167%\ /?
ax, 3 —— [N E 3m* | x (3mlog () —
XYW ( e RGN ) T e A N

m? ()
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Nice features of this Non-perturbative evolution equation for m?(p)
(replace A, — A)

1) Expanding for A < 1 and pu? < A*> = well-known perturbative result

2 2 A 2 2 /\2
my, = m, + T2 A —mAlogE

2) Also: very interesting non-perturbative approximation, obtained by
replacing Ax with X in the rhs of the RG equation for m?(p)

2 2 2
2 _ [V T6x2 2 AN Y
e = (/\) (mA+327T2)\) 3212 — A

Excellent approximation for m?*(;1) (see ugly equation previous page)
Important result
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A 2 2
2, N _ (I 16x2 2 AN AL
() = (K) ('"A T30 - ,\) T 3202 -

Contains several lessons

1) How the fine-tuning operates in the Wilsonian framework
Boundary at the UV scale y = A for m*(n): m’ and ﬁ need to be

fine-tuned if at the IR scale fion we want m (,u/ow) 0O(100) GeVv.
2) For most of the running towards IR, flow dominated by the ;*> term
When ( + ) ~ wkﬁ first term takes over

2r2—x
3) Define

by 2
m;(n) = m*(u) + Wif‘_)\
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A 2 2
2 W 162 2 AN Y
m () (/\) <'"A Mo ,\) 322 — X

3) Defining the combination

A

mp(p) = m*(u) + 3072

from the above equation we see that m?(uz) obeys the RG equation

(v= 16% = mass anomalous dimension at one-loop)
I

d _ 2
" m; () =y m; (1)

This coincides with the one-loop improved RG equation for the renormalized
running mass = mZ(u) is the renormalized running mass
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4) The quantity

subtracted to m?(u) in the definition of m?(1)

Ap?

m7(p) = m*(u) + 3972 — \

is the critical mass

Integrating the Eq. for m?(u) (previous page)

A

m7(p) = (;:) 7 2 (10)
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Comments

We derived equation

d 20y _ A
Mdi‘umr(u) - 1672 mr(u)

in the Wilsonian framework, namely from the Wilsonian RG flow equation

G U U S
udum(u)— oz i T 12 (W)

whereas it is usually derived in the context of “technical schemes” as
dimensional, heat kernel, or zeta function regularization.

When quantum fluctuations are calculated within a “technical scheme” we only
have access to first equation: blind to the fact that mf(,u) is physically
obtained only after the subtraction m?(n) — mZ(u) = m*(u) — m2 (1)

When quantum fluctuations are calculated within the Wilsonian “physical
scheme” = we see how the renormalized mass emerges
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Question 1

Should we identify the physical running mass mf,hys(u) with

A 2 2
2 M\ 1672 2 AN A
)= () <m"+327r2—)\)_327r2—)\

or with

A

m;(p) = (:)) 7 2 (o)

Original mass m?(u) or subtracted mass m?2(u)?

In QFT mpys(1e) is usually identified with my (y)

Running couplings gi(u) < integrating out quantum fluctuations in [u, A]
gi(p) : effective couplings at the scale u. True, in particular, for the mass.

2

= Identify m,

hys(11) with m*(1) not with the subtracted m?(v)
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Question 2

But ... in QFT textbooks mihys(u) usually identified with m?(p)

What did we do wrong?

Let us compare how m?(u) and m?(u) depend on 1

For sufficiently low values of 1 (IR regime) m?(u) and m2(u) coincide

Overlap p region given by

AP N (2 AN
EP T (K) Mt 3202 —a

Therefore: the above equation shows the limitations of

ud%mf(u) =y m7 (1)

If we are interested in energy scales p above this region we must go back to
the original flow equation, that has a much wider range of validity
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Standard Model - RG Equation for the Higgs mass

a(p) - 2
Tonzt T () Mk

LimQ—
ldu H =

a(p) : combination of SM couplings (gauge, Yukawa, scalar). At one-loop:
167%a(u) = 1277 — 120~ > g — 2 g
~(u) : mass anomalous dimension
2 2

3 9
L6m™y(u) = b + 12\ — S &f — 5 &

Integrating the RG equation for m? (1)
2 _ (Y 2 _ aN o
miy(n) = (%) <mH(A) QW) el

Very good analytical approximation to the flow
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Figure : Numerical solution to RG equation and its Analytical approximation

plotted: indistinguishable

S
10'9 10
Son N
o 10 Q 104
5} 101 g’
2 )
= 107 = 1000
g 104 £
100
1000 107 10! 101 10" 100 1000 10* 10° 100
n(GeV) n(GeV)
d OC(N) 2 2
an™H = Tom P + v(p) my
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As for Scalar Theory: define critical mass and subtracted mass

2
[
M) = 5 and i () = mi(e) = ()

From which we immediately see that

d vy
NTm%,r(u) =y my, (k) = my(u)= <“) miy, (o)
1 1o

This equation coincides with the one-loop improved RG equation for the
renormalized running mass = m,%,,,(,u) = renormalized running Higgs mass

However the original equation is

d @ v al® a
bty = S )y = i) = (§) (mﬁ(A) ) o
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d d > o(p)

2 2 . o 2 2
UTMmH,r(M) =9 my, () Hap™H = Tomt + (1) miy

The two flows coincide for values of i such that

2 2
ap BT [ 2 al
fad A) —
72—~ < (/\) (m”() 2—’y>

Physical Lessons

Fine-tuning of mf_,(/\) has a profound physical meaning: provides the
boundary at the UV scale A for the RG flow of m?,(1)

Large value of m?(A) is physically necessary and welcome
Quadratic running lasts for most of the m?(u) flow towards the IR
Multiplicative renormalization emerges while flowing towards the IR

In schemes as DR we only have access to mj; (1) flow (Why is this the case?
... Backup slides). Physical perspective the latter is an emergent property of
the running, that rises when the flow approaches the IR
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Change in the usual paradigm

Wilsonian framework physically required =- large hierarchy between UV
and IR values of m?, & fine-tuning of m?(A) are physically necessary

Multiplicative renormalization valid only at sufficiently low energies
The “elbow” near p ~ 10® GeV signals the “transition”
additive — multiplicative renormalization

S
109 10
g 13 §
10 4
¢ g 10
= 10" =
2 2
= 10 = 1000
3 1o 3
100
1000 107 101 10 10" 100 1000 10* 10° 10
n(GeV) n(GeV)
2 a(p) - 2 d , 2
Pap ™ = Tom2 () my = p——my (1) = () my (1)

dp
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Change in the usual paradigm

Taking into account experimental uncertainties: in the SM parameter space
there exists a region of “tiny size” from which large UV boundary values of
m? give rise, through the RG flow, to the measured (within errors) value of
the Higgs mass

Region inherited from the ultimate UV completion of the SM (or of the yet
unknown BSM): the Theory of Everything.

Multiplicative renormalization confined to the IR regime only. It can be
obtained within different schemes (DR, heat kernel, ...), but no physical
content can be related to the choice of a specific scheme.
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Change in the usual paradigm

An interesting question arises, that might be subject to experimental
investigation in the (hopefully not too far) future.

No one has observed up to now the running of the Higgs mass, but we can
consider processes that should test the flow (as for the running bottom quark
mass). Future experiments could discriminate between m%(y) and mf_,’,(u)

126.8] s
126.6 ~
126.4 e

126.2 /

126.0
1258~

mp(p)(GeV)

175 180 185 190 195 200
n(GeV)

Figure: Blue line: IR flow of m?(u). Yellow line: IR flow of m,z_,’r(u).
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Change in the usual paradigm

Usually connection between QFT and Statistical Physics: correspondence
between the request £ > a in the Theory of Critical Phenomena (a = lattice
spacing, & = correlation length) and the request m*> < A in QFT

Phrased in RG language — tuning towards the “critical surface”, achieved
through the subtraction of the “critical mass”: mZ,(1) = m*(p) — m2, (1)

But m7.,(11) captures the IR final part of the running of mp,. (1)

Flow physically meaningful even far from critical surface and fixed points

GCp (/mole K)
g & 3

o
o

T K
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Nice Example. Landau—Ginzburg Theory - Ferromagnetic Transition

Flel = [ & (3(Y9)* + Ui(9)) U(@) = Emie? + 3"
Jdmi K3 Ak dAe _ 3k3,\§
dk 472 (kz + m2) dk 42 (k2 + mi)z

Dimensionless couplings mi =k~ mi and )\k =k~ lAk

dm ~ Y dx, ~ 32
kﬂ:_2mi_7k~ kik:—kk"'ik,v
dk 472(1 4 m?) dk 472(1 4 m2)?

Gaussian G and Wilson-Fisher WF fixed points. G is IR repulsive (UV attractive)

Blue and Red IR flows: Different boundaries in the UV region around G (Green: linearization)
UV linearly divergent boundary (d=3) crucial for physics at WF: Ferromagnetic transition

Fine-tuning Physically needed
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From TOE to Condensed Matter and Classical Physics

Alexandre, Branchina, Polonyi, Global Renormalization Group, Phys.Rev.D 58 (1998) 016002
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More Slides

Wilsonian RG
versus

Dimensional Regularization
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Very useful example:  Scalar Theory in d-dimensions

d = integer dimension (no dim reg)
® Wilsonian Effective Action: S[¢] = [ d9x [ (Bud)? + Vk(qﬁ)}

Wilson (Polchinski) RG Equation (LPA)

o Kkd k2 + v;/(qs))
k= Vi(¢) = — In
9k k(¢) (47r)%r (%) ( k2

2 —
® UV boundary: Vi(¢) = Vo(¢) = Qo + 2 ¢% + ;/‘47;’&)(254

Approximating Vi(¢) in the rhs as Vi(¢) = Va(d)

One-loop effective potential

N g 2 1 acdy 2
1 d’k my+ 314N ¢
Vii(@) = Vo(9) + 3 / g hn (1 + 02k2)

5V(e)

Lesson: One-loop Effective Potential Approx. of the Wilsonian Potential
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Let us focus on the Radiative Correction dV/(¢)

GV 2
SV(¢) = %/ (;w;(d In <1+ ng¢)> = 6V1(9) + dVa(0)

where M?(¢) = mp + '~ N0 ¢

4 1
5Vi (o) “dd <M2(2¢)> / dt(1— )51 %
d(4m)2r (9) 2 w2

M2 A2

d AN M2(¢)>
5Vs —r (Z) n
0= d(47r)zr(g) (u) <1+ A?
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Calculating 0V/(¢)

For any integer d:

o (MONE e e
5v1(¢)—d(47r)gr(d)( 2 ) /2 dtt™2(1—t)2 ' =

2 22

[Ai(2) — Ax(2)]

= lim
z—d

where z is complex, and

_ = z z _ 5 z z._ M9)
Al(z):F(z)~B(1—§,§) Az(z)zF(Z)~Bf<1—272:,\,W>

F(z) = Mzz M2(¢)>§
(2) z(47r)2r(§)( I

B and B; are (the analytic extensions of) the Beta functions

Both B and B; have poles in z = 2,4,6, ...

0Vi(¢) finite = the poles of A; and A; have to cancel each other
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Example: V(o) in d = 4 dimensions

z =4 — c. Expanding in powers of ¢ and M?/A?

L€ 2( 4 2
A1(4—e):l[M2(O)]< 2+ +In M;L‘?;) + Oty

647

=€ [ M2 2
A2(4—e)—l£47r2(¢)]<—§+7+| ’Z’i(i 3)+9€5¥+O/%

uoe

A2
" 64n2 [M2(¢)]2 <I\/I2(¢>) log €V ¢))
Remember: §Vi(4) = lime—o [A1(4 — €) — A2(4 — €)]. Adding 6 Va(¢)

nme(g) M) A1 )
2 e \"mre) T2) Tk

§V(¢):5V1+5V2 =

2 242 2 2
_ mg o, X4, NM _(M) A 1
= V@) =t T4 Tt T e \ Mt 2

No reference whatsoever to ¢ (of course!)
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With Qo =Q+0Q, , mj=m"+dm. , Xo=A+0),
2 2 2
gz [0 (2) =1] ¢ omi = =25 + 3% [ (%) -]
2 2
e [ln (%) - 1}

. where 0Q, and Jm. realize fine-tunings (*) ...

_ m°A° 2A\?
and 0Q, = -3~

= Renormalized One-Loop Effective Potential (take Q2 = 0)

1 A 1 A 2 2 4 A2 3
Vi(o) = §m2¢2 + E¢4 + 6472 (m2 + §¢2) |:1n <m#22¢) B 2]

(*) Physically ... in the parameter space of the theory we go close to the
Critical region, or Critical Surface ...

. Let’s move now to Dim Reg ...
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Radiative correction §V/(¢) in Dim. Reg.

® 0V(¢) in Dim Reg. ’d—) complex, dE4—e‘

4—e 2 27% _ /€
5V(¢)—)6VL(¢)572(5T? <M#(2¢)) r(ifz)

_ M (2 L M@ 3> +0(e)

6472 4 2
T(—d/2) defined for any complex d # 2,4,6, ...
e Counterterms in MS scheme (E =€ (1 +51In %)):

m* Am? 3)2
6Qc = R LA =
€7 a2t Me = T6n2e ©~ l6n2e

® Renormalized One-loop Effective Potential (take Q2 = 0) as before

1 A 1 A 2 24 Ag2 3
Viil(¢) = 5""2(1)2 + 5474 + e (m2 + §¢2> |:ln <mM22¢> _ 2]

Before going on with our analysis ... Let's hear “news” from the Literature




Wilsonian RG vs. Dimens. Regul.
0000000 @000000000000000000

“Dim Reg" versus “Wilson" (= “successive elimination of modes”)

Views on “Dim Reg” and “Wilson”

1) Typical textbook statement ... “Dimensional Regularization has no direct
physical interpretation” (J. Zinn-Justin - Quantum field theory of critical phenomena)

2) Recent ideas (gaining lot of followers)

“Maybe power divergences vanish because the ultimate unknown physical
cut-off behaves like dimensional regularization” (M. Farina, D. Pappadopulo and A.
Strumia, JHEP 08 (2013) 022)

“Wilsonian computation techniques attribute physical meaning to momentum
shells of loop integrals” ... "The naturalness problem can be more generically
formulated as a problem of the Effective Theory ldeology” (A. Salvio and A.
Strumia, JHEP 06 (2014) 080)

Accordingly DR should have special physical properties that make it the correct
way to calculate the quantum fluctuations ... while Wilson ... incorrect ...
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Dim Reg.: Physical Meaning? ... Special Physical Properties?

Ve(9)

Vo(6) + Ve(®)

0Qint, om? ONint f OAe

int>

@ ) -=2 )
00, dmy, 6,

Vo(é) Viu(o)
2
Vo(¢)290+?¢2+%¢4:(9+6§2) (m +om)$ + iI(A+ 52,6
=(Q+069,, +6Q.)+ = (m +om’ 4 om’ )’ + — (/\+5/\,m+5&)¢>4

= Ren.Pot.: Vj(¢) =

2 A o)\? m + 3¢ 3
2(m +5¢> |:1n(u2 -3
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Dim Reg.: Physical Meaning? ... Special Physical Properties?

DR secretly realizes the fine-tuning:
m2A? m* N? m*
0Qnt = — In| =) -1| — —=p ¢
it =" T a2 2 372!
S AN? N Am? n A? 1 Am?
ms., = — i — —
nt 3272 3272 u? 167%€
32 A? 32
OAint = In|{—= | -1 —
T 30p2 [ (;ﬂ) ] 1672%¢

DR has a Physical Meaning but No Special Physical Properties. It implements
the Wilsonian iterative elimination of modes for including the quantum
fluctuations in the Effective Theory, and secretly realizes the fine-tuning
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Summary on DR

Vi(6) = Vo(o) + Vi(d)

Qi M3y, &,\,,;//f~~( : F—\\;\\mg. Sm2, S\

/ \

O G
00y, om?, oA,

Vo(o) Vu(¢)

DR setting, “Bubble (2)", obtained by introducing an intermediate step, (1) —
(2), in the process of obtaining the Renormalized Potential, “Bubble (3)".

DR provides a shortcut: “Bubble (3)” is reached starting from “Bubble (2)".
The fine-tuning step “Bubble (1)" — “Bubble (2)" is skipped (secretly realized)

Lesson: DR is a way to implement the Wilson's strategy in the perturbative
regime, where the fine-tuning (in the Wilsonian language: tuning toward the
critical regime, critical surface) is secretly performed.
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Naturalness and Dimensional Regularization

What should we then say on those attempts to solve the
Naturalness/Hierarchy problem with DR?

® Classically Scale Invariant BSM. The theory does not possess mass or
length scales = only dimension four operators

® Dimensional Regularization used = Scale Invariance only softly broken =
apparently no fine-tuning needed . ..seems good ...

® _..But...we have just shown ...DR secretly realizes the fine-tuning

= No way to solve the Naturalness/Hierarchy problem with DR



Wilsonian RG vs. Dimens. Regul.
000000000000 e0000000000000

Flourishing literature
. A. Meissner and H. Nicolai, Phys. Lett. B 648, 312-317 (2007).
. A. Meissner and H. Nicolai, Phys. Lett. B 660, 260-266 (2008).
. Foot, A. Kobakhidze, K. L. McDonald and R. R. Volkas, Phys. Rev. D 77, 035006 (2008).
L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703-706 (2008).
. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671, 162-166 (2009).
Alexander-Nunneley and A. Pilaftsis, JHEP 09, 021 (2010).
Boyle, S. Farnsworth, J. Fitzgerald and M. Schade, arXiv:1111.0273 [hep-ph].
. D. Carone and R. Ramos, Phys. Rev. D 88, 055020 (2013).
. Farzinnia, H. J. He and J. Ren, Phys. Lett. B 727, 141-150 (2013).
. Kawamura, PTEP 2013, no.11, 113B04 (2013).
® |. Bars, P. Steinhardt and N. Turok, Phys. Rev. D 89, no.4, 043515 (2014).
® M. Heikinheimo, A. Racioppi, M. Raidal, et al, Mod. Phys. Lett. A 29, 1450077 (2014).
® A. Salvio and A. Strumia, JHEP 06, 080 (2014).
® T.G. Steele, Z. W. Wang, et al., Phys. Rev. Lett. 112, no.17, 171602 (2014).
® F. Bezrukov, J. Rubio and M. Shaposhnikov, Phys. Rev. D 92, no.8, 083512 (2015).
® J. Guo and Z. Kang, Nucl. Phys. B 898, 415-430 (2015).
® D. M. Ghilencea, Phys. Rev. D 93, no.10, 105006 (2016).
® D. M. Ghilencea, Z. Lalak and P. Olszewski, Eur. Phys. J. C 76, no.12, 656 (2016).
® Z.W. Wang, T. G. Steele, T. Hanif and R. B. Mann, JHEP 08, 065 (2016).
® D. M. Ghilencea, Z. Lalak and P. Olszewski, Phys. Rev. D 96, no.5, 055034 (2017).
® |. Oda, Eur. Phys. J. C 78, no.10, 798 (2018).
® S. Mooij, M. Shaposhnikov and T. Voumard, Phys. Rev. D 99, no.8, 085013 (2019).
® M. Farina, D. Pappadopulo and A. Strumia, JHEP 08, 022 (2013).
® |. Brivio and M. Trott, Phys. Rept. 793, 1-98 (2019).

o o o °
L m xox X X

.
<>»0rrr-



Wilsonian RG vs. Dimens. Regul.
0000000000000 e000000000000

Consider now attempts to solve the NH problem in a RG framework
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“Wilson" versus “Perturbatively-Renormalized” RG Equations

2 A
Scalar Theory : Ly =3(0udy)’ + 2m o2 + 000
Wilson-Polchinski RG Equations
dQ m? 2 m* dm? A2 am? d\ 3)?
Ho— == z t 7 o b —=—5t 2 0 B = 2
du 167 327 du 167 167 du 167

€ [0,A] is the running scale. A is the UV boundary (physical cut-off)

Define:

mi(p) = 38 pop  and  mP(u— o) = mP(p— op) — mi(p)

0

2
Qo) = T8 pop and  Qu— o) = Q. — 1) — Qer(p1)

Perturbatively-Renormalized RG Equations (du — 0)

aQ  m 5 dm?  Am? -, dx 3\
a—— = ; " = =my, ; — =
’ dp 3272 @ ! du 1672 7 i du 1672

=B,

The Perturbatively-Renormalized RG Equations contain the fine-tuning
Physically: Tuning towards the Critical Surface
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Perturbatively-Renormalized RG equations in the Standard Model

Well-known Standard Model perturbative RG equations (*)

d d
MCTM/V = 5A, /t@m%—/ = m%—/“/m

Ai (i=1,...,5) are the SM couplings

(*) similarly for SM extensions
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Perturbatively-Renormalized RG equations in the Standard Model

d o> 5
H—— My = my7y,
du
Attempt 1 : Quantum Gravity “miracle” G.F. Giudice, PoS EPS-HEP2013, 163 (2013)

mi(N) < A2
With the SM perturbative ~,, (7. <1) =

Apparently no Hierarchy Problem : m?(A) ~ m#(ur)

..But ...remember . ..in the above RG Equation m7 is the tuned mass =

Fine-tuning encoded in the RG Equation above

= Can’t solve the Hierarchy Problem
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Perturbatively-Renormalized RG equations in the Standard Model

p—-miy = miy,,
du

Attempt 2 : “Self-organized criticality”
J. M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Phys. Rev. D 99, 086010 (2019)

Assumes Quantum Gravity might give a non-perturbative v, ~ 2 =
Hierarchy can be tolerated : m?%(A) > m?(ur)

. But ... remember ... m} is the tuned mass =

Fine-tuning encoded in the above RG Equation

= Can’t solve the Hierarchy Problem
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Perturbatively-Renormalized RG equations in the Standard Model

fi——mi; = mipy,,
du

Attempt 3 : mZ () from \() and v(p) ...
P. H. Chankowski, A. Lewandowski, K. A. Meissner and H. Nicolai, Mod. Phys. Lett. A 30, 1550006 (2015)
M. Holthausen, K. S. Lim and M. Lindner, JHEP 02, 037 (2012)

Apparently no large corrections : m?%(ur) ~ 125GeV

... However ... same problem as before ... Tuning encoded in the RG equation
for the vev v(1) (equivalent to the above RG equation for mZ (1))

= Can’t solve the Hierarchy Problem
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Perturbative-Renormalized RG equations in the Standard Model

Attempt 4 : “Finite formulation” of QFT using RG equations a /a
Callan-Symanzik for the Green's functions ...
S. Mooij and M. Shaposhnikov, arXiv:2110.05175
S. Mooij and M. Shaposhnikov, arXiv:2110.15925

2

Apparently no quadratic corrections for the mass m* of scalar particles

However ... Tuning encoded in taking derivatives with respect to m? of the
Green's functions, until they become finite
Callan has shown that this is just a way of implement the subtraction of A? and

log A terms C. G. Callan, Jr., Conf. Proc. C 7507281, 41-77 (1975)

= Can’t solve the Hierarchy Problem
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Backup Slides



Wilsonian RG vs. Dimens. Regul.
0000000000000 000000000e000

Wilsonian - Polchinski RG equations

® Flow of the theory parameters:

mA2 mi d 5, XA domd d 32

d
AL Q= — L= _ L =
dh 0T T 16r2 ' 32m2 dA\"™0 T T16m2 T Ton2 dh"° " 16n2

® From the Wegner-Houghton equation for d = 4, inserting the expansion
Uk(@) = Qi + 3m2¢2 + L " + ékf)dﬁ + ... we have the flow equations:

O K k2 + m?
k— = — log | ——
ok 1672 k2

Omi k* Ak
Ok 1672 K2+ m?
LN K 3N

Ok 1672 (k% + m?2)?

e Under the condition k* > mZ, i.e. in the UV regime, they reduce to the
bare parameters flow equations.
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Critical term

® Finite difference RG equation for the mass:

SA Ao (A) SA Ao (A) m2 (A) SN2
SAN=6N) =md(N) + — PN - — 0 —
mo (A =3R) = mo (A) + 75 J62 A 16m2 o\

® Subtracted mass parameter at the scale A — §A
m?(A = SA) = m3(A — 6A) — mZ(A)

where the critical mass m?, and the boundary at A are given by

Ao (A) ~
ma(A) = = AN m*(A) = m3(A)
167
® In the limit A — 0 we recover the perturbative RG equations:
5iinm4 1 dm?\ A ﬁid)\ia,v
@ _Mdu T3 T\ M dpu ) 16w2 o _Mdu T 1672

® The renormalized RG equations contain the fine-tuning: physically, this
corresponds to a tuning towards the critical surface.
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Perturbative-Renormalized RG equations in the Standard Model

p——miy = miyy
™ HYm

Attempt 5 : hierarchy between Mp and pr generated by an instanton
configuration contributing to the vev of the Higgs field ...

M. Shaposhnikov and A. Shkerin, Phys. Lett. B 783, 253 (2018)
M. Shaposhnikov and A. Shkerin, JHEP 10, 024 (2018)

Apparently Hierarchy explained

however . ..quantum corrections calculated with DR, and flow of the
parameters studied with the perturbative RG flows ...same problems as before

= Can’t solve the Hierarchy Problem
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Gauge theories

Attempts to a gauge invariant Wilsonian RG
® V. Branchina, K. Meissner and G. Veneziano, The Price of an exact,
gauge invariant RG flow equation, Phys. Lett. B 574, 319-324 (2003)

® S.P. de Alwis, Exact RG Flow Equations and Quantum Gravity, JHEP 03,
118 (2018)
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