Spin fields for N=1 particle in the worldline

Eugenia Boffo joint work with Ivo Sachs (LMU Munich)

Charles University Prague

CORFU2022 NCGEOM

September 21, 2022

Motivation: want a full non-linear theory of R-R fields, on the worldsheet

For NS-NS: [Bonezzi, Meyer, Sachs, 2020]

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (2/19)

Spin field

- Worldsheet superconformal algebra vs. RNS particle
- (Multi-)Particle Hilbert space

Super-worldline BRST

Chiral super-worldline

• Deformations by backgrounds

Super-worldsheet

• Super-Virasoro algebra \implies the fermionic components of the superfield are 2d spinors and thus double-valued

$$\varphi^{NS}(e^{2i\pi}z) = +\varphi^{NS}(z)$$
$$\varphi^{R}(e^{2i\pi}z) = -\varphi^{R}(z)$$

- R states are created from the NS vacuum by a spin field $\vartheta(z)$
- $\vartheta(z)$ may be represented as endpoint of a branch cut in the Grassmann odd fields [Friedan, Martinec, Shenker, 1986]

Super-worldline

A particle can be seen as the zero mode of a string

Could there be a spin field operator for the particle?

Super-worldline

A particle can be seen as the zero mode of a string

Could there be a spin field operator for the particle?

Problem:

• no branch cuts for $\mathbb{R}^{1|1}$

Super-worldline

A particle can be seen as the zero mode of a string

Could there be a spin field operator for the particle?

Problem:

• no branch cuts for $\mathbb{R}^{1|1}$

Idea (inspired by [Sorokin, Tkach, Volkov, Zheltukhin, 1989]): use a Grassmann degree shifting involution \uparrow and six Weyl spinors $\vartheta_{\alpha}, \tilde{\vartheta}^{\dot{\alpha}}, \varepsilon_{\alpha}, \tilde{\varepsilon}^{\dot{\alpha}}, \lambda^{\alpha}, \tilde{\lambda}_{\dot{\alpha}}$ with a product \circ inducing the *sole* commutators:

$$\begin{bmatrix} \vartheta_{\alpha}, \lambda^{\beta} \end{bmatrix} = \delta^{\beta}_{\alpha} = [\varepsilon_{\alpha}, \lambda^{\beta}], \qquad [\lambda^{\alpha}, \uparrow] = 0 = [\lambda^{\alpha}, \lambda^{\beta}],$$

(+ antichiral counterparts)

Spin field

Clifford algebra

The algebra for a particle on a superworldline

$$[x^{\mu}, p_{\nu}] = \delta^{\mu}_{\nu}, \quad \{\psi^{\mu}, \psi^{\nu}\} = 2\eta^{\mu\nu}$$

Clifford algebra

The algebra for a particle on a superworldline

$$[x^{\mu}, p_{\nu}] = \delta^{\mu}_{\nu}, \quad \{\psi^{\mu}, \psi^{\nu}\} = 2\eta^{\mu\nu}\mathcal{I} + f^{(\mu\nu)}(\vartheta, \tilde{\vartheta}, \uparrow, \bar{\lambda}, \bar{\lambda})$$

remains defined if the Gamma matrices are represented as:

$$\psi^{\mu} := \vartheta^{\alpha} \sigma^{\mu}_{\alpha \dot{\alpha}} \tilde{\lambda}^{\dot{\alpha}} \uparrow + \tilde{\vartheta}_{\dot{\alpha}} \tilde{\sigma}^{\mu \dot{\alpha}\beta} \lambda_{\beta} \uparrow \tag{1}$$

• The right (anti)commutators relation are satisfied up to a projector $\mathcal{I} := \vartheta \cdot \lambda + \tilde{\vartheta} \cdot \tilde{\lambda}$, and a correction $f^{(\mu\nu)}(\vartheta, \tilde{\vartheta}, \uparrow, \lambda, \tilde{\lambda})$

Clifford algebra

The algebra for a particle on a superworldline

$$[x^{\mu}, p_{\nu}] = \delta^{\mu}_{\nu}, \quad \{\psi^{\mu}, \psi^{\nu}\} = 2\eta^{\mu\nu}\mathcal{I} + \underline{f}^{(\mu\nu)}(\vartheta, \tilde{\vartheta}, \uparrow, \Lambda, \lambda)$$

remains defined if the Gamma matrices are represented as:

$$\psi^{\mu} := \vartheta^{\alpha} \sigma^{\mu}_{\alpha \dot{\alpha}} \tilde{\lambda}^{\dot{\alpha}} \uparrow + \tilde{\vartheta}_{\dot{\alpha}} \tilde{\sigma}^{\mu \dot{\alpha}\beta} \lambda_{\beta} \uparrow \tag{1}$$

- The right (anti)commutators relation are satisfied up to a projector $\mathcal{I} := \vartheta \cdot \lambda + \tilde{\vartheta} \cdot \tilde{\lambda}$, and a correction $f^{(\mu\nu)}(\vartheta, \tilde{\vartheta}, \uparrow, \lambda, \tilde{\lambda})$
- The operator $f^{\mu\nu}$ vanishes if the iterated *adjoint* action of λ a/o $\tilde{\lambda}$ on every state in the representation space is zero

States

- Supposing that there is a (NS) vacuum, the Weyl spinors ϑ , ε , $\tilde{\vartheta}$ and $\tilde{\varepsilon}$ are spin fields
- A Hilbert space annihilated by iterated action of λ a/o $\tilde{\lambda}$ and that survives \mathcal{I} -projection consists of:

$$\blacktriangleright |\varphi\rangle = \varphi_{\alpha}(x)\vartheta^{\alpha} \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad + \text{ anti-chiral state} \quad (1\text{-particle})$$

States

- Supposing that there is a (NS) vacuum, the Weyl spinors ϑ , ε , $\tilde{\vartheta}$ and $\tilde{\varepsilon}$ are spin fields
- A Hilbert space annihilated by iterated action of λ a/o $\tilde{\lambda}$ and that survives \mathcal{I} -projection consists of:

$$\blacktriangleright |\varphi\rangle = \varphi_{\alpha}(x)\vartheta^{\alpha} \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad + \text{ anti-chiral state} \quad (1\text{-particle})$$

$$C_{\alpha\beta}(x) \vartheta^{\alpha} \uparrow \left(\vartheta^{\beta} - \varepsilon^{\beta}\right) \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad \tilde{C}^{\dot{\alpha}}{}_{\beta}(x) \tilde{\vartheta}_{\dot{\alpha}} \uparrow \left(\vartheta^{\beta} - \varepsilon^{\beta}\right) \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad + \text{ other combinations of different chiralities} \quad (2\text{-particles})$$

States

- Supposing that there is a (NS) vacuum, the Weyl spinors ϑ , ε , $\tilde{\vartheta}$ and $\tilde{\varepsilon}$ are spin fields
- A Hilbert space annihilated by iterated action of λ a/o $\tilde{\lambda}$ and that survives \mathcal{I} -projection consists of:

$$\blacktriangleright |\varphi\rangle = \varphi_{\alpha}(x)\vartheta^{\alpha} \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad + \text{ anti-chiral state} \quad (1\text{-particle})$$

$$C_{\alpha\beta}(x) \vartheta^{\alpha} \uparrow \left(\vartheta^{\beta} - \varepsilon^{\beta}\right) \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad \tilde{C}^{\dot{\alpha}}{}_{\beta}(x) \tilde{\vartheta}_{\dot{\alpha}} \uparrow \left(\vartheta^{\beta} - \varepsilon^{\beta}\right) \begin{pmatrix} |0\rangle \\ \uparrow |0\rangle \end{pmatrix}, \quad + \text{ other combinations of different chiralities} \quad (2\text{-particles})$$

▶ 3-particles, 4-particles, ...

We got spinors, bi-spinors etc. in the space of states

Do they represent RR-fields?

Can they couple to background RR-fields?

We got spinors, bi-spinors etc. in the space of states

Do they represent RR-fields?

Can they couple to background RR-fields?

Answer: via superworldline BRST quantization!

We got spinors, bi-spinors etc. in the space of states

Do they represent RR-fields?

Can they couple to background RR-fields?

Answer: via superworldline BRST quantization!

• Worldline/worldsheet description is useful for two main reasons:

- 1. study of backgrounds by deformation/twist of BRST differential;
- 2. calculation of tree-level and 1-loop amplitudes for given vertices.

Super-worldline BRST

• A worldline with super-reparametrization invariance:

$$\{q,q\} = H, \quad q := \psi^{\mu} p_{\mu}, \quad H := p^2.$$

Corresponding BRST operator $Q = cH + \gamma q - \gamma^2 b$ with ghost-antighost pairs $(c, b), (\gamma, \beta)$ and algebra:

$$[\gamma,\beta]=1=\{c,b\}\,.$$

Super-worldline BRST

• A worldline with super-reparametrization invariance:

$$\{q,q\} = H, \quad q := \psi^{\mu} p_{\mu}, \quad H := p^2.$$

Corresponding BRST operator $Q = cH + \gamma q - \gamma^2 b$ with ghost-antighost pairs $(c, b), (\gamma, \beta)$ and algebra:

$$[\gamma,\beta]=1=\{c,b\}\,.$$

• ψ^{μ} taken to be (1) and the space of states as previously constructed \Leftrightarrow Hamiltonian constraints/momentum mapping in BRST operator.

BRST Cohomology

Choose polarization $\beta = -\frac{\partial}{\partial \gamma}$ and $b = \frac{\partial}{\partial c}$ and quantize with γ and c ghosts as creation operators;

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (10/19)

BRST Cohomology

Choose polarization $\beta = -\frac{\partial}{\partial \gamma}$ and $b = \frac{\partial}{\partial c}$ and quantize with γ and c ghosts as creation operators;

• on 1-particles $|\varphi\rangle$, $|\Psi\rangle := \sum_k \gamma^k (|\varphi\rangle_k + c |\varphi^c\rangle_k)$: $Q |\Psi\rangle = 0 \Leftrightarrow$ one independent equation, Weyl (anti-Weyl) equation:

$$\partial \left| \varphi \right\rangle_{0} = 0.$$

BRST Cohomology

Choose polarization $\beta = -\frac{\partial}{\partial \gamma}$ and $b = \frac{\partial}{\partial c}$ and quantize with γ and c ghosts as creation operators;

• on 1-particles $|\varphi\rangle$, $|\Psi\rangle := \sum_k \gamma^k (|\varphi\rangle_k + c |\varphi^c\rangle_k)$: $Q |\Psi\rangle = 0 \Leftrightarrow$ one independent equation, Weyl (anti-Weyl) equation:

$$\partial \left| \varphi \right\rangle _{0}=0$$

• on 2-particles $|F\rangle$, which comprise 0-forms, 1-forms and 2-forms, independent equations at ghost number 0 from Fierz identities are:

$$dF^{(1)} = 0 = \delta F^{(1)}$$
$$dF^{(0)} + i\delta F^{(2)} - \frac{1}{2} \star dF^{(2)} = 0$$

For $F^{(0)} = 0$, these are compatible with **linearised R-R field equations**. Notice that $\text{Im}Q \ni |\zeta\rangle_{k\geq 1}$, $|\zeta^c\rangle_{k\geq 1}$ (ghost zero states are never Q-exact).

Having "resolved" ψ^{μ} with new variables $\vartheta, \lambda, \tilde{\vartheta}, \tilde{\lambda}$ and \uparrow allows for unusual deformations of Q.

Having "resolved" ψ^{μ} with new variables $\vartheta, \lambda, \tilde{\vartheta}, \tilde{\lambda}$ and \uparrow allows for unusual deformations of Q.

• Any of them will automatically be **nilpotent** on the same chain complex as for Q!

mass term :
$$\gamma \varphi(x) \left(\vartheta \cdot \lambda - \tilde{\vartheta} \cdot \tilde{\lambda} \right) \uparrow$$

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (11/19)

Having "resolved" ψ^{μ} with new variables $\vartheta, \lambda, \tilde{\vartheta}, \tilde{\lambda}$ and \uparrow allows for unusual deformations of Q.

• Any of them will automatically be **nilpotent** on the same chain complex as for Q!

mass term :
$$\gamma \varphi(x) \left(\vartheta \cdot \lambda - \tilde{\vartheta} \cdot \tilde{\lambda} \right) \uparrow$$

1-form gauge connection : $\gamma \psi^{\mu} A_{\mu}(x)$

Having "resolved" ψ^{μ} with new variables $\vartheta, \lambda, \tilde{\vartheta}, \tilde{\lambda}$ and \uparrow allows for unusual deformations of Q.

• Any of them will automatically be **nilpotent** on the same chain complex as for Q!

mass term :
$$\gamma \varphi(x) \left(\vartheta \cdot \lambda - \tilde{\vartheta} \cdot \tilde{\lambda} \right) \uparrow$$

1-form gauge connection : $\gamma \psi^{\mu} A_{\mu}(x)$

warped compactification with
$$\omega_5^{\alpha\beta} \equiv F^{\alpha\beta} : \gamma \left(\vartheta_{\alpha} F^{\alpha\beta} \lambda_{\beta} + \tilde{\vartheta}^{\dot{\alpha}} \tilde{F}_{\dot{\alpha}\dot{\beta}} \tilde{\lambda}^{\dot{\beta}} \right) \uparrow$$

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (11/19)

Chiral sector and an equivalent H^{\bullet}

Our observations concerned the chiral and antichiral sector on the same footing. Abandon reality of ψ^{μ} and focus on chiral supercharge:

$$\mathbf{q} := ilde{artheta}^{\dot{lpha}} ilde{p}_{\dot{lpha}eta} \lambda^eta \uparrow$$
 .

Antichiral sector goes directly into kernel of \mathbf{q} with no further dynamical conditions.

(12/19)

Chiral sector and an equivalent H^{\bullet}

Our observations concerned the chiral and antichiral sector on the same footing. Abandon reality of ψ^{μ} and focus on chiral supercharge:

$$\mathbf{q} := ilde{artheta}^{\dot{lpha}} ilde{p}_{\dot{lpha}eta} \lambda^eta \uparrow \, .$$

Antichiral sector goes directly into kernel of \mathbf{q} with no further dynamical conditions.

Equivalent cohomology

In ghost degree 0, Q-cohomology = ker Q is equivalent to \mathbf{q} -cohomology = ker $\mathbf{q}/\text{Im }\mathbf{q}$ for the chiral sector.

In fact one retains, for the chiral sector:

- 1-particles, $\varphi^{\alpha}(x)\vartheta_{\alpha}|0\rangle$, $\varphi^{\alpha\uparrow}(x)\vartheta_{\alpha}\uparrow|0\rangle$: Weyl equation;
- 2-particles: R-R fields equations.

Chiral sector and an equivalent H^{\bullet}

The **q**-exact particles are those in the antichiral sector with some extra requirements, e.g.

$$|\tilde{\chi}\rangle, \quad \exists \zeta^{\beta}(x) \mid \tilde{\chi}_{\dot{\alpha}}(x) = (\tilde{p}\zeta)_{\dot{\alpha}}, \quad p\tilde{\chi} \neq 0$$

$$\begin{pmatrix} \tilde{F}^{(2)}{}_{\dot{\alpha}\dot{\beta}} | e^{\dot{\alpha}\dot{\beta}} \rangle + \tilde{F}^{(1)}{}_{\dot{\alpha}}{}^{\beta} | e^{\dot{\alpha}}{}_{\beta} \rangle \end{pmatrix}, \\ \exists \ G^{(1)}{}_{\alpha}{}^{\dot{\alpha}}(x), \ G^{(2)}_{\alpha\beta}(x) \ | \ F^{(2)} + F^{(1)} = \tilde{p}(G^{(1)} + G^{(2)}), \ p(F^{(2)} + F^{(1)}) \neq 0$$

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (13/19)

$\delta \mathbf{q}$ in chiral theory

A deformation can generate a R or R-R field by acting on reference state $|\Omega\rangle$:

 $\delta {f q} \left| \Omega
ight
angle$

Which R-R fields can be consistent backgrounds?

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (14/19)

$\delta \mathbf{q}$ in chiral theory

A deformation can generate a R or R-R field by acting on reference state $|\Omega\rangle$:

 $\delta \mathbf{q} \left| \Omega \right\rangle$

Which R-R fields can be consistent backgrounds?

$$\begin{split} \delta \mathbf{q} &= s \, \tilde{\vartheta}^{\dot{\alpha}} \tilde{A}^{(1)}_{\dot{\alpha}\beta} \lambda^{\beta} \uparrow, \quad s << 1 \\ & \Downarrow \end{split}$$

genuine deformation: for 1-particles it's U(1) or SU(N) gauge potential, for 2-particles is a 1-form background

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (14/19)

$\delta \mathbf{q}$ in chiral theory

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (15/19)

$\delta {\bf q}$ in chiral theory

Non-nilpotent deformations, $s \ll 1$:

$$\delta \mathbf{q}_1 := s \,\vartheta^\beta A^{(1)}_{\beta\dot{\beta}} \tilde{\lambda}^{\dot{\beta}} \uparrow$$

ker **q** is in Im(δ **q**₁). Both for chiral spinors and chiral RR fields: δ **q**₁ sets the antichiral sector to zero.

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (16/19)

(17/19)

•

$\delta \mathbf{q}$ in chiral theory

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022

$\delta {\bf q}$ in chiral theory

Another non-nilpotent deformation:

 $\delta \mathbf{q}_2 := s \,\tilde{\vartheta}^{\dot{\beta}} \tilde{F}^{(2)}_{\dot{\beta}\dot{\gamma}} \tilde{\lambda}^{\dot{\gamma}} \uparrow$

Now $\mathbf{q} + \delta \mathbf{q}_2$ lands in the antichiral sector. Perturb fields in power of s:

• for spinors:

$$p \varphi_{(0)} = 0, \quad p \varphi_{(1)} = \tilde{F}^{(2)} \tilde{\chi}_{(0)}$$

• for RR-fields: $A_{\alpha}{}^{\dot{\beta}}(x)$ is deformed by Chern-Simons interaction.

$\delta {\bf q}$ in chiral theory

Another non-nilpotent deformation:

 $\delta \mathbf{q}_2 := s \,\tilde{\vartheta}^{\dot{\beta}} \tilde{F}^{(2)}_{\dot{\beta}\dot{\gamma}} \tilde{\lambda}^{\dot{\gamma}} \uparrow$

Now $\mathbf{q} + \delta \mathbf{q}_2$ lands in the antichiral sector. Perturb fields in power of s:

• for spinors:

$$p \varphi_{(0)} = 0, \quad p \varphi_{(1)} = \tilde{F}^{(2)} \tilde{\chi}_{(0)}$$

• for RR-fields: $A_{\alpha}{}^{\dot{\beta}}(x)$ is deformed by Chern-Simons interaction.

Conclusion: can have 1-form field background $\tilde{A}^{(1)}_{\dot{\alpha}\beta}(x)$ and, perturbatively in s, 2-form field $\tilde{F}^{(2)}_{\dot{\beta}\dot{\gamma}}(x)!$

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (18/19)

Summary:

- We constructed the spin fields for N=1 worldline in 4d
- We moved towards non-linear theory of R-R backgrounds

To do:

- Extend to 10d and worldsheet (ambitwistor string, pure spinor [Berkovits, Howe, 2001]
- full explicit target space supersymmetry (NS-NS and R-R)?

- N. Berkovits and P. S. Howe. Ten-dimensional supergravity constraints from the pure spinor formalism for the superstring. *Nucl. Phys. B*, 635:75–105, 2002. doi: 10.1016/S0550-3213(02)00352-8.
- **E**. Boffo and I. Sachs. Spin fields for the spinning particle. https://arxiv.org/abs/2206.03243, 06 2022.
- J. Figueroa-O'Farrill. BRST Cohomology, http://www.maths.ed.ac.uk/empg/Activities/BRST.
- D. Friedan, E. J. Martinec, and S. H. Shenker. Conformal Invariance, Supersymmetry and String Theory. *Nucl. Phys. B*, 271:93–165, 1986. doi: 10.1016/0550-3213(86)90356-1.
- D. P. Sorokin, V. I. Tkach, D. V. Volkov, and A. A. Zheltukhin. From the Superparticle Siegel Symmetry to the Spinning Particle Proper Time Supersymmetry. *Phys. Lett. B*, 216:302–306, 1989. doi: 10.1016/0370-2693(89)91119-2.

E. Boffo (MFF UK) • Ramond in N=1 worldline • September 21, 2022 • (19/19)