Unconventional axions and ALPs

Workshop on the Standard Model and Beyond CORFU 2022

Belén Gavela Univ. Autónoma de Madrid and IFT

Why?

Is the Higgs the only (fundamental?) scalar in nature?

Or simply the first one discovered?

Is the Higgs the only (fundamental?) scalar in nature?

Or simply the first one discovered?

What about a singlet (pseudo) scalar?

Strong motivation from fundamental issues of the SM

Many small unexplained SM parameters

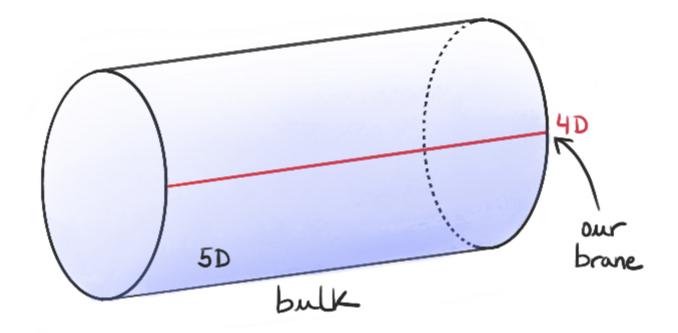
Hidden symmetries can explain small parameters

If spontaneously broken: Goldstone bosons a

-> derivative couplings to SM particles

(Pseudo)Goldstone Bosons appear in many BSM theories

* e.g. Extra-dim Kaluza-Klein: 5d gauge field compactified to 4d The Wilson line around the circle is a GB, which behaves as an axion in 4d



- * Majorons, for dynamical neutrino masses
- * From string models
- * The Higgs itself may be a pGB ! ("composite Higgs" models)
- * Axions *a* that solve the strong CP problem, and ALPs (axion-like particles)

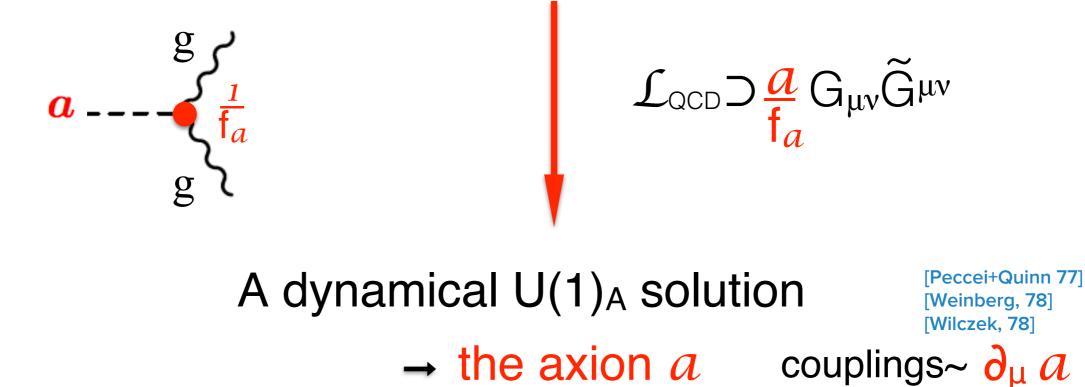
The strong CP problem: Why is the QCD θ parameter so small?

$$\mathcal{L}_{QCD} = G_{\mu\nu} G^{\mu\nu} + \Theta G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

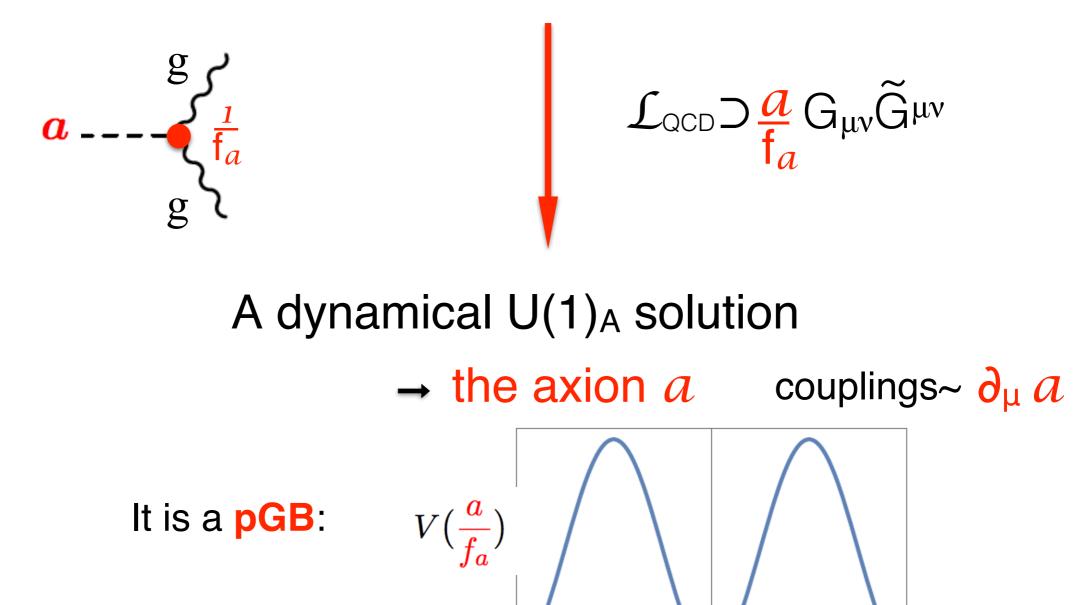
$$\widetilde{G}_{\mu\nu} = \epsilon_{\mu\nu\rho\sigma} G_{\mu\nu}$$

The strong CP problem:Why is the QCD θ parameter
so small? $\overline{\theta} \leq 10^{-10}$ $\mathcal{L}_{QCD} \supset \theta \ G_{\mu\nu} \widetilde{G}^{\mu\nu}$
 $\widetilde{G}_{\mu\nu} = \epsilon_{\mu\nu\rho\sigma} \ G^{\rho\sigma}$

A dynamical $U(1)_A$ solution ?



The strong CP problem: Why is the QCD θ parameter so small?



 -2π

0

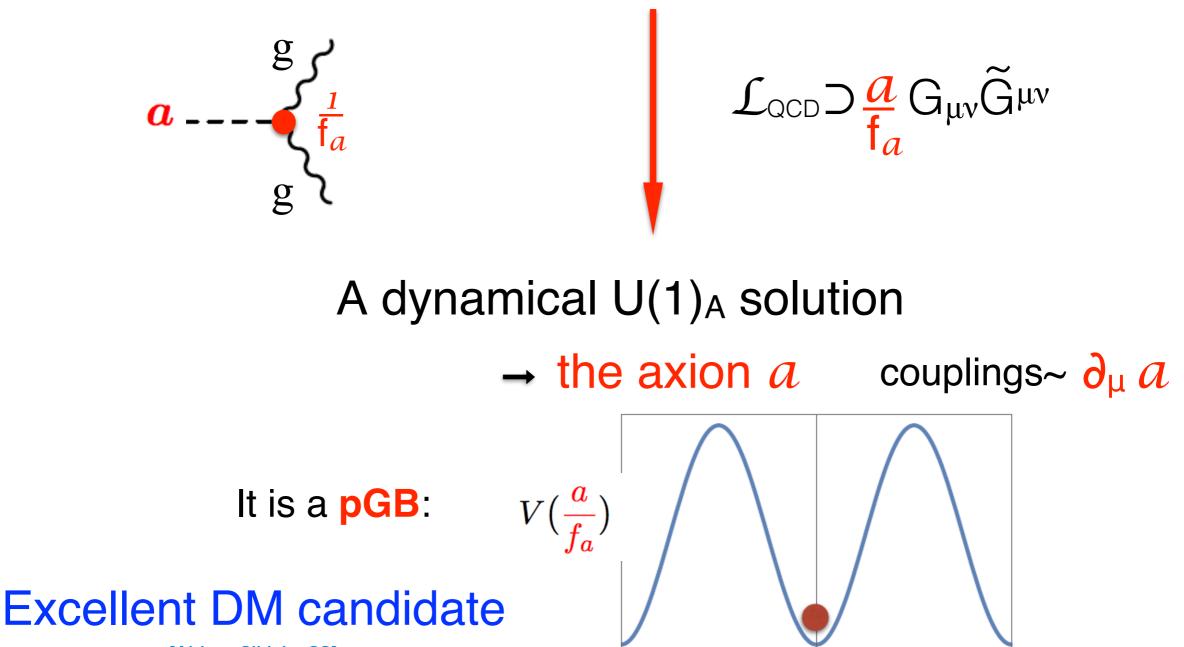
 a/f_a

 $-\pi$

 2π

π





 -2π

0

 a/f_a

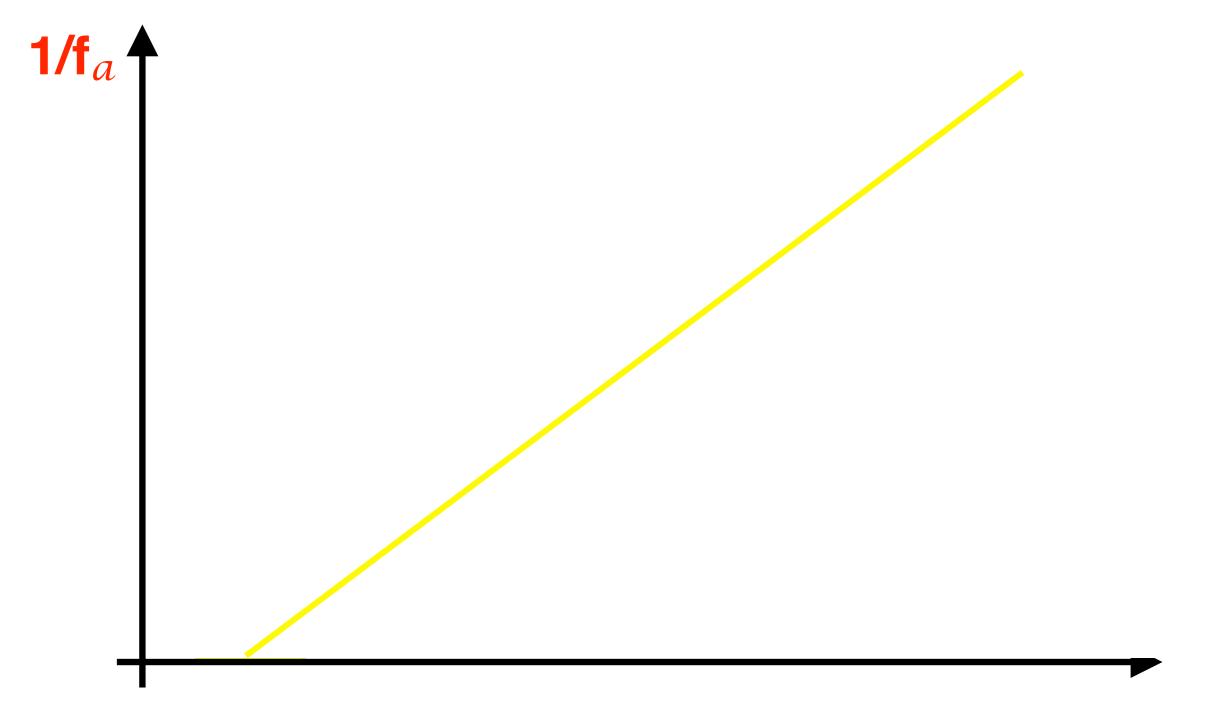
 $-\pi$

 2π

π

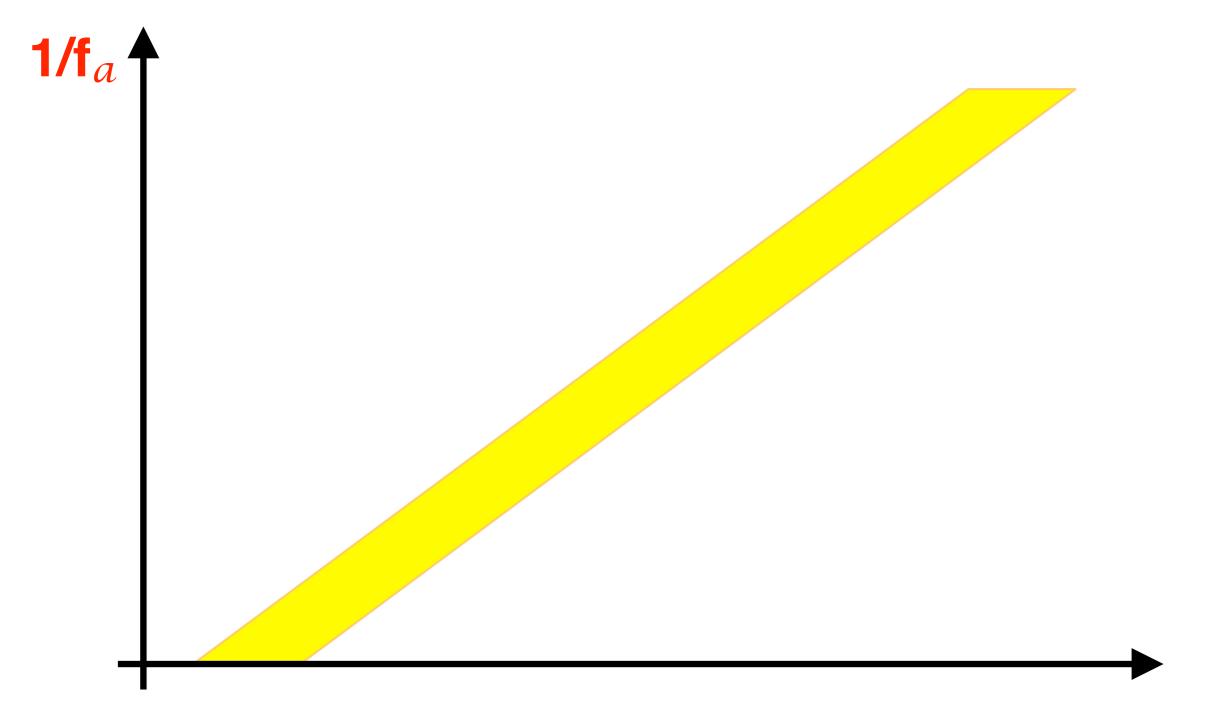
[Abbot+Sikivie, 83] [Dine and W. Fischler, 83] [Preskil et al, 91]

 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



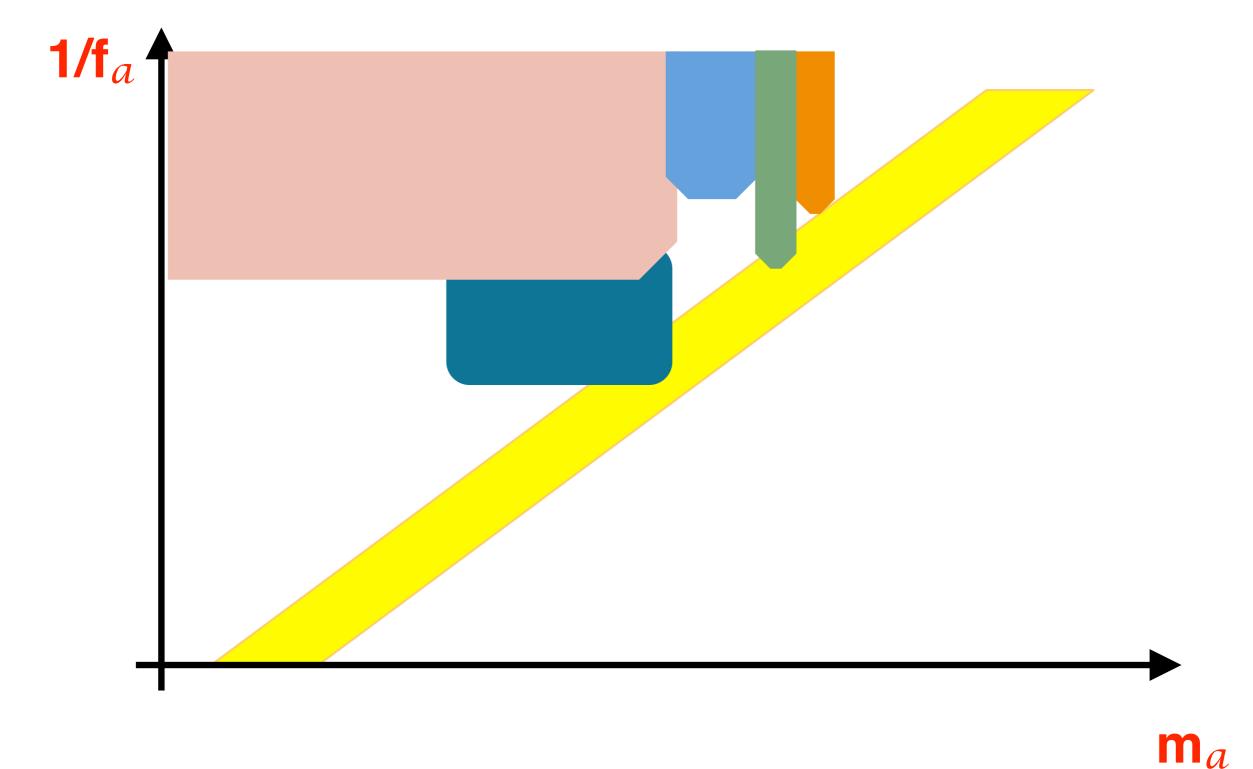
m_a

 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$

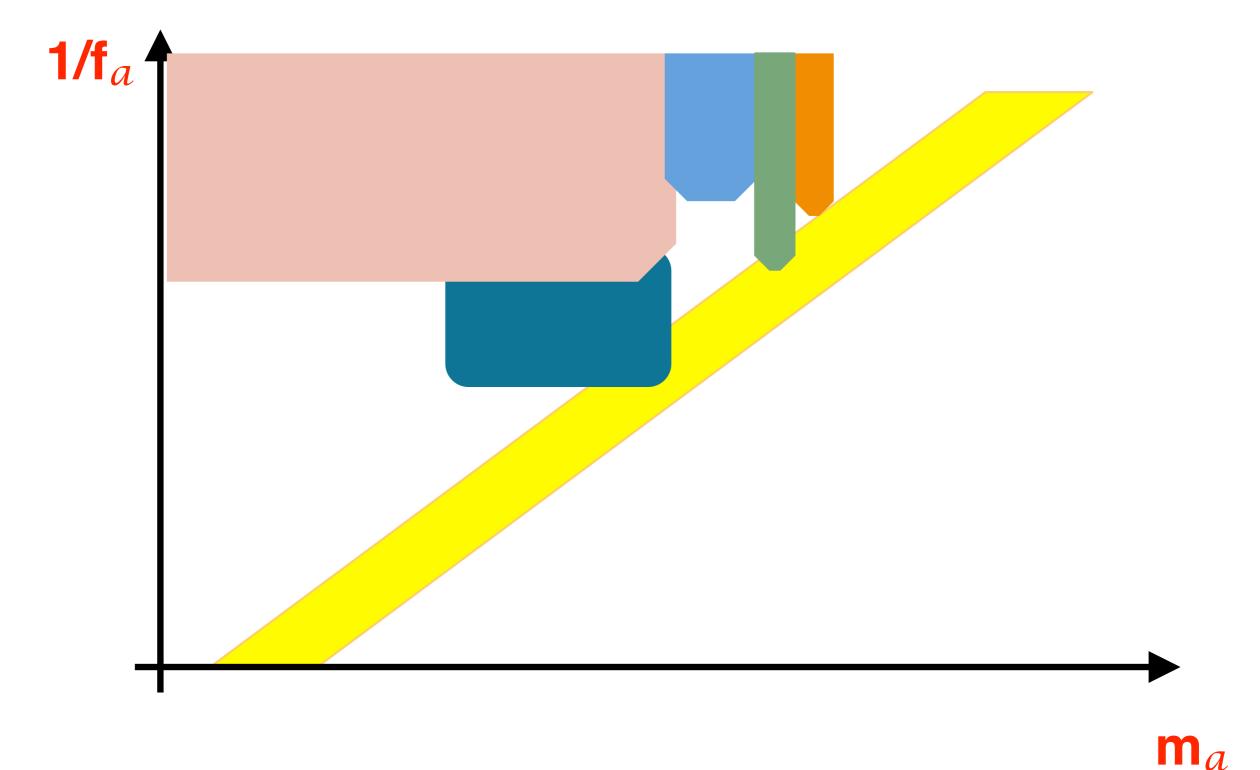


ma

 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



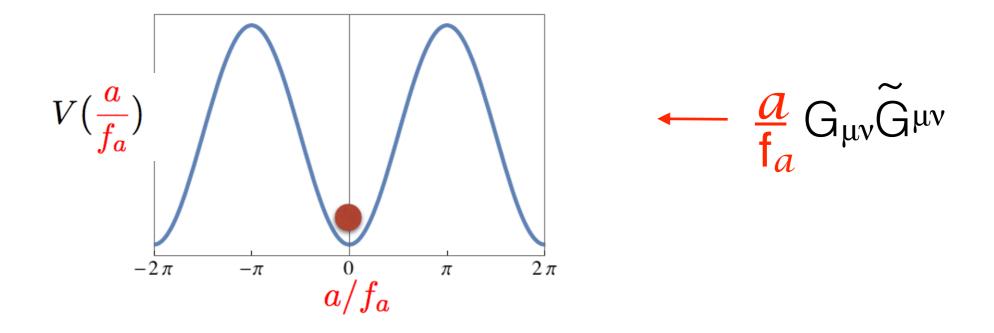
 $\mathbf{m}_a \mathbf{f}_a = \text{cte.}$



The value of the constant is determined by the strong gauge group

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

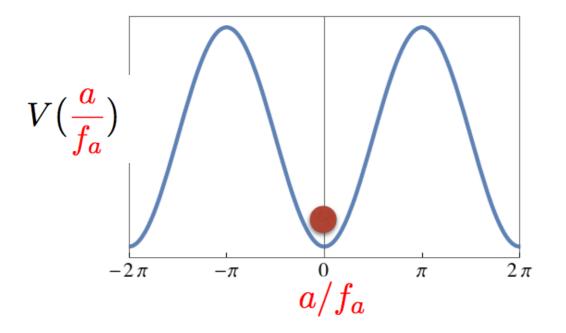
* If the confining group is QCD:



$$V_{SM}\left(\frac{a}{f_{a}}\right) = -m_{\pi}^{2} f_{\pi}^{2} \sqrt{1 - \frac{4m_{u}m_{d}}{\left(m_{u} + m_{d}\right)^{2}} \sin^{2}\left(\frac{a}{2f_{a}}\right)}$$

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

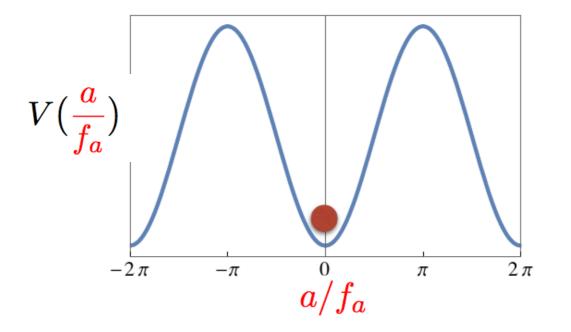


$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2 \frac{m_u m_d}{(m_u + m_d)^2}$$

canonical QCD axion

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:



 $m_a^2 f_a^2 = m_\pi^2 f_\pi^2$

canonical QCD axion

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

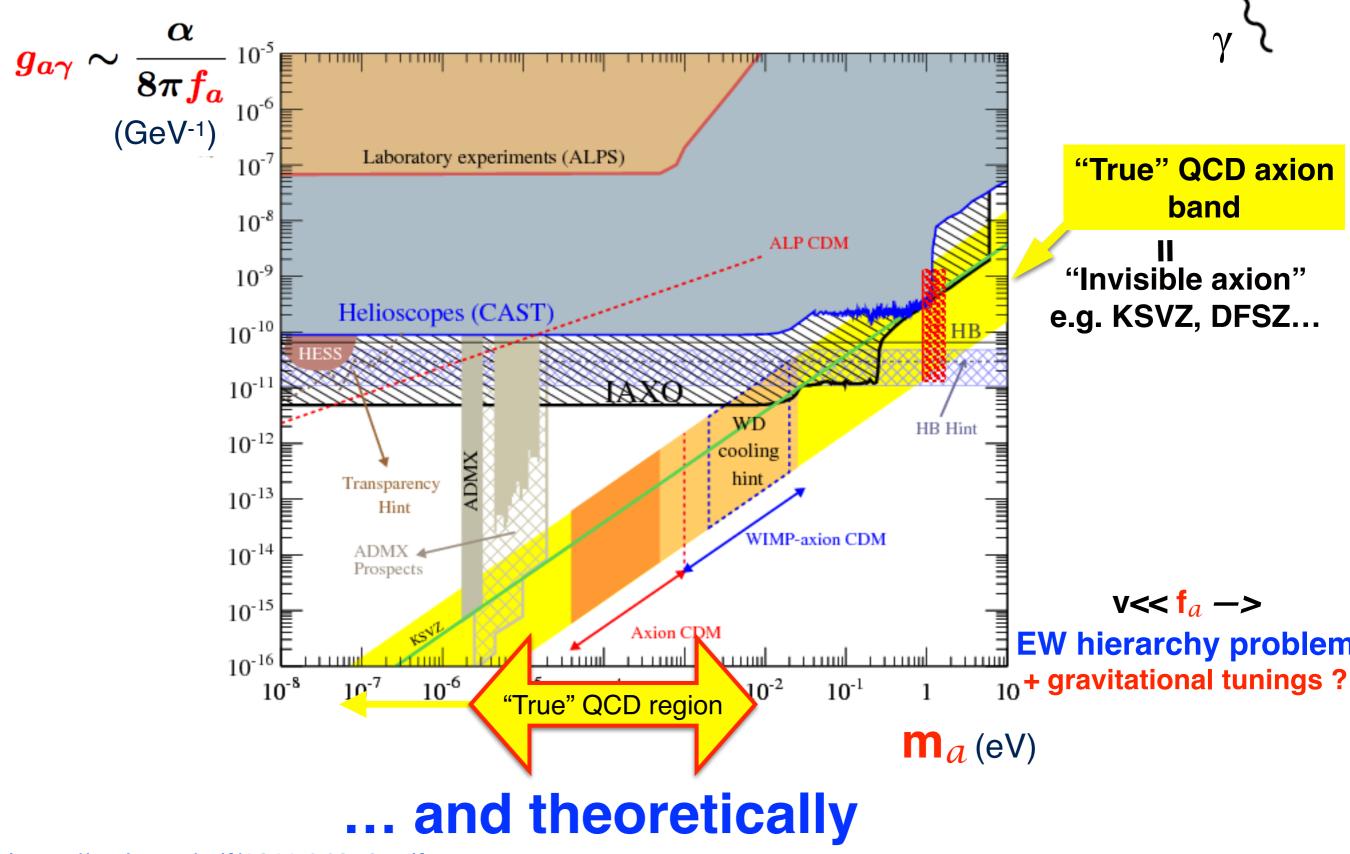
* If the confining group is QCD: $m_a^2 f_a^2 = m_\pi^2 f_\pi^2$

$$10^{-5} < m_a < 10^{-2} eV$$
, $10^9 < f_a < 10^{12} GeV$

Because of SN and hadronic data, if axions light enough to be emitted

"Invisible axion"

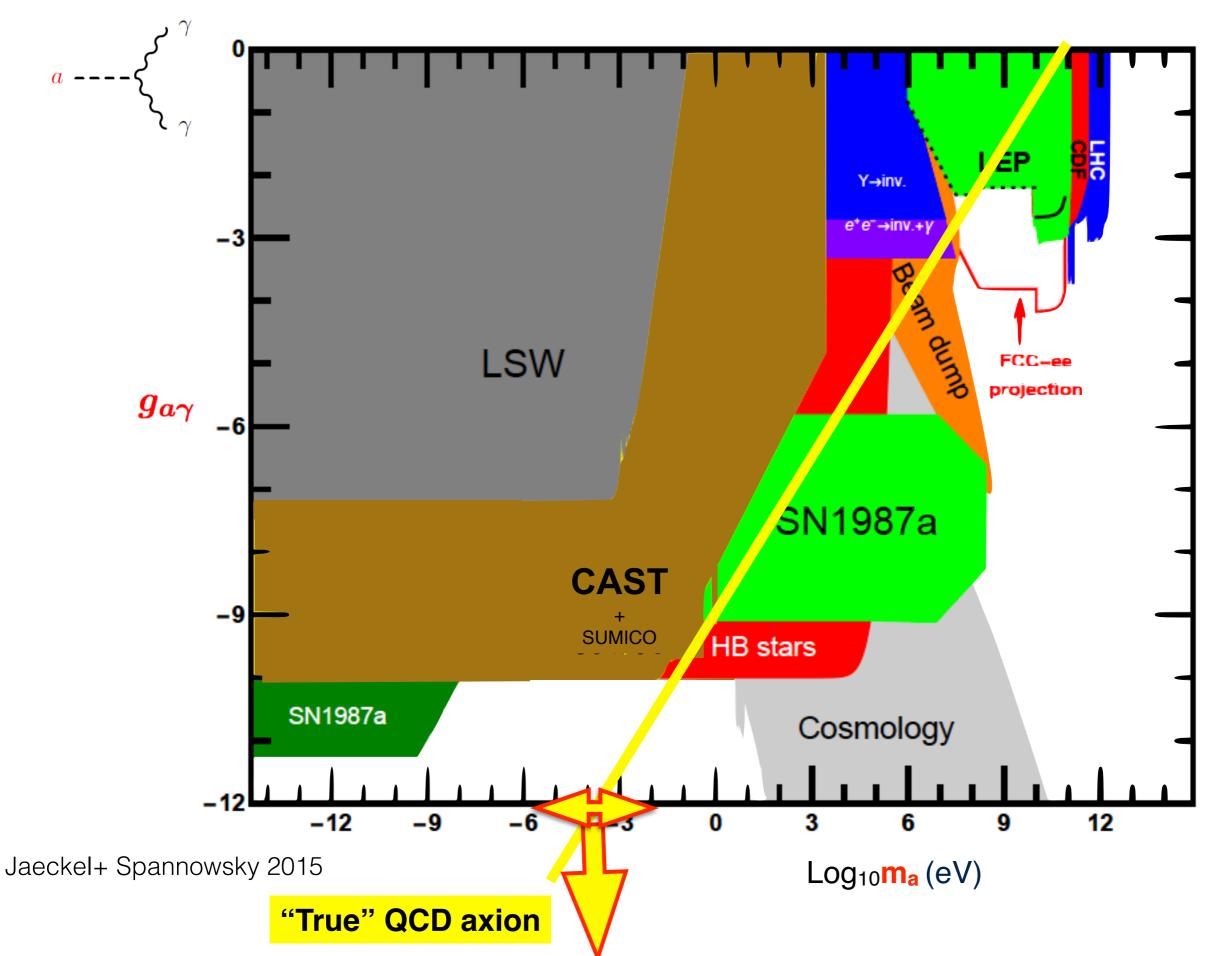
Intensely looked for experimentally...



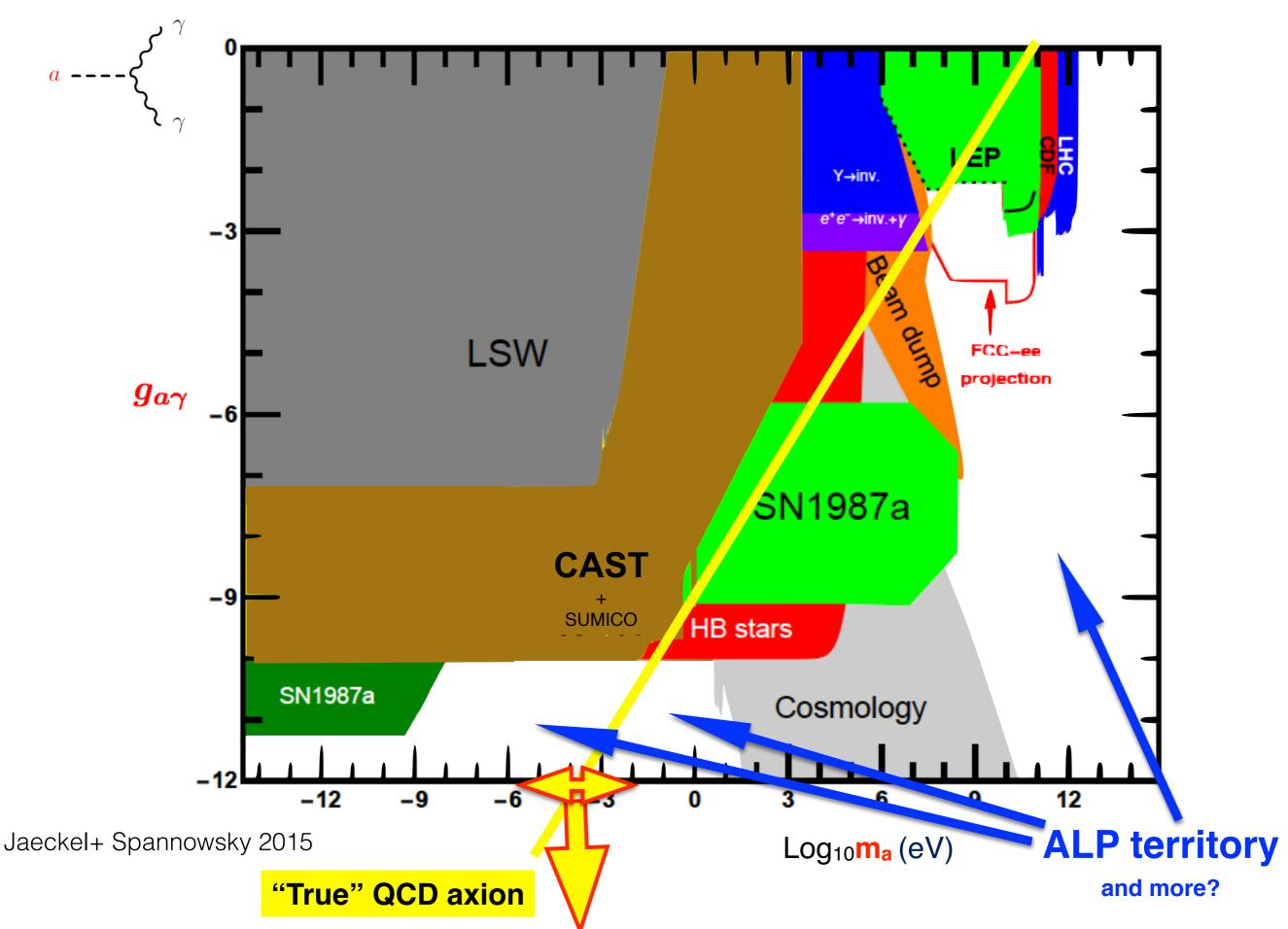
 $g_{a\gamma}$

https://arxiv.org/pdf/1611.04652.pdf

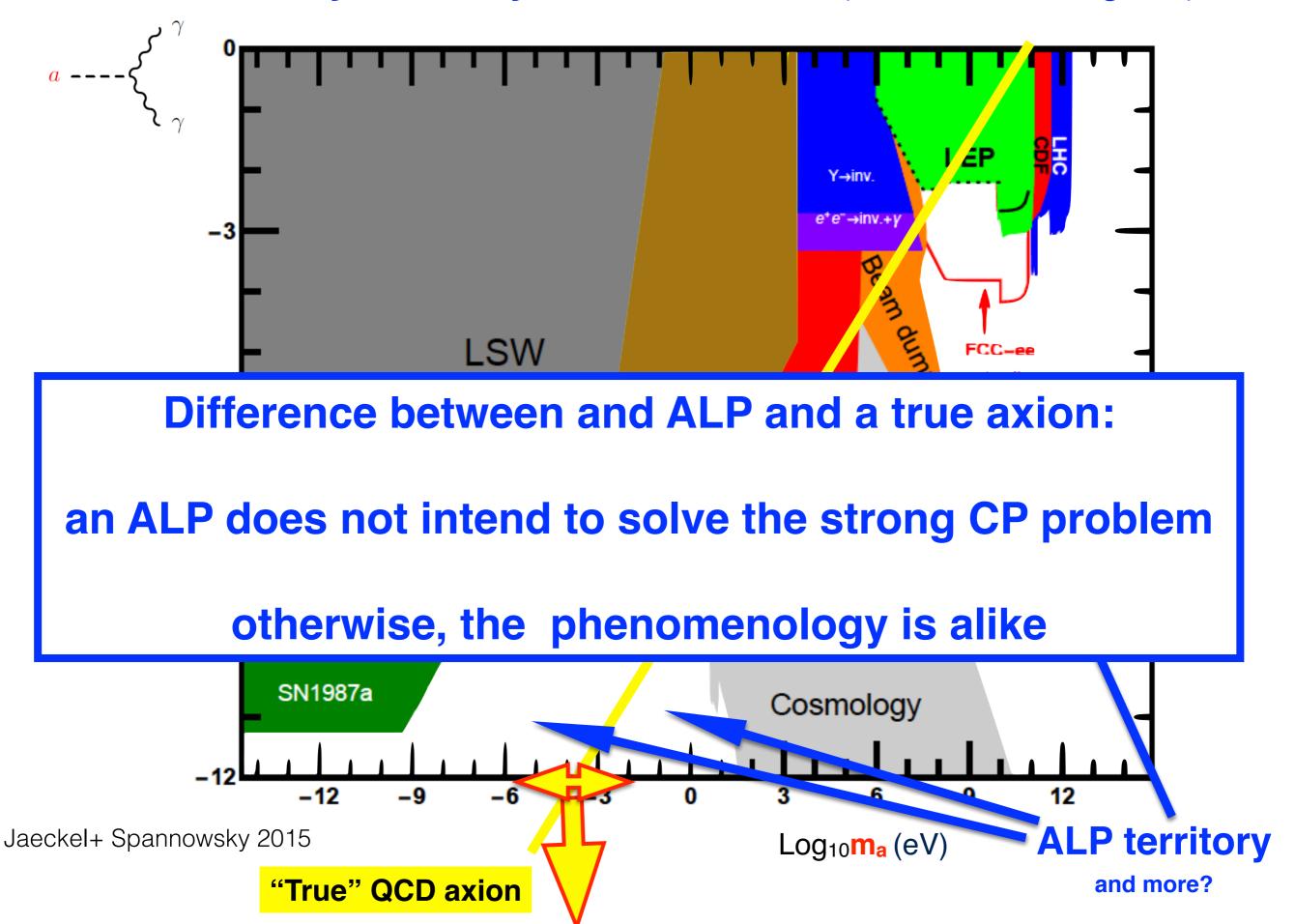
ALPs (axion-like particles) territory



ALPs (axion-like particles) territory



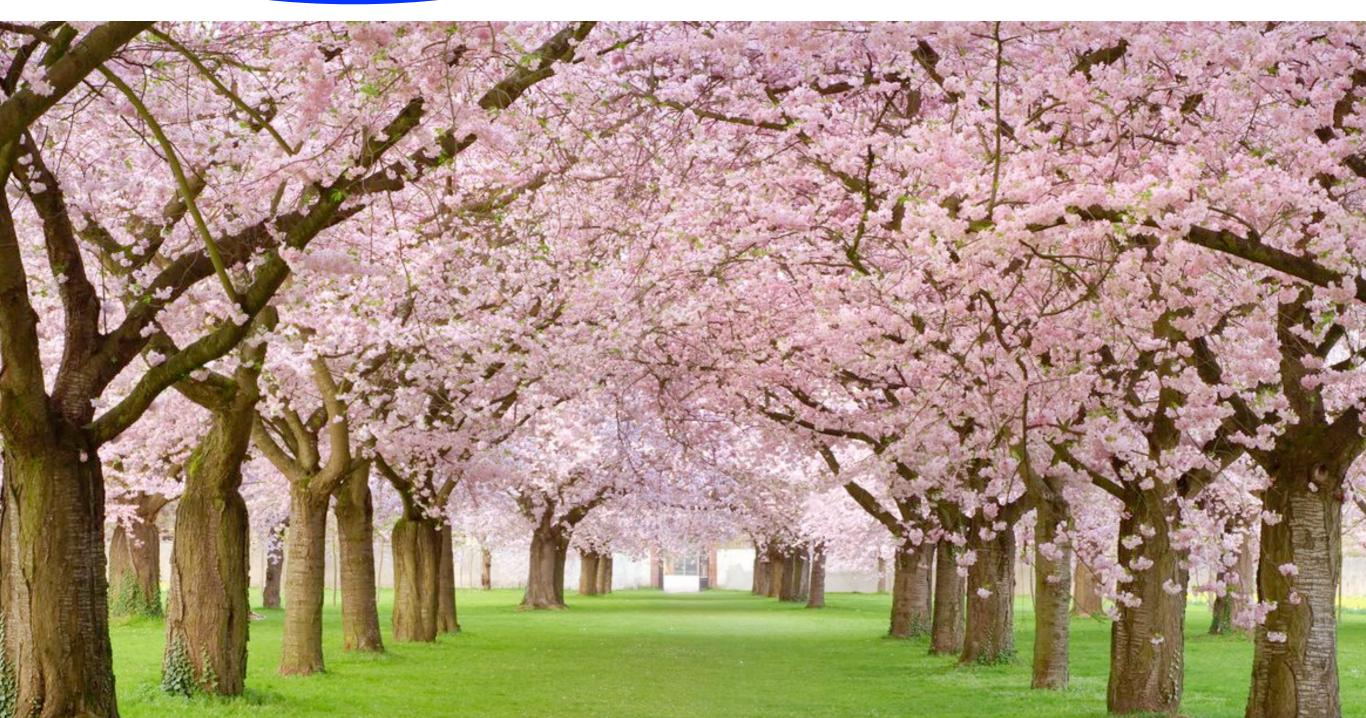
ALPs territory: can they be true axions ?(i.e. solve strong CP)



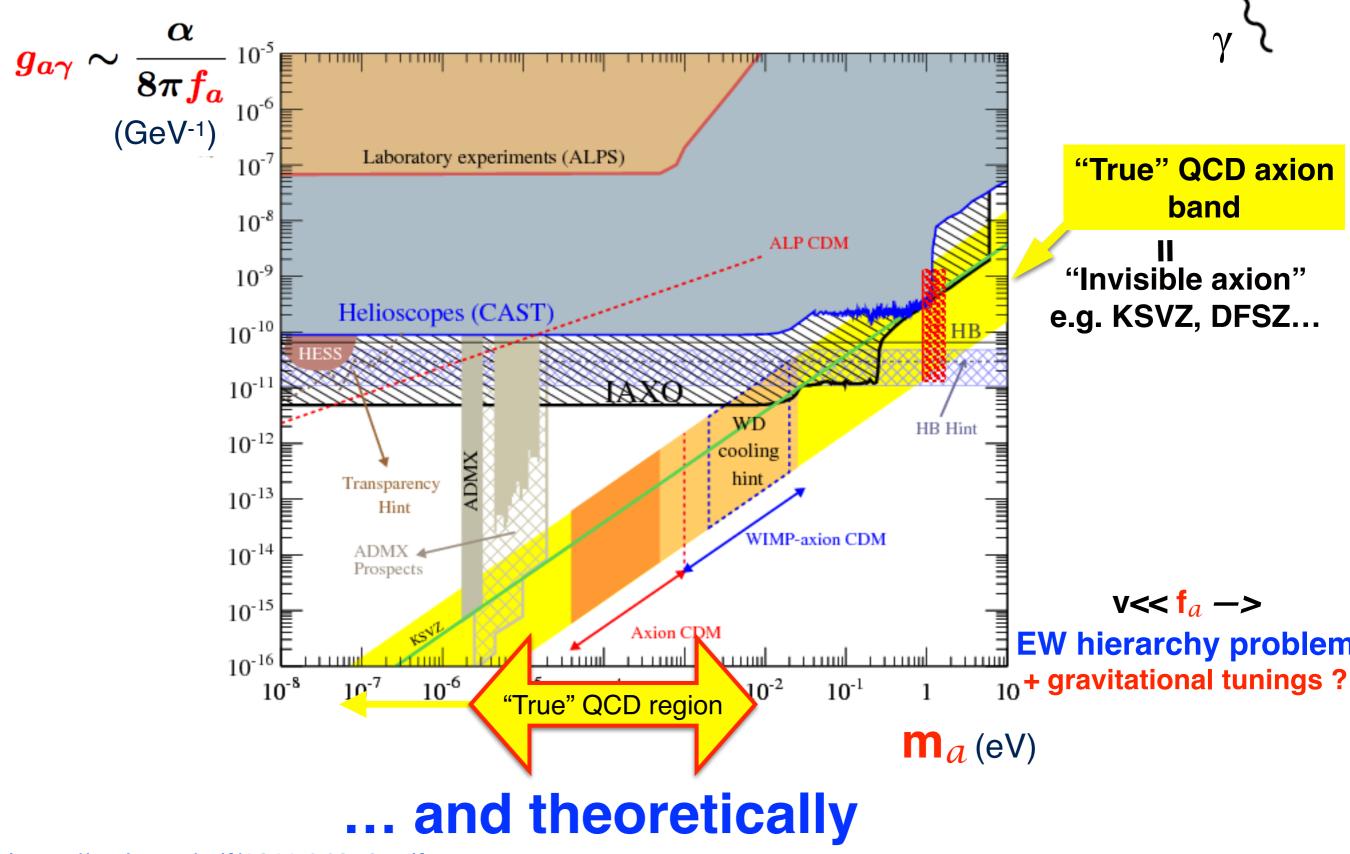
The field of axions and ALPs is BLOOMING

in Experiment ... and Theory

The field of axions and ALPs is BLOOMING



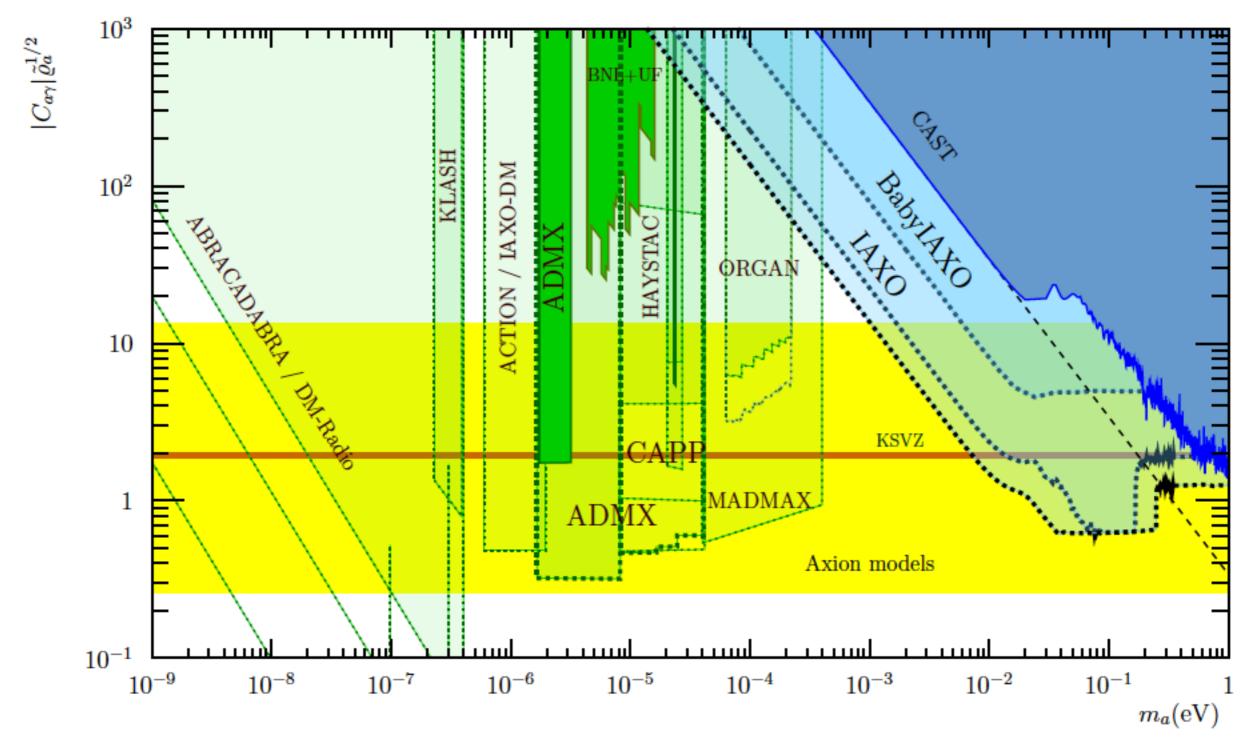
Intensely looked for experimentally...



 $g_{a\gamma}$

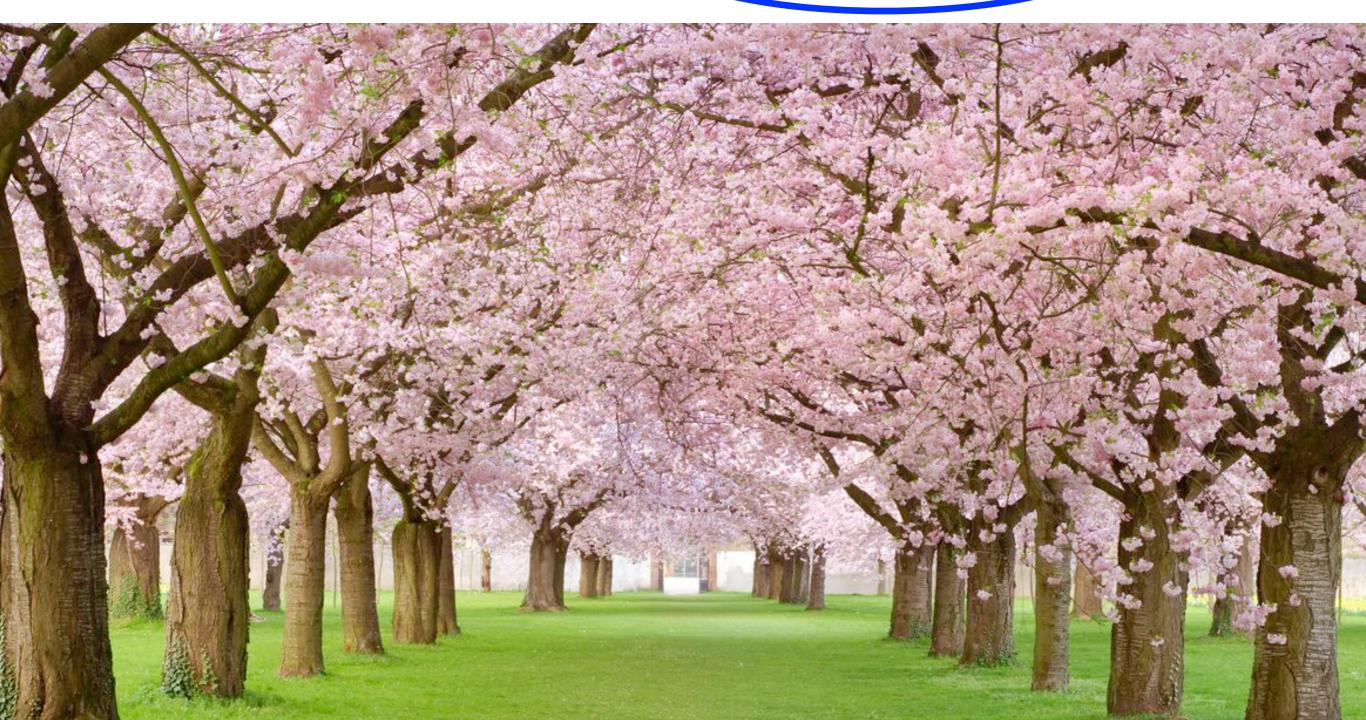
https://arxiv.org/pdf/1611.04652.pdf

Advances on Haloscopes



Irastorza and Redondo, arXiv:1801.08127

The field is **BLOOMING**



$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$

* If the confining group is larger than QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$
 \pm extra

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$

* If the confining group is larger than QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2 + \text{extra}$$

$$\mathbf{m}_a \mathbf{f}_a = \text{cte.}$$

* If the confining group is QCD:

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$

* If the confining group is larger than QCD:

If $m_a^2 f_a^2 = LARGE$ constant

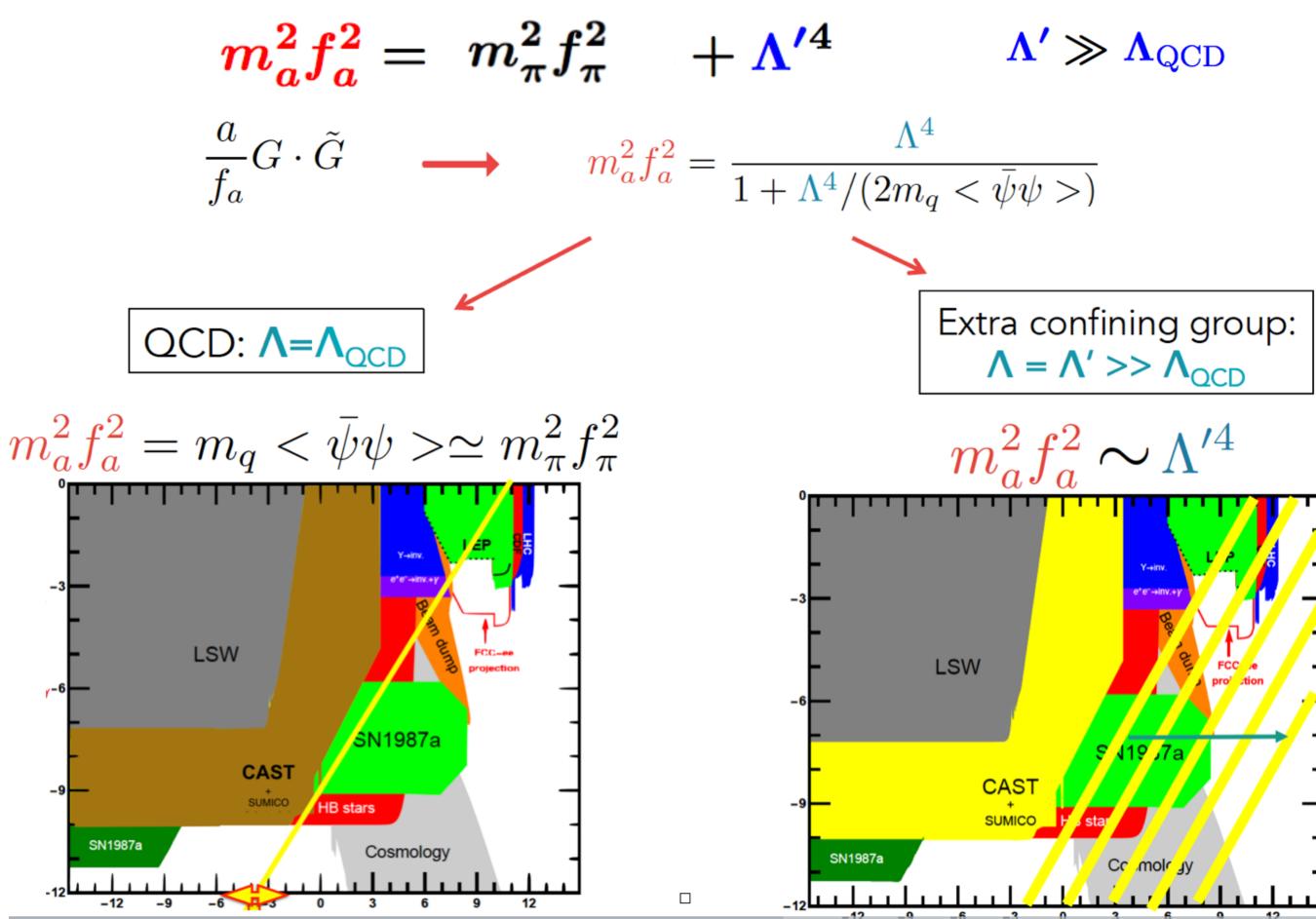
the true-axion parameter space relaxes

A heavy true axion?

$m_a^2 f_a^2 = LARGE constant$

e.g., and additional confining group

e.g., and additional confining group



HEAVY axions

 $m_a^2 f_a^2 = LARGE constant$

an old idea, strongly revived lately [Rubakov, 97] [Berezhiani et al ,01] [Fukuda et al, 01] [Hsu et al, 04] [Hook et al, 14] [Chiang et al, 16] [Khobadize et al,] [Dimopoulos et al, 16] [Gherghetta et al, 16] [Agrawal et al, 17] [Gaillard et al, 18] [Fuentes-Martin et al, 19] [Csaki et al, 19] [Gherghetta et al, 20]

... [Valenti, Vecchi, Xu, 2022]

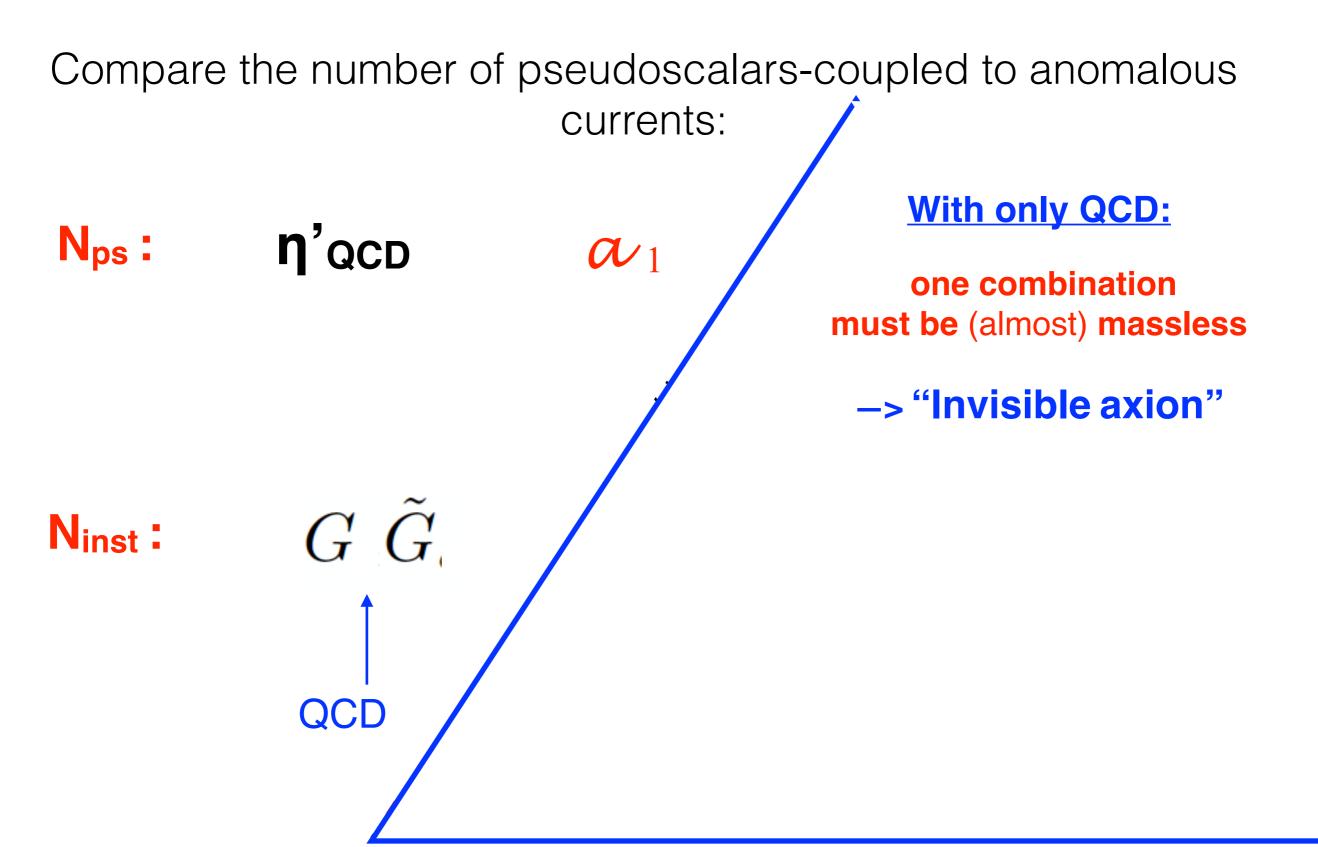
To know how heavy are the axion(s) of your BSM theory

Compare the number of pseudoscalars-coupled to anomalous currents:

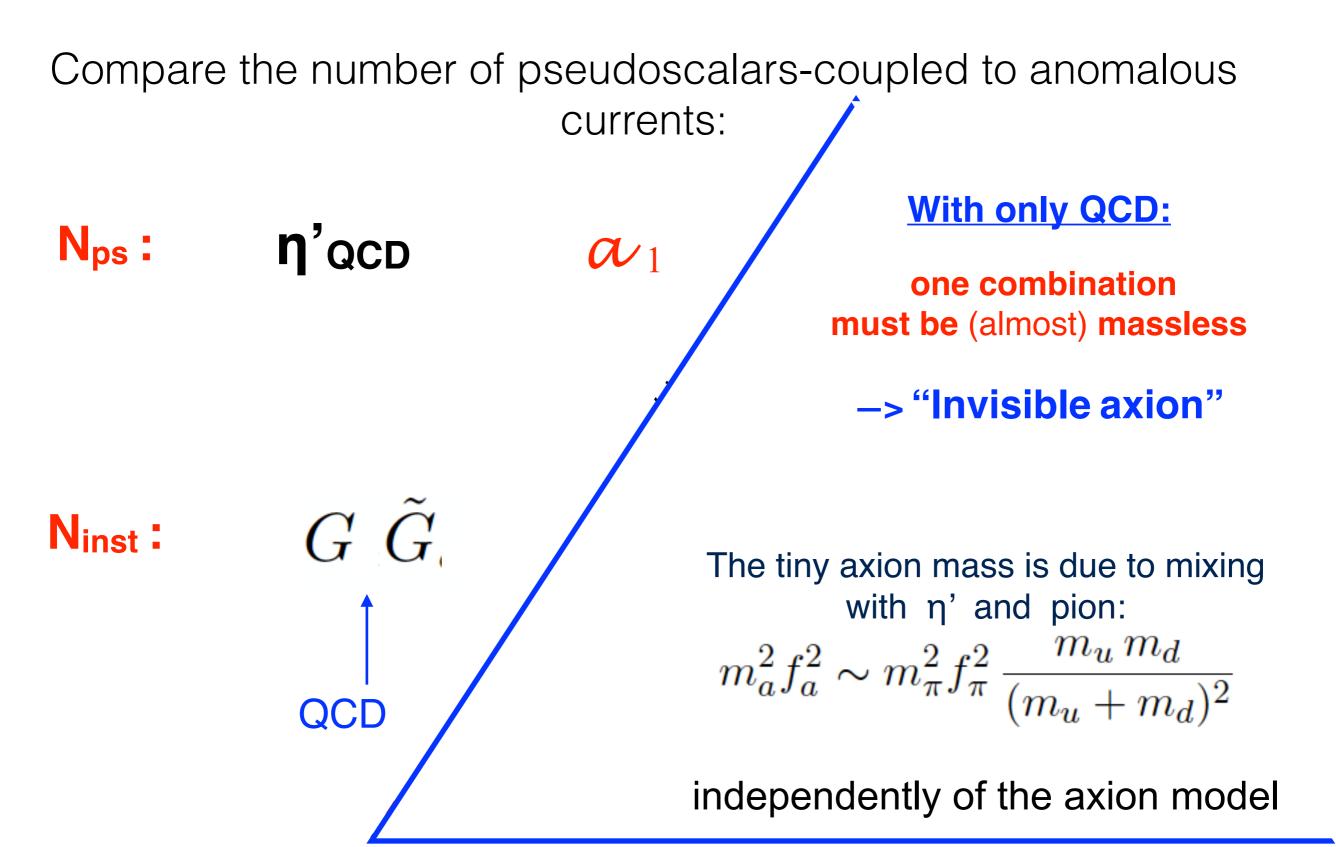
Nps: $\eta' q c D$ α_1 α_2 α_3

with how many different sources of (instanton) masses

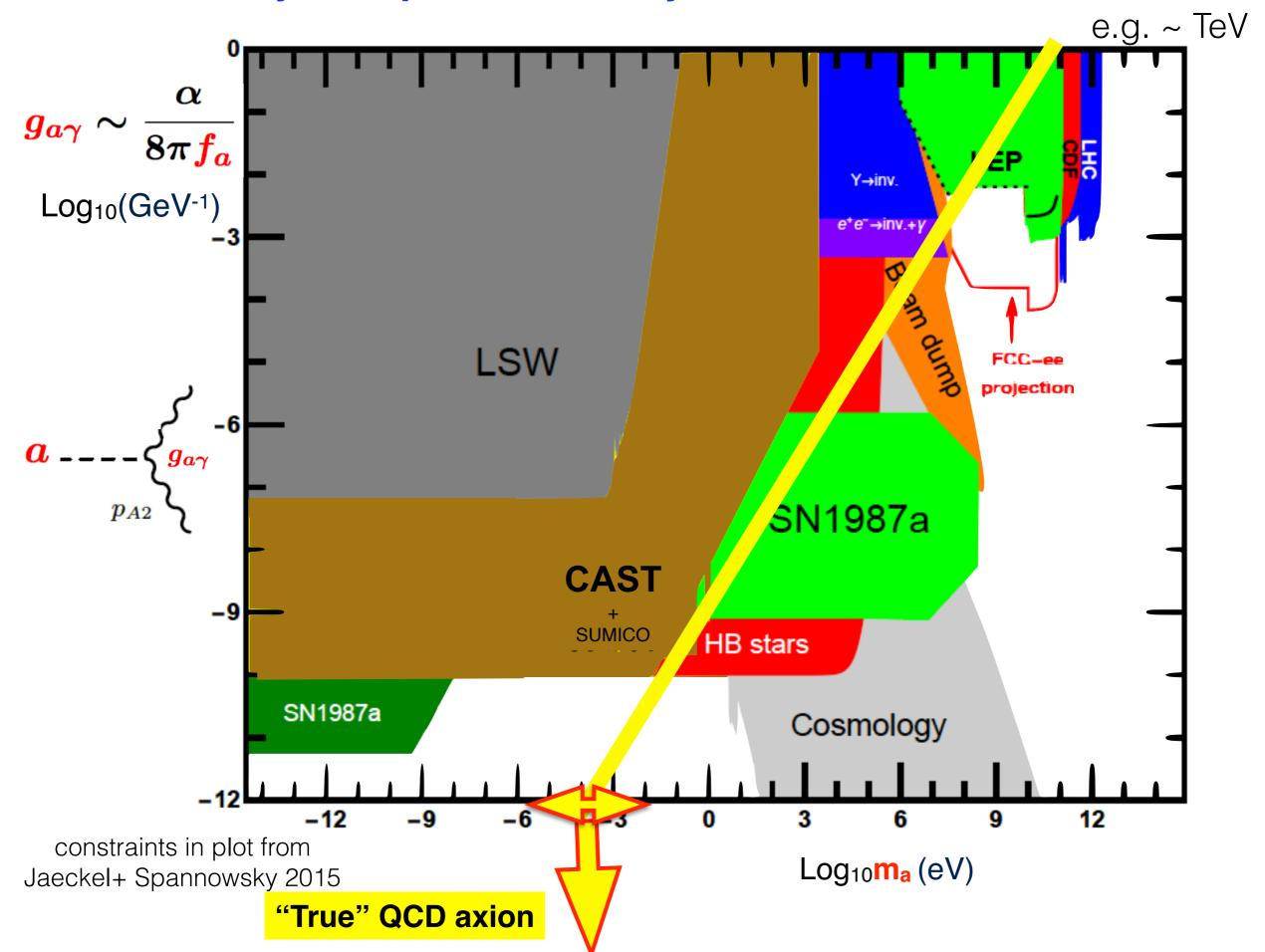
To know how heavy are the axion(s) of your BSM theory

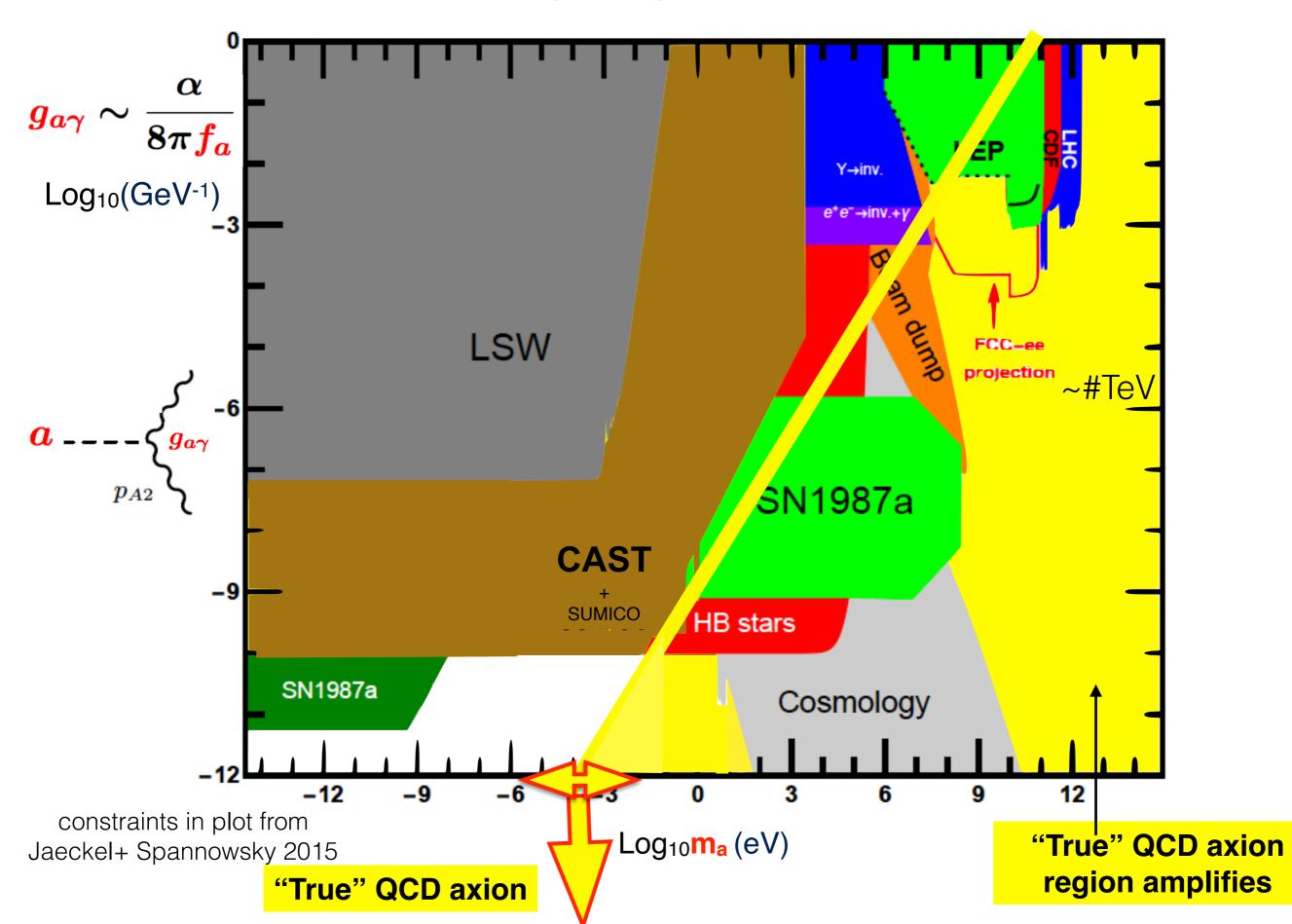


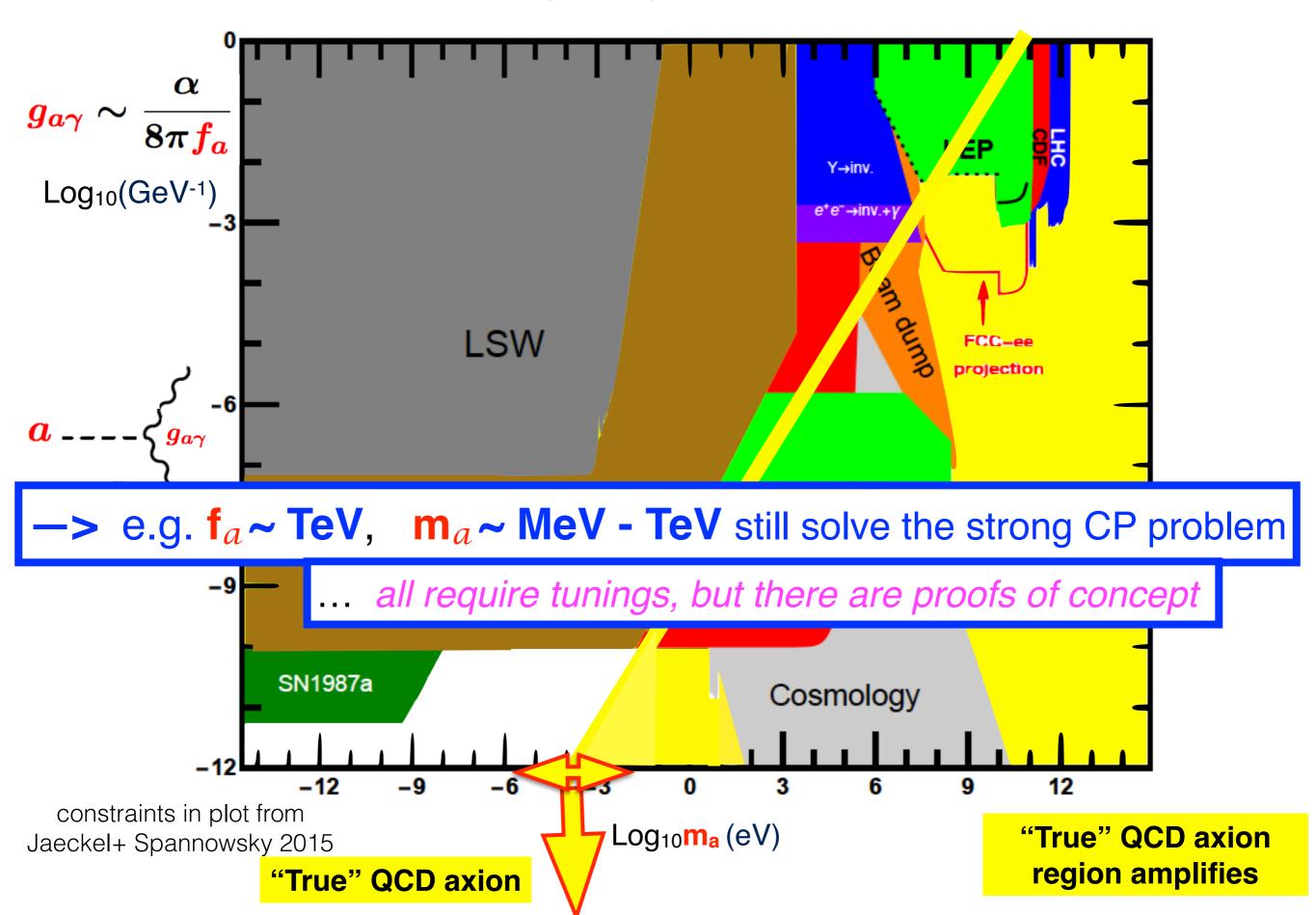
To know how heavy are the axion(s) of your BSM theory



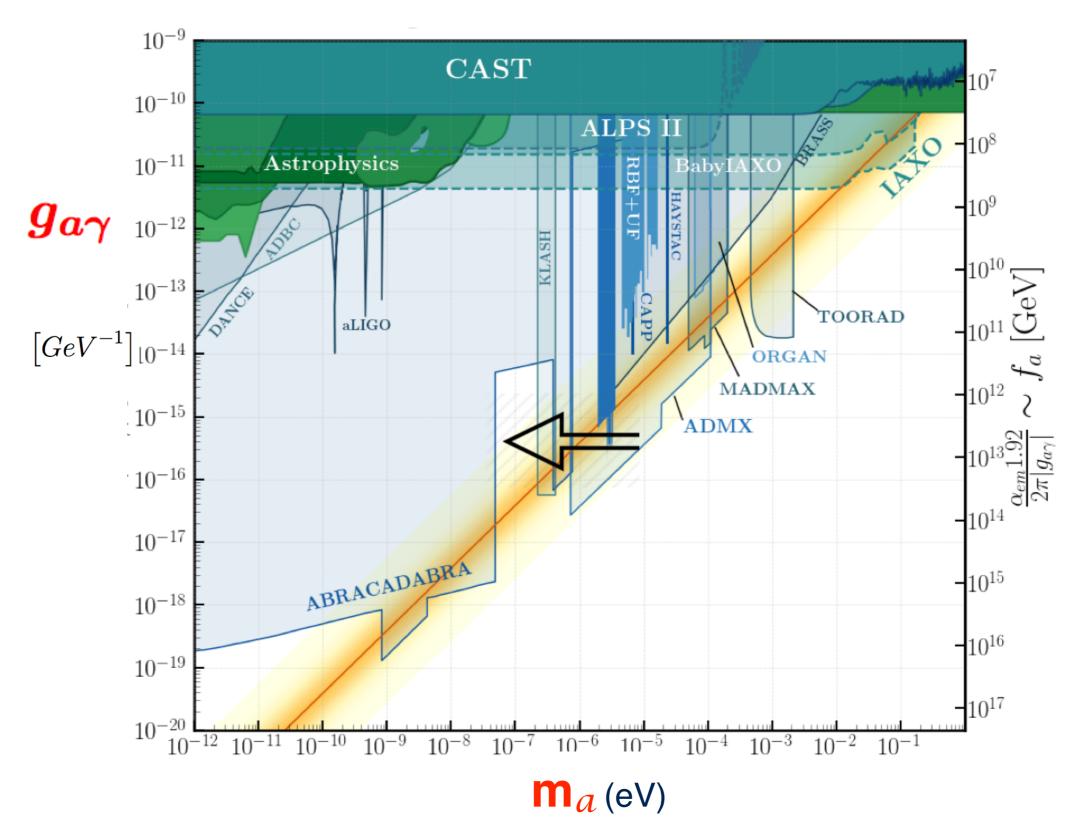
Much territory to explore for heavy 'true" axions and for ALPs







LIGTHER than usual axions ?



LIGTHER than usual axions

$$m_a^2 f_a^2 =$$
 SMALL **CONSTANT**

How to do that without fine-tunings?

Luca de Luzio, Pablo Quilez, Andreas Ringwald & BG:

- * And solve the strong CP problem: arXiv 2102.00012
- * And solve the strong CP and DM problems: arXiv 2102.01082

LIGTHER than usual axions

$$m_a^2 f_a^2 = m_\pi^2 f_\pi^2$$
 - extra

How to do that without fine-tunings?

Luca de Luzio, Pablo Quilez, Andreas Ringwald & BG:

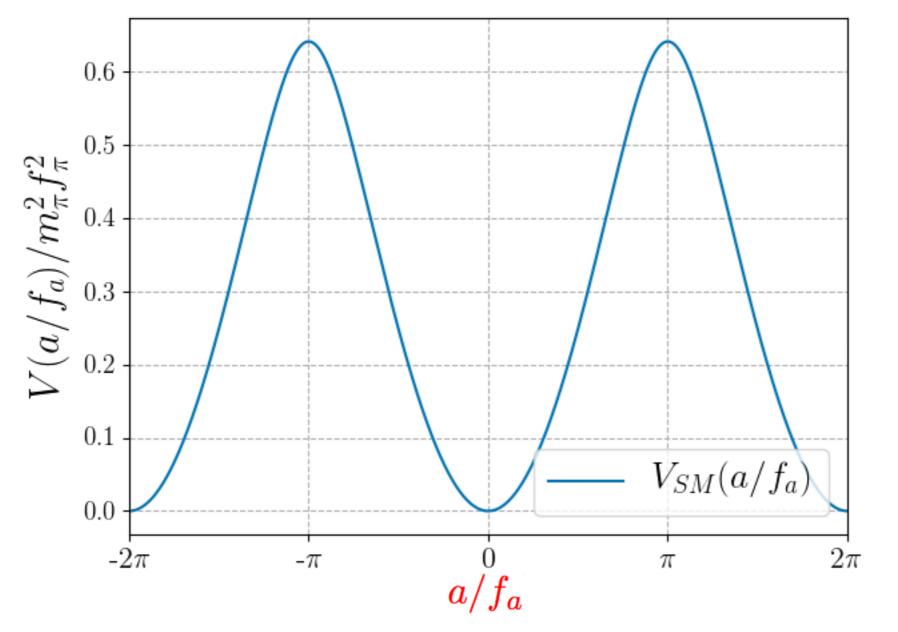
- * And solve the strong CP problem: arXiv 2102.00012
- * And solve the strong CP and DM problems: arXiv 2102.01082

Can you naturally solve the strong CP problem with a lighter-than-QCD-axion ?

You want a lighter axion—> you want a flatter potential

Canonical QCD axion:

$$V_{SM}\left(\frac{a}{f_{a}}\right) = -m_{\pi}^{2} f_{\pi}^{2} \sqrt{1 - \frac{4m_{u}m_{d}}{(m_{u} + m_{d})^{2}} \sin^{2}\left(\frac{a}{2f_{a}}\right)}$$



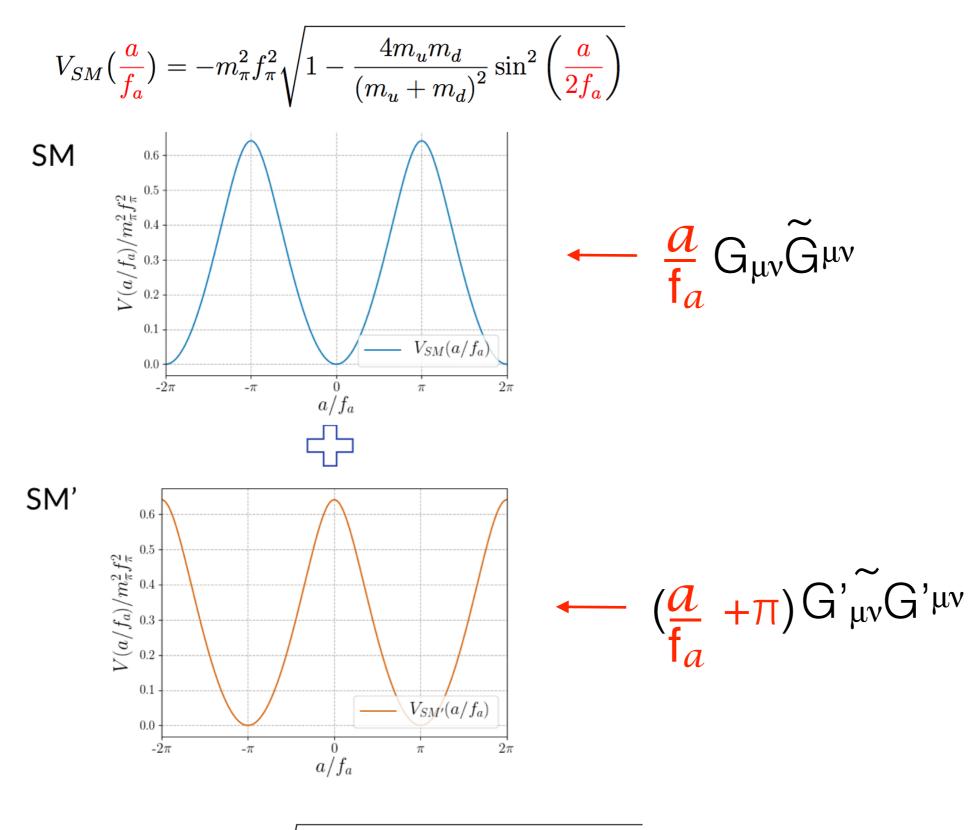
how to add something that naturally flattens it?

A Z₂ (or Z_N) symmetry : mirror degenerate worlds

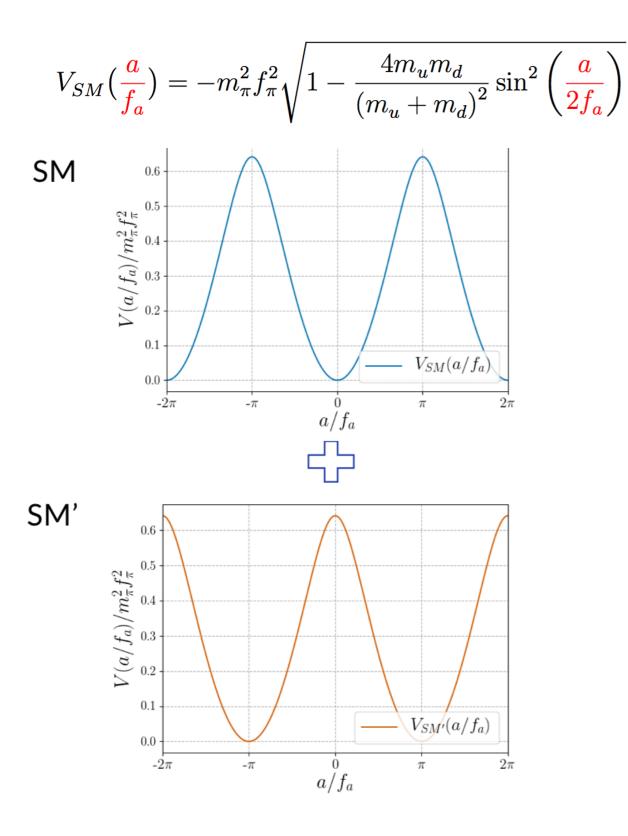
[Hook, 18]

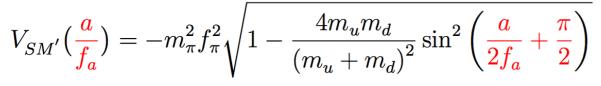
$$Z_2: \quad \mathrm{SM} \longrightarrow \mathrm{SM}'$$
$$a \longrightarrow a + \pi f_a$$

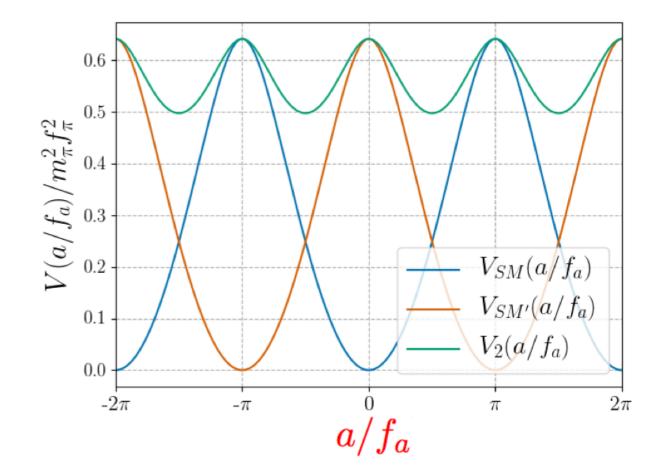
$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm SM'} + \frac{\alpha_s}{8\pi} \left(\frac{a}{f_a} - \theta \right) G \widetilde{G} + \frac{\alpha_s}{8\pi} \left(\frac{a}{f_a} - \theta + \pi \right) G' \widetilde{G}'$$
QCD
QCD
QCD'



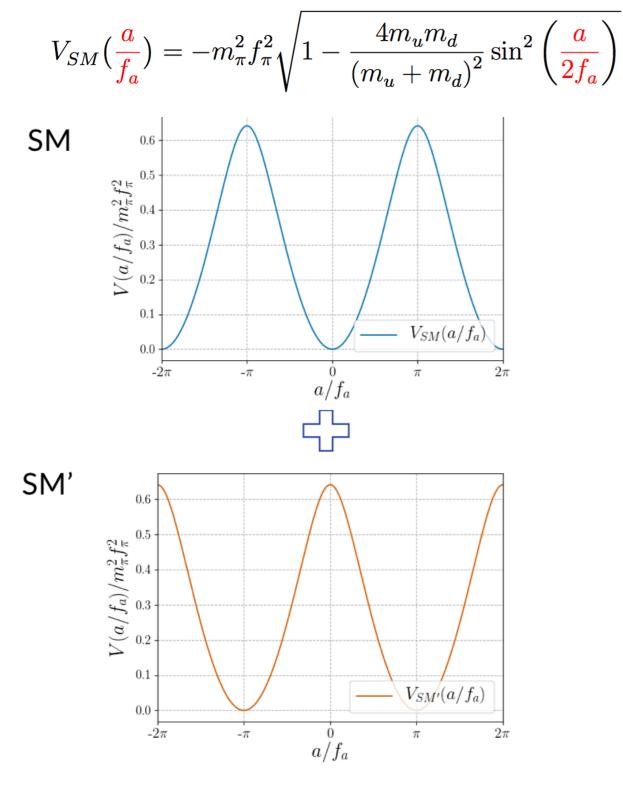
 $V_{SM'}\left(\frac{a}{f_a}\right) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2} \sin^2\left(\frac{a}{2f_a} + \frac{\pi}{2}\right)}$



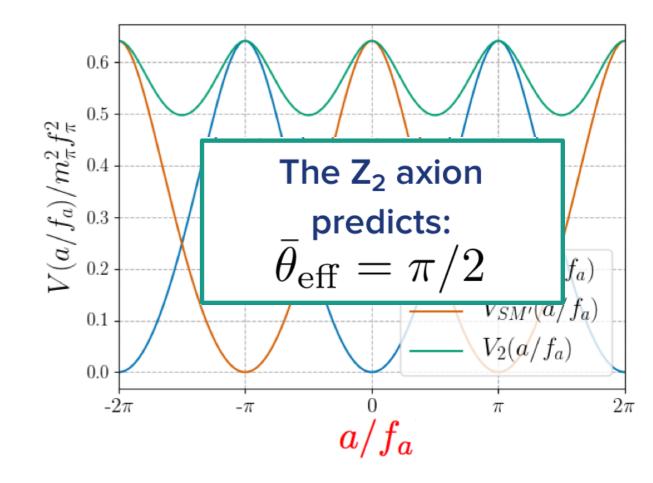




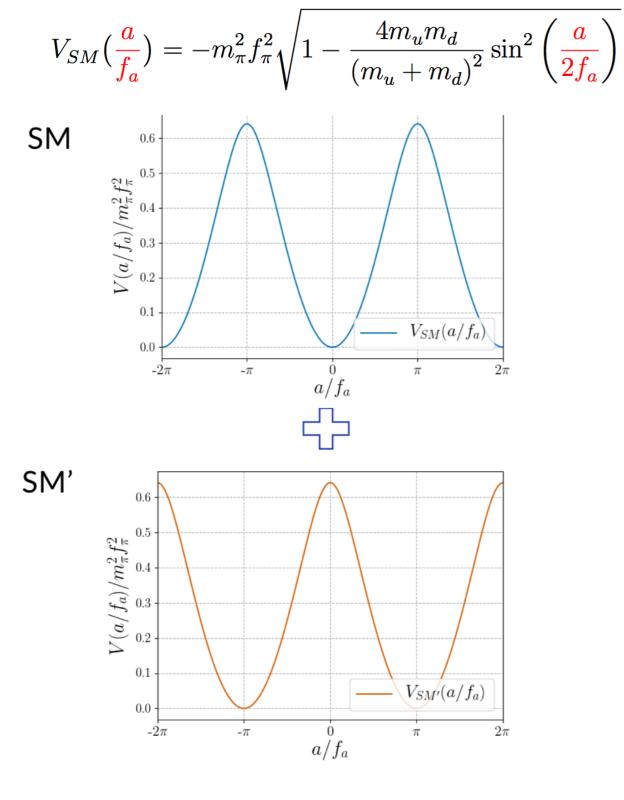
[Hook, 18]

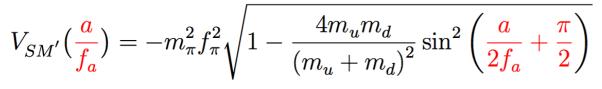


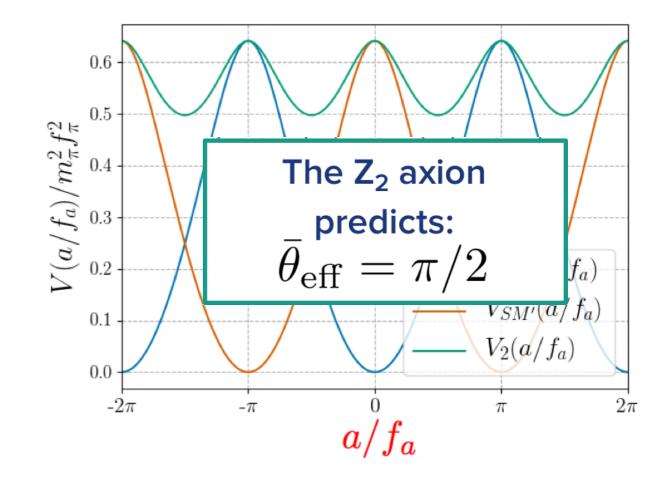
$$V_{SM'}\left(\frac{a}{f_a}\right) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{\left(m_u + m_d\right)^2} \sin^2\left(\frac{a}{2f_a} + \frac{\pi}{2}\right)}$$



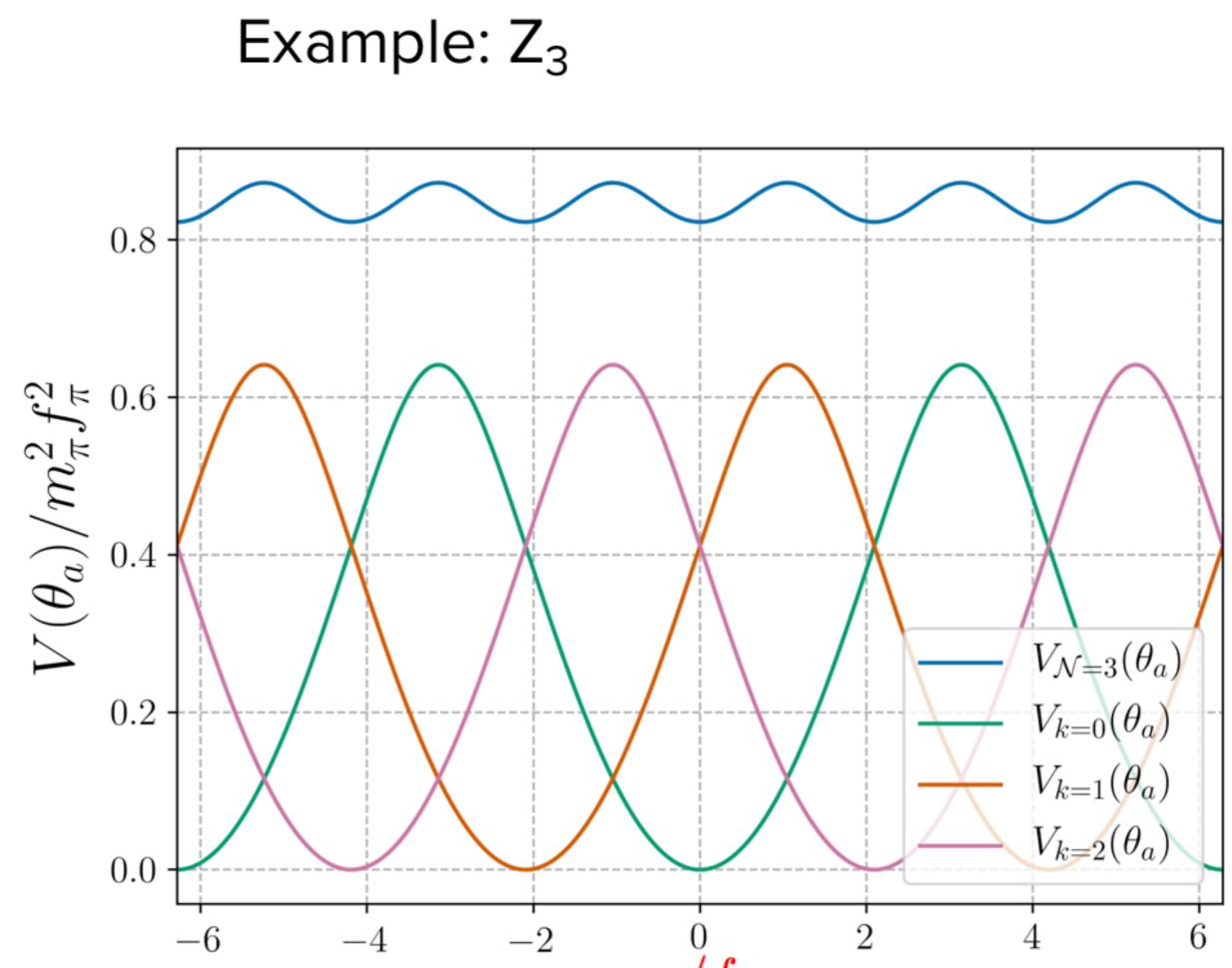
[Hook, 18]







you need N=odd



 a/f_a

Z_{N axion} : N mirror degenerate worlds [Hook, 18]

...

$$Z_{N}: SM \longrightarrow SM^{k}$$

$$a \longrightarrow a + \frac{2\pi k}{N} f_{a}$$

$$SM$$

$$SM_{k=1}$$

$$Z_{N}$$

$$SM_{k=2}$$

$$SM_{k=2}$$

- → The axion realizes the Z_N non-linearly.
- → N degenerate worlds with the same couplings as in the SM except for the theta parameter

$$\mathcal{L} = \sum_{k=0}^{\mathcal{N}-1} \left[\mathcal{L}_{\mathrm{SM}_k} + \frac{\alpha_s}{8\pi} \left(\theta_a + \frac{2\pi k}{\mathcal{N}} \right) G_k \widetilde{G}_k \right] + \dots$$

Compact analytical formula for Z_{N} axion mass

di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

- → Using Fourier decomposition and Gauss hypergeometric functions we managed to show that:
 - The total Z_N axion potential approaches a cosine:

$$V_{\mathcal{N}}\left(\frac{\boldsymbol{a}}{\boldsymbol{f_a}}\right) \simeq -\frac{m_a^2 f_a^2}{\mathcal{N}^2} \cos(\mathcal{N}\frac{\boldsymbol{a}}{\boldsymbol{f_a}})$$

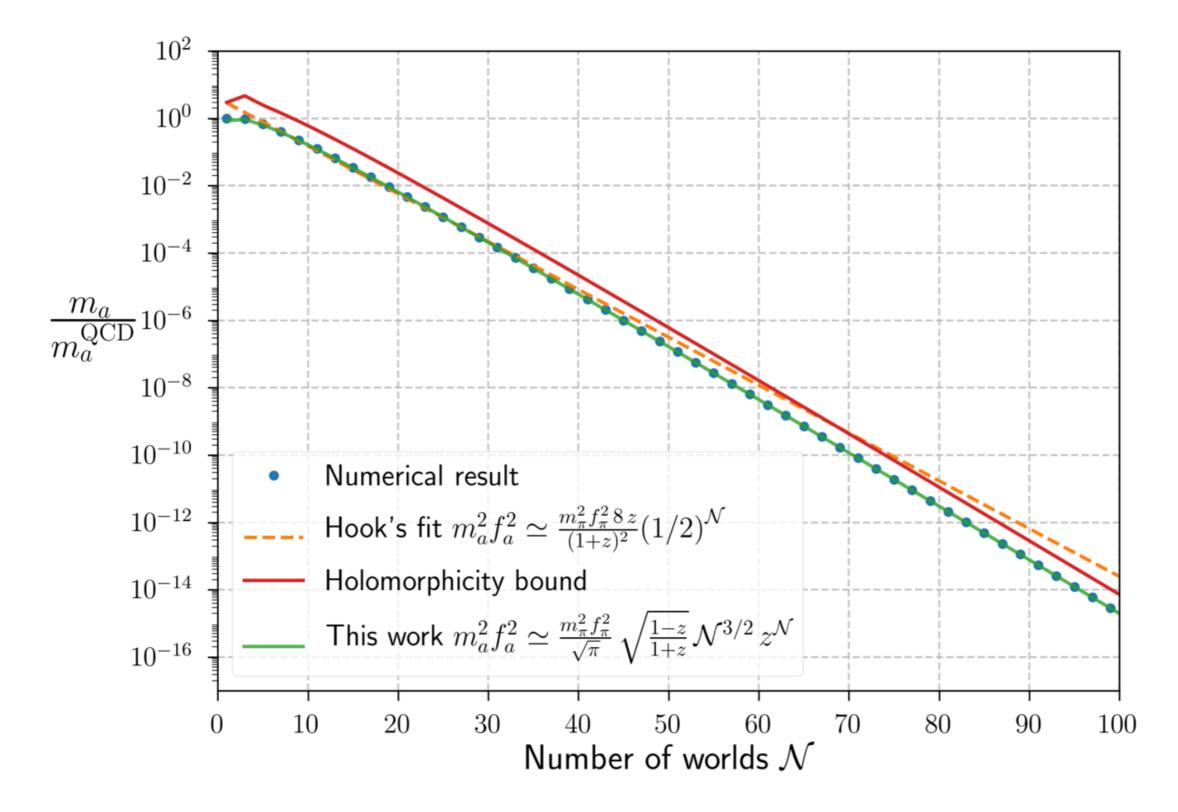
Compact analytical formula for the axion mass

exp

$$m_a^2 f_a^2 \simeq \frac{m_\pi^2 f_\pi^2}{\sqrt{\pi}} \sqrt{\frac{1-z}{1+z}} \mathcal{N}^{3/2} z^{\mathcal{N}} \qquad z = m_u/m_d$$

onentially suppressed
$$\frac{m_a^2 f_a^2}{m_\pi^2 f_\pi^2} \propto z^{\mathcal{N}} \sim 2^{-\mathcal{N}}$$

Z_N axion mass formula

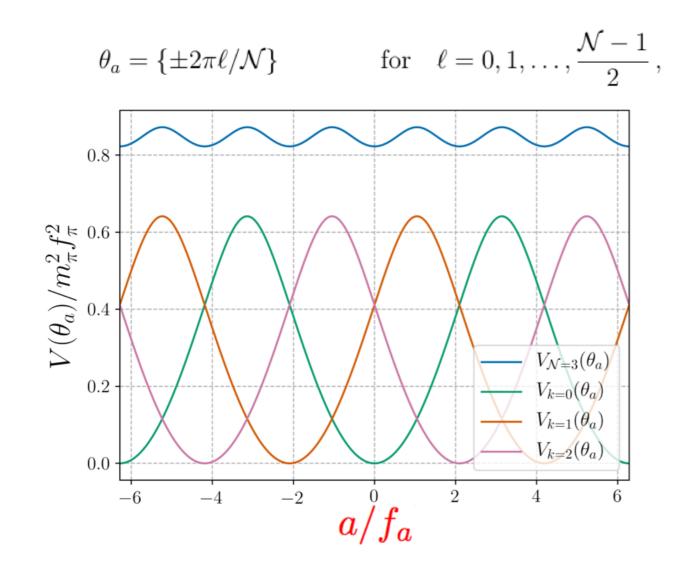


excellent agreement with numerical already for N=3

di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

Caveat:

—> There are N minima: we "only" solve strong CP with 1/N prob.



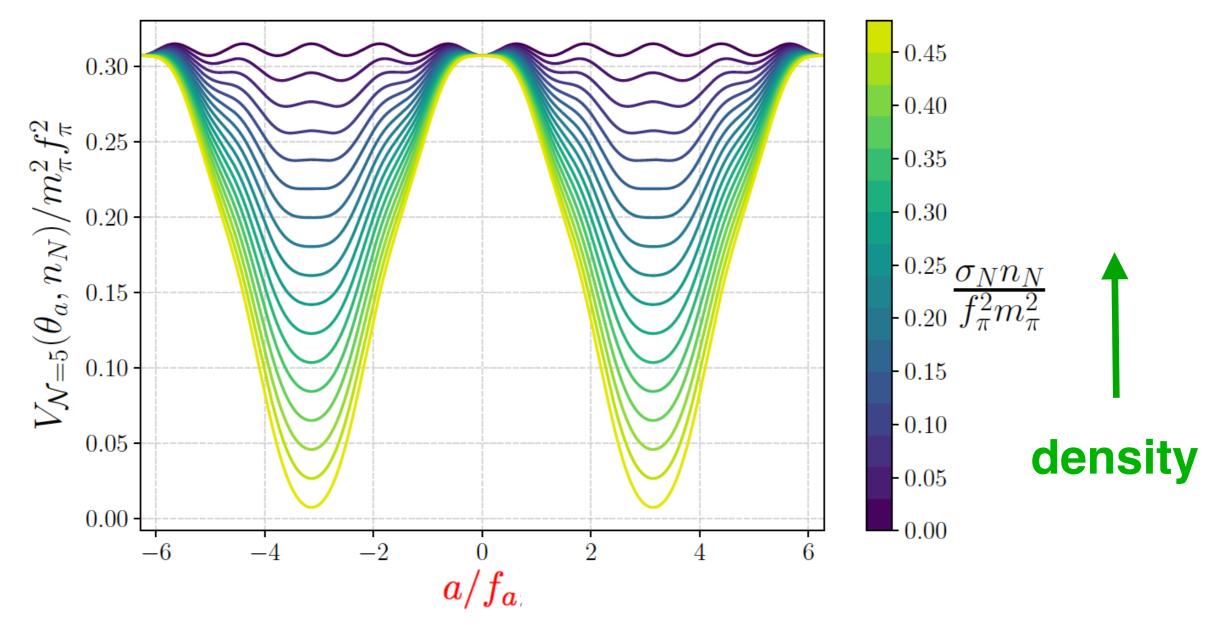
 $\bar{\theta} \lesssim 10^{-10}$ $1/\mathcal{N}$ probability

 10^{-6} DULAS $\boldsymbol{\alpha}$ $g_{a\gamma} \sim$ $\overline{8\pi f_a}$ $[GeV^{-1}]$ 10^{4} CROWS 10^{-7} ALPS I 10^{5} OSQAR 10^{-8} $f_a \left[{
m GeV}
ight]_{10^6} {
m GeV}$ 10^{-9} CAST 10^{7} 10^{-10} HB HESS Hydra A $\frac{\alpha_{em}1.92}{2\pi|g_{a\gamma}|}$ 10^{8} AXOI \mathbf{SN} - γ 10^{-11} Fermi M87 10^{9} SILL 10^{-12} Chandra 10^{10} 10^{-13} 10^{11} $10^{-14} \underbrace{10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{$ 10^{0} \mathbf{m}_{a} (eV)

di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

Model-independent bounds from high-density objects

A stellar object of high (SM) density is a background that breaks explicitly Z_N



the potential minimum is at π (instead of 0)

Hook, Huang 2018 Di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

Model-independent bounds from high-density objects



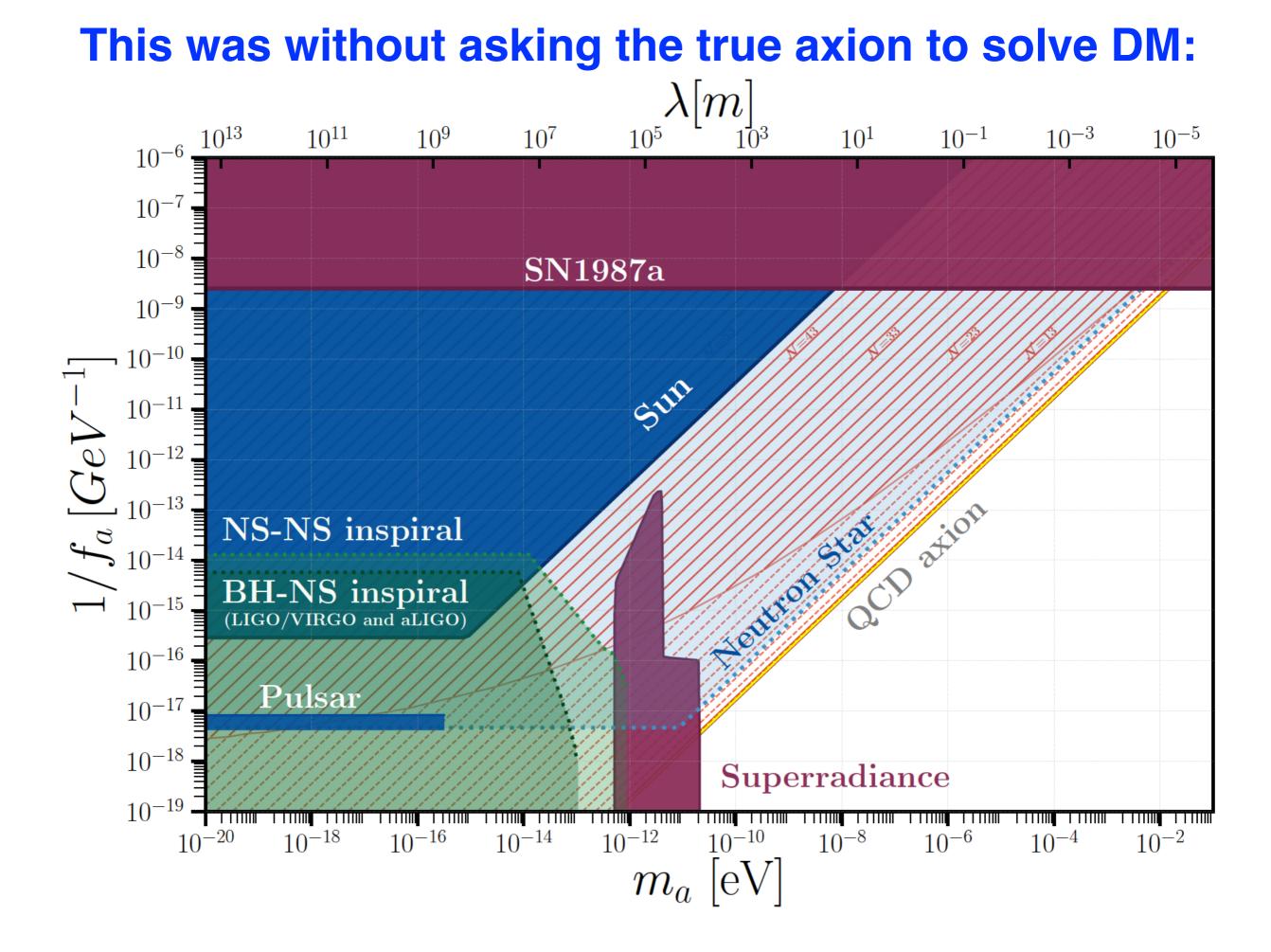
Dark matter from the Z_N axion

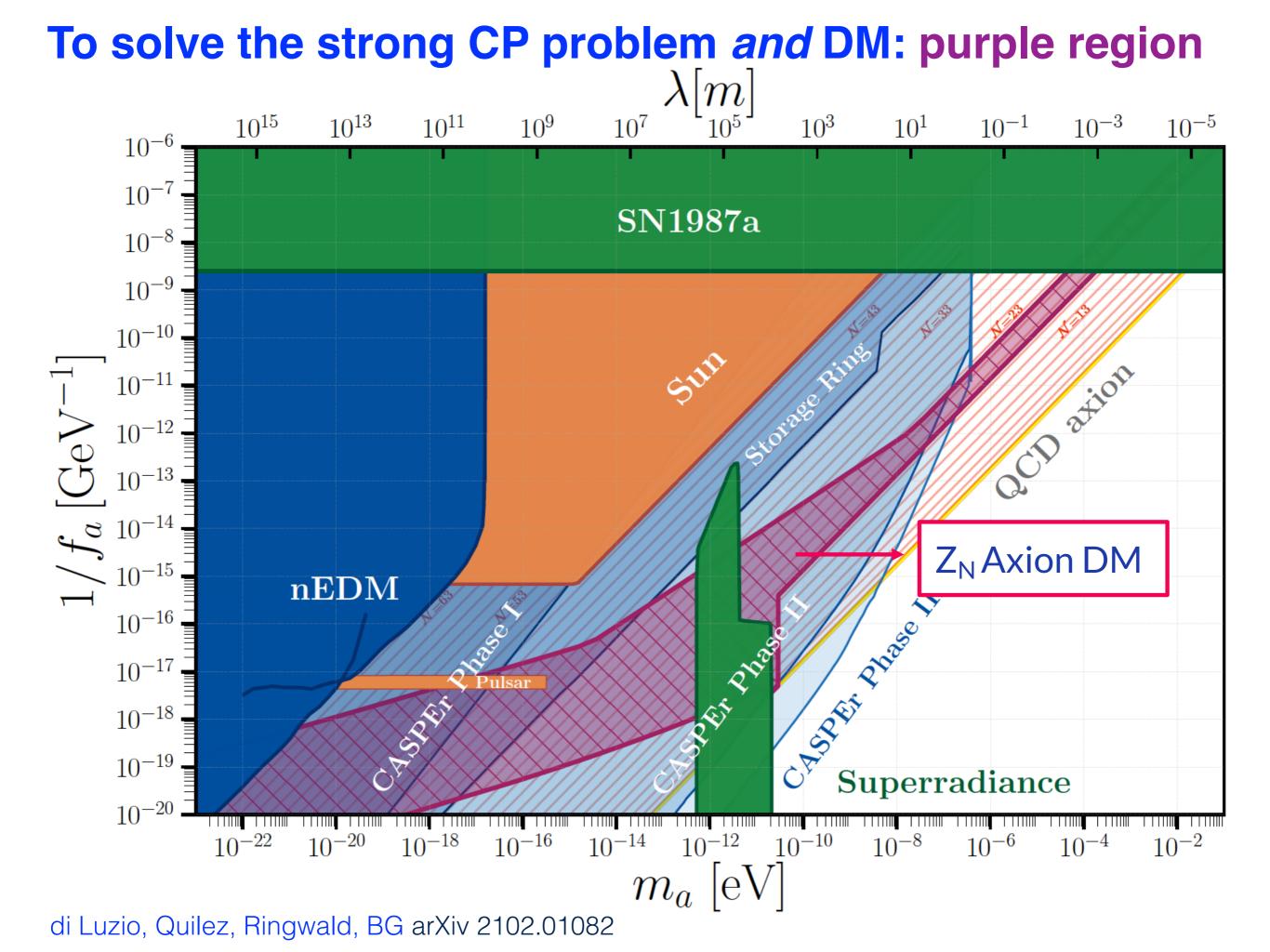
For instance:

* Could CASPER-Electric Phase-I find a true axion?

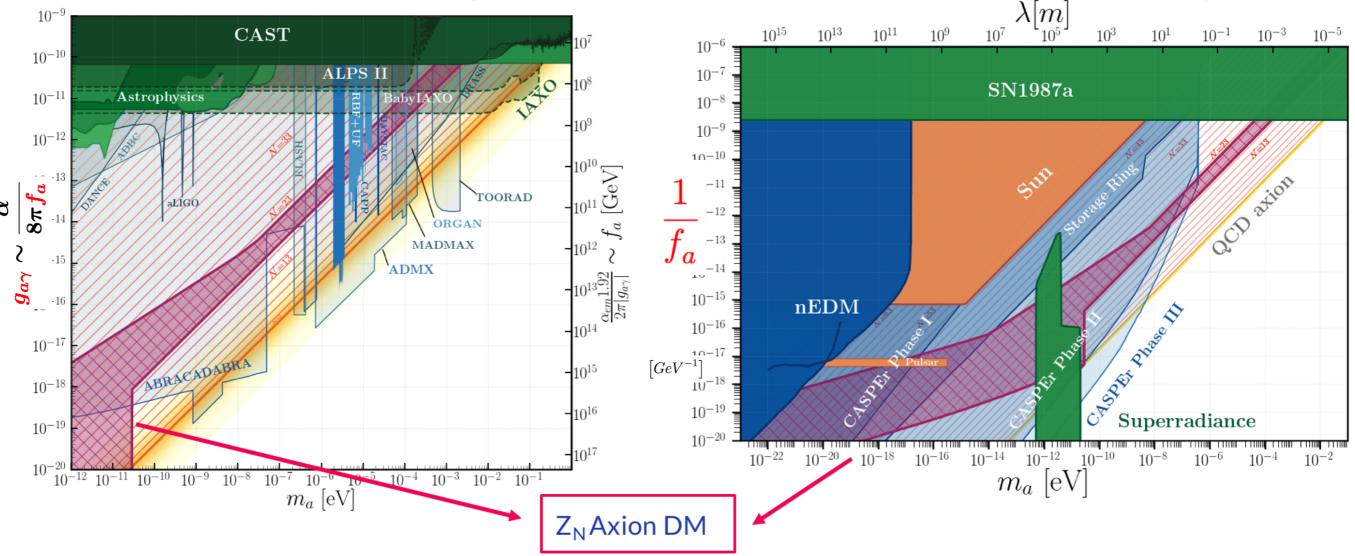
* Could fuzzy DM ($m_{DM} \sim 10^{-22} \text{ eV}$) be a true axion?

di Luzio, Quilez, Ringwald, BG arXiv 2102.01082





To solve the strong CP problem and DM: purple region

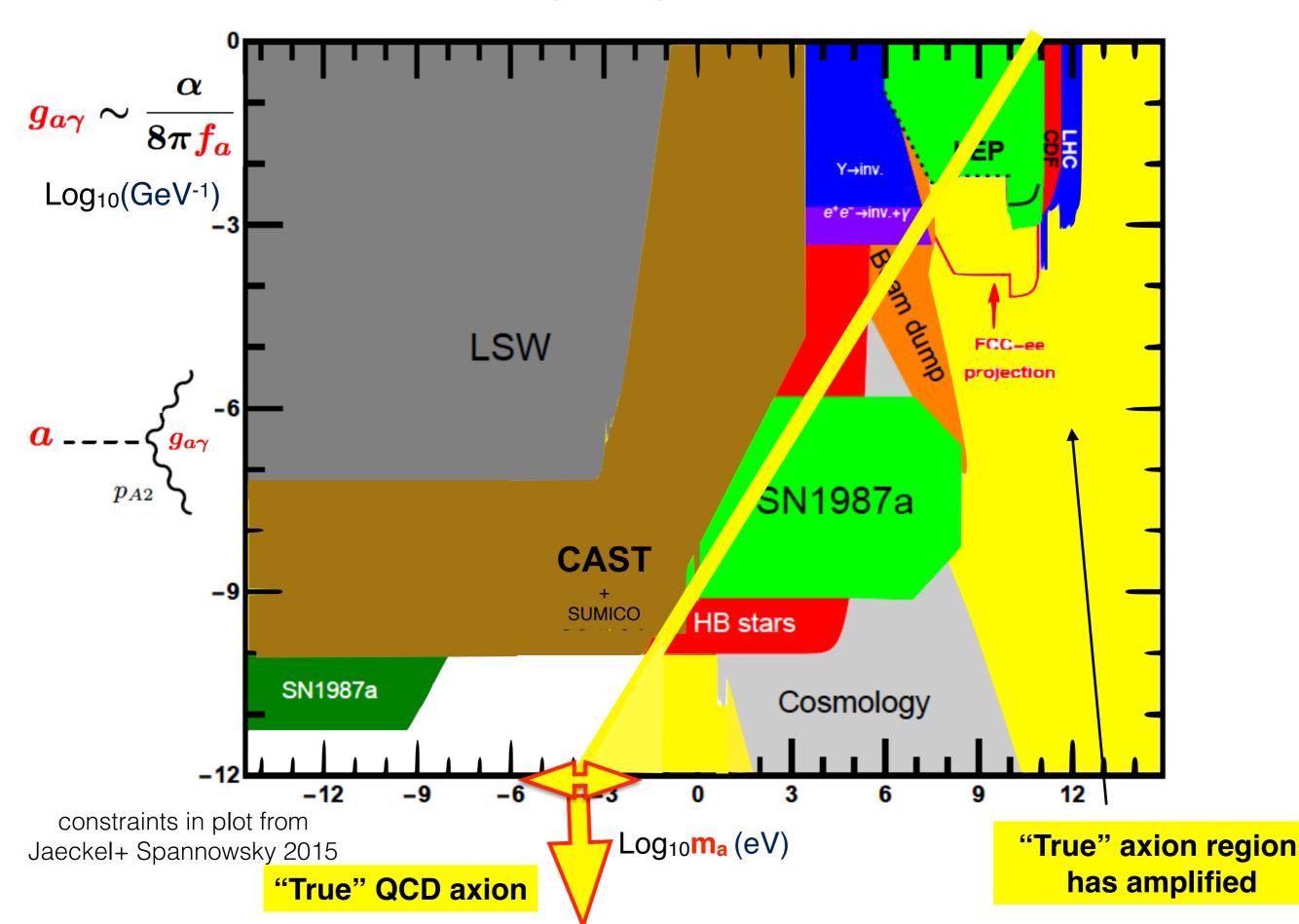


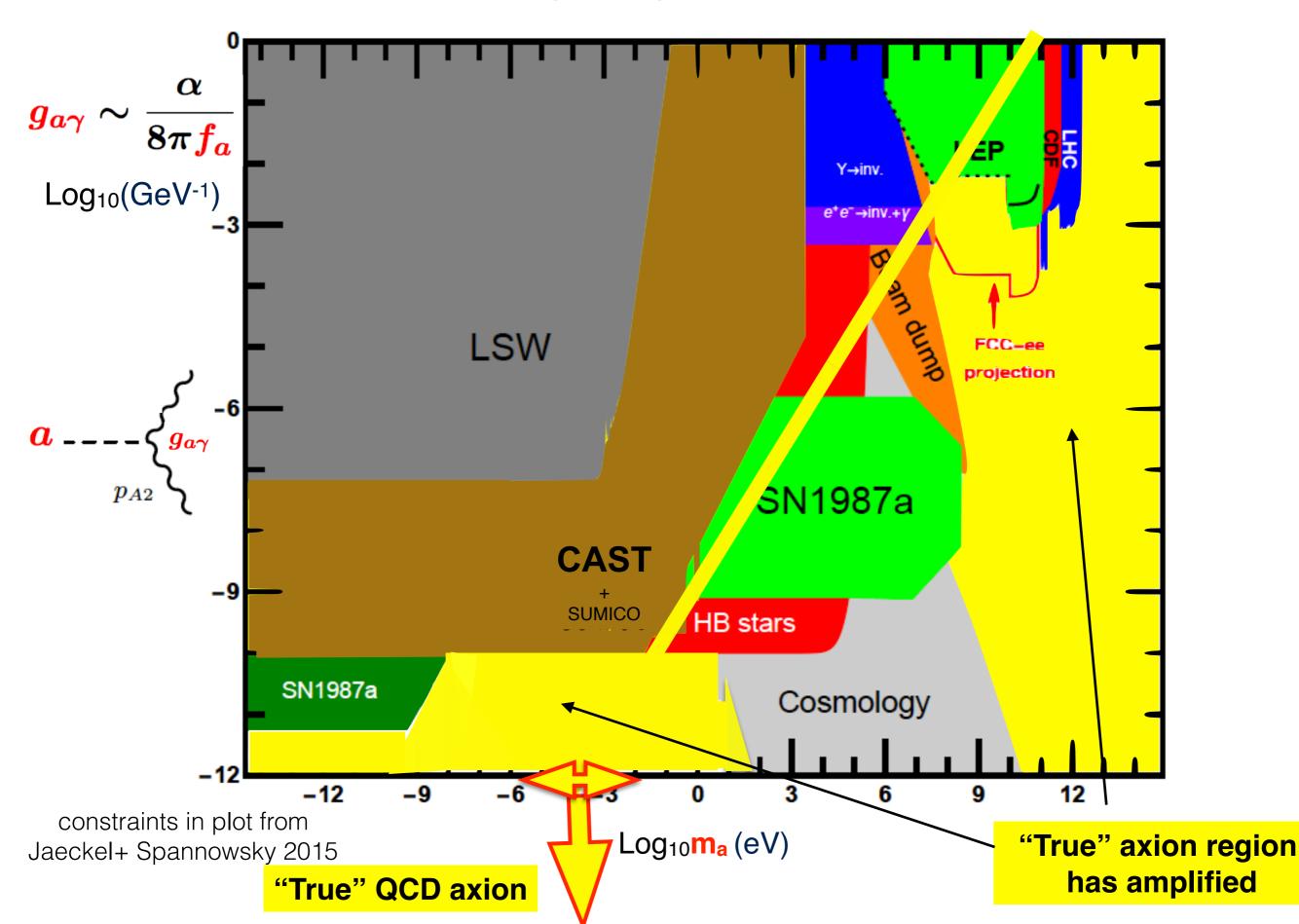
 $3 \leq \mathcal{N} \lesssim 65$ allowed

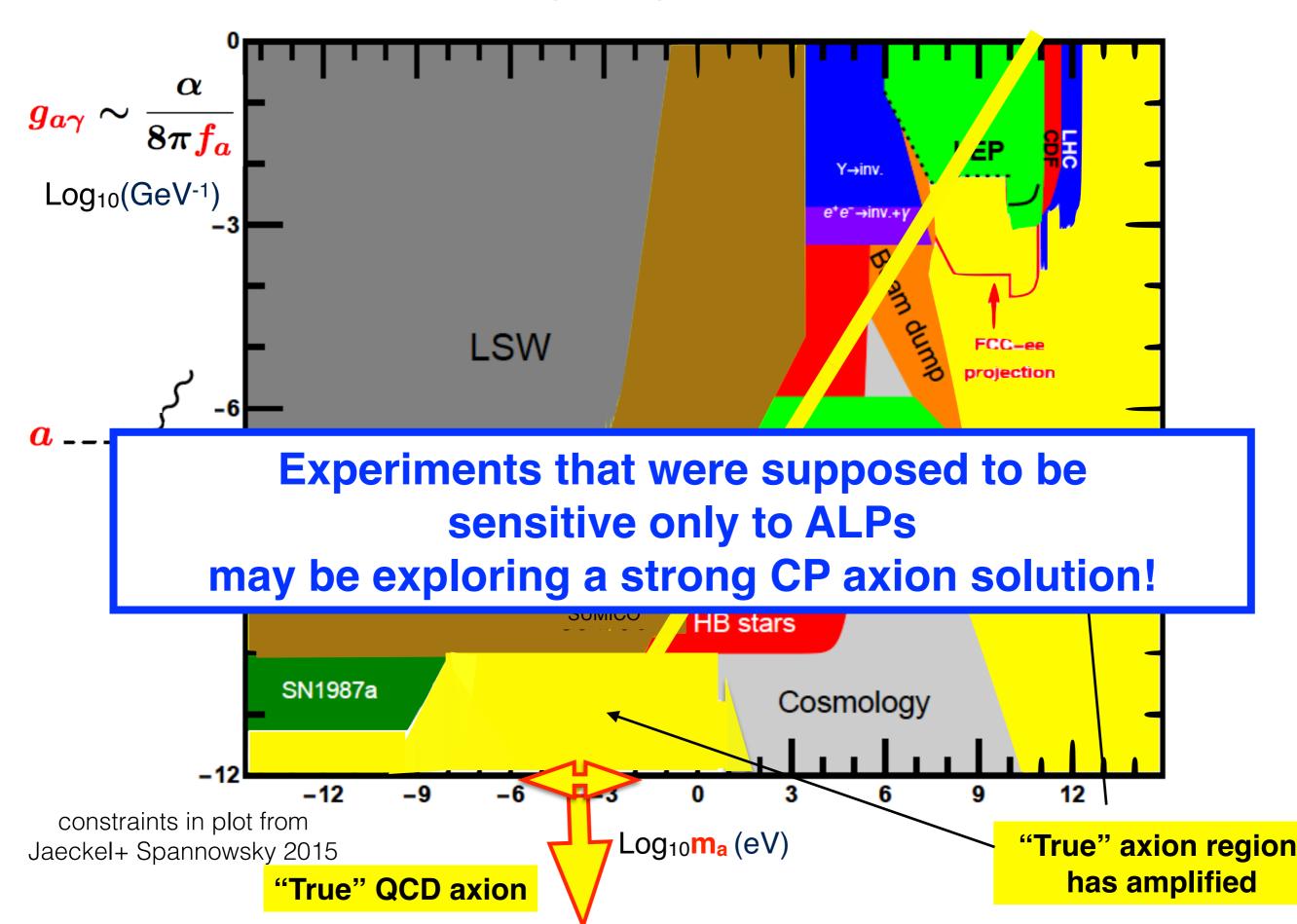
Solutions for $10^{-22}~{\rm eV} {\leq} m_a {\leq} m_a^{QCD}$

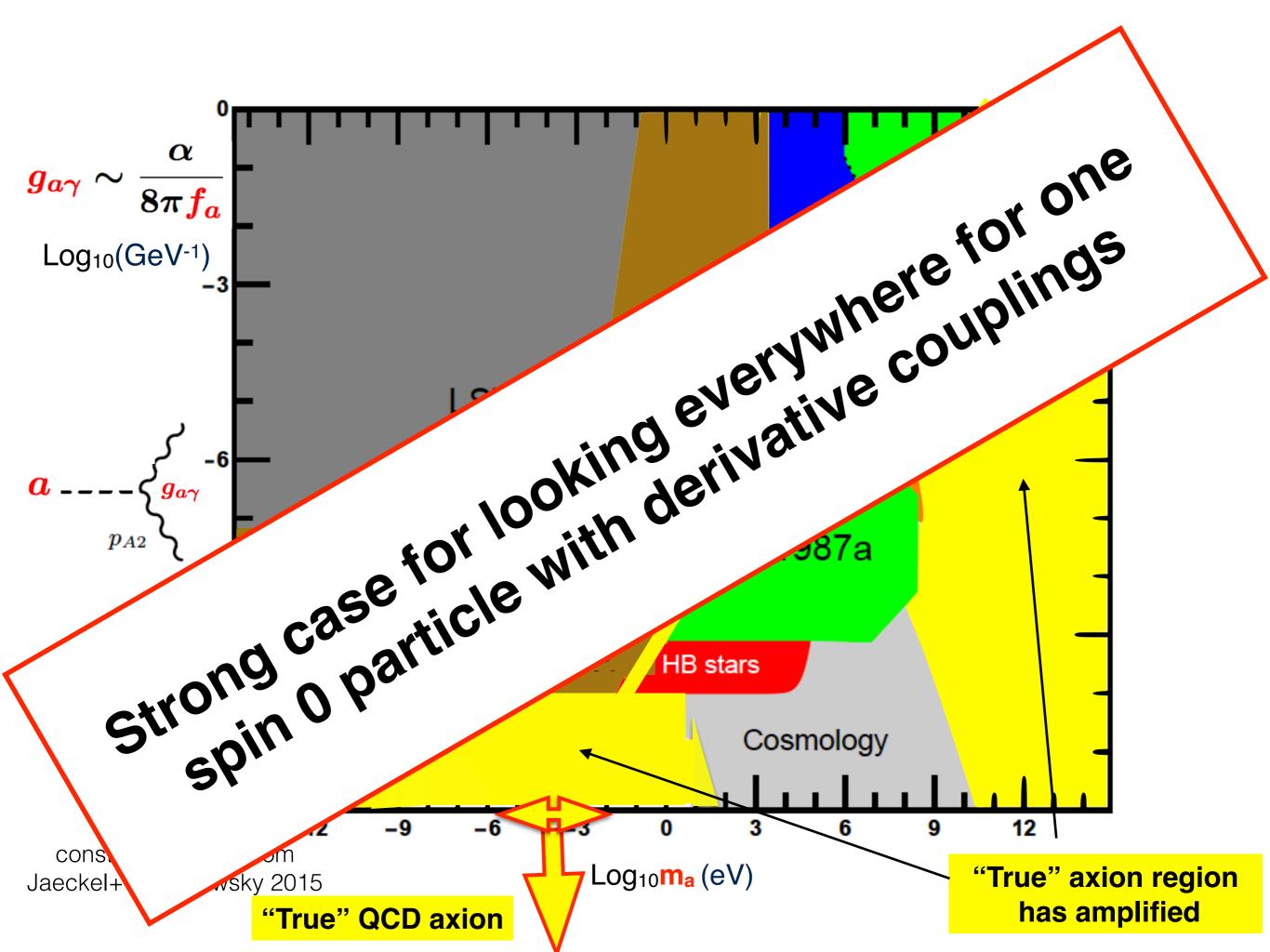
First "fuzzy dark matter" true axion

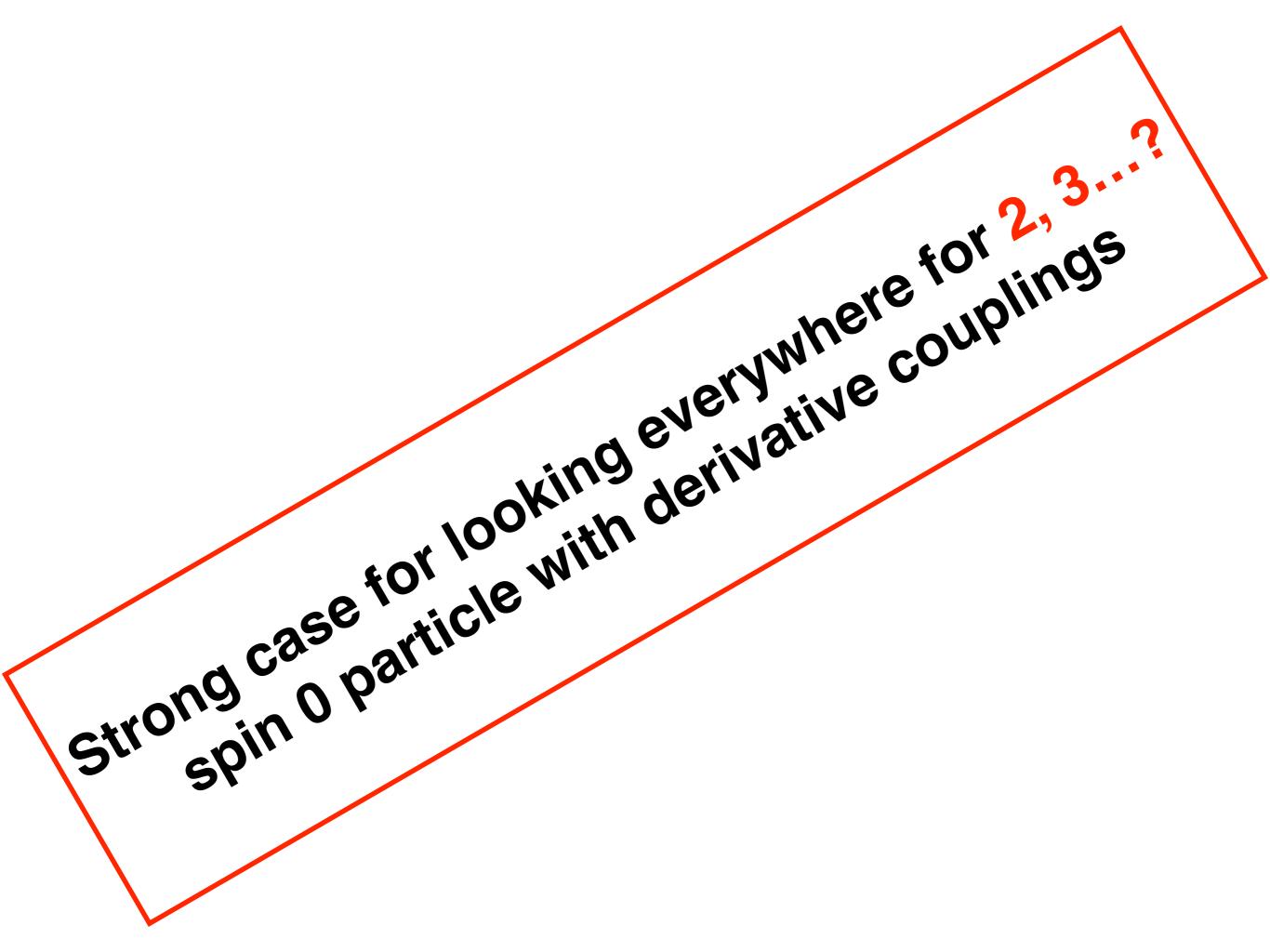
di Luzio, Quilez, Ringwald, BG arXiv 2102.01082









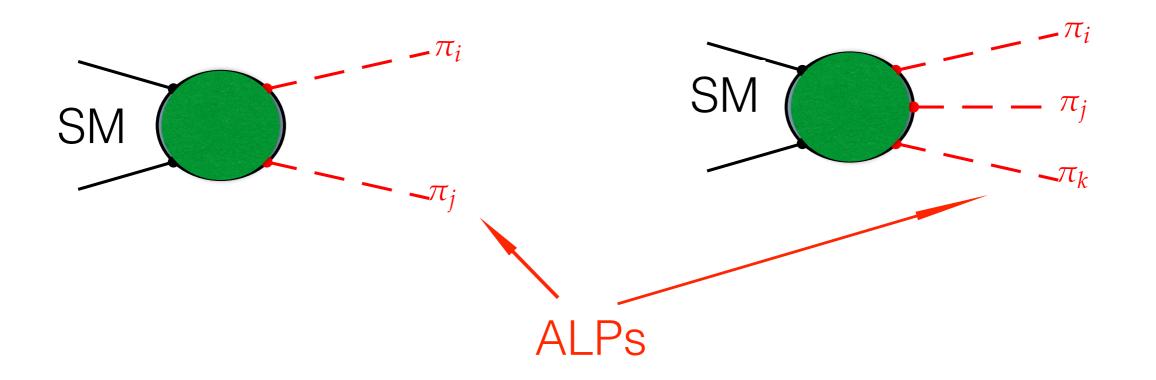


Degenerate ALPs

What happens if the ALP is charged under some unbroken dark symmetry D?

The ALP would then necessarily be in a multiplet of D

If the SM sector is uncharged —> no single ALP production



Discrete Goldstone Bosons

Spontaneously broken discrete symmetries can ameliorate the UV convergence of theories with scalars ! (Das-Hook)

The byproduct can be degenerate multiplets of ALPs

B. Gavela, R. Houtz, P. Quilez, V. Enguita-Vileta arXiv:2205.09131

--> see talk by Victor Enguita

Consider a triplet of real scalars $\Phi \equiv (\phi_1, \phi_2, \phi_3)$

and a typical SSB condition $\phi_1^2+\phi_2^2+\phi_3^2=f^2$

* Within SO(3), two massless GBs result $\phi(\pi_1, \pi_2)$

-> explicit breaking needed to give them masses

$$V(\phi_1, \phi_2, \phi_3) \supset \Lambda^2 \left(\epsilon_1 \phi_1^2 + \epsilon_2 \phi_2^2 + \epsilon_3 \phi_2^2 \right) + \lambda \phi_1^4 + \cdots$$

arbitrary and sensitive to quadratic corrections

* Within A₄ (or A₅..) \subset SO(3)

-> two massive π_1 , π_2 result without breaking the symmetry

-> increased insensitivity to quantum quadratic corrections

The point is that SB discrete symmetries allow invariant potentials

* but very few invariant terms possible, e.g. for A₄

$$egin{aligned} &\mathcal{I}_2 = \phi_1^2 + \phi_2^2 + \phi_3^2 \ &\mathcal{I}_3 = \phi_1 \phi_2 \phi_3 \ &\mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4 \end{aligned}$$

The most general potential is an arbitrary function of them:

$$V(\phi_1, \phi_2, \phi_3) = V(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4)$$

The point is that SB discrete symmetries allow invariant potentials

* but very few invariant terms possible, e.g. for A₄

$$\begin{split} \mathcal{I}_2 = \phi_1^2 + \phi_2^2 + \phi_3^2 & \xrightarrow{\text{this is the only quadratic}} \\ \mathcal{I}_3 = \phi_1 \phi_2 \phi_3 \\ \mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4 \end{split}$$

The most general potential is an arbitrary function of them:

$$V(\phi_1, \phi_2, \phi_3) = V(\mathcal{I}_2, \mathcal{I}_3, \mathcal{I}_4)$$

The point is that SB discrete symmetries allow invariant potentials

* but very few invariant terms possible, e.g. for A₄

at low energy
$$\mathcal{I}_2 = \phi_1^2 + \phi_2^2 + \phi_3^2 = f^2$$

 $\mathcal{I}_3 = \phi_1 \phi_2 \phi_3$
 $\mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4$

The point is that SB discrete symmetries allow invariant potentials

* but very few invariant terms possible, e.g. for A₄

at low energy \mathcal{I}_2 is irrelevant for π_1 , π_2 $\mathcal{I}_3 = \phi_1 \phi_2 \phi_3$ $\mathcal{I}_4 = \phi_1^4 + \phi_2^4 + \phi_3^4$

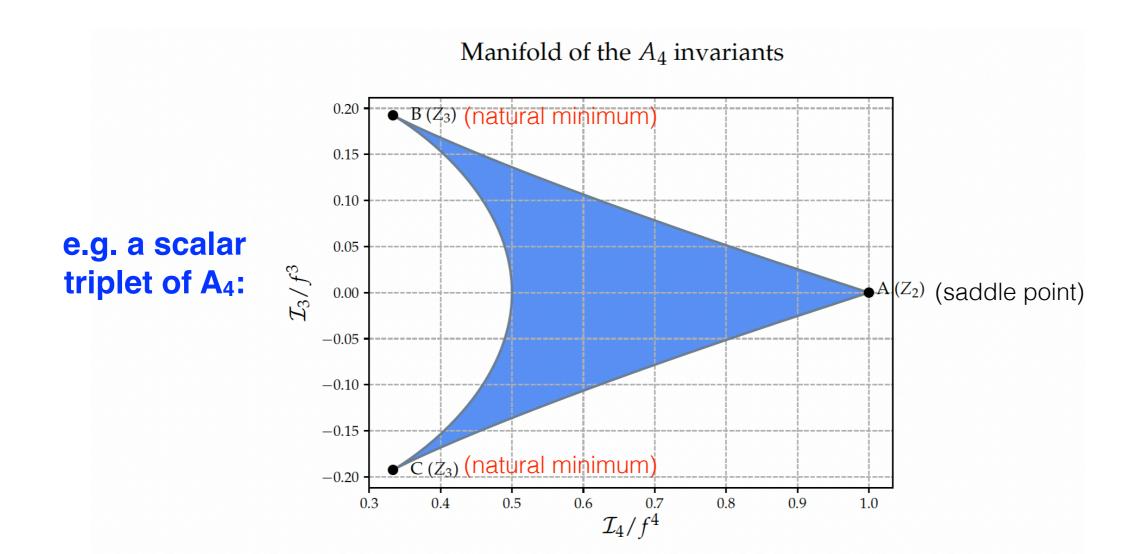
In consequence, the most general potential for π_1 , π_2 is:

$$V(\pi_1, \pi_2) = V(\mathcal{I}_3, \mathcal{I}_4)$$

``Natural extrema"

are those that do not depend on the parameters of the potential:

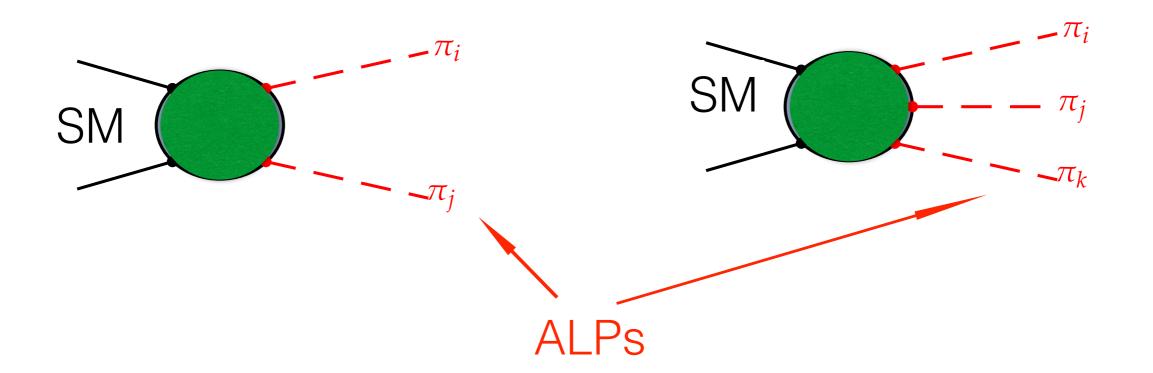
they are extrema of all the possible invariants



* We explored the natural minima and discovered that a discrete subgroup remains explicit in their spectrum, i.e. ``à la Wigner"

Z₃ for A₄ \rightarrow degenerate π_1 , π_2 doublet

no single ALP emission possible



The endpoint of distributions (e.g. invariant mass, m_T...) **differentiates** easily one from more than one invisible particles emitted

*

* We explored the natural minima and discovered that a discrete subgroup remains explicit in their spectrum, i.e. ``à la Wigner'' Z_3 for triplet of A_4 —> degenerate π_1 , π_2 doublet

Z₃ and Z₅ for triplet of A₅ \rightarrow degenerate π_1 , π_2 doublet

A₄ for quadruplet of A₅ \rightarrow degenerate π_1 , π_2 , π_3 triplet non-abelian

etc.

Conclusions

Axions and ALPs: blooming experiments and theory

—> The parameter space to find a true axion that solves the strong CP problem has expanded beyond the QCD axion band: heavier and lighter true axions, e.g. first ``fuzzy DM´´ axion

-> Searches for ALPs and true axions merging

-> Discrete Goldstone bosons ----

Strong physics case to look everywhere for one or more axions or ALPs

Conclusions / Outlook

It is a deep pleasure to be here today

Thank you very very much for the invitation!

Backup

ALPs

We will consider the SM plus a generic scalar field *a*

with derivative (+ anomalous) couplings to SM particles

and scale f_a :

an ALP (axion-like particle)

 $\mathcal{L} = \mathcal{L}_{SM} + \frac{\partial_{\mu} a}{f_a} \times SM^{\mu}$ general effective couplings

This is ~shift symmetry invariant: $a \rightarrow a + cte$. - ~ Goldstone boson

Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz 2017 arXiv:1701.05379

ALP-Linear effective Lagrangian at NLO

SM EFT Complete basis (bosons+fermions):

$$\begin{aligned} \mathscr{L}_{\text{eff}} &= \mathscr{L}_{\text{SM}} + \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) + \sum_{i}^{\text{total}} c_{i} \mathbf{O}_{i}^{d=5} \\ \mathbf{O}_{\tilde{B}} &= -B_{\mu\nu} \tilde{B}^{\mu\nu} \frac{a}{f_{a}} \qquad \mathbf{O}_{\tilde{G}} &= -G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \frac{a}{f_{a}} \\ \mathbf{O}_{\tilde{W}} &= -W_{\mu\nu}^{a} \tilde{W}^{a\mu\nu} \frac{a}{f_{a}} \qquad \frac{\partial_{\mu} a}{f_{a}} \sum_{\substack{\psi = Q_{L}, Q_{R}, \\ L_{L}, L_{R}}} \bar{\psi} \gamma_{\mu} X_{\psi} \psi \end{aligned}$$

where X_{ψ} is a general 3x3 matrix in flavour space

Georgi + Kaplan + Randall 1986 Choi + Kang + Kim, 1986 Salvio + Strumia + Shue, 2013

Trapped misalignment: a pure temperature effect

- * At high temperatures, the axion is trapped in the wrong minimum
- * The onset of oscillations is delayed
- * Less dilution = more DM

* After trapping, the axion can have enough kinetic energy to overfly many times the barrier—> further dilution: **trapped** +kinetic mislaign.

The Z_N axion can explain DM and solve the strong CP (with 1/N probab.)

di Luzio, Quilez, Ringwald, BG arXiv 2102.01082

$\overline{g}_{a\gamma n}$ n Canonical QCD axion: $g_{a\gamma n}$ $\mathcal{L} \supset \frac{a}{f_a} \frac{\alpha_s}{8\pi} G\tilde{G}$ $\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{B_{1}\\ g_{2}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{2}\\ g_{2}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{1}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{1}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_$ SN1987A **CASPEr** Electric phase I 10^{-12} 10^{-13} $\frac{i}{2} \underbrace{\frac{0.011\,e}{m_n}}_{m_n} \frac{a}{f_a} \bar{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu} \qquad m_a^2 f_a^2 \simeq m_\pi^2 f_\pi^2 \frac{m_u \, m_d}{(m_u + m_d)^2}$ 10^{-14} CD axions $\delta {\cal L} \equiv 10^{-15}$ 10^{-16} phase II $\equiv g_{a\gamma n}$ 10^{-17} 10^{-18} Coupling to the 10^{-19} **Axion mass** 10^{-20} **nEDM** 10^{-21} phase III 10^{-22} 10^{-23} $10^{-13}10^{-12}10^{-11}10^{-10}10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}$ \mathbf{m}_{a} (eV)

n

Could Casper Phase I detect an axion?

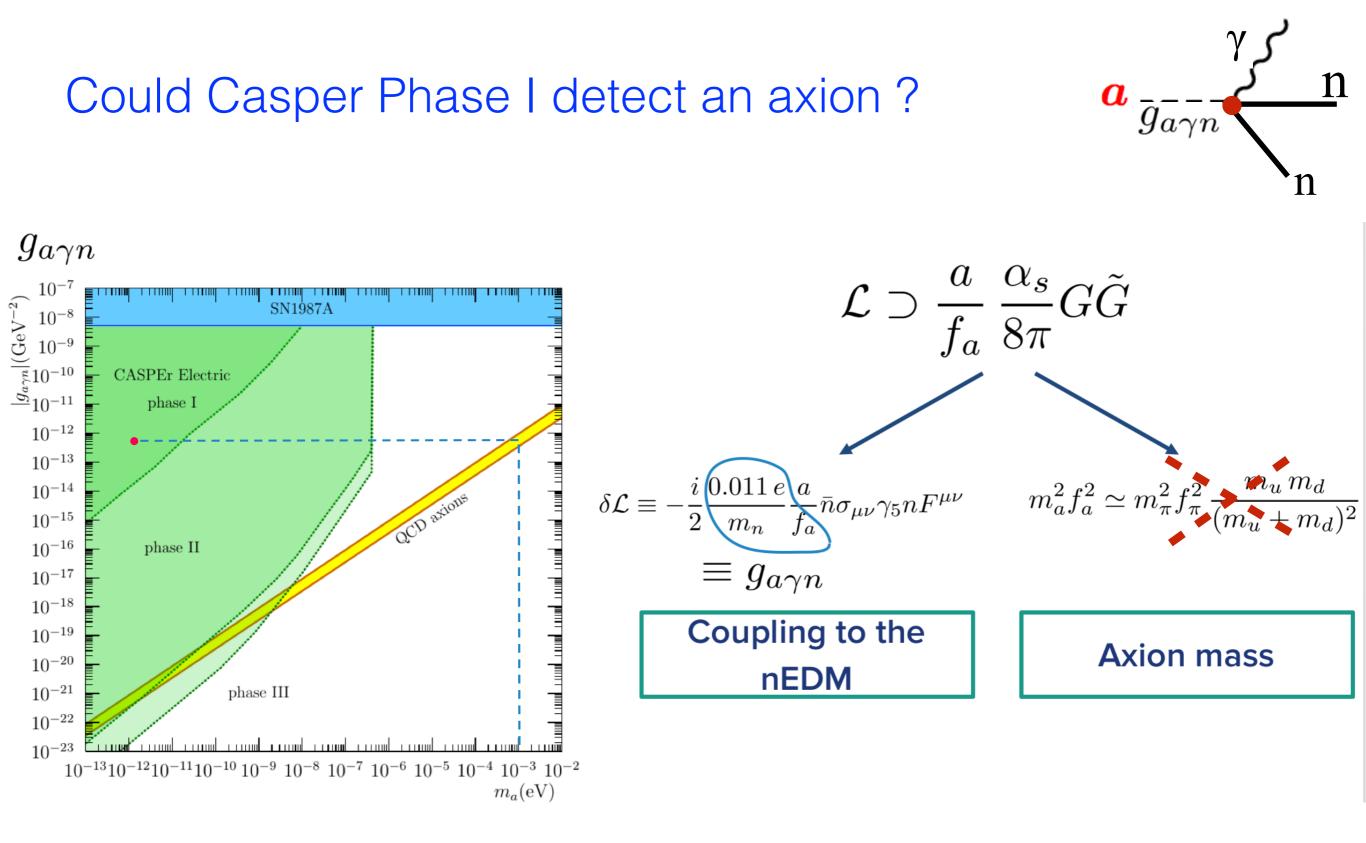
$\overline{g}_{a\gamma n}$ n Canonical QCD axion: $g_{a\gamma n}$ $\mathcal{L} \supset \frac{a}{f_a} \frac{\alpha_s}{8\pi} G\tilde{G}$ $\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{B_{1}\\ g_{2}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{2}\\ g_{2}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{1}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_{1}\\ g_{1}\\ g_{2}\\ g_{1}\\ g_$ 10SN1987A **CASPEr** Electric phase I 10^{-12} 10^{-13} miner hunter hunter hunter hunter hunter hunter hunter hunter $\frac{i}{2} \underbrace{\frac{0.011\,e}{m_n}}_{m_n} \frac{a}{f_a} \bar{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu} \qquad m_a^2 f_a^2 \simeq m_\pi^2 f_\pi^2 \frac{m_u \, m_d}{(m_u + m_d)^2}$ 10^{-14} 2CD axions $\delta \mathcal{L} \equiv 10^{-15}$ 10^{-16} phase II $\equiv g_{a\gamma n}$ 10^{-17} 10^{-18} Coupling to the 10^{-19} **Axion mass** 10^{-20} **nEDM** 10^{-21} phase III 10^{-22} 10^{-23} $10^{-13}10^{-12}10^{-11}10^{-10}10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}$ \mathbf{m}_{a} (eV)

n

Could Casper Phase I detect an axion?

n Could Casper Phase I detect an axion? $\overline{g}_{a\gamma n}$ Canonical QCD axion: $g_{a\gamma n}$ $\mathcal{L} \supset \frac{a}{f_a} \, \frac{\alpha_s}{8\pi} G \tilde{G}$ $\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{\underbrace{B}}_{i}}_{i}}_{i}}_{10^{-10}} \underbrace{\underbrace{\underbrace{B}_{i}}_{i}}_{i} \underbrace{\underbrace{\underbrace{B}_{i}}_{i}}_{10^{-10}} \underbrace{\underbrace{B}_{i}}_{10^{-11}} \underbrace{\underbrace{B}_{i}}_{10^{-11}} \underbrace{10^{-11}}_{i}$ SN1987A **CASPEr** Electric phase I 10^{-12} 10^{-13} $\frac{i}{2} \underbrace{\frac{0.011 \, e}{m_n}}_{m_n} \frac{a}{f_a} \bar{n} \sigma_{\mu\nu} \gamma_5 n F^{\mu\nu} \qquad m_a^2 f_a^2 \simeq m_\pi^2 f_\pi^2 \, \frac{m_u \, m_d}{(m_u + m_d)^2}$ 10^{-14} CD axions $\delta \mathcal{L} \equiv 10^{-15}$ 10^{-16} phase II $\equiv g_{a\gamma n}$ 10^{-17} 10^{-18} Coupling to the 10^{-19} **Axion mass** 10^{-20} **nEDM** 10^{-21} phase III 10^{-22} 10^{-23} $10^{-13}10^{-12}10^{-11}10^{-10}10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}$ $m_a(eV)$

No signal possible from a canonical QCD axion



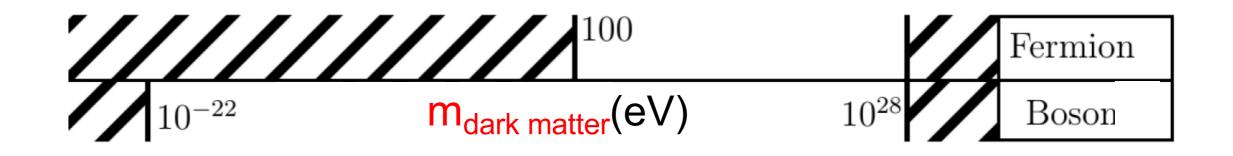
No signal possible from a canonical QCD axion Signal possible from a Z_N axion

85% of matter is dark

what is it?

Is it a new type of particle?

what mass?



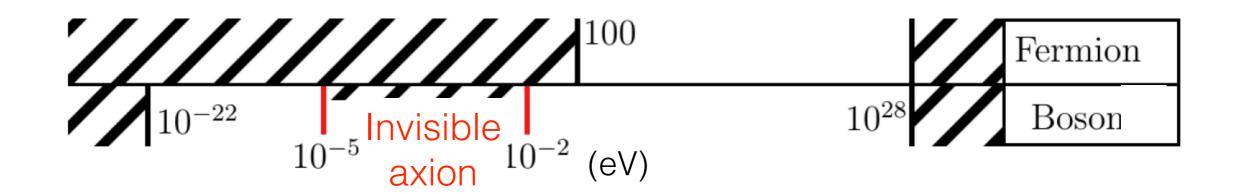
Does it feel anything else than gravity?

85% of matter is dark

what is it?

Is it a new type of particle?

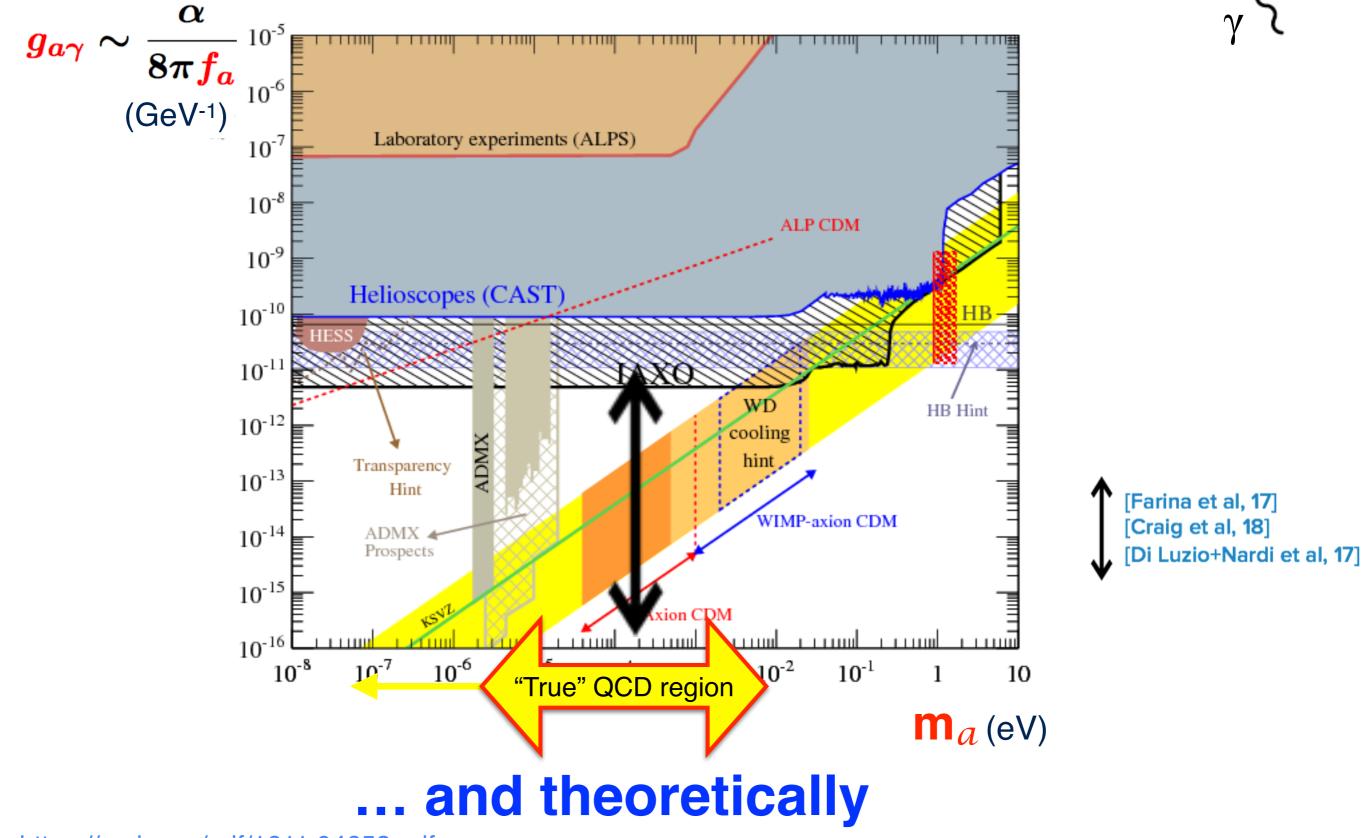
what mass?



Intensely looked for experimentally...

a -

 $g_{a\gamma}$



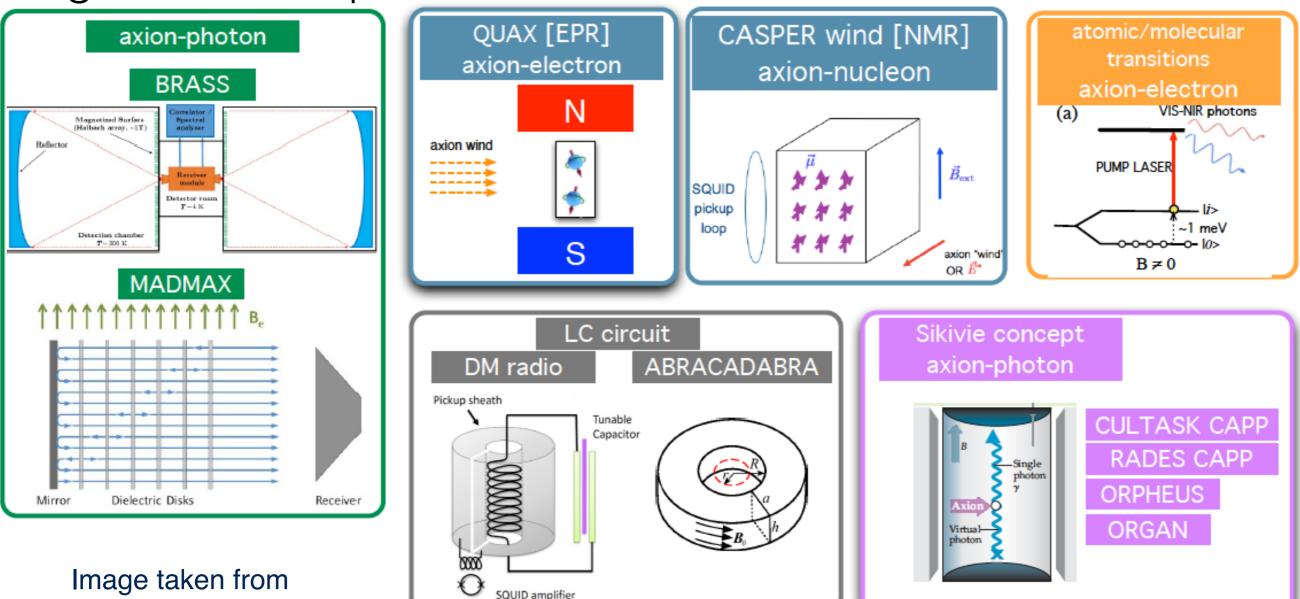
https://arxiv.org/pdf/1611.04652.pdf

Experiment: new experiments and new detection ideas

- * Helioscopes: axions produced in the sun. CAST, Baby-IAXO, TASTE, SUMICO
- * Haloscopes: assume that all DM are axions ADMX, HAYSTACK, QUAX, CASPER, Atomic
- * Traditional DM direct detection: axion/ALP DM XENON100
- * Lab. search: LSW (light shining through wall,ALPS, OSQAR) PVLAS (vacuum pol.)..... and LHC!

Experiment: new experiments and new detection ideas

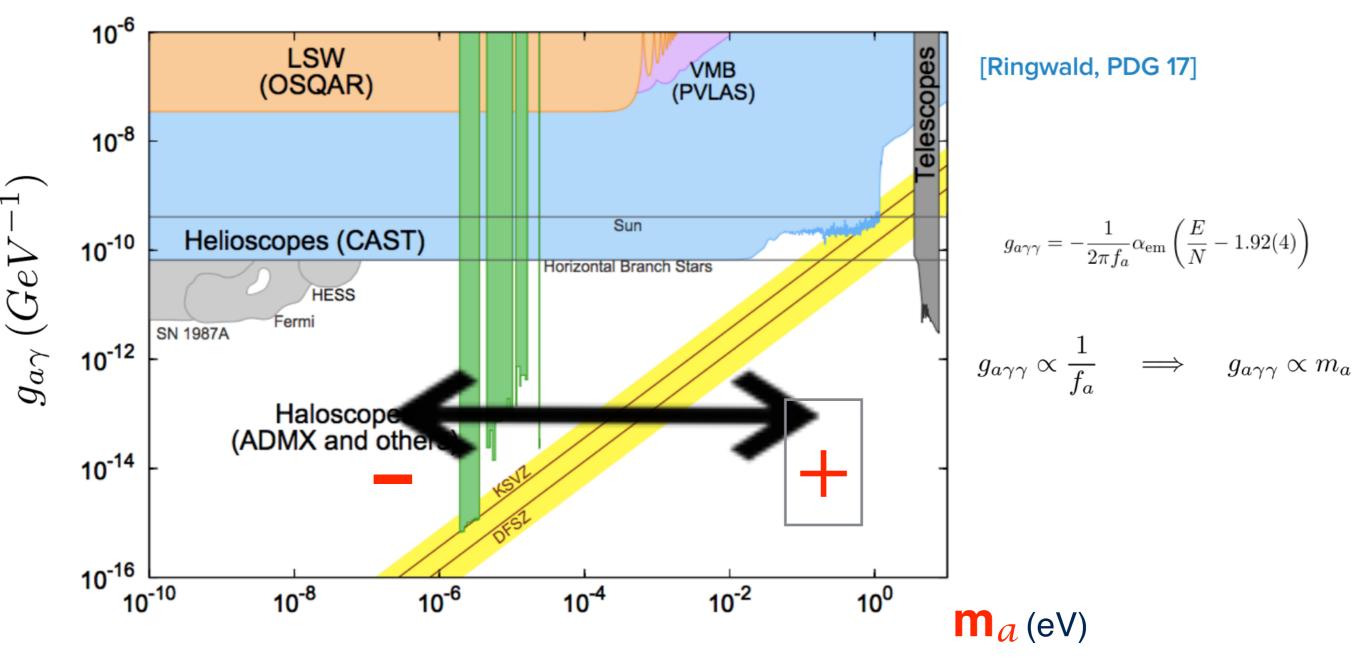
e.g. in Haloscopes



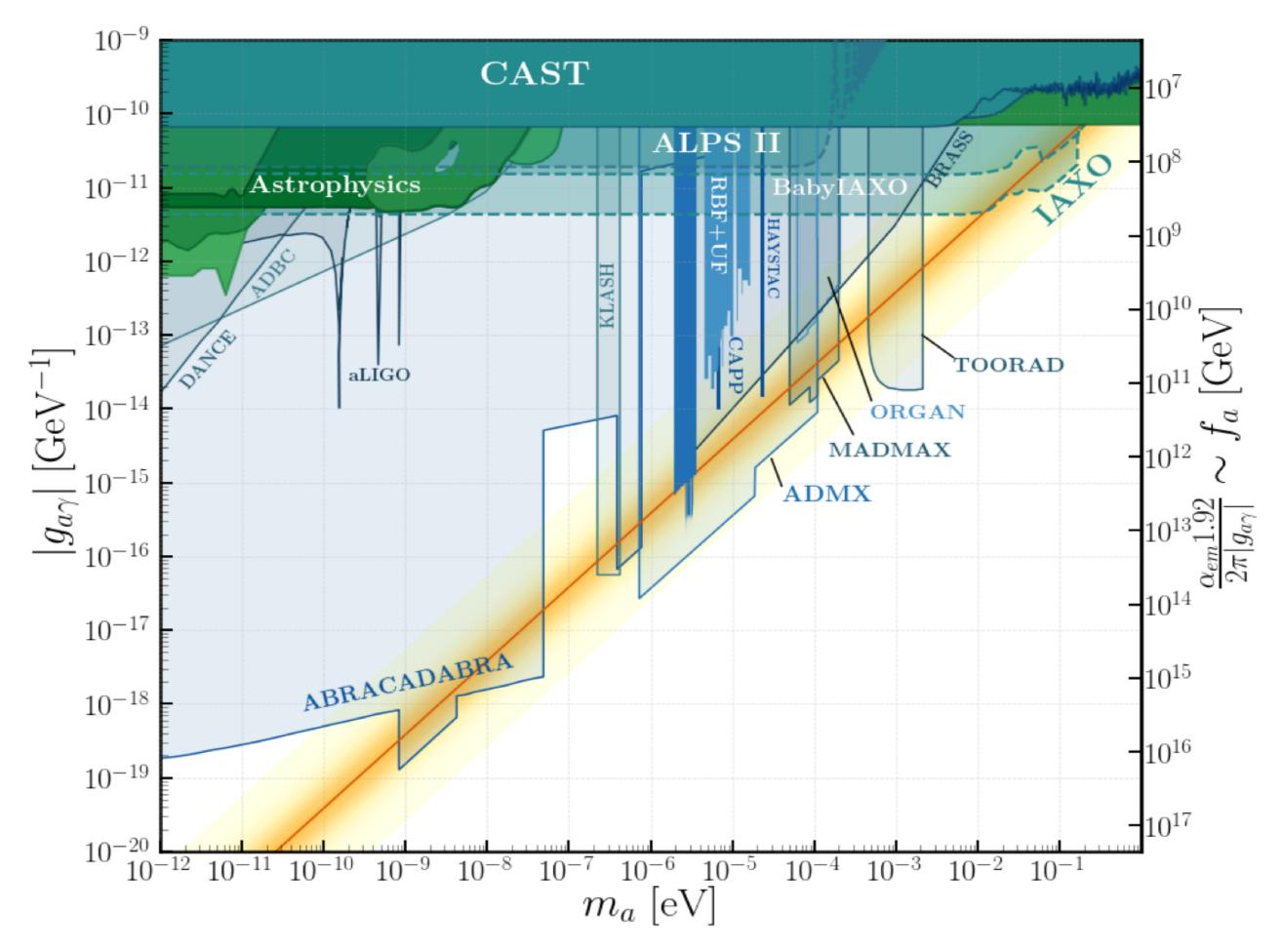
C. Braggio talk at Invisibles18

plus LHC !

Intensely looked for experimentally...

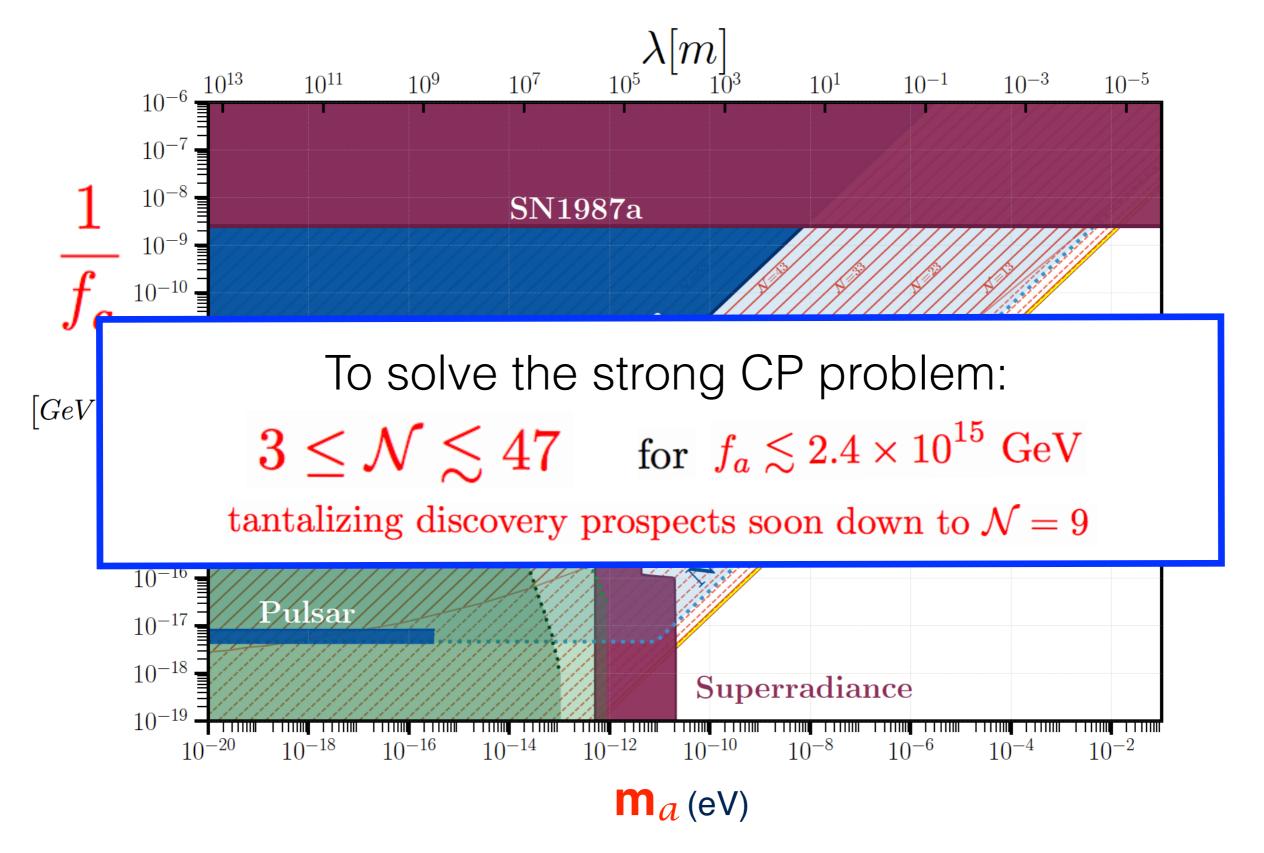


... and theoretically



courtesy of Pablo Quilez

Model-independent bounds from high-density objects



Di Luzio, Quilez, Ringwald, BG arXiv 2102.00012

ALPs territory: they can be true axions

